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Chapter 5

Image-Text Matching for

Cross-modal Retrieval

In the previous chapter, we have started the research theme on image retrieval.

Nowadays, cross-modal retrieval using vision and language has drawn increasing

attention due to the availability of large-scale multimedia data. This observation

motivates our research on how we can develop an e�cient deep matching network

for cross-modal retrieval (RQ 4).

A major challenge in matching visual and textual representations is that they typi-

cally have di�erent modality-speci�c features based on individual feature encoders.

Existing approaches take advantage of the power of deep models to learn a discrim-

inative embedding space where related images and texts can be gathered, however,

few of them consider maintaining the model complexity. In this chapter, we intro-

duce an e�cient approach to couple visual and textual features based on a recurrent

residual fusion (RRF) block. RRF adapts the residual learning to the recurrent

mechanism, so that it can recursively improve feature embeddings while retaining

the shared parameters. In addition, a fusion module is used to integrate the in-

termediate recurrent outputs and generate a more powerful representation. In the

matching network, RRF can be viewed as a feature enhancement component that

gathers visual and textual representations into a more discriminative embedding

space. Moreover, we present a bi-rank loss function to enforce separability of the

two modalities in the embedding space. In the experiments, we verify the e�ective-

ness of the proposed approach on two multi-modal datasets where it can achieve

competitive performance with the state-of-the-art approaches.

Keywords
Cross-modal retrieval, Image-text matching, Deep neural networks, Ranking loss
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5. IMAGE-TEXT MATCHING FOR CROSS-MODAL RETRIEVAL

5.1 Introduction

The matching problem between images and texts [49, 50, 51, 52, 53, 54] is one of the

most important tasks in the area of multi-modal information retrieval. This task

remains challenging due to the heterogenous representations and the cross-modal

gap between vision and language, which is also a core issue for other multi-modal

applications such as image captioning [55, 56], visual question answering [57, 58]

and zero-shot recognition [59, 60].

A main line of research for multi-modal matching is to learn a latent embed-

ding space where related images and texts can be uni�ed into similar represen-

tations [63, 180, 181]. Previously, Canonical Correlation Analysis (CCA) [61] has

been a well-known and representative embedding technique for decades. CCA can

learn a linear transformation to project two modalities into a common space where

their correlations are maximized. Also, some extensive techniques are applied to

the classical CCA, including randomized CCA [182], nonparametric CCA [183], and

kernel CCA [184].

Driven by the successful developments of deep learning, more and more works extract

powerful visual and textual features from deep neural networks. For example, recent

works [50, 51, 52, 53, 55, 185] employ convolutional neural networks (CNNs) [4] to

extract deep image features, and learn descriptive text features based on recurrent

neural networks (RNNs) [186]. Then they can incorporate deep learning features

with traditional embedding techniques (e.g. CCA and its variants). In addition,

extensive research e�orts [49, 62] have been dedicated to directly learning a deep

CCA model that can be end-to-end trainable. Instead of using CCA, recent works

developed a variety of multi-modal deep neural networks to model the matching

task [52, 53, 55, 76, 181]. Nevertheless, the performance of multi-modal matching

is still far from competitive with that of an intra-modal task like image retrieval.

In addition, most of prior works are ine�cient with respect to the model complex-

ity. Regarding this task, we aim to address RQ 4: How can we build a deep

matching network to unify images and texts into a more discriminative

space without increasing the number of network parameters?

In this chapter, we propose a deep matching network using recurrent residual fusion

(RRF) as building blocks for improving feature embeddings. Our new matching

network (RRF-Net) has two branches for representing images and texts, respectively.

Each branch consists of four fully-connected layers that are used to project a source

representation into a common latent space. The proposed RRF building block is

introduced in the third fully-connected layer of the two branches. Speci�cally, RRF

integrates three main components to improve the feature embedding procedure in

the network.
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5.2 Recurrent Residual Fusion

The �rst component in RRF is inspired by the residual learning in ResNet [10]. We

add an identity connection to sum the input of a fully-connected layer with its out-

put. This component enables the fully-connected layer to learn residual embedding

features and provides high performance. Secondly, RRF employs a recurrent mech-

anism with the residual learning by adding a recurrent connection whose direction is

inverse to the identity connection. As the parameters of the fully-connected layer are

shared during the recurrent procedure, RRF is able to recurrently improve feature

embeddings while retaining the parameters. The third component is the use of a

fusion module, which aims to integrate intermediate recurrent outputs to generate a

more powerful fused output. The fusion module facilitates making use of more com-

plementary information in the intermediate layers and explicitly transferring their

e�ects to the �nal output. We provide two e�cient fusion modules: sum-pooling

fusion and convolutional fusion.

Moreover, we present a bi-directional rank loss function (called bi-rank loss), in-

cluding image-to-text rank loss and text-to-image rank loss, to train the proposed

RRF-Net. The original bi-directional loss function only considers the cross-modal

relationships between images and texts. Instead, the bi-rank loss can preserve not

only cross-modal relationships, but also intra-modal relationships (e.g. image-image

and text-text). As a result, it is able to enforce separability of the two modalities in

a uni�ed embedding space. Extensive experiments show remarkable improvements

of the bi-rank loss over the original bi-directional loss.

The contributions of this work are as follows:

� We introduce a new RRF building block and adapt it to a deep matching

network. RRF provides promising insights into e�ciently improving the co-

embedding between images and texts.

� We present a bi-rank loss function to train the RRF-Net for better ensuring

the cross-modal and intra-modal constraints in the uni�ed space.

� The experimental results demonstrate that our approach achieves competi-

tive performance on public benchmarks for image-to-text and text-to-image

retrieval.

The rest of this chapter is structured as follows. Section 5.2 describes the proposed

recurrent residual fusion method. The image-text matching network is presented

in Section 5.3. The experimental results are reported in Section 5.4. Section 5.5

summarizes the conclusions.

5.2 Recurrent Residual Fusion

We describe the details of the RRF block (Figure 5.2) with three components: an

identity connection, a recurrent connection and a fusion module.
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Figure 5.1: Illustration of basic building blocks. (a) An identity mapping (blue) is
added to a fully-connected layer. (b) A recurrent connection (green) is introduced
that uses the current output state to update the next input state. (c) We unfold the
building block in (b) over recurrent steps, resulting in a very deep network. All fully-
connected layers (in green) share the same parameters. t represents the recurrent step,
ranging from 1 to T .
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Figure 5.2: The RRF building block. Built upon recurrent residual learning, we
develop a fusion module (in red) to integrate the intermediate output vectors from
each recurrent step. The �nal output vector learns more information than the orig-
inal output in Figure 5.1c. Speci�cally, there are two types of fusion modules: the
sum-pooling fusion simply �xes equal weights, but the convolutional fusion can learn
adaptive weights (drawn in di�erent colors).

Identity connection

The basic building block in ResNet [10] adds an extra identity mapping with the

traditional non-linear transformations based on convolutional layers. Instead of

using a convolutional layer, we develop an identity connection on top of a fully-

connected layer. As can be seen in Figure 5.1a, our residual block consists of a
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5.2 Recurrent Residual Fusion

fully-connected layer (FC), a batch normalization layer (BN) [135] and a Recti�ed

Linear Unit (ReLU) layer [4]. The input and output channels of the FC layer should

have the same size. The computation can be presented by

h(x) = σ(f(x)) + x, (5.1)

where x and h(x) represent the input and output of the building block, respectively.

f(·) indicates the FC layer, and σ(·) is the ReLU activation function.

Recurrent connection

RNNs [186, 187] are proposed for modeling sequential contexts in tasks like machine

translation and image captioning. We seek to introduce the recurrent mechanism

to the residual learning block. As can be seen in Figure 5.1b, we add a recurrent

connection whose direction is inverse to the identity connection. As a result, the

current output can be used as the next input, and then the next input continues

adding an identity mapping to the residual mapping to compute the next output.

As the fully-connected parameters are shared during the recurrent procedure, the

whole structure is able to become much deeper without consuming more parameters.

We unfold the structure across recurrent steps in Figure 5.1c. Assume that there

are T recurrent steps in total, so the structure has T +1 layers inside, and each layer

uses the same parameters as drawn in green. Mathematically, the recurrent residual

procedure is formulated via

xt = h(xt−1) (5.2)

f(xt) = w · xt + b (5.3)

h(xt) = σ(f(xt)) + xt (5.4)

where t = 1, . . . , T and x0 = x is the original input vector. xt is updated by the

previous output h(xt−1) which adds the residual mapping f(xt) with the identity

mapping xt. The parameters w, b indicate the shared weights and bias in the fully-

connected layer. Note that the parameters used in the BN layer are not shared during

recurrence, however, the number of these parameters is much lower than that of the

total parameters in the model. The input vector can be re�ned over recurrence while

maintaining the e�ciency due to tying the shared parameters. Finally, the output

vector learns to be a more discriminative representation.

Fusion module

Typically, a plain network can learn multiple representations from bottom layers

to top layers, however, the �nal output only connects with the topmost layer. For

example in Figure 5.1c, the output vector is directly a�ected by the result at the

last recurrent step. Although the recurrent procedure can transfer the e�ects of
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5. IMAGE-TEXT MATCHING FOR CROSS-MODAL RETRIEVAL

intermediate layers to the �nal output, their e�ects are implicit and indirect com-

pared with the topmost layer. Therefore, we develop a fusion module to explicitly

aggregate the intermediate layers involved in the recurrent procedure. Figure 5.2

highlights the fusion module in red. Speci�cally, several new side branches (dot

lines in red) are generated from intermediate layers and then merged into a fusion

module. As the intermediate layers have the same dimension, the fusion module

is able to integrate them without adding extra new transition layers. In a fusion

module, T + 1 side outputs are stacked as a layer S. S is of size 1 × N × (T + 1),

where N is the dimension of each side output. Based on S, we employ two fusion

methods to compute a fused output vector: sum-pooling fusion and convolutional

fusion.

(1) Sum-pooling fusion. As can be seen in the right bottom of Figure 5.2, it computes

a summation across the feature channels of the stack layer S. The fused output

vector Ssum is represented by

Ssum =
T∑
i=0

h(xi) =
T∑
i=0

σ(f(xi)) + xi. (5.5)

The sum-pooling fusion supposes that each side branch has the same importance

without learning any weights.

(2) Convolutional fusion. Normally, each side branch (or intermediate layer) may

in�uence the output vector with di�erent importance. Therefore, we use a con-

volutional layer in the fusion module to learn adaptive weights (or importance) for

better fusing side branches. The �lter f in the convolutional layer has 1×1×(T +1)

dimensions. S is convolved by f to generate the fused vector Sconv:

Sconv = wf ∗ S + bf (5.6)

where wf and bf represent the weights and bias, respectively. It is worth noting that

these additional parameters (i.e. T + 1) are a minimal increase to the total number

of parameters used in a deep network.

In summary, the RRF block incorporate the above three components and inherits

their individual advantages. It acts as a feature enhancement to the power of the

input vector and aims to generate a more informative output vector. Unlike other

deep fusion networks in which di�erent layers are aggregated, RRF delves into im-

proving the discrimination of one layer over recurrence. Also, RRF is a general

structure that can be potentially applied to many existing layers in a deep network.
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Figure 5.3: The overview architecture of the proposed RRF-Net for image and text
matching. This two-branch network comprises three key steps: (1) feature extractors
are used for capturing visual and textual representations. (2) Four fully-connected
layers (from FC1 to FC4) in two branches are used for learning feature embeddings.
Importantly, a RRF block is built upon the FC3 layer to improve its embedding ca-
pability. The details inside the RRF block are described in Figure 5.2. (3) After
normalizing the two output vectors and computing their inner product, we employ a
bi-rank loss to train the entire network.
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Figure 5.4: Illustration of
computing the bi-rank loss that
are used to train the RRF-Net.
Left: image-to-text rank loss;
Right: text-to-image rank loss.
x and y indicate the image and
text, respectively.

5.3 Matching Network

In this section, we present a new deep matching network called RRF-Net, where

the RRF blocks are introduced to improve latent embeddings between images and

texts. Figure 5.3 illustrates the architecture of the network, and we will describe its

three key steps as below.

5.3.1 Feature extractor

As a common practice, we capture visual and textual features using o�-the-shelf

feature extractors. Taking these features as input instead of the raw data can ease

the training procedure and lead to fast convergence.

Image feature extractor: we choose the powerful ResNet-152 [10] pre-trained on

ImageNet [5]. To e�ciently extract dense region representations, CNN models are

�rst recast to fully convolutional networks (FCNs) [26]. Given one input image, we
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5. IMAGE-TEXT MATCHING FOR CROSS-MODAL RETRIEVAL

set its smaller side to 512 and isotropically resize the other side. The last max-

pooling layer in the ResNet-152 model is averaged to generate a 2048-dimensional

visual feature vector.

Text feature extractor: we employ the Hybrid Gaussian-Laplacian mixture model

(HGLMM) [51] which is built based on word2vec model [188]. For each sentence,

HGLMM computes one 18000-dimensional vector with 30 centers (i.e. 300*30*2).

To decrease the memory cost [53], we also use PCA to reduce the dimension from

18000 to 6000. Finally, the 6000-dimensional vector acts as a powerful feature.

5.3.2 Feature embedding

To learn a discriminative embedding space, we develop four fully-connected layers

on top of the two feature extractors. Their channels are {2048, 512, 512, 512} in

both branches. Note that the parameters in each branch are unshared as they are

responsible for di�erent modalities. Speci�cally, ReLU is used for FC1, FC2 and

FC3, but not for FC4. A dropout layer with 0.5 probability is added after FC1, and

other FC layers are regularized with batch normalization (BN) [135].

The core component in each branch is the FC3 layer as it introduces the RRF

building block. RRF increases the FC3 layer to depth T + 1 while retaining the

parameters. Consequently, it facilitates deeper learning of latent embeddings and

further uni�es the visual and textual representations. Notably, the BN layer after

FC3 learns unshared parameters during recurrent steps, however, these few extra

parameters raise little cost to the entire network. Moreover, a RRF block can be

imposed on any fully-connected layer. But in the current architecture, FC3 is more

suitable than other layers. Also, we observe that using only a RRF block seems

su�cient for enhancing feature embeddings.

5.3.3 Bi-rank loss

After unifying images and texts into a joint embedding space, the next step is to

compare their similarities. Given an image x and a text y, their FC4 embedding

features are denoted as f(x) and f(y). We compute the similarity s(x, y) with the

cosine distance

s(x, y) = 1− f(x) · f(y)

||f(x)|| · ||f(y)||
. (5.7)

Smaller distances indicate larger similarities. To train the network, we de�ne a

bi-rank loss function, including image-to-text and text-to-image rank loss.
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5.3 Matching Network

Image-to-text rank loss

For an input image x+i , its matching text is represented by y+i . To obtain more

representative non-matching pairs, we collect the top N most dissimilar texts in

each mini-batch as a negative text set Y −i . Then, we compute the triplet rank

loss for {x+i , y+i , y−i,j}, where y−i,j ∈ Y −i and j = 1, 2, . . . , N . First, the matching

cross-modal similarity s(x+i , y
+
i ) should be larger than any of the non-matching

cross-modal similarities s(x+i , y
−
i,j). Second, we further constrain the intra-modal

similarity s(y+i , y
−
i,j) from exceeding s(x+i , y

+
i ). This loss can ensure both the cross-

modal (i.e. image-text) and the intra-modal (i.e. text-text) relations. An example

is shown in the left of Figure 5.4. Finally, this loss function is expressed with

li2t =
N∑
j=1

(
α1 max[0, s(x+i , y

+
i )− s(x+i , y−i,j) +m]

+ α2 max[0, s(x+i , y
+
i )− s(y+i , y−i,j) +m]

)
,

(5.8)

where α1 and α2 measure the importance of the two terms. m is a parameter to

adjust the margin between the two distances.

Text-to-image rank loss

Given one text y+i , we collect its top N most dissimilar images in each mini-batch as

a negative image set X−i . Similarly, we compare the similarities within each triplet

{y+i , x+i , x−i,j}, where x−i,j ∈ X−i . Their relations can be seen in the right of Figure 5.4.
The text-to-image rank loss is as follows

lt2i =
N∑
j=1

(
α1 max[0, s(y+i , x

+
i )− s(y+i , x−i,j) +m]

+ α2 max[0, s(y+i , x
+
i )− s(x+i , x−i,j) +m]

)
,

(5.9)

Full objective

The objective is to minimize the total loss by adding the two rank loss functions

l(x+i , y
+
i , X

−
i , Y

−
i ) =

β1li2t + β2lt2i
N

, (5.10)

where the weights β1 and β2 control the importance of the two terms of one-

directional rank loss. Compared with [53] which searches for extra positive intra-

modal pairs, our bi-rank loss directly uses the negative intra-modal pairs and needs

a minimal amount of additional computations.

81



5. IMAGE-TEXT MATCHING FOR CROSS-MODAL RETRIEVAL

Table 5.1: Evaluation results on the proposed RRF-Net on the Flickr30K test set.
Higher R@K is better. All of the four RRF-Net models outperform the baseline. When
T = 3, it obtains better performance (in bold).

Method
Image to Text Text to Image
R@1 R@5 R@1 R@5

Baseline 45.0 75.5 33.6 66.5
RRF-Net, T=1 46.4 76.1 34.3 67.3
RRF-Net, T=2 46.9 76.8 34.8 67.7
RRF-Net, T=3 47.6 77.4 35.4 68.3
RRF-Net, T=4 46.2 76.6 35.1 67.6

5.4 Experiments

In this section, we evaluate our approach and report its results on two widely-used

multi-modal datasets for bi-directional image-text retrieval.

Datasets. (1) Flickr30K [189]: following the dataset splits in [190], we use 29,783

training images, 1,000 validation images and 1,000 test images. Each image is an-

notated by �ve sentence-level texts. It has 29, 783 ∗ 5 = 148, 915 training pairs. (2)

MSCOCO [117]: it consists of 82,783 training images and 40,504 validation images.

1,000 test images are selected from the validation set [190]. We choose �ve sentences

for each image and generate 82, 783 ∗ 5 = 413, 915 training pairs.

Implementation details. The hyper-parameters are evaluated on the validation

set of each dataset. To be more speci�c, the parameters {α1, α2, β1, β2} are set with
{1, 0.5, 2, 1}, and m = 0.1. Following [53], the number of non-matching pairs is

N = 50. We trained the model with a weight decay of 0.0005, a momentum of

0.9, and a mini-batch size of 1500. The learning rate was initialized with 0.1 and

is divided by 10 when the decrease in loss stabilizes. It is necessary to shu�e the

training samples randomly.

Baseline method. It uses the same 4-layer plain network in Figure 5.3 but excludes

the RRF block from the FC3 layer. We employed the same hyper-parameters for

training the RRF-Net model and the baseline model.

5.4.1 Results and discussion

To measure the performance of image-text retrieval, we adopt the evaluation met-

ric R@K which is the recall rate of a correctly retrieved ground-truth at top K

candidates (e.g. K = 1, 5, 10) [55].
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Figure 5.5: Qualitative results on Flickr30K and MSCOCO. First column: the base-
line model; Second column: RRF-Net model with T = 3; Third column: the ensemble
model with M = {1, 2, 3, 4}. For image-to-text retrieval, the ground-truth matching
texts are in green. For text-to-image retrieval, the red number in the upper left corner
of one image is the ranking order, and the green frame corresponds to the ground-truth
matching image.

Evaluation for the RRF-Net

In Table 5.1, we show the results of four RRF-Net models with T = 1, 2, 3, 4 (here

we use the convolutional fusion). Compared with the baseline model, all four RRF-

Net models achieved considerable improvements. This veri�es the e�ectiveness of

imposing RRF blocks in a deep matching network. We can observe that, the results

when T = 3 are superior to other time steps. The drop of performance from T=3

and T=4 may be due to the potential over�tting in the model. It shows a trade-o�

between the number of recurrent steps and the test performance. The following

experiments are performed with T = 3. We believe that evaluating more recurrent

steps is still promising in future research. The �rst and second columns in Figure 5.5

compare the examples between the baseline and the RRF-Net.

Evaluation for fusion modules

Recall that we de�ne two types of fusion modules. Table 5.2 compares their quanti-

tative results. First, we trained a RRF-Net model without using any fusion module,

which is actually a recurrent residual model in Figure 5.1c. By comparison, we can
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Table 5.2: Evaluation for fusion modules on the Flickr30K test set. The convolutional
fusion shows better results by learning adaptive weights.

Method
Image to Text Text to Image
R@1 R@5 R@1 R@5

RRF-Net w/o fusion module 45.8 75.9 34.2 67.1
RRF-Net with sum fusion 47.1 76.8 35.0 67.6
RRF-Net with conv fusion 47.6 77.4 35.4 68.3

Table 5.3: Compared results (R@K) between the bi-rank loss and the original bi-
directional loss on the Flickr30K test set.

Method
Image to Text Text to Image
R@1 R@5 R@1 R@5

Baseline, bi-directional 43.4 73.8 32.5 65.4
Baseline, bi-rank 45.0 75.5 33.6 66.5

RRF-Net, bi-directional 46.4 76.5 34.1 67.4
RRF-Net, bi-rank 47.6 77.4 35.4 68.3

see that using fusion modules can achieve remarkable improvements. This evalua-

tion reveals the bene�t of integrating the intermediate recurrent layers. Moreover,

the advantage of the sum-pooling fusion is that it is parameter-free, however, the

convolution fusion yields better results than the sum-pooling fusion due to learning

adaptive weights. In the following, we implemented the RRF-Net model with the

convolutional fusion.

Evaluation for the bi-rank loss

Table 5.3 presents the quantitative comparison between the bi-rank loss and the

original bi-directional loss. Actually, the original bi-directional loss is a speci�c case

of the bi-rank loss. We implemented the bi-directional loss by setting {α1, α2, β1, β2}
with {1, 0, 2, 0}. The baseline and RRF-Net models are both evaluated in this

test. In summary, it can be seen that the bi-rank loss brings ∼1% performance

improvements compared with the bi-directional loss.

5.4.2 Comparison with other approaches

We compared our results with the state-of-the-art approaches in Table 5.4. Overall,

RRF-Net achieves competitive (and often better) performance on both Flickr30K

and MSCOCO datasets. On the FLICKR30K dataset, DSPE [53] and 2WayNet [76]

lead recent state-of-the-art results. Although 2WayNet has the best R@1 results on

Flickr30K, the proposed RRF-Net outperforms it on the R@5 accuracy. Addition-

ally, our approach on MSCOCO outperforms the top state-of-the-art approaches.
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Table 5.4: Comparison with the state-of-the-art approaches on Flickr30K and
MSCOCO for cross-modal retrieval. Our RRF-Net can compete with 2WayNet [76]
on the Flickr30K dataset and achieve superior results on the MSCOCO dataset.

Method
Flickr30K dataset MSCOCO dataset

Image to Text| Text to Image Image to Text| Text to Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

DVSA [55] 22.2 48.2 61.4 15.2 37.7 50.5 38.4 69.9 80.5 27.4 60.2 74.8
UVSE [66] 23.0 50.7 62.9 16.8 42.0 56.5 - - - - - -

Mean vector [51] 24.8 52.5 64.3 20.5 46.3 59.3 33.2 61.8 75.1 24.2 56.4 72.4
Deep CCA [49] 27.9 56.9 68.2 26.8 52.9 66.9 - - - - - -
VQA-aware [191] 33.9 62.5 74.5 24.9 52.6 64.8 50.5 80.1 89.7 37.0 70.9 82.9

GMM+HGLMM [51] 35.0 62.0 73.8 25.0 52.7 66.0 39.4 67.9 80.9 25.1 59.8 76.6
m-RNN [190] 35.4 63.8 73.7 22.8 50.7 63.1 41.0 73.0 83.5 29.0 42.2 77.0
RNN-FV [185] 35.6 62.5 74.2 27.4 55.9 70.0 41.5 72.0 82.9 29.2 64.7 80.4

mCNN(ensemble) [52] 33.6 64.1 74.9 26.2 56.3 69.6 42.8 73.1 84.1 32.6 68.6 82.8
HM-LSTM [65] 38.1 - 76.5 27.7 - 68.8 43.9 - 87.8 36.1 - 86.7
DSPE [53] 40.3 68.9 79.9 29.7 60.1 72.1 50.1 79.7 89.2 39.6 75.2 86.9

sm-LSTM [68] 42.5 71.9 81.5 30.2 60.4 72.3 53.2 83.1 91.5 40.7 75.8 87.4
2WayNet [76] 49.8 67.5 - 36.0 55.6 - 55.8 75.2 - 39.7 63.3 -
RRF-Net 47.6 77.4 87.1 35.4 68.3 79.9 56.4 85.3 91.5 43.9 78.1 88.6

Table 5.5: Model ensemble results (R@K, K = 1, 5) on the Flickr30K test set.
Merging more models is signi�cant to obtain better results.

Method
Image to Text Text to Image
R@1 R@5 R@1 R@5

RRF-Net, M = {3} 47.6 77.4 35.4 68.3
RRF-Net, M = {1, 3} 49.1 78.4 36.8 69.8
RRF-Net, M = {1, 2, 3} 50.3 79.2 37.4 70.4
RRF-Net, M = {1, 2, 3, 4} 50.8 79.5 37.6 70.9

Recall that we used the ResNet-152 model to extract visual features. To provide

more comparison, we were also curious about the performance when using another

well-known CNN: VGG-19 [7]. For Flickr30K, RRF-Net yields R@1=42.1 and 31.2

for image-to-text and text-to-image retrieval, respectively. This was not as high

as the proposed RRF-Net performance, but still higher than DSPE [53]. There-

fore, RRF-Net presents consistently high performance for diverse feature extractors.

5.4.3 Model ensemble

Although the performance of di�erent RRF-Net models varies, it is bene�cial to in-

tegrate the retrieved results from multiple models at the test stage. To integrate the

strengths of individual RRF-Net models, we employ a simple yet e�cient ensemble

approach by computing the averaged similarity s
′
(x, y) given a test pair (x, y):

s
′
(x, y) =

∑
m∈M sm(x, y)

|M |
, (5.11)
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where M is the index set, and sm(x, y) is the similarity computed by the RRF-Net

model with T = m. For example when M = {1, 3}, the model ensemble merges the

RRF-Net models with T = 1 and T = 3. As reported in Table 5.5, merging the four

models (i.e. M = {1, 2, 3, 4}) together can signi�cantly improve the performance

compared with the single RRF-Net model (i.e. M = {3}). This ensemble approach
can re�ne the retrieved candidates without increasing the training complexity. In

Figure 5.5, the third column shows its retrieval results.

5.5 Chapter Conclusions

In this chapter, we have exploited the RRF block and RRF-Net which can bridge

the gap between image and text features in a deep matching network. RRF can be

viewed as a feature enhancement component to gather visual and textual represen-

tations into a more discriminative embedding space. In addition, we have presented

a bi-rank loss function to enhancing the matching constraints in the embedding

space. Experiments showed that RRF-Net can achieve competitive performance on

the datasets, Flickr30K and MSCOCO.

Future work. This work can provide promising insights towards how to e�ciently

narrowing the semantic gap between vision and language. Image-text matching

is a fundamental technique for many multi-modal research tasks. Therefore, it is

promising that the RRF building block could be seamlessly integrated into other

multi-modal systems like image captioning and visual question answering.
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