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Chapter 8

Applications of Image Synthesis

After classi�cation and retrieval, in this chapter we turn to address the third research

theme: synthesis. In particular, we focus on two practical applications: image-to-

image translation and fashion style transfer.

Image-to-image translation between di�erent domains aim to arbitrarily manipulate

the source image content given a target one. For RQ7, we need to study what fac-

tors in�uence the performance of cycle-consistent generative networks (CycleGAN),

which have become a fundamental approach for general-purpose image-to-image

translation, while few work investigate the important factors within it. To this

end, we present an extensive and empirical study on cycle-consistent generative net-

works. We exploit two extended models which can promote the generation quality.

Then, we conduct comprehensive experiments to evaluate these models for several

translation tasks.

As for fashion style transfer, we aim towards developing a novel approach to per-

form the problem of person-to-person clothing swapping (RQ8). It is challenging

due to varying pose deformations between di�erent person images. We address this

challenge by proposing a novel multi-stage generative network (SwapGAN) that in-

tegrates three generators based on di�erent synthesis conditions. The SwapGAN

model is end-to-end trainable with adversarial loss and mask-consistency loss. We

demonstrate the e�ectiveness of our approach through both quantitative and quali-

tative evaluations on the DeepFashion dataset. This work can serve as a benchmark

for future research on this task.

Keywords
Image synthesis, Image-to-image translation, Fashion style transfer, Generative ad-

versarial networks
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8. APPLICATIONS OF IMAGE SYNTHESIS

8.1 Image-to-Image Translation

Image-to-image translation has achieved increasing attention in recent research.

This task learns to synthesize the translated image in the target domain, given one

image in the source domain. With the emergence of generative adversarial networks

(GANs) [79] in recent years, some e�orts have been made to employ unpaired image

samples to model mapping functions between two di�erent domains [89, 90, 91].

The translation task therefore becomes an unsupervised problem as the correspond-

ing ground-truth images in the target domain are unknown. In addition, these

approaches make use of the adversarial mechanism involved in GANs, to make the

generated images undistinguished from real ones in the target domain. One chal-

lenging problem is that the domain mappings in these unsupervised approaches are

under-constrained due to lack of ground-truth labels. To tackle the challenge, Cycle-

GAN [94] introduces a cycle-consistency loss by reconstructing the generated image

back to the source domain. In conjunction with the original adversarial loss, the

cycle-consistency loss is bene�cial to aid the unsupervised domain mappings. More-

over, this additional loss can help the model in avoiding mode collapse, from which

the original GANs often su�er. Figure 8.1(a) illustrates the conceptual architecture

of CycleGAN. Due to its high e�ectiveness and generalization ability, CycleGAN

has been a fundamental model to address the task of unsupervised image transla-

tion, while few works have examined what factors may in�uence its performance.

This fact motivates our research question RQ 7: What factors will a�ect the

performance of generative models on the translation tasks?

Driven by this, in this work we extend the vanilla CycleGAN with new improve-

ments, which can present more insights into what factors promote its performance on

unsupervised image-to-image translation. Speci�cally, our improved models focus

on studying the e�ects of two key factors in CycleGAN: one is the number of gener-

ators and another is the number of cycles. For the �rst factor, we build an extended

model called Long CycleGAN, which can cascade more generators to perform the

translation within a long cycle. For example, in Figure 8.1(b), we can incorporate

M and N of di�erent generators for A-to-B and B-to-A translation, respectively.

Advantageously, the long cycle can leverage more generators to further increase the

generation abilities of the model and improve the quality of the synthesized images.

In terms of the second factor, another extended model with additional nested cycles

is developed, namely Nest CycleGAN. As illustrated in Figure 8.1(c), this model

attempts to exploit many inner cycles nested within the outer cycle. In this way,

the inner cycles are able to directly connect the intermediate generators and provide

more cycle-consistency losses to guide the domain mappings. Nest CycleGAN is

used to demonstrate the bene�t of adding more cycles among generators.

The contributions of this work are as follows:
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8.1 Image-to-Image Translation
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Figure 8.1: Illustration of three cycle-consistent generative adversarial networks.
Based on the (a) Vanilla CycleGAN [94], we build two extended models: (b) Long Cy-
cleGAN and (c) Nest CycleGAN. Long CycleGAN can promote the generative abilities
by cascading more generators, and Nest CycleGAN is able to add extra inner cycles
to enhance the mapping constraints.

� We propose two extended models to explore the important factors in Cycle-

GAN. In addition, we present the initialization networks for the extended

models. We conduct qualitative and quantitative evaluation to assess these

models, for translation tasks including photo↔label and photo↔sketch.

� Our results witness the superiority of the extended models over the vanilla

one. The results can act as an indication that CycleGAN equipped with more

generators and cycles would achieve better generation quality.

The rest is structured as follows. Section 8.1.1 describes the vanilla CycleGAN and

two extended models. The initialization networks are introduced in Section 8.1.2.

The experiments are shown from Section 8.1.3 to Section 8.1.5.

8.1.1 Methodology

Problem Formulation

Assume that there are two unpaired image sets: {ai}Ni=1 in domain A and {bj}Mj=1

in domain B. The task aims to learn bi-directional mapping functions to map

any ai ∈ A to bj ∈ B, and vice versa. We omit the subscript i and j for notational

simplicity. Notably, the images in the two sets are unaligned with each other, and the

input images lack of ground-truth images to provide correct correspondences.

To tackle this problem, GANs [79] are used to generate realistic-looking target sam-

ples by incorporating a generator G and a discriminator D. Taking the A-to-B

mapping for example, GAB learns to simulate real images in domain B given the im-

ages in domain A. Then DB need to distinguish real images b from synthetic images

GAB(a). The original GANs compute the adversarial loss based on the negative log

likelihood. Instead, we employ the least square loss designed in LSGAN [233], due

to its proper stability of training and quality of generated images. The adversarial
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8. APPLICATIONS OF IMAGE SYNTHESIS

loss for translating a to b is expressed with

LGAN(GAB, DB) = Eb∼pdata(b)[(DB(b)− 1)2] + Ea∼pdata(a)[DB(GAB(a))2]. (8.1)

Here, pdata is the empirical distribution of training images. The generator and dis-

criminator are trained for a minimax objective: minGAB
maxDB

L(GAB, DB). Simi-

larly, we can employ another generator and discriminator for the B-to-A mapping,

and compute its corresponding adversarial loss: LGAN(GBA, DA).

Vanilla Cycle-consistent GAN

Unsupervised image translation relies on adversarial loss to ensure the synthesized

images in accordance with the target domain. However, it is important to add

extra losses to enhance the constraints of unsupervised mapping functions. Cycle-

GAN [94] develops a cycle-consistent loss by coupling two generators GAB and GBA

in a reconstruction-based cycle. To be speci�c, the generated image GAB(a) is fur-

ther fed into GBA to obtain the reconstructed image â = GBA(GAB(a)). Similarly,

we can have b̂ = GAB(GBA(b)). Then, the di�erence between the input images and

their reconstructed ones is computed with the L1 norm :

LRec(GAB, GBA) =Ea∼pdata(a)[||GBA(GAB(a))− a||1]
+Eb∼pdata(b)[||GAB(GBA(b))− b||1].

(8.2)

Finally, the full objective in CycleGAN considers minimizing both the adversarial

loss and the cycle-consistent loss:

LCycle(GAB, GBA, DA, DB) =LGAN(GAB, DB) + LGAN(GBA, DA)

+λLRec(GAB, GBA),
(8.3)

where λ adjusts the weight of the reconstruction loss. As suggested in Cycle-

GAN [94], the cycle-consistent constraint can help avoid the mode collapse problem,

that is, the generated samples may only come from several modes of the real data

distribution, but discard many other modes.

Long Cycle-consistent GAN

A key purpose of generative models is improving the quality of synthesized image

samples. One favorable solution is introducing more generators to promote the

generative abilities of the whole model. Driven by this, we extend CycleGAN by

stacking a few generators, and investigate its e�ects on the generation quality. In

Figure 8.1(b), we illustrate the �rst extended model called Long CycleGAN. Assume

that there are M generators translating image samples from domain A to B, and at

the same time N generators to map image samples from B to A. The whole mapping

procedure can be performed in a chained fashion: the output of the current generator
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8.1 Image-to-Image Translation

is taken as input of the next generator. Formally, we can compute the output of

each generator with

Gm
AB(a) = F (Gm−1

AB (a),Wm
AB),m = 1, . . . ,M, (8.4)

Gn
BA(b) = H(Gn−1

BA (b),W n
BA), n = 1, . . . , N. (8.5)

We de�ne F and H as the mapping functions for A-to-B and B-to-A.Wm
AB andW n

BA

correspond to their mapping weights. Finally, we can rewrite the full objective for

Long CycleGAN

LLong(
M∑

m=1

Gm
AB,

N∑
n=1

Gn
BA, DA, DB) =LGAN(GM

AB, DB) + LGAN(GN
BA, DA)

+λLRec(G
M
AB, G

N
BA).

(8.6)

We note that, when M = N = 1, G0
AB(a) = a and G0

BA(b) = b. In this case,

Long CycleGAN is the same as the vanilla one and therefore can be viewed as a

generalized model.

Nest Cycle-consistent GAN

Furthermore, we present another extended model by nesting more inner cycles apart

from a single outer cycle used in Long CycleGAN. T additional cycle-consistency

losses based on new inner cycles can help constrain the mapping space between two

domains. The extended model named by Nest CycleGAN is shown in Figure 8.1(c).

On the one hand, the outer cycle in Nest CycleGAN (in solid line) performs the

complete mappings between two domains by using all generators. On the other

hand, the inner cycles (in dashed line) aim to build additional connections to bridge

intermediate generators in the two chains. Notably, each inner cycle can be viewed

as an auto-encoder model that can reconstruct the input image based on latent

representations learned from intermediate generators. For instance, the m-th inner

cycle for domain A is associated with two sets of generators, i.e. {G1
AB, . . . , G

m
AB} and

{GN−m+1
BA , . . . , GN

BA}. In addition, we task the output of Gm
AB as input of GN−m+1

BA ,

which can be denoted as

GN−m+1
BA (Gm

AB(a)) = H(Gm
AB(a),WN−m+1

BA ). (8.7)

After that, the image sample further passes from GN−m+1
BA to GN

BA, and the recon-

structed image based on the m inner cycle can be formulated as

âm = GN
BA(Gm

AB(a)). (8.8)
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8. APPLICATIONS OF IMAGE SYNTHESIS
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Figure 8.2: Instantiation Networks. Left: Long CycleGAN; Right: Nest CycleGAN.
Details can be seen in Section 8.1.2.

Similarly, we can obtain b̂n = GM
AB(Gn

BA(b)) for the n-th inner cycle with respect to

domain B. Finally, the reconstruction loss with additional inner cycles is

LInner(
M∑

m=1

Gm
AB,

N∑
n=1

Gn
BA) =

M∑
m=1

Ea∼pdata(a)[||âm − a||1]

+
N∑

n=1

Eb∼pdata(b)[||b̂n − b||1].

(8.9)

Particularly, when m = M and n = N , the inner cycle turns to be the outer cycle,

which can be included in the formulation. The objective of Nest CycleGAN is

LNest(G
M
AB, G

N
BA, DA, DB) =LGAN(GM

AB, DB) + LGAN(GN
BA, DA)

+λLInner(
M∑

m=1

Gm
AB,

N∑
n=1

Gn
BA).

(8.10)

8.1.2 Instantiation network

To assess the e�ectiveness of the three CycleGAN variants, we build their instanti-

ation networks as follows.

Vanilla CycleGAN. We reproduce the standard CycleGAN with the generator

and discriminator in [94]. (1) Generator : it consists of an encoder, several residual

blocks and a decoder. The encoder module contains three convolutional layers; each

residual block adds a skip connection on two 3×3 convolutional layers; the decoder

module has two deconvolutional layers using stride-1
2
convolutions to upsample, and

one stride-1 convolutional layer to output the synthesized image. The convolutional

layers are followed by instance normalization [83] and ReLU [4]. (2) Discriminator :

it is based on the Markovian network from PatchGANs [82, 88], which can run

convolutationally across an image to classify if overlapping patches are real or fake.

It contains four convolutional layers and the last layer produces a 1-dimensional

feature map as the predicted output.
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8.1 Image-to-Image Translation

Input GAN Long Cycle Nest Cycle Ground-truth

(a)

(b)

Vanilla Cycle

Figure 8.3: Generated samples of (a) the label→photo translation and (b) the
photo→label translation evaluated on the CMP-Facade dataset.

Input GAN Long Cycle Nest Cycle Ground-truth

(a)

(b)

Vanilla Cycle

Figure 8.4: Qualitative results of (a) the label→photo translation and (b) the
photo→label translation on the Cityscapes dataset.

Long CycleGAN. On top of the vanilla CycleGAN, we instantiate a Long Cycle-

GAN by cascading two generators (i.e. M = N = 2), but the extension with more

generators is straightforward. For fairness, all the generators and discriminators in
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8. APPLICATIONS OF IMAGE SYNTHESIS

Long CycleGAN use the same networks with the vanilla CycleGAN. As illustrated

in Figure 8.2 (Left), the model consists of two cycles which can be trained jointly.

The red cycle starts with the input a in domain A and translates it to be G2
AB(a)

in domain B. DB learns to distinguish the fake image G2
AB(a) from the real image

b. Then, G2
AB(a) is translated back to be the reconstructed image â in domain A.

Likewise, the green cycle beginning from b performs an inverse translation.

Nest CycleGAN. Next, we build a Nest CycleGAN upon the above Long Cycle-

GAN. In Figure 8.2 (Right), we exploit two additional inner cycles within the outer

cycles. The inner cycles can also reconstruct the input images a and b, which are

denoted by â1 and b̂1. We can see that, the �rst generated images, i.e. G1
AB(a) and

G1
BA(b), act as intermediate states between A and B, then they should have implicit

semantic similarities in some extend. Hence, we consider adding an extra loss to

correlate them with

LSim(GAB, GBA) = Ea∼pdata(a)[||G
1
AB(a)−G1

BA(b)||1]. (8.11)

During training, LSim(GAB, GBA) is added with LNest(G
M
AB, G

N
BA, DA, DB). Conse-

quently, G1
AB and G1

BA can tend to gather in a common domain H between A and

B, even though the inputs a and b are unpaired.

8.1.3 Experiment setup

To assess the three CycleGAN variants, we perform three image translation tasks, in-

cluding photo↔label and photo↔sketch. The input and output images were scaled

to 256×256. For fairness, some training parameters were consistent with Cycle-

GAN [94], including mini-batch size of 1, learning rate of 0.0002, and weight decay

of 0.0005. All the models were trained with 200 epoches and we �xed λ = 10 in the

experiments, and optimized with the Adam optimizer [234]. Notice that, we ran-

domly shu�ed two domain-speci�c datasets to make sure they are totally unpaired.

We implemented the models with TensorFlow [235] on a Titan X GPU card.

8.1.4 Results on photo↔label

For this translation task, we employed two semantic segmentation datasets: CMP-

Facade [236] and Cityscapes [237]. CMP-Facade contains 606 images in total. We

randomly select 400 images for training, and the remaining 206 images for testing.

In Cityscapes, there are 2975 images for training and 500 images for testing. There

are 12 and 19 semantic labels in CMP-Facade and Cityscapes, respectively.

Qualitative results. In Figure 8.3 and Figure 8.4, we compare the quality of gener-

ated images. For the label→photo task, three cycle-consistent GANs can synthesize

more realistic images than the original GAN. It can be seen that, GAN su�ers from
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8.1 Image-to-Image Translation

Table 8.1: Quantitative results of the label→photo translation evaluated on the
CMP-Facade dataset. Higher numbers are better.

Method
CMP-Facade dataset Cityscapes dataset

Per-pixel acc. Per-class acc. Class IOU Per-pixel acc. Per-class acc. Class IOU

GAN 0.32 0.12 0.07 0.50 0.11 0.07
Vanilla CycleGAN 0.35 0.15 0.10 0.51 0.17 0.12
Long CycleGAN 0.43 0.19 0.13 0.54 0.18 0.13
Nest CycleGAN 0.49 0.22 0.15 0.57 0.20 0.14

Oracle 0.66 0.51 0.39 0.86 0.45 0.37

mode collapse, where the generated labels look almost identical for di�erent input

photos. However, the other three models can avoid this problem due to using cycle-

consistency constraints. In addition, the two extended models can produce superior

images over the vanilla one.

Quantitative results. In addition to the above qualitative evaluation, we further

conduct quantitative experiments for this translation task. Considering the fact

that the two datasets are not large scale, it is inappropriate to use the inception

score (IS) to measure the generation quality. Instead, we used the FCN-score, i.e.

a quantitative measurement as suggested in [88], to assess the label→photo task.

First, a fully convolutional network (FCN) [26] for semantic segmentation was pre-

trained using the real training photos and ground-truth labels. Then, each generated

photo was fed into the FCN model to produce the predicted labels. The comparison

with the ground labels can assess the generation photos. Commonly, FCN-score

includes three standard metrics: per-pixel accuracy, per-class accuracy, and mean

class intersection-over-union (IOU).

Table 8.1 reports quantitative results on CMP-Facade and Cityscapes. Comparably,

all the three cycle-consistency models outperform the original GAN model. However,

we can observe that the performance gap between Vanilla CycleGAN and GAN

is not signi�cant, while Long CycleGAN can improve the performance with more

considerable gains. This demonstrates the bene�t of employing more generators for

raising the generative ability. Moreover, Nest CycleGAN can achieve better accuracy

than Long CycleGAN due to adding new inner cycles. For a full comparison, we also

provide the Oracle results by testing real photos, which can be seen as the upper-

bound performance. Our results on CMP-Facade narrow the gap with Oracle.

8.1.5 Results on photo↔sketch

We conducted this task with the SBIR dataset [238] which includes two subsets:

one for shoes and the other for chairs. In the shoe dataset, we used 304 samples for

training and 115 ones for testing. The chair dataset consists of 200 training samples

and 97 testing ones. Figure 8.5 and Figure 8.6 present the generated image samples

on the two datasets. We can see that the two extended models are advantageous to

the original GAN and Vanilla CycleGAN. It is worth noting that, the sketch→photo
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8. APPLICATIONS OF IMAGE SYNTHESIS

Input GAN Long Cycle Nest Cycle Ground-truth

(a)

(b)

Vanilla Cycle

Figure 8.5: Qualitative results of (a) the photo→sketch translation and (b) the
sketch→photo translation on the SBIR chairs dataset.

Input GAN Long Cycle Nest Cycle Ground-truth

(a)

(b)

Vanilla Cycle

Figure 8.6: Qualitative results of (a) the photo→sketch translation and (b) the
sketch→photo translation on the SBIR shoes dataset.

translation is more challenging than the photo→sketch translation. The main reason

is that the sketch→photo mapping functions are more under-constrained, and one

sketch image therefore may be synthesized with a variety of colors.
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8.2 Fashion Style Transfer

8.2 Fashion Style Transfer

Nowadays, online shopping has become an indispensable experience in our daily

lives. Consequently, the huge market brought by fashion clothing shopping mo-

tivates an increasing variety of fashion relevant research, such as fashion clothing

retrieval [95, 239], fashion recommendation [96, 240], fashion parsing [97, 241] and

fashion aesthetics [242, 243]. In this work, we deal with the problem of fashion

clothing swapping, which aims to visualize what the person would look like with

the target clothes. From the practicality perspective, fashion clothing swapping is a

useful experience for online consumers who need to virtually try on di�erent clothes

instead of wearing them physically. From the research perspective, fashion clothing

swapping can be viewed as a speci�c task belonging to fashion style transfer. The

challenge in this task is how to transform the target clothes �tting for the wearers

while preserving their pose and body shape.

Traditionally, non-parametric methods [98, 101, 103, 244] are exploited to address

this problem. They need to segment the target clothes from the condition image

and then employ 2D image warping algorithms or 3D graphics methods to model

the deformations between the clothes and the reference person body. However, these

traditional methods rely on extra information (e.g. 3D measurements and geometric

constraints) and complicated optimization algorithms (e.g. dynamic programming

and dynamic time warping). In addition, non-parametric methods are not gen-

eral, which means they need to estimate individual deformations for di�erent image

pairs. Also, it is non-tractable to match humans' key points due to non-rigid pose

deformations.

In contrast to non-parametric methods, recent research [105, 106] turns to recast

the clothing swapping as a 2D image synthesis problem. It is mainly driven by the

rapid developments of deep generative networks, which have succeeded in many tasks

involving synthesizing plausible images [84, 88, 245, 246]. Deep generative networks

are able to synthesize the target images without requiring matching key points.

Recently, FashionGAN [85] employs a textual description as condition to perform

the clothing swapping (Figure8.7(a)). The methods in [105, 106] uses a stand-alone

and �at clothing image to re-dress the reference person (Figure 8.7(b)). However,

the target clothe is always worn on another person in practical scenarios, rather than

is shown in a separate image. In this work, we aim to perform the person-to-person

clothing swapping by transferring the clothes on the condition person images to

the reference ones (Figure8.7(c)). It becomes more challenging due to the varying

deformations among di�erent human poses. Considering the challenge, we need

to tackle the last research question RQ 8: How can we exploit a generative

model to directly transfer the fashion style between two person images?
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8. APPLICATIONS OF IMAGE SYNTHESIS

The lady was 

wearing a blue 

long-sleeved 

sweater.

Condition Reference image Generated image

(a)

(b)

(c)

+

+

+

Generative Model

=

=

=

Text-to-Person

Style Transfer

Clothes-to-Person

Style Transfer

Person-to-Person

Style Transfer

Figure 8.7: Three tasks of fashion clothing swapping conditioned on (a) textual
description [85], (b) clothing image [106] and (c) person image, respectively. All the
three cases aim to re-dress up the woman in the reference image with a long-sleeved
sweather, while preserving her original pose and body shape. (c) shows the synthesized
image based on our proposed SwapGAN.

To this end, we propose a multi-stage generative framework (SwapGAN), consisting

of three generation stages conditioned on di�erent priors. In the �rst stage, we in-

terpret this problem as a pose-based person image synthesis process. We therefore

exploit a pose-conditioned generative network (i.e. Generator I), which can manip-

ulate the person in the condition image to have the same pose and body shape as

the person in the reference image. Consequently, the new synthesized image can

be viewed as the desired target image where the reference person wears the target

clothes while preserving the original pose and body shape. Second, we further ex-

ploit a segmentation-conditioned generative network (i.e. Generator II) built on top

of Generator I. The pose map in Generator I may mistake the clothing style (e.g.

changing long sleeves to short sleeves), however, the segmentation in Generator II is

used to retain the style due to its rich semantic information. To be speci�c, we take

the segmentation map of the condition image into Generator II, to make sure that

the synthesized image is consistent with the original condition image. Our hypoth-

esis is that, if a person image can be well transformed based on an arbitrary pose,

then it should be feasible to reconstruct it based on its original segmentation map.

Moreover, we perform the third generation stage by using a mask generative network

(i.e. Generator III). Generator III is used to explicitly constrain the body shape of

the synthesized person images from both Generator I and Generator II. During the

training procedure, we can train the entire SwapGAN end-to-end by integrating the

adversarial loss from Generator I and Generator II and the mask-consistency loss

from Generator III.

The contributions of this work are as follows:
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� We prose a multi-stage generative framework for addressing a task of fash-

ion style transfer, i.e. person-to-person clothing swapping. This is the �rst

attempt to study it with a deep generative approach, to the best of our knowl-

edge.

� In addition, our approach present the bene�t of integrating multiple condi-

tional GANs based on di�erent priors. It can motivate tackling other research

problems involved in deep generative networks.

� Furthermore, the experiments on the DeepFashion dataset verify the e�ective-

ness of SwapGAN in terms of qualitative and quantitative evaluations. Our

work can be a benchmark study to drive future research on this task. Also, it

can enrich the application of deep generative approaches for solving practical

problems.

The rest is structured as follows. Section 8.2.1 describes the proposed multi-stage

generative model for person-to-person clothing swapping. The network architec-

ture is detailed in Section 8.2.2. We report and discuss experimental results from

Section 8.2.3 and Section 8.2.6.

8.2.1 Methodology

Problem De�nition

We de�ne the problem of person-to-person clothing swapping to be a conditional

person image generation process. Its goal is to manipulate the person in the con-

dition image to have the same pose and body shape as the person in the reference

image. Additionally, we paste the head of the reference person onto the new syn-

thesized image, in order to preserve the person identity. In this way, the reference

person in the synthesized image can wear the target clothes in the condition image,

while retaining the original pose and body shape.

Given a condition person image and a reference one, it may be infeasible to �nd

the ground-truth target image in the dataset to supervise the synthesized image.

Instead, we consider training the synthesis process using two images of the same

person. To be speci�c, we have a training dataset of N image pairs, each of which

is composed of two images of the same person with the same clothes, but with

di�erent poses (Figure 8.8). We randomly select one of the two images as a

reference image, and the other one as a condition image. The reference and condition

images are denoted with X
(i)
r and X

(i)
c , i = 1, . . . , N . Taking X

(i)
c and the pose map

of X
(i)
r as input, our generator learns to create a fake X

(i)
r during the training

procedure. The discriminator needs to distinguish the fake X
(i)
r from the real one.

Ideally, when the discriminator cannot tell the di�erences between the real and fake

images, the generators should be able to generate high-quality images.
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Image Pose map Segment map Mask map Head map

Figure 8.8: Representations for a pair of person images that have the same clothes
but show di�erent poses.
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Figure 8.9: Overview architecture of the multi-stage generative framework in the
proposed SwapGAN. Generator I can synthesize a new image XGI

by manipulating
the condition person image Xc based on the reference pose Pr. Then, Generator II
takes as input XGI

to produce a reconstructed Xc based on the segmentation map Sc.
Moreover, Generator III is used to explicitly constrain the body shape during the
synthesis process.

Person Representation

To specify the synthesis process, we need to extract a couple of person representa-

tions based on the person images. As shown in Figure 8.8, we utilize four feature

maps described as follows:

1) Pose map: We employ one of the state-of-the-art pose estimators, OpenPose [247],

to capture person pose information. For each person image, the pose estimator can

localize 18 key-points in a pose map. In addition, the key-points are connected

by color lines that can present the orientation of limbs. The pose map is used in

Generator I.

2) Segmentation map: An o�-the-shelf human semantic parser [248] is adopted to

extract a person segmentation map. The original map can predict 20 �ne classes for

semantic segmentation. We further re-group the �ne classes into �ve coarse classes,

including head, arms, legs, upper-body clothes and lower-body clothes. We employ
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this segmentation map in Generator II.

3) Mask map: Based on the above segmentation map, it is straightforward to obtain

the binary mask of the person by merging all segmented regions. In contrast to

the segmentation map, this mask map is used to retain the body shape without

involving the semantic clues about the person. The mask maps of both the reference

and condition person images are used for Generator III.

4) Head map: During the synthesis process, the details of the human face are hard

to preserve due to its small size. However, it is needed to restore the identity

of the reference person after swapping the clothes. To this end, we capture the

head region (face and hair) based on the segmentation map, and paste it onto the

new synthesized person image. This similar post-processing step is also used in

FashionGAN [85].

For X
(i)
r and X

(i)
c , we denote their four feature maps as {P (i)

r , S
(i)
r ,M

(i)
r , H

(i)
r } and

{P (i)
c , S

(i)
c ,M

(i)
c , H

(i)
c }, respectively. Subsequently, we will omit the superscript i

for notational simplicity. We should mention that, these person representations

are simple and e�cient to extract without extra manual tuning. Note that, our

representations are semantically richer than previous works [85, 105, 106].

Overview architecture

To render clothes from a person image on to another one, we propose an image syn-

thesis framework (SwapGAN) based on conditional generative adversarial networks.

Figure 8.9 illustrates the overview of SwapGAN, which has three di�erent genera-

tors for pose-conditioned generation, segmentation-conditioned generation and mask

generation, respectively.

Pose-conditioned generation

We begin to introduce the �rst generative stage conditioned on the pose map. As

illustrated in Figure 8.9, we concatenate the condition image Xc and the reference

pose map Pr together, and take them as input into the pose-based generative net-

work, i.e. Generator I. We can express the synthesized image with

XGI
= GI(Xc, Pr). (8.12)

We should mention that, the pose map can not only localize the human key-points,

but also constrain the body shape of the synthesized person image to be the same

as the reference person.

Next, XGI
and Xc are integrated together to fake the discriminator D. Compared

with the real pair of Xr and Xc, GI learns to produce more realistic-looking images
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similar to Xr. Following the original GANs [79], we use the negative log likelihood

to compute the adversarial loss w.r.t. GI

LGI
= EXc∼pdata(Xc),Pr∼pdata(Pr)[log(D(XGI

, Xc))], (8.13)

where pdata(·) indicates the empirical distributions of training data. As suggested

in LSGAN [233], the least square loss is e�cient to improve both the stability of

training and the quality of generated images. Driven by this, we turn to use the

least-square adversarial loss to represent LGI
:

LGI
= EXc∼pdata(Xc),Pr∼pdata(Pr)[(D(XGI

, Xc)− 1)2], (8.14)

The objective for Generator I is to minimize LGI
.

Segmentation-conditioned generation

Given two arbitrary person images, Generator I can synthesize new images by ex-

changing the clothes and its results therefore can meet the goal of this task. However,

the key-points in the pose map are mainly used to measure the localization infor-

mation of body parts, but pay little attention to the style of the target clothes in

the condition image. To address this limitation, we propose to leverage the person

segmentation map, which can take into consideration semantic information about

the clothes.

Empirically, if XGI
has derived the target clothes from Xc, it should be possible

to return the clothes back to the condition person again. In this way, the fashion

style of the clothes can be reconstructed well during the synthesis process. This idea

motivates the second generative stage that aims towards synthesizing another new

image as similar as the condition image Xc. Speci�cally, we build a segmentation-

based generative network (i.e. Generator II in Figure 8.9), on top of the output of

Generator I. Generator II takes as input the concatenation of the synthesized image

XGI
and the condition segmentation map Sc. As a result, we can obtain a new

synthesized image from the output of Generator II:

XGII
= GII(XGI

, Sc) = GII(GI(Xc, Pr), Sc). (8.15)

Ideally, XGII
should be as similar as the original input Xc. From Xc to XGII

, the

integration of the �rst and second generative stages actually construct an auto-

encoder paradigm. It can help improve the quality and semantics of the generated

image XGI
. For instance, Generator I may mistake the fashion style by transferring

long sleeves to be short sleeves. However, Generator II is capable of correcting

the mistake, because the segmentation map includes the lost information about the

long sleeves. Next, we incorporate Xr and XGII
into the same discriminator D, and
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compute the generative loss function of GII

LGII
= EXr∼pdata(Xr),Sc∼pdata(Sc)[(D(Xr, XGII

)− 1)2]. (8.16)

Minimizing this loss can jointly optimize Generator II and Generator I.

Mask generation

Although the pose map and segmentation map have provided some information

about the body shape, it is encouraged to learn another generative network to ex-

plicitly constrain the synthesized images. As shown in Figure 8.9, we employ a

shared Generator III to perform the mask generation for both XGI
and XGII

. Di�er-

ent from Generator I and Generator II, Generator III takes only one image as input

without specifying other conditions. The two generated masks, denoted asMGIII(XGI
)

and MGIII(XGII
), should consistently match the reference mask Mr and the condition

mask Mc, respectively. We de�ne their mask-consistency loss as follows:

LGIII
=EMr∼pdata(Mr)[||MGIII(XGI

) −Mr||1]

+EMc∼pdata(Mc)[||MGIII(XGII
) −Mc||1]. (8.17)

Both GI and GII can bene�t from the loss LGIII
to update the synthesis process.

Note that, LGIII
will not update the parameters of the discriminator D, because the

generated masks are unnecessary to feed into the discriminator. In Figure 8.9, it

can be seen that, after training, the generated masks end up similar to the reference

and condition mask maps.

Full Objective

The SwapGAN model including three generators and one discriminator can be

trained end-to-end. The total generation loss combines the adversarial loss (i.e.

LGI
and LGII

) and the mask-consistency loss (i.e. LGIII
)

LG = LGI
+ LGII

+ λLGIII
, (8.18)

where λ adjusts the weight of LGIII
, which we set to 5 in the experiments.

Figure 8.10 shows the structure of the discriminatorD. Compared to prior work [246]

comparing one real pair and one fake one, our discriminator is able to distinguish

one real pair from two fake pairs. Formally, the discrimination loss in D can be
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de�ned with

LD =EXr∼pdata(Xr),Xc∼pdata(Xc)[(D(Xr, Xc)− 1)2]

+EXc∼pdata(Xc),Pr∼pdata(Pr)[D(XGI
, Xc)

2]

+EXr∼pdata(Xr),Sc∼pdata(Sc)[D(Xr, XGII
)2]. (8.19)

During the training procedure, it is a common practice to iteratively update the

parameters of the generators and the discriminator. The full objective in the model

is to minimize both LG and LD. The generators attempt to generate more realistic-

looking fake images to fool the discriminator. Once the discriminator cannot tell

fake images from real ones, then the generators are supposed to properly accomplish

the synthesis process. In the testing phase, taking a condition image and the pose

map of a reference image as input, the synthesized image from Generator I, i.e. XGI
,

can be used as the desired target image. Additionally, we need to paste the reference

head map Hr onto XGI
to make sure the person's identity is preserved.

8.2.2 Network architecture

This section introduces the details about the network architecture of the generators

and the discriminator in the SwapGAN.

Generator I and II

By integrating several existing techniques, we design a new generative network for

GI and GII. As shown in Figure 8.11, it consists of an encoder, several residual

blocks and a decoder. (1) In the encoder, we use four consecutive convolutional

layers to represent the input data. (2) There are totally six residual blocks, each

of which has two 3×3 convolutional layers and a residual connection on them [10,

80]. (3) As for the decoder, we employ a nearest neighbor interpolation manner

to upsample the feature maps, and then transfer the resized feature maps with

a 1×1 convolutional layer. Compared with the deconvolution manner based on

stride-1
2
convolutions, the interpolation manner is simple and e�cient to alleviate

the checkerboard artifacts, which often occur in generated images [249]. Figure 8.12

visibly compares the generated images by using the two upsampling manners.

In addition, we add skip connections to link the feature maps in the encoder and

decoder. As suggested in U-Net [28], the skip connections allow to bridge the down-

sampled feature maps directly with the up-sampled ones. They can help retain the

spatial correspondences between the input pose/segmentation map and the synthe-

sized image.
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Generator III

Since the mask generation is less complicated than the pose-conditioned generation

and the segmentation-condition generation, we can make use of a simple U-Net [28]

to build GIII. Speci�cally, Generator III learns eight convolutional layers in the en-

coder and eight deconvolutional layers in the decoder. Similarly, the symmetric skip

connections are added between the encoder and the decoder. The residual blocks

are not used in GIII. Notably, GIII can be built as well with the same generative

network as GI and GII, however, we �nd that it cannot bring further improvements

for the generated masks.

Discriminator

We build the discriminatorD based on the Markovian network from PatchGANs [88],

which is encouraged to preserve local high-frequency features. As shown in Fig-

ure 8.10, D uses four consecutive layers to convolve the concatenated real or fake

image pairs. Lastly, an additional convolutional layer can output a 1-dimensional

feature map to classify the patches on the input images are real or fake.
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Figure 8.10: Overview of the discriminator D in SwapGAN. It aims to distinguish
two fake image pairs from the real pair.
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Figure 8.11: Network architecture of both Generator I and II. It is composed of
three parts: encoder, residual blocks and decoder. We use additional skip connections
to couple the feature maps in the encoder and decoder. In the decoder, we perform
the upsampling with an interpolation manner instead of the traditional deconvolution
manner.

151



8. APPLICATIONS OF IMAGE SYNTHESIS

(a) Deconvolution upsampling (b) Interpolation upsampling

𝑋𝐺Ι 𝑋𝐺Ι

Figure 8.12: Comparison of using two di�erent upsampling manners in the generator.
The deconvolution manner results in more checkerboard artifacts that will decrease the
generation quality. To alleviate this issue, we use the interpolation manner to generate
smooth images. See more details when zoomed-in.

(a) inappropriate person images 

(b) appropriate person images 

Figure 8.13: Examples of (a) inappropriate and (b) appropriate person images.
Considering the goal of person-to-person clothing swapping, we collect the front-view
images with both upper-body and lower-body clothes visible.

8.2.3 Experiment setup

Dataset protocol

Currently, DeepFashion [241] is one of the largest datasets for fashion oriented re-

search. We used its In-shop Clothes Retrieval Benchmark, which has a number of

in-shop person images with various poses and scales. However, many of the images

are inappropriate to the clothing swapping task, due to some issues like missing

human faces, back-view images and only upper-body clothes visible. To avoid these

issues, we selected front-view person images where the clothing items are shown

clearly. In Figure 8.13, we show some examples of inappropriate and appropriate

person images. In the training set, we collected 6,000 person images corresponding to

3,000 image pairs, each of which has two images of the same person wearing the same

clothes but showing di�erent poses. The testing set contains 1,372 images.
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Reference

image

Condition

image

Figure 8.14: Qualitative results of our SwapGAN on the test set. We show four
reference images in the �rst row and four condition images in the �rst column. The
reference person can wear the desired clothes in the condition image while preserving
the original pose and body shape.

Implementation Details

We employed the Adam algorithm [234] to optimize the entire SwapGAN with β1 =

0.5 and β2 = 0.999. The initial learning rate for the generators and discriminator

was 0.0002, and was linearly decayed after 50 epoches. The entire training procedure

was terminated after 100 epochs. All the images were re-scaled to 128×128 pixels.

We used a mini-batch size of 8. We implemented the method on the TensorFlow

library [235] with a NVIDIA TITAN X GPU card.

Compared methods

We compare our SwapGAN with other three methods described as follows.
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Poisson image blending [85]: it is the 2D non-parametric method that uses the

Poisson image blending algorithm to apply the target clothes in the condition person

image on the person of the reference image. This method is used as a baseline in

FashionGAN [85].

TPS warping [106]: this is another non-parametric method. It �rst estimates a

thin plate spline (TPS) transformation and then pastes the warped clothes on the

reference image. This is a baseline method in VITON [106].

VITON [106]: in contrast to non-parametric methods, it proposes an encoder-

decoder network to generate a new reference person image wearing the target clothes.

We note that, all the three compared methods require segmenting the target clothes

from the condition person images. By this way, they can learn the transformations

between two di�erent images.

8.2.4 Results and discussion

First, we compare our SwapGAN with other compared methods in terms of both

qualitative and quantitative evaluations. Then, we perform ablation study to provide

deep insights into SwapGAN.

Qualitative evaluation

This experiment aims to qualitatively show the e�ectiveness of our method for

person-to-person clothing swapping. Figure 8.14 shows our new synthesized im-

ages. As for each row, the clothes in the condition image are worn on di�erent

reference persons. Also, each column indicates that the same reference person is

re-dressed with di�erent clothes. It can be seen that all the reference persons can

properly wear the target clothes in the condition images and retain their original

poses and body shapes as well. Since we paste the reference head map to ensure the

person's identity, some generated images therefore seems a little unnatural.

Next, we compare our results with those of the compared methods. In Figure 8.15,

we present a reference image and three condition images. To assess the robustness

for di�erent pose deformations, the persons in the three condition images have small,

moderate and large pose deformations, respectively, compared to the person in the

reference image. From the results, we can see that the Poisson image blending

method fails to perform this task. The similar observation is also presented in [85].

Instead of generating a new image, the TPS warping method learns to transform

the target clothes and simply pastes it on the reference person. Although the color

information can be well preserved in its results, we can notice obvious inconsistency

between the warped target clothes and the body of the reference person. The results
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Figure 8.15: Qualitative comparison of di�erent methods. When comparing with the
person in the reference image, the persons in the three condition images have small,
moderate and large pose deformations, respectively. Compared to other methods, our
SwapGAN can visibly provide superior images. Our method is robust to di�erent pose
deformations, even the large case in the last row.

of VITON are not satisfactory, because their model is trained with simple stand-

alone and �at clothes images, rather than various warped clothes on the condition

persons. Compared to the above methods, SwapGAN can generate superior new

images for all the condition images. In addition, our method is robust to di�erent

pose deformations, however, the three compared methods are weak in the robustness.

Quantitative evaluation

In addition to qualitative results, we adopt a common quantitative metric, Inception

Score (IS) [250], to assess the methods. IS is based on the Google's inception CNN

model [11], which predicts a distribution p(y|x), measuring the probability assigned

to image x to belong to class y. Formally, the computation of IS is expressed by

IS = exp
(
Ex∼pg [KL (p(y|x)‖p(y))]

)
, (8.20)

where pg indicates the distribution of a generative model. KL(p(y|x)‖p(y)) measures

The Kullback-Leibler divergence [251] between p(y|x) and p(y):

KL (p(y|x)‖p(y)) =
K∑
k=1

pk(y|x) log
pk(y|x)

pk(y)
. (8.21)
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Table 8.2: Quantitative comparison of di�erent approaches with inception scores
(higher is better). Our SwapGAN can outperform the other three compared methods
with considerable gains.

Method Inception score

Poisson image blending 2.10 ± 0.14
TPS warping 2.45 ± 0.12

VITON 2.40 ± 0.05
SwapGAN 2.65 ± 0.09

For the 1,372 images in the test set, we iteratively make each image as the reference

image, and then randomly select another 25 images to be its corresponding condition

images. As a result, we can collect about 34,000 reference-condition pairs, each of

which can produce an image to evaluate. Table 8.2 reports the inception scores

towards the 34,000 images. Interestingly, the TPS warping method has a greater

score than VITON, because it simply pastes the warped clothes on the reference

image, which can help preserve the color information. However, it cannot generate

a new image like VITON and SwapGAN. In [106], they also discuss the limitation

of the TPS warping method. Overall, SwapGAN achieves a higher score than the

other three methods.

8.2.5 Ablation study

We demonstrate ablation results about SwapGAN and analyze the e�ects of its

generators on the performance. To be more speci�c, we implement two ablation

models, which are variants of the full SwapGAN model. The �rst ablation model is

named by Generator I&III, which excludes the segmentation-conditioned generation.

The second one, called Generator I&II, keeps the �rst and second generations but

excludes the mask generation. Figure 8.16 shows two generated image samples, from

which we have the following observations:

(1) E�ect of Generator II. As can be seen in the �rst row, Generator I&III mistakes

the fashion style of the target clothes, because it changes the short sleeves in the

condition image to be long sleeves in the new generated image. However, both

the Generator I&II model and the full SwapGAN model can avoid this semantic

inconsistency due to using the segmentation map in Generator II. It veri�es the

e�ectiveness of Generator II for maintaining the style.

(2) E�ect of Generator III. Considering the generated images from the Genera-

tor I&II model, some parts of the human body are not preserved well, for example,

the right arms. By running the mask generation, the full SwapGAN model can

produce a more complete body shape similar with the reference image. This demon-

strates the bene�t of Generator III for our method.
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Condition Reference Generator I&IIGenerator I&III Full Model

Figure 8.16: Ablation study on di�erent variants of our method. Comparably, the
full model can outperform the other two baseline models in terms of generation quality
and semantics.
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Figure 8.17: Pipeline of our testing procedure with computing two inception scores
and a SSIM accuracy.

Figure 8.18: Failure cases of our method for synthesizing complicated color and
texture on the clothes.

In terms of quantitative results, we exploit a new test procedure as shown in Fig-

ure 8.17. Since SwapGAN can synthesize two new images from GI and GII, we

can compute their inception scores respectively, denoted as IS-reference and IS-

condition. In addition, the synthesized image from GII is a reconstructed image

of the original condition image. Hence, we can adopt another quantitative metric,

Structural Similarity (SSIM) [252], to measure the reconstructed similarity.

In Table 8.3, we compare the quantitative results between two ablation models

and the full SwapGAN model. Notably, the Generator I&III model has no IS-

157



8. APPLICATIONS OF IMAGE SYNTHESIS

Table 8.3: Quantitative results of our di�erent models.

Method IS-reference IS-condition SSIM

Generator I&III 2.47 ± 0.11 � �
Generator I&II 2.36 ± 0.14 2.66 ± 0.12 0.708
Full Model 2.65 ± 0.09 2.85 ± 0.12 0.717

condition and SSIM accuracy, because it excludes GII. We can see that the full

model consistently outperforms the other two ablation models by a considerable

margin, in terms of both IS-reference and IS-condition metrics. Moreover, the full

model achieves a higher SSIM accuracy than Generator I&II. These quantitative

results are consistent with our observation achieved from the qualitative evaluation.

8.2.6 Limitations and discussion

Our method has achieved promising results in many cases, but still has some limita-

tions. First, human faces become blurred in the synthesis process, because it is hard

for the generator to restore the detailed face of the reference person. To alleviate

this limitation, we employ a post-processing step by pasting the reference head map

onto the synthesized image. Second, our method may fail to capture rich color and

texture information of the clothes, for example, the failure cases in Figure 8.18. This

problem is caused by the limited capability of the adversarial loss. One approach

for solving it is to impose additional losses like the perception loss [80], but it will

increase the memory cost and training time.

8.3 Chapter Conclusions

First, this work provided an extensive and empirical study on the cycle-consistent

generative networks for unsupervised image translation. The comprehensive results

demonstrated the e�ectiveness of our designed models. Besides, the insights ob-

served in this work could help in designing other new cycle-consistency models. In

the future, it is straightforward and promising to develop Long and Nest CycleGAN

with more generators and cycles. Also, it is interesting to employ a weight-sharing

mechanism to avoid increasing memory.

Second, we proposed a novel multi-stage generative adversarial framework to address

the problem of person-to-person clothing swapping. Advantageously, it could render

the clothing style and preserve the pose and body shape within a multi-stage model.

In addition, our model was able to train end-to-end. Qualitative and quantitative

results in the experiments demonstrated the e�ectiveness of our approach. In the

future, we plan on developing our approach for images in the wild.
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