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Chapter 7

Joint Matching and Classi�cation

In Chapters 2-6, we have proposed several methods to solve the classi�cation and

retrieval themes, separately. Unlike many existing approaches which focus only on

either multi-modal matching or classi�cation, we aim to study how we can integrate

the two tasks together to help promote each other (RQ6).

In this chapter, we propose a uni�edNetwork to jointly learnMulti-modalMatching

and Classi�cation (MMC-Net) between images and texts. The proposed MMC-Net

model can seamlessly integrate the matching and classi�cation components. It �rst

learns visual and textual embedding features in the matching component, and then

generates discriminative multi-modal representations in the classi�cation compo-

nent. Combining the two components in a uni�ed model can help in improving their

performance simultaneously. Moreover, we present a multi-stage training algorithm

by minimizing both of the matching and classi�cation loss functions. Experimental

results on four well-known multi-modal benchmarks demonstrate the e�ectiveness

and e�ciency of the proposed approach, which achieves competitive performance

for multi-modal matching and classi�cation compared to the state-of-the-art ap-

proaches.

Keywords
Multi-modal matching, Multi-modal classi�cation, Deep neural networks, Multi-

stage training
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7. JOINT MATCHING AND CLASSIFICATION

7.1 Introduction

The problem of multi-modal analytic has attracted increasing attention due to a

drastic growth of multimedia data such as image, video and text. Particularly, multi-

modal matching has been studied for decades, with the aim of searching for a latent

space, where visual and textual features can be uni�ed to be latent embeddings.

The hypothesis is that di�erent modalities have semantically related properties that

can be distilled into a common latent space. Early approaches to learning latent

embeddings are based on the Canonical Correlation Analysis (CCA) [61], which is

e�ective at maximizing the high correlation between visual and textual features in

the latent space. Driven by the increasing progress of deep learning, many works [52,

55, 66, 181] have been dedicated to developing deep matching networks to learn

discriminative latent embeddings and train the networks by using a bi-directional

rank loss function. They have achieved state-of-the-art performance on many well-

known multi-modal benchmarks [53, 64, 67, 76].

However, learning latent embeddings is in�uenced by the notable variance in images

or texts. For example, in Figure 7.1, �ve sentences annotated by humans are pro-

vided to describe the same image. The input image and �ve sentences are projected

into a latent space. One can observe that these sentences have signi�cant variance on

representing the visual content. Although they can consistently describe the main

objects in the scene including `girl' (or `child') and `bicycle' (or `bike'), they still

present great variance in terms of other objects, e.g. `bench', `table' and `leaves'.

This issue makes it di�cult to perform image-text matching.

To address this issue, in this work we aim to introduce a classi�cation component

to learn more robust latent embeddings. Our motivation is that object labels can

typically provide more consistent and less biased information than sentences. As

can be seen in Figure 7.1, object labels contain the most important concepts in the

image, such as `Person' and `Bicycle' which are commonly mentioned in all of the

�ve sentences. On the other hand, some visual concepts, which are subjectively

described in some of the sentences (e.g. `leaves' and `sweater') will not appear in the

ground-truth labels. Hence, using the object labels as additional supervisory signals

is bene�cial to correct the biased descriptions and improve the matching between

images and texts. Motivated by the mutual complements between matching and

classi�cation, we raise the research question RQ 6: How can we design a uni�ed

network for joint multi-modal matching and classi�cation?

To tackle the question, we propose a uni�edNetwork for jointMulti-modalMatching

and Classi�cation (MMC-Net in Figure 7.2). First, the matching component trans-

forms the input visual and textual features, respectively, via a couple of fully-

connected layers and a fusion module. The matching loss is imposed on the outputs

of the two fusion modules to maximize their correlation. Then, the classi�cation
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7.1 Introduction

Multimodal Input Matching

Latent space

Person, 

Bicycle, 

Bench, 

Dining 

table

Classification

Label space

little girl looking down at leaves with her bicycle

with training wheels parked next to her.

small child next to a picnic table and tricycle.

a little girl in a red jumpsuit and sweater is near a 

red bike and red table.

a young child in a park next to a red bench and 

red bicycle that as training wheels.

a little girl standing next to a red bike near leaves.

Figure 7.1: Example of joint multi-modal matching and classi�cation. Given one
image and its descriptive sentences, they are �rst co-embedded into a latent space
for matching (in red and blue). Then, the visual and textual embedding features are
integrated to be a multi-modal representation for classi�cation. In the input sentences,
the words related to the ground-truth object labels are in green.

component is built upon the visual and textual embedding features. A compact bi-

linear pooling module is used to generate a multi-modal representation vector, based

on which the classi�cation loss is computed to predict object labels. In this way, the

proposed MMC-Net can jointly learn the latent embeddings and the multi-modal

representation in a uni�ed model. On the one hand, the classi�cation component is

bene�cial to alleviate the biased input, so that the model can learn better robust

latent embeddings. On the other hand, the matching component is able to bridge

the modality gap between vision and language, and therefore combining visual and

textual embedding features can produce a discriminative multi-modal representation

for classi�cation.

The contributions of this work are as follows:

� We propose a novel deep multi-modal network (i.e. MMC-Net), where the

matching and classi�cation components can be seamlessly integrated and help

promote each other jointly. MMC-Net is a general architecture that is poten-

tially applicable to diverse multi-modal tasks related to matching and classi-

�cation.

� We present a multi-stage training algorithm by incorporating the matching

and classi�cation loss. It can make the matching and classi�cation components

more compatible in a uni�ed model.

� Results on four well-known multi-modal benchmarks demonstrate that MMC-

Net outperforms the baseline models that are built for either matching or
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Figure 7.2: The overview architecture of our proposed MMC-Net for joint multi-
modal matching and classi�cation. It comprises three key components. (1) The multi-
modal input aims to capture visual and textual representations from o�-the-shelf en-
coders (e.g. CNN and word2vec). (2) In the matching component, four fully-connected
layers in both of the image and text branches are developed to learn the latent em-
beddings. (3) Based on the visual and textual embedding features, the classi�cation
component utilizes a compact bilinear pooling module which can generate a high-
order multi-modal representation to perform the prediction. The entire network can
be trained with a matching loss and a classi�cation loss.

classi�cation (i.e. MM-Net and MC-Net). In addition, our approach achieves

competitive performance compared to current state-of-the-art approaches.

The rest of this paper is organized as follows. Section 7.2 introduces the proposed

MMC-Net model, and Section 7.3 details its training and inference procedures. Com-

prehensive experiments in Section 7.4 are used to evaluate the approach. Finally,

Section 7.5 concludes the paper and discusses the future work.

7.2 Joint Matching and Classi�cation Network

Overall architecture. Figure 7.2 illustrates the overview architecture of MMC-

Net, which mainly consists of three components: multi-modal input, multi-modal

matching and multi-modal classi�cation. Given an image and its corresponding text,

MMC-Net �rst utilizes o�-the-shelf feature encoders to extract the visual and textual

features, respectively. Next, in the multi-modal component, two groups of four fully-

connected layers are used in both image and text branches to learn a latent space,

where its objective is to minimize the matching loss between the related images and

texts. Moreover, the multi-modal classi�cation component is built upon the visual

and textual embedding features. We employ a compact bilinear pooling module to

generate a high-order and e�cient multi-modal representation. The classi�cation

loss is computed with respect to the pre-de�ned ground-truth labels. Next, we will

detail each of the three components.
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7.2 Joint Matching and Classi�cation Network

7.2.1 Multi-modal input

In a data collection with N matching image-text pairs, (xi,yi) represent the encoded

visual and textual features, i = 1, . . . , N . Taking these features as input instead

of the raw data enables to train the entire network e�ectively. Also, any common

feature encoders are potentially applicable for this network.

Image encoder: we use the powerful CNN model, ResNet-152 [10], which is pre-

trained on ImageNet [5]. First, the CNN model is recast to its fully convolutional

network (FCN) counterpart, to extract richer region representations. Then we set

the smaller side of the image to 512 and isotropically resize the other side. The

last max-pooling layer in ResNet-152 is averaged to generate a 2048-dimensional

feature vector. Compared with the widely-used VGG feature [7] (i.e. 4096-dim),

ResNet-152 can provide more discriminative visual representation, while decreasing

the feature dimensions (2048 v.s. 4096). The extracted image feature is then fed

into the image branch of the matching component.

Text encoder. we employ the simple yet e�cient word2vec [188] to represent

sentence-level texts. It provides a 300-dimensional feature vector, which is often

called Mean vector. Notably, more informative text encoders can be developed

based on word2vec, for example the Hybrid Gaussian-Laplacian mixture model

(HGLMM) [51] that computes a 18000-dimensional feature vector with 30 centers

(i.e. 300*30*2). However, we still use the standard Mean vector due to its high

e�ciency and low dimensionality. Nevertheless, we clarify that any common text

encoders can be potentially adopted to the MMC-Net model.

7.2.2 Multi-modal matching

The multi-modal matching component contains three aspects: latent embedding,

fusion module and matching loss.

Latent embedding

As shown in Figure 7.2, the matching component develops two branches of four

fully-connected layers to simultaneously project visual and textual features into a

discriminative latent space. Note that the parameters of the two branches (drawn

in blue and green) are unshared due to the modality specialization. The channels

from FC1 to FC4 are set to {2048, 512, 512, 512} in both of the two branches. First,

the input visual and textual features are normalized with the batch normalization

(BN) [135]. Then FC1 is regularized by a dropout layer with 0.5 probability, and

instead other fully-connected layers are regularized with the BN layer. ReLU is used

after the fully-connected layers.
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7. JOINT MATCHING AND CLASSIFICATION

Fusion module

Exploiting multi-layer features has been well-studied in many deep neural net-

works [18, 26, 31, 107], as it allows to take advantage of di�erent levels of hidden

representations in the networks. Driven by this, we introduce a fusion module to

generate a multi-layer embedding feature. Since the FC2, FC3 and FC4 layers have

the same number of channels, it is feasible to stack their feature vectors together.

Then we employ a convolutional operation to learn adaptive weights while fusing

the three layers.

We denote the stack layer in the two branches as S(xi) and S(yi), respectively. The

stack layer, a 512×3 matrix, is convolved by the convolutional �lter, which has a size

of 1×1×3. Note that, the three weights are shared over the spatial dimensions of

the stack layer. We can compute the fused visual feature f(xi) and textual feature

g(yi) by

f(xi) = W fuse
I � S(xi) + bfuseI , (7.1)

g(yi) = W fuse
T � S(yi) + bfuseT , (7.2)

where W fuse
I and W fuse

T are the fusion weights to be learned (i.e. 3 elements) bfuseI

and bfuseT are the bias vectors (i.e. 512 elements). The operator � represents the

convolutional operation.

Although the common element-wise operators such as sum-pooling and inner prod-

uct are simple to compute, they do not adapt the importance of di�erent layers. An-

other fusion approach is concatenating the three 512-Dim vectors into one 3*512-Dim

vector. However, the concatenation output will increase the feature dimensionality

and make it more expensive to compute the matching loss. To summarize, the con-

volutional fusion module can provide marked performance improvements, while it

has a minimal increase to the total parameters used in the network.

Matching loss

As a common practice, the matching distance between f(xi) and g(yi) is computed

with the cosine distance [52, 53, 76]

d(f(xi), g(yi)) = 1− f(xi) · g(yi)

||f(xi)|| · ||g(yi)||
. (7.3)

Smaller distances indicate more similar image-text pairs. Both f(xi) and g(yi) are

L2-normalized before computing their cosine distance. To preserve the similarity

constraints in the latent space, we de�ne the matching loss based on an e�cient

bi-directional rank loss function, similar to [53, 181, 214]. The loss function needs to

handle the two triplets, (xi, yi, y
−
i,k) and (yi, xi, x

−
i,k), where x

−
i,k ∈ X

−
i and y−i,k ∈ Y

−
i
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7.2 Joint Matching and Classi�cation Network

are the negative images and texts, k = 1, · · · , K. To exploit more representative non-

matching pairs, we pick the top K most dissimilar candidates in each mini-batch.

Intuitively, this loss function is designed to decrease the distances of matching pairs

(e.g. xi and yi) and increase the distances of non-matching pairs (e.g. xi and y
−
i,k,

yi and x
−
i,k). Formally, the matching loss based on the fused features is:

Lfuse
mat =

N∑
i=1

K∑
k=1

max
[
0, d(f(xi), g(yi))− d(f(xi), g(y−i,k)) +m

]
+ αmax

[
0, d(f(xi), g(yi))− d(f(x−i,k), g(yi)) +m

]
,

(7.4)

where m is a margin parameter, and α is used to balance the importance of the two

triplets. Minimizing this loss cost will lead to a desirable latent space, where the

matching distance d(f(xi), g(yi)) should be smaller than any of the non-matching

ones d(f(xi), g(y−i,k)) and d(f(x−i,k), g(yi)), ∀x−i,k ∈ X
−
i , ∀y−i,k ∈ Y

−
i .

In Figure 7.3, we make use of the t-SNE algorithm [207] to visualize our embedding

features (i.e. f(xi) and g(yi)). We use the 1,000 images and 5,000 texts from the

MSCOCO test set. It can be seen that in the distribution map an image feature

(in red) is properly surrounded by several related text features (in green), as each

image is annotated by �ve ground-truth matching texts in the dataset. Therefore,

this visualization shows that our embedding model can align the images and texts

due to learning their semantic correlation. In addition, some images and texts corre-

sponding to the points are shown in the windows. We can see that the embeddings

can cluster related images and texts together.

7.2.3 Multi-modal classi�cation

The classi�cation component aims to incorporate the visual and textual embedding

features and then generates a multi-modal representation for predicting object labels.

In the following, we detail the classi�cation component including a bilinear pooling

module and classi�cation loss.

Bilinear pooling

We take advantage of a bilinear pooling module to incorporate visual and textual

embedding features learned in the matching component. The bilinear pooling [215]

aims to model the pair-wise multiplicative intersection between all elements of two

vectors. It can generate more expressive features than other basic operators such as

element-wise sum or product. The standard bilinear pooling is formulated with

B(xi, yi) = f(xi)
Tg(yi), (7.5)
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Figure 7.3: Visualization of the visual and textual embedding features learned in the
matching component. Each image (in red) is related to several corresponding texts
(in green). We present some images and texts corresponding to the points in the
distribution map. Some semantic words are highlighted in red.
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Algorithm 2: CBP with latent embedding features

1: Input: f(xi) ∈ RM , g(yi) ∈ RM

2: Output: B(xi, yi) ∈ RD

3: Initialize hash functions: h1, s1, h2, s2
For j ← 1 · · ·M
sample h1[j], h2[j] from {1, · · · , D}
sample s1[j], s2[j] from {−1, 1}

End for
4: Compute count sketches:

f̂(xi) = [0, · · · , 0], ĝ(yi) = [0, · · · , 0]
For j ← 1 · · ·D
f̂(xi)[h1[j]] = f̂(xi)[h1[j]] + s1[j] · f(xi)[j]
ĝ(yi)[h2[j]] = ĝ(yi)[h2[j]] + s2[j] · g(yi)[j]

End for
5: Convolution of Count Sketches:

B(xi, yi) = FFT−1(FFT(f̂(xi)) ◦ FFT(ĝ(yi))),
where the ◦ denotes element-wise multiplication.

Since f(xi) and g(yi) are 1×M vectors (i.e. M = 512), B(xi, yi) becomes anM×M
matrix that is then reshaped to be a 1×M2 vector. Due to the high dimensionality

of the bilinear vector (i.e. M2), we instead use the compact bilinear pooling (CBP)

variant [216], which can decrease the dimensionality to D (where D � M2) while

retaining the strong discrimination. In contrast to [216, 217] in which they simply

perform the CBP module with the input visual or textual features, we build the

CBP module based on the latent embeddings to generate a multi-modal feature

vector (Figure 7.2).

The computational procedure of the CBP module is detailed in Algorithm 2. At

�rst, we initialize several hashing functions from the pre-de�ned sets. Then, it

computes the count sketches [218] to maintain linear projections of a vector with

several random vectors. Finally, we make use of the Fast Fourier Transformation

(FFT) to compute the convolution of the count sketches, and produce a bilinear

vector B(xi, yi) by an inverse FFT. The count sketches have the properties:

E[〈f̂(xi), ĝ(yi)〉] = 〈f(xi), g(yi)〉, (7.6)

V ar[〈f̂(xi), ĝ(yi)〉] ≤
1

D
(〈f(xi), g(yi)〉2 + ‖f(xi)‖2 + ‖g(yi)‖2). (7.7)

Next, the bilinear vector B(xi, yi) is processed by a signed square-root layer and an

L2 normalization layer. Then, we employ a fully-connected layer to estimate the

prediction. Assume that there are C object labels pre-de�ned in the dataset, the
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European Goldfinch Indigo Bunting Laysan Albatross
Person PersonPerson Horse

Potted plant

Umbrella

Handbag Chair

Cat Dog

Tie Cup TV Book

Figure 7.4: Left: Examples of single-label images from CUB-Bird [139]. Right:
Examples of multi-label images from MSCOCO [117]. The ground-truth labels are
shown under the images.

j-th class probability is predicted with

ai,j =
D∑

k=1

Wj,kB(xi, yi)k, j = 1, · · · , C. (7.8)

where Wj,k is the parameter matrix with the size of D × C. For simplicity, we do

not show the signed square-root and the L2 normalization in this formulation.

Classi�cation loss

The objective of the classi�cation component is to minimize the loss cost of the

prediction with respect to the given ground-truth labels. Figure 7.4 shows some

images that are annotated by single label or multiple labels. We need to utilize

di�erent loss functions for single-label and multi-label classi�cation, respectively.

1) Single-label classi�cation. For example, the �ne-grained classi�cation in the left of

Figure 7.4, each image is labelled with a �ne bird category. To train the classi�cation

component, we use the softmax loss function

Lcls = − 1

N

N∑
i=1

C∑
j=1

δ(gi = j) log pi,j, (7.9)

pi,j =
exp(ai,j)∑C
k=1 exp(ai,k)

, (7.10)

where gi is the ground-truth label corresponding to xi. δ(gi = j) is 1 when gi = j,

otherwise is 0.

2) Multi-label classi�cation. As shown in the right of Figure 7.4, images anno-

tated with multiple labels can provide richer information about the visual content.

Although many of these labels may appear in the input text, they can still o�er
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complementary labels which are ignored in the text due to less visual attention. We

employ the sigmoid cross-entropy loss function to supervise the multi-label classi�-

cation. The total cost sums up K of element-wise loss terms

Lcls = − 1

N

N∑
i=1

C∑
j=1

g
′

i,j log p
′

i,j + (1− g′i,j) log(1− p′i,j), (7.11)

p
′

i,j =
1

1 + exp(−ai,j)
, (7.12)

where g
′
i,j ∈ {0, 1} is the ground-truth label indicating the absence or presence of

the j-th class.

7.3 Training and Inference

This section describes the training procedure of the MMC-Net model. Also, we

present the inference manner for multi-modal matching and classi�cation.

Multi-stage training procedure

The optimization objective in the model is to minimize the total training loss which

merges the matching and classi�cation loss together

min
W
Ltotal = Lmat + βLcls, (7.13)

where the parameter β is used to regulate the two loss terms. The parameters W

in the network mainly contains WI and WT in the image and text branches, and

WCBP in the compact bilinear pooling module.

We propose a multi-stage training algorithm to better model the matching and

classi�cation components. As summarized in Algorithm 3, the training procedure

consists of three stages. During the �rst stage, we train the matching component

with the loss Lmat. For the second stage, we use the loss Lcls to train the parameters

in the classi�cation component. In this stage, only the parameters in the classi�ca-

tion component are updated while the parameters in the matching component are

all frozen. In the third stage, the model is initialized by the parameters learned in

the �rst and second stages. It aims to jointly �ne-tune the whole network based on

the total loss Ltotal. Due to using this multi-stage fashion, it is feasible to promote

the training of the entire network and maintain the high performance.

Inference procedure

We present the inference procedure for multi-modal matching and classi�cation.
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7. JOINT MATCHING AND CLASSIFICATION

Algorithm 3: Multi-stage Training Algorithm for MMC-Net.

1: The �rst stage: train the matching component.
initialize: learning rate λ1, training iterations T1, t = 0.
while t < T1 do
t← t+ 1
compute the matching loss Lmat in Eq.(7.4);
update the parameters in the image and text branches:
W

(t)
I = W

(t−1)
I − λ(t)1

∂Lmat

∂W
(t−1)
I

;

W
(t)
T = W

(t−1)
T − λ(t)1

∂Lmat

∂W
(t−1)
T

;

end while
2: The second stage: train the classi�cation component.

initialize: learning rate λ2 (< λ1), training iterations T2, t = 0.
while t < T2 do
t← t+ 1
compute the classi�cation loss Lcls in Eq.(7.9) or Eq.(7.11);
update the parameters in the compact bilinear pooling module:
W

(t)
CBP = W

(t−1)
CBP − λ

(t)
2

∂Lcls
∂W

(t−1)
CBP

;

end while
3: The third stage: jointly �ne-tune the whole network.

initialize: learning rate λ3 (< λ2), training iterations T3, t = 0.
while t < T3 do
t← t+ 1
compute the total loss in Eq.(7.13);
update all the parameters in the network:
W

(t)
I = W

(t−1)
I − λ(t)1

∂Ltotal
∂W

(t−1)
I

;

W
(t)
T = W

(t−1)
T − λ(t)1

∂Ltotal
∂W

(t−1)
T

;

W
(t)
CBP = W

(t−1)
CBP − λ

(t)
2

∂Ltotal
∂W

(t−1)
CBP

;

end while

(1) Multi-modal matching: For the image-to-text matching, given a query image xq,

its purpose is to search for relevant texts w.r.t. xq from a text database Y . Likewise,

the text-to-image matching aims to retrieve related images from an image database

X, given a query text yq. In the MMC-Net model, the fused visual and textual

features learned in the fusion module are used to compare the matching distance,

denoted as d(f(xq), g(yi)) or d(f(xi), g(yq)), where yi ∈ Y, xi ∈ X. The k-nearest

neighbor (k-NN) search is used to �nd the top-k most similar candidates.

(2) Multi-modal classi�cation: Its inference is based on the probabilities predicted

by the last fully-connected layer in the classi�cation component. For the single-label

case, the element that has the maximum probability corresponds to the predicted

class. As for the multi-label case, the items whose probabilities in the prediction are

more than 0.5 are estimated to contain the corresponding object classes.
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Table 7.1: Summary of four multi-modal datasets used in the experiments. TPI
indicates the number of matching Texts Per Image.

Dataset #Total #Category #Training #Test #TPI

Pascal Sentence 1,000 20 800 100 5
MSCOCO ∼120K 80 82,783 1,000 5
Flowers 8,189 102 2,040 6,149 10

CUB-Bird 11,788 200 5,994 5,794 10

7.4 Experiments

In this section, we evaluate the performance of the proposed MMC-Net on four well-

known multi-modal benchmarks. We �rst introduce the con�guration in the exper-

iments, including the datasets, evaluation metrics, parameter settings and baseline

models. Then we assess the performance of MMC-Net for tasks of multi-modal

matching and classi�cation and compare its results with those of the baseline mod-

els. Furthermore, we conduct the ablation study to fully analyze MMC-Net. Lastly,

we compare our results with the state-of-the-art approaches.

7.4.1 Experimental setup

Dataset protocols

We perform the experiments on four well-known multi-modal datasets. Some image

and text examples are shown in Figure 7.5.

Pascal Sentence [219]. It contains 1,000 images from 20 categories (50 images

per category), and one image is described by �ve di�erent sentences. We pick 800

images for training (40 images per category), 100 images for validation (5 images

per category), and 100 images for test (5 images per category). In total, there are

40 ∗ 20 ∗ 5 = 4, 000 image-text training pairs, 5 ∗ 20 ∗ 5 = 500 validation pairs, and

5 ∗ 20 ∗ 5 = 500 test pairs.

MSCOCO [117]. It includes 82,783 training images and 40,504 validation images

in total. We pick �ve descriptive sentences for one image and generate 82, 783 ∗ 5 =

413, 915 training pairs. For a fair comparison, we use the same 1,000 test images

used in recent works [52, 53, 76].

Flowers [138]. This dataset [138] contains 102 classes with a total of 8,189 images.

2,040 images (train+val) are used in the training stage and the rest 6,149 images

are for testing. Reed et al. [195] collected �ne-grained visual descriptions for these

images by using the Amazon Mechanical Turk (AMT) platform. One image is

described by ten sentence-level descriptions. Therefore, we can obtain 2040 ∗ 10 =

20, 400 training pairs and 6149 ∗ 10 = 61, 490 testing pairs.
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7. JOINT MATCHING AND CLASSIFICATION

1. Two men on a yellow 

tandem bicycle rest at the 

curb.

2. Two people riding a 

tandem bicycle while 

wearing lira racing outfits.

3. Two prop-leg ride a 

yellow tandem bike while 

someone helps.

…

1. a woman standing on a 

field of grass holding a 

tennis racquet.

2. two children play 

badminton with a windmill 

in the background.

3. it is always more fun to 

play badminton in front of a 

windmill.

…

1. the bird has a blue 

wingbar and a long billl that 

is black.

2. the bird has a brown head 

and chest and wings that are 

blue in color.

3. this bird has a very large 

pointed bill, with a blue 

back.

…

Pascal Sentence MSCOCO CUB-BirdFlowers

1. this flower has long white 

petals and a white pistil.

2. this flower is purple and 

yellow in color, with petals 

that are oval shaped.

3. the petals of the flower are 

purple with a yellow center 

and have thin filaments 

coming from the petals..

…

Figure 7.5: Example of four multi-modal datasets. Several textual descriptions are
listed for each image.
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(a) MM-Net (b) MC-Net (c) MMC-Net 

Figure 7.6: Conceptual illustration of three multi-modal networks. (a) Multi-modal
Matching Network. (b) Multi-modal Classi�cation Network. (c) Multi-modal Match-
ing and Classi�cation Network. Note that, the parameters in the image and text
branches are unshared, as drawn in blue and green.

CUB-Bird [139]. It contains 11,788 bird images from 200 categories. 5,994 images

are for training, and 5,794 images are for testing. Similarly, ten sentences are pro-

vided to describe one image [195]. As a result, it has 5994 ∗ 10 = 59, 940 pairs for

training, and 5794 ∗ 10 = 57, 940 pairs for testing.

Evaluation Metrics

We evaluate the performance of multi-modal matching and multi-modal classi�ca-

tion, separately. (1) For multi-modal matching, We employ the widely-used retrieval

metric R@K, which is the recall rate of a correctly retrieved ground-truth at top K

candidates (e.g. K = 1, 5, 10) [55, 190]. It includes results of both image-to-text

(I→T) and text-to-image retrieval (T→I). (2) Considering multi-modal classi�ca-

tion, We compute the Top-1 classi�cation accuracy for Pascal Sentence, Flowers and
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7.4 Experiments

CUB-Bird. Since MSCOCO is a multi-label classi�cation dataset, we evaluate the

performance on it using the average precision with the average precision (AP) across

multiple classes.

Implementation details

We implemented the proposed approach based on the publicly available Ca�e li-

brary [130]. It is important to shu�e the training samples randomly during the

data preparation stage. The hyper-parameters were evaluated on the validation

set of each dataset. For instance, we set α = 2 and m = 0.1 while computing the

matching loss function on all the datasets. The number of non-matching pairs in the

negative sets was K = 20 for Pascal Sentence, Flowers and CUB-Bird, and K = 50

for MSCOCO. We used a mini-batch size of 128 for Pascal Sentence, Flowers and

CUB-Bird, and 1500 for MSCOCO. Note that, we use a larger K and mini-batch

size for MSCOCO, because it has enormously more training samples, compared to

the other three datasets. We trained the model using SGD with a weight decay

of 0.0005, a momentum of 0.9. The learning rate was initialized with 0.1 and was

divided by 10 when the loss stoped decreasing.

Baseline Models.

To verify the e�ectiveness of the proposed MMC-Net, we implemented two baseline

models. (1) MM-Net: a baseline model for multi-modal matching as illustrated

in Figure 7.6(a). It only contains the matching component of the MMC-Net (Fig-

ure 7.2), which is trained with the matching loss. (2) MC-Net: a baseline model

for multi-modal classi�cation as illustrated in Figure 7.6(b). It has the similar archi-

tecture as the MMC-Net, however, it does not compute the matching loss between

visual and textual features. MC-Net is only trained with the classi�cation loss.

7.4.2 Results on multi-modal retrieval

We conduct the cross-modal retrieval experiments on the four datasets. To verify the

e�ectiveness of adding a classi�cation component in MMC-Net, we use the baseline

MM-Net for comparison. Table 7.2 and Table 7.3 report the results of image-to-text

and text-to-image retrieval, respectively. Overall, MMC-Net can achieve consider-

able improvements over MM-Net for both I→T and T→I retrieval. These results

reveal that the classi�cation component in MMC-Net can help in improving the

learning of embedding features in the matching component. Moreover, we can ob-

serve more insights from these results as follows:
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7. JOINT MATCHING AND CLASSIFICATION

Table 7.2: Image-to-text retrieval results compared between MMC-Net and MM-Net.
The proposed MMC-Net can outperform the baseline MM-Net with considerable gains
across all the four datasets.

Method
Pascal Sentence MSCOCO Flowers CUB-Bird

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MM-Net 47.0 85.0 92.0 55.5 84.2 91.4 58.1 82.5 88.5 32.5 61.4 72.5
MMC-Net 52.0 87.0 93.0 57.0 85.8 92.7 78.7 93.9 96.0 39.2 66.9 76.4

Table 7.3: Text-to-image retrieval results compared between MMC-Net and MM-Net.
Compared to MM-Net, MMC-Net can achieve better retrieval results.

Method
Pascal Sentence MSCOCO Flowers CUB-Bird

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MM-Net 38.4 80.6 88.6 44.7 79.5 89.5 32.7 46.4 52.9 18.3 25.6 28.8
MMC-Net 41.0 81.2 92.5 46.2 80.8 90.5 43.6 54.8 58.6 25.8 31.4 34.5

� By comparison with MM-Net, MMC-Net yields more performance gains on

Flowers and CUB-Bird than Pascal Sentence and MSCOCO. For example,

the performance gap between MMC-Net and MM-Net is below 5% on Pascal

Sentence and MSCOCO, but above 5% on Flowers and CUB-Bird across all the

measurements. One reason is that both Flowers and CUB-Bird are �ne-grained

datasets, and the textual descriptions cannot fully represent the discrimination

among di�erent samples. Hence, the results of MM-Net are limited on these

two datasets. Instead, MMC-Net can make use of �ne-grained class labels to

enhance the discriminative abilities when matching images and texts.

� The results of T→I retrieval are lower than those of the I→T retrieval on

the four datasets. This is because each image can retrieve several related

textual descriptions, but one text is corresponded to only one matched image.

We believe that re�ning the datasets is a favorable solution to narrow the

performance gap between the I→T and T→I retrieval.

� For Flowers and CUB-Bird, their results are still not satisfactory, especially

for the T→I retrieval. Currently, the �ne-grained multi-modal matching still

remains challenging, but it is a promising research direction in the �eld.

In addition, we present the qualitative retrieval results as shown in Figure 7.7.

We can observe that MMC-Net obtains better retrieved candidates than MM-Net,

for both I→T and T→I retrieval. Furthermore, we visualize the visual and textual

embedding features learned in the matching component of MMC-Net. As mentioned

earlier in 7.3, it has shown the embedding map with the MSCOCO test set.

7.4.3 Results on multi-modal classi�cation

Next, we conduct the multi-modal classi�cation experiments on the datasets. To

demonstrate the bene�t of using a matching component for classi�cation, we com-

pare the MMC-Net model with the baseline MC-Net model. Table 7.4 reports the
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Query Image

Pascal 

Sentence

MM-Net: Retrieved texts

MSCOCO

MMC-Net: Retrieved texts

1. People riding tandem bicycle.

2. Two prop-leg ride a yellow tandem bike while someone helps.

3. Young man wearing jeans and helmet rides his motorcycle

in front of a small crowd.

4. A man wearing a helmet does a wheelie on a motorcycle as 

a crowd watches.

1. Two prop-leg ride a yellow tandem bike while someone helps.

2. People riding tandem bicycle.

3. Two people riding a tandem bicycle while wearing lira racing 

outfits.

4. Young man wearing jeans and helmet rides his motorcycle in front 

of a small crowd.

1. a man putting together a kite on the floor of a room.

2. man folding banner while holding stick in unfinished carpet.

3. a man folding a giant paper airplane on the floor.

4. a tiny toddler carries a giant bookbag and bag.

1. a man putting together a kite on the floor of a room.

2. man folding banner while holding stick in unfinished carpet.

3. a man folding a giant paper airplane on the floor.

4. a man inside a room putting together a white kite.

Flowers

CUB-Bird

1.this flower is pink and white in color, with petals that have 

pink veins.

2. this pink flower has several filaments sticking out of the 

receptacle.

3. this flower has pale pink petals with veins and a white center.

4. this flower has petals that are pink with long stamen.

1. a dark brown beak with a long beak and large wingspan.

2. this bird has a dark grey color, with a large bill and long 

wingspan.

3. this dull colored bird is brown all over, has large wings and a 

long large bill.

4. a bird with a large, hooked bill, white superciliary and cheek 

patch, brown crown, and brown body.

1.this flower is pink and white in color, with petals that have pink 

veins.

2. this flower has pale pink petals with veins and a white center.

3. this flower has very light pink petals that have darker pink veins, a 

yellow ovary, and white stamen.

4. this pink flower has several filaments sticking out of the receptacle.

1. a dark brown beak with a long beak and large wingspan.

2. large bird that is complete brown, with white stripes littering it's 

wings and a long blunted bill.

3. a bird with a large, hooked bill, white superciliary and cheek patch, 

brown crown, and brown body.

4. this dull colored bird is brown all over, has large wings and a long 

large bill.

(a) Image-to-text retrieval

Query Text

Pascal 

Sentence

MM-Net: Retrieved images

MSCOCO

MMC-Net: Retrieved images

An Swiss-Air flight 

has just taken off 

from a runway.

1 2 3 4 1 2 3 4

a woman in white 

shirt holding 

bananas next to door.

1 2 3 4 1 2 3 4

Flowers

CUB-Bird

the bright orange petals 

are highlighted by brown 

spots and the prominent 

stamen are topped with 

dark brown anthers.

1 2 3 4 1 2 3 4

this bird is light 

brown, has a long 

hooked bill, and 

looks dumb.

1 2 3 4 1 2 3 4

(b) Text-to-image retrieval

Figure 7.7: Image-text retrieval examples on the datasets. For (a) image-to-text
retrieval, the ground-truth matching texts are in green. For (b) text-to-image retrieval,
the red number in the upper left corner of one image is the ranking order, and the
green frame corresponds to the ground-truth matching image. For the I→T and T→I
retrieval, MMC-Net can retrieve more accurate candidates than MM-Net.

classi�cation results, where MMC-Net achieves consistent improvements over MC-

Net across all the four datasets. It shows that the matching component is able to

promote the classi�cation component due to combining the embedding features to

generate more discriminative multi-modal representations. Also, MMC-Net has a

generalization ability for di�erent types of classi�cation datasets, including either

natural images or �ne-grained images.

123



7. JOINT MATCHING AND CLASSIFICATION

A striped 

sofa and 

office 

chairs are 

near a ping 

pong 

table.

MC-Net

MMC-Net

1. sofa

2. chair

3. Diningtable

4. tv/monitor

5. potted plant

1. chair

2. tv/monitor

3. sofa

4. diningtable

5. bottle

a tennis 

player 

wiping 

his face 

off with 

a towel.

1. person

2. chair

3. sports ball

4. tennis racket

5. dining table

1. person

2. tennis racket

3. chair

4. bench

5. sports ball

Pascal Sentence MSCOCO

the petals of 

the flower 

are purple in 

color and 

have green 

stems with 

green sepals.

1. canterbury bells

2. bolero deep blue

3. foxglove

4. stemless gentian

5. garden phlox

1. bolero deep blue 

2. garden phlox

3. canterbury bells

4. bougainvillea

5. snapdragon

a bird with a 

medium 

yellow bill, 

white body 

webbed feet 

and gray 

wings.

1. Glaucous winged Gull

2. Ring billed Gull

3. California Gull

4. Herring Gull

5. Heermann Gull

1. Herring_Gull

2. California_Gull

3. Western_Gull

4. Ring_billed_Gull

5. Slaty_backed_Gull

Flowers CUB-Bird

Figure 7.8: Multi-modal classi�cation examples on the datasets. Given an input
image-text pair, the Top-5 predictions are estimated based on MC-Net and MMC-
Net. The ground-truth classes are in green. By comparison, MMC-Net obtains more
accurate predictions than MC-Net.
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Figure 7.9: E�ect of the parameter β on the performance of MMC-Net. The retrieval
results on Pascal Sentence are reported. We select β = 0.5 by comparing these results.

7.4.4 Parameter analysis

Next, we aim to analyze the e�ects of three key parameters in MMC-Net.
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Table 7.4: Comparison of the multi-modal classi�cation accuracy between MMC-Net
and MC-Net. For the four datasets, MMC-Net can outperform MC-Net with consistent
performance gains.

Method Pascal Sentence MSCOCO Flowers CUB-Bird

MC-Net 71.0 77.6 94.0 80.7
MMC-Net 74.0 79.3 95.2 82.4

Table 7.5: E�ect of the mini-batch size on the performance of MMC-Net. We train the
model with di�erent mini-batch sizes and compare their retrieval results on MSCOCO.

Method
Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10

batch size=100 42.5 74.6 87.4 36.6 73.8 86.8
batch size=250 52.6 83.3 91.7 43.0 79.5 89.4
batch size=500 56.6 85.3 92.7 46.0 80.5 90.1
batch size=1000 56.2 85.8 93.0 46.5 80.5 90.1
batch size=1500 57.0 85.8 92.7 46.2 80.8 90.5
batch size=2000 56.7 85.5 92.8 46.7 80.6 90.4

E�ect of the mini-batch size.

Since the loss function for multi-modal matching aims to search for hard negative

samples, it is essential to de�ne a large mini-batch to increase the search space. For

example, we selected a mini-batch size of 1500 for MSCOCO due to its large-scale

data. To study the e�ect of varying di�erent batch sizes, we used di�erent batch

sizes to train MMC-Net and tested their performance. Considering the number of

negative pairs in each mini-batch is K = 50 for MSCOCO, we varied the batch size

with 100, 250, 500, 1000, 1500 and 2000. Table 7.5 compares the retrieval results on

MSCOCO with di�erent batch sizes. We can observe that the performance is low

when the batch size is 100. By increasing the size to 500, it can achieve signi�cant

gains across all the measurements. We further raise the size to 2000, however there

is no important in�uence on the results. Finally, we select batch size=1500 due to

its slightly superior results.

E�ect of the parameter β.

Recall that MMC-Net is trained by integrating the matching and classi�cation loss,

we use the parameter β to balance the weights of the two loss functions as de�ned

in Eq. 7.13. This experiment aims to analyze the e�ect of β on the performance.

Figure 7.9 shows the cross-modal retrieval results on Pascal Sentence. The R@1,

R@5 and R@10 results are shown separately, when β varies from 0.1 to 1. We pick

β = 0.5 by fully comparing these results.
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Figure 7.10: E�ect of the parameter D on the performance of MMC-Net. We present
the retrieval results on Pascal Sentence by using di�erent sizes of D. We select D =
2048 that can bring better results.
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Figure 7.11: E�ect of the parameters on the performance of MMC-Net. We report
the Top-1 classi�cation results on Flowers. (a) Analysis of the parameter β. (b) Anal-
ysis of the parameter D. (c) Confusion matrix of 102 Flowers classes. The diagonal
line demonstrates the high accuracy per �ower class.

E�ect of the parameter D.

In the classi�cation component, a CBP module can integrate visual and textual

embedding features into a D-dimension multi-modal vector. In this experiment, we

analyze D with {512, 1024, 2048, 4096, 8192, 20000}, which are all signi�cantly lower

than the original bilinear pooling vector (i.e. 512× 512 = 262, 144). In Figure 7.10,

we present the compared results on Pascal Sentence. When D = 2048, MMC-Net

can achieve better results compared to others.
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Since MSCOCO is also composed of scene images like Pascal Sentence, it is straight-

forward and general to employ the same parameters β and D. In contrast, Flowers

and CUB-Bird are commonly used for �ne-grained recognition. It is needed to eval-

uate their parameters separately for Pascal Sentence and MSCOCO. To this end,

we estimated the e�ects of the parameters on the classi�cation accuracy of Flowers,

and then applied the same parameters to CUB-Bird for generalization. Figure 7.11

presents the analysis of parameters on Flowers. As for the parameter β shown in Fig-

ure 7.11a, the best precision accuracy is achieved with 95.1% for β = 1.2. As shown

in Figure 7.11b, the accuracy is maximized (i.e. 95.2%) when D = 4096. In the

experiments, we set β = 1.2 and D = 4096 for Flowers and CUB-Bird. Additionally,

we show the confusion matrix of 102 Flowers categories in Figure 7.11c.

7.4.5 Component analysis

Furthermore, we show ablation study to provide in-depth analysis.

Analysis of the fusion module

This test aims to verify the e�ectiveness of using the fusion module in the matching

component. We build a convolutional fusion module in MMC-Net, which can also be

applied on the baseline MM-Net. In Table 7.6, we report the results for both MMC-

Net and MM-Net on the Pascal Sentence test set. We can see that using a fusion

module can bring considerable performance improvements on all R@Kmeasurements

by considerable improvements, compared to the counterparts without using any

fusion module. For an additional comparison, we further implement two simple

fusion modules: element-wise sum and multiplication. Their results are inferior

to those of the convolutional fusion, because they do not consider the weights of

di�erent layers. Instead, the convolutional fusion can learn adaptive weights to

produce a superior fused feature while spending only three parameters. All the

weights can be learned dynamically and adaptively with other network parameters

without any manual tuning.

Analysis of the CBP module

We conduct this experiment to test the use of the CBP module in MMC-Net. For

comparison, we present two other methods to integrate the visual and textual fea-

tures. The �rst method starts by the concatenation of the two features to consturct

a multi-modal representation and then feed it into a fully-connected (FC) layer to

perform the classi�cation. The second one is using the traditional bilinear pool-

ing (BP) to produce a high-order multi-modal representation. Table 7.7 reports

the compared results of di�erent classi�cation modules. The model with CBP can
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Table 7.6: Analysis of the fusion module used in MM-Net and MMC-Net. The R@K
results on Pascal Sentence are reported. By comparison, the convolutional fusion
module can achieve better results than others.

Method
Fusion Image to Text Text to Image
module R@1 R@5 R@10 R@1 R@5 R@10

MM-Net No 45.0 82.0 91.0 35.6 75.8 87.0
MM-Net Sum 46.0 83.0 91.0 36.8 77.6 87.6
MM-Net Multiplication 46.0 84.0 91.0 37.2 78.4 87.6
MM-Net Convolution 47.0 85.0 92.0 38.4 80.6 88.6
MMC-Net No 51.0 85.0 92.0 37.6 80.6 92.0
MMC-Net Sum 51.0 86.0 92.0 38.4 81.0 92.0
MMC-Net Multiplication 51.0 86.0 92.0 39.0 81.0 92.0
MMC-Net Convolution 52.0 87.0 93.0 41.0 81.2 92.5

Table 7.7: Analysis of the CBP module in MMC-Net. The R@K results on Pascal
Sentence are reported, which demonstrate the e�ectiveness and e�ciency of using the
CBP module.

Method Dimension
Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10
MMC-Net with FC 1024 50.0 86.0 92.0 39.6 80.4 90.0
MMC-Net with BP 262144 53.0 88.0 93.0 41.5 81.5 92.5
MMC-Net with CBP 2048 52.0 87.0 93.0 41.0 81.2 92.5

obtain considerable improvements over the one with FC. The MMC-Net with BP

achieves better results than other methods, while its multi-modal representation

has higher dimensionality. Instead, CBP can maintain both accuracy and e�ciency.

Analysis of combining vision and language

This experiment is used to verify the advantage of incorporating visual and textual

representations. As reported in Table 7.8, we compare the results between com-

bining visual and textual features (i.e. MMC-Net) and using only visual features.

We can observe that combining vision and language can achieve signi�cantly su-

perior accuracies on Flowers and CUB-Bird. Although visual features can enable

the models to achieve promising performance, the informative textual features can

further help improve the classi�cation accuries. This shows the e�ectiveness of cap-

turing multi-modal representations from both vision and language. Furthermore,

Figure 7.12 analyzes the test rates during the training iterations. It can be seen

that the vision and language model can consistently outperform the vision model in

the entire training stage.
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Table 7.8: Analysis of combining vision and language. We report the Top-1 classi-
�cation rates on Flowers and CUB-Bird. The model with both vision and language
outperforms the model with only vision.

Method Flowers CUB-Bird

Only Vision 92.2 78.8
Vision and Language 95.2 82.4
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Figure 7.12: Illustration of the test classi�cation rates during the training iterations.
Incorporating language and vision is signi�cant to improve the performance, compared
to only using visual information.

Analysis of image encoders

As aforementioned in Section 7.2, we employ the ResNet-152 model to encode the

input image. In this experiment, we aim to study the e�ect of di�erent image

encoders. For a fair comparison with DSPE [53], we provide the results of MMC-

Net with VGG-19. Also, we implement the DSPE with ResNet-152. Table 7.9

reports the compared results on MSCOCO. For both VGG-19 and ResNet-152, our

MMC-Net can outperform DSPE across all the measurements. We should realize

that the improvements of MMC-Net come from two aspects. First, the matching

component in MMC-Net has more layers than that of DSPE, i.e. four layers v.s.

two layers. Second, MMC-Net utilizes a classi�cation component to help improve

the matching performance. This is the main motivation in this work. Note that,

both MMC-Net and DSPE in Table 7.9 use the Mean vector to encode the input

text. In [53], they also present another expensive textual representation using the

Hybrid Gaussian-Laplacian mixture model (HGLMM) [51], i.e. a 18000-dimension

vector. Currently, we do not introduce HGLMM to MMC-Net, even though it can

help increase the performance.
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Table 7.9: Analysis of image encoders. The image feature dimensions are also pre-
sented. MMC-Net has better matching results on MSCOCO than DSPE [53].

Method
Image

Dimension
Image to Text Text to Image

encoder R@1 R@5 R@10 R@1 R@5 R@10
DSPE VGG-19 4096 40.7 74.2 85.3 33.5 68.7 83.2

MMC-Net VGG-19 4096 46.0 79.7 89.2 38.9 73.5 87.5
DSPE ResNet-152 2048 53.1 82.7 90.2 43.5 78.2 88.9

MMC-Net ResNet-152 2048 57.0 85.8 92.7 46.2 80.8 90.5

Table 7.10: Comparison with other state-of-the-art approaches on the Pascal Sen-
tence dataset for image-text retrieval. Best results are in bold face.

Method
Image Text Image to Text Text to Image
encoder encoder R@1 R@5 R@1 R@5

SDT-RNN [220] AlexNet DT-RNN 23.0 45.0 16.4 46.6
kCCA [220] AlexNet word2vec 21.0 47.0 16.4 41.4
DeViSE [214] AlexNet skip-gram 17.0 57.0 21.6 54.6

SDT-RNN [220] RCNN DT-RNN 25.0 56.0 25.4 65.2
DFE [181] RCNN word2vec 39.0 68.0 23.6 65.2

Mean Vector [51] VGG-16 word2vec 52.5 83.2 44.9 84.9
GMM+HGLMM [51] VGG-16 HGLMM 55.9 86.2 44.0 85.6
Proposed MMC-Net ResNet-152 word2vec 52.0 87.0 41.0 81.2

7.4.6 Comparison with other approaches

For Pascal Sentence and MSCOCO, we compare our matching results with other

state-of-the-art approaches. As reported in Table 7.10 and 7.11, MMC-Net can

achieve competitive performance with the state-of-the-art. To be more speci�c, the

method in [51] is e�ective on small-scale datasets, so it can obtain state-of-the-art

results on Pascal Sentence. However, it does not have a strong generalization on

large-scale datasets, for example their results on MSCOCO are not quite competi-

tive. In contrast, the proposed MMC-Net maintains the high performance on both of

small-scale and large-scale datasets. Moreover, we show the image and text encoders

used in di�erent approaches. Both of DSPE [53] and 2WayNet [76] extracted the

visual features based on the VGG-19 model, while they rely on a more complicated

HGLMM textual representation [51] than the Mean vector used in MMC-Net. As

discussed earlier (Section 7.2), we did not use the HGLMM representation in order

to maintain the training e�ciency. For a fair comparison, MMC-Net with VGG-19

and Mean vector (see Table 7.9) can outperform DSPE with signi�cant improve-

ments, and can compete with 2WayNet while it uses the HGLMM representation.

Lastly, we clarify that any common feature encoders for images and texts can be

potentially adopted to MMC-Net. Exploring more e�cient feature encoders is a

fundamental and promising work.

For Flowers and CUB-Bird, we compare the �ne-grained classi�cation results with

the state-of-the-art. Table 7.12 reports the comparison details. Since the compared

methods do not utilize textual representations, we instead show the CNN model
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Table 7.11: Comparison with other state-of-the-art approaches on the MSCOCO
dataset for image-text retrieval. Best results are in bold face.

Method
Image Text Image to Text Text to Image
encoder encoder R@1 R@5 R@10 R@1 R@5 R@10

DVSA [55] RCNN RNN 38.4 69.9 80.5 27.4 60.2 74.8
Mean vector [51] VGG-16 word2vec 33.2 61.8 75.1 24.2 56.4 72.4

GMM+HGLMM [51] VGG-16 HGLMM 39.4 67.9 80.9 25.1 59.8 76.6
m-RNN [190] VGG-16 RNN 41.0 73.0 83.5 29.0 42.2 77.0
RNN-FV [185] VGG-19 RNN 41.5 72.0 82.9 29.2 64.7 80.4

mCNN(ensemble) [52] VGG-19 CNN 42.8 73.1 84.1 32.6 68.6 82.8
DSPE [53] VGG-19 word2vec 40.7 74.2 85.3 33.5 68.7 83.2
DSPE [53] VGG-19 HGLMM 50.1 79.7 89.2 39.6 75.2 86.9

2WayNet [76] VGG-16 HGLMM 55.8 75.2 - 39.7 63.3 -
Proposed MMC-Net ResNet-152 word2vec 57.0 85.8 92.7 46.2 80.8 90.5

Table 7.12: Comparison with other approaches on the Flowers and CUB-Bird
datasets. Best results are in bold face. The methods in the upper part �ne-tune
the original CNN models, however, the ones in the lower part do not perform the �ne-
tuning process. We do not use the bounding box annotations in the datasets. Note
that, we use the numbers to describe the depth of the image encoders. The dimension
of MMC-Net indicates the multi-modal representation extracted from CBP.

Method Image encoder Finetune Dimension Flowers CUB-Bird
Deep Optimized [224] CNN-16 Yes 4096 91.3 67.1
Part R-CNN [225] DeCAF-8 Yes 4096 - 76.5

Two-level attention [226] AlexNet-8 Yes 4096 - 77.9
Deep LAC [227] AlexNet-8 Yes 12288 - 80.3
NAC-const [221] AlexNet-8 Yes 4096 91.7 68.5
NAC-const [221] VGG-19 Yes 4096 95.3 81.0

Bilinear CNN [222] VGG-16 Yes 250k - 84.0
PD+FC+SWFV-CNN [223] VGG-16 Yes 70k - 84.5

MsML+ [228] DeCAF-8 No 134016 89.5 67.9
BoSP [229] VGG-16 No 5120 94.0 -

RI-Deep [230] VGG-19 No 4096 94.0 72.6
ProCRC [231] VGG-19 No 5120 94.8 78.3
MG-CNN [232] VGG-19 No 12288 - 81.7

Proposed MMC-Net ResNet-152 No 4096 95.2 82.4

used in the image encoder and the network depth. Note that, these approaches are

divided into two groups based on whether the CNN model is �ne-tuned on the target

dataset. First, it can be seen that, MMC-Net achieves better results than other

approaches without performing the �ne-tuning step. Second, MMC-Net can even

compete with the approaches with the �ne-tuning step. For example, our results on

Flowers is competitive with NAC-const [221]. Also, our approach is superior over

most approaches on CUB-Bird, except Bilinear CNN [222] and PD+FC+SWFV-

CNN [223]. However, we can see that both [222] and [223] produce a signi�cantly

more expensive feature vector than MMC-Net. We should realize that additional

�ne-tuning techniques have potential to improve performance, but are not the focus

of this work. Our competitive results are partly due to the use of the ResNet-152

model, while we believe this should not decrease the e�ectiveness of our approach.
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Table 7.13: Summary of the parameters used in the MMC-Net for matching and
classi�cation, and the time for running the multi-stage training algorithm.

Dataset #Params for matching #Params for classi�cation Time (hours)
Pascal Sentence ∼8 millions ∼41,000 ∼0.3

MSCOCO ∼8 millions ∼164,000 ∼7.0
Flowers ∼8 millions ∼418,000 ∼0.5

CUB-Bird ∼8 millions ∼820,000 ∼1.3

7.4.7 Computational cost

We conducted the experiments on a NVIDIA TITAN X card with 12 GB memory.

In practice, we �rst extracted visual and textual features for all training samples

using the o�-the-shelf feature encoders. Then, we take as input these input features

for the matching and classi�cation components. Since the network parameters in

MMC-Net are not expensive, it is feasible and rewarding to use a large mini-batch

size to improve the training. In Table 7.13, we show the training parameters in the

matching and classi�cation component, and the multi-stage training time cost on

the four datasets. The MSCOCO dataset consumes more training time due to its

large-scale data. In summary, MMC-Net is an e�cient network with a decent model

complexity.

7.5 Chapter Conclusions

In this work, we proposed a uni�ed network for joint multi-modal matching and clas-

si�cation. The proposed MMC-Net could simultaneously learn latent embeddings in

the matching component, and generate a multi-modal representation vector in the

classi�cation component. Consequently, the two components could help promote

each other by combining their loss functions together. We evaluated our approach

on four well-known multi-modal datasets. The experimental results demonstrated

the robustness and e�ectiveness of the MMC-Net model, compared to the baseline

models. In addition, our approach achieved competitive results with the state-

of-the-art approaches. The results showed its promising generalization for diverse

multi-modal tasks related to matching or classi�cation.

Future work. Currently, we use the class labels to train the classi�cation compo-

nent in MMC-Net. One potential improvement is to use more detailed information

to guide the classi�cation, like attributes. Compared to the class labels, attributes

can discover more clues (e.g. sit, run, blue and small) about the visual content and

text description. Hence, using attributes is bene�cial for narrowing the gap between

visual features and language words.
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