
Exploring images with deep learning for classification, retrieval and
synthesis
Liu, Y.

Citation
Liu, Y. (2018, October 24). Exploring images with deep learning for classification, retrieval
and synthesis. ASCI dissertation series. Retrieved from https://hdl.handle.net/1887/66480
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/66480
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/66480


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/66480 holds various files of this Leiden University 
dissertation. 
 
Author: Liu, Y. 
Title: Exploring images with deep learning for classification, retrieval and synthesis 
Issue Date: 2018-10-24 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/66480
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 4

DeepIndex for Image Retrieval

The previous two research chapters focused on research about image-level and pixel-

level classi�cation. In this chapter, we turn our focus on the second research theme:

retrieval, and answer how we can utilize deep visual representations for accurate and

e�cient image retrieval (RQ 3).

In a conventional image retrieval system, a number of local features are designed to

describe key points in images. Then the well-known Bag-of-Words model is used to

quantize the local features into visual words. In addition, an inverted index scheme

is created to reduce the computational burden and query time. However, the local

features are weak to distill high-level semantic concepts from the images. In the past

few years, deep visual representations have shown powerful capabilities of bridging

the semantic gap between low-level and high-level features. Inspired by this, in this

chapter we exploit a DeepIndex framework for accurate and e�cient image retrieval,

by incorporating deep visual features into the inverted index scheme. DeepIndex can

take advantage of the powerful discrimination of deep features and the fast search of

the inverted index. To integrate more deep features, we further extend our frame-

work to be a multiple DeepIndex. We �nd that the multiple DeepIndex can be

viewed as a good attempt to couple di�erent deep features. Extensive experiments

on three benchmarks demonstrate the e�ectiveness of the proposed method. Our

method is e�cient in terms of memory cost and query time.

Keywords
Image retrieval, Convolutional neural networks, Bag of words, Inverted index

59



4. DEEPINDEX FOR IMAGE RETRIEVAL

4.1 Introduction

Image retrieval is a practical and common application in the real world and there-

fore has triggered a massive amount of research activities in both multimedia and

computer vision �elds [19, 38, 39]. Bag-of-Words (BoW) is a traditional and e�-

cient method in existing image retrieval systems, where local features, such as the

SIFT [40] and color clues [41], are quantized to visual words with a pre-trained

codebook. Then, similar to document retrieval [19, 39], an inverted index is built

with the visual words to reduce computational and memory cost for scalable image

search. Recently, Zheng et al. [164] performed low-level feature fusion with the

SIFT and color features using a coupled inverted index framework. However, image

retrieval remains challenging due to the well-known semantic gap between low-level

image representations and high-level semantic concepts.

To bridge the semantic gap, recent works are dedicated to using more discriminative

visual features learned in deep neural networks. The work of Wan et al. [42] �nds

that a deep CNN model pre-trained on a large dataset can be transferred for new

content-based image retrieval (CBIR) tasks and that similarity learning can further

boost the retrieval performance. Babenko et al. [45] focus on holistic descriptors

where the whole image is mapped to a single deep feature vector. To extract richer

regional features, Gong et al. [22] employed image patches at multiple scales, and

then aggregated local patch responses at the �ner scales via the VLAD [20] encoding.

Yoo et al. [25] utilized multi-scale dense local CNN features to compute the Fisher

Vector kernels. Zhang et al. [46] proposed a deep embedding method by incorpo-

rating the SIFT descriptor and CNN features. However, these prior works mainly

focus on the accuracy and omit the importance of the retrieval e�ciency, including

memory cost and query time. To ensure both the accuracy and e�ciency for image

retrieval, we need to answer the question RQ 3: How can we incorporate deep

visual representations into the inverted index structure for accurate and

e�cient image retrieval?

In this chapter, we propose a novel DeepIndex framework for accurate and e�cient

image retrieval, which can incorporate deep features into the inverted index scheme.

We present a Bag-of-Deep-Features(BDF) model to cluster deep features into a

number of visual words. In contrast to prior works that use resource-consuming

algorithms for matching deep features, our DeepIndex(DPI) employs an e�cient in-

verted index for fast image search, which can achieve competitive performance while

reducing the computational time and memory cost. Furthermore, we extend DeepIn-

dex by integrating di�erent deep features and build a 2-D DeepIndex structure that

consists of two kinds of variants: intra-CNN and inter-CNN. Intra-CNN uses two

deep features from the same CNN architecture (e.g. AlexNet [157]), while inter-

CNN selects the features from two di�erent CNN architectures (e.g. AlexNet [157]

and VGG [7]). The performance of inter-CNN is better than that of intra-CNN,

60



4.2 Bag of Deep Features

because the former one can fuse mutual deep features learned by di�erent CNN

models. However, intra-CNN is simpler and faster than inter-CNN. Notably, both

intra-CNN and inter-CNN can serve as a solution to couple di�erent deep features at

an indexing level. Last but not least, we introduce a global image signature (GIS)

into DeepIndex in order to enhance the query accuracy. In the experiments, we

evaluate the proposed method on three datasets, where the results demonstrate its

e�ectiveness and e�ciency. Also, our results can compete with the state-of-the-art

performance in terms of retrieval accuracy and computational cost.

The contributions of this work are as follows:

� We present a good attempt to incorporate deep features into the inverted index

scheme and exploit a novel DeepIndex framework for accurate and e�cient

image retrieval.

� We present a 2-D DeepIndex variant that can be an alternative to e�ectively

integrate di�erent deep features at an indexing level.

� Our experiments show the promising advantages of leveraging deep visual rep-

resentations to improve traditional image retrieval methods.

The rest of this chapter is structured as follows. Section 4.2 describes the bag-of-

deep-features method. The DeepIndex framework is introduced in Section 4.3. The

experimental results are reported in Section 4.4. Finally, Section 4.5 summarizes

the conclusions.

4.2 Bag of Deep Features

Traditional image retrieval methods extract low-level features from images, such

as SIFT and color descriptors, and employ them to construct the Bag-of-Features

(BoF) or Bag-of-Words (BoW) model. However, few works have shown the utility

of deep features into BoF. In this section, we present a Bag-of-Deep-Features (BDF)

model, where visual words can be clustered based on CNN features.

4.2.1 Spatial patches

Generally, extracting only the global image feature is not discriminative enough

for image retrieval, and may miss some local clues, such as spatial locations and

contexts. Thus it is encouraged to extract rich regional features within �ner scales.

There are three common approaches to search for local regions in an image, including

sliding window, region proposal and spatial pyramid.

Firstly, the sliding window approach is a quite common approach in object recog-

nition and object detection that scans an image using windows of di�erent scales,

61



4. DEEPINDEX FOR IMAGE RETRIEVAL

P1

P2 P3

P4 P5

P6 P8

P9

P12

P7

P10 P11

P13 P14

Level 1 Level 2 Level 3

Figure 4.1: A three-level spatial pyramid. There are 14 image patches Pi in total,
i = 1, . . . , 14. we can describe each patch with a CNN feature.

0

0.5

1 0
0.5

1

0

0.5

1

Figure 4.2: Visualizing the CNN
features for three groups of im-
ages from the Holidays dataset [47].
Note that, each group has a few
images and we show one of them
in the right side. Each point in
the 3D space represents an image
patch, and its color corresponds to
one of the three groups. We can
see the clear separations of di�erent
groups.

locations, and aspect ratios. For example, Gong et al. [22] scan the whole image

with two levels of overlapping windows that generates numerous local patches. Sec-

ondly, the region proposal approach can detect the objects of interest in images

using fewer candidates than sliding windows. For object detection, RCNN [165]

adopts the selective search into CNNs replacing sliding windows. Sun et al. [166]

extract CNN features for object-like image patches with a region proposal detector.

Thirdly, in contrast to the above two methods, the spatial pyramid approach [167]

is an e�cient way to preserve the spatial information in the images. Razavian et

al. [6], augment the datasets by cropping and rotating images in several directions,

and then use spatial search to divide the whole image into di�erent levels of patches

whose union covers the whole image.

Considering the above three approaches, we employ the spatial pyramid one to en-

rich the image representation because of its simplicity and e�ciency. As seen in

Figure 4.1, we partition one image into three levels: Level 1 contains only one

patch P1 that is the whole image; Level 2 divides the image into four patches

(P2, P3, P4, P5) whose union covers the whole image; Level 3 consists of nine non-

overlapping patches, denoted with P6 to P14. In total, there are 14 patches for one

image, and their CNN features can be computed independently. In contrast to [6]

which uses larger levels for training images than query images, we apply the same

spatial levels for all images in the training and testing sets.

62



4.3 DeepIndex

4.2.2 Feature extraction and quantization

The success of convolutional neural networks in image classi�cation[157] has shown

the strong e�ciency and discriminative ability of learning deep visual features. It

is common to extract the image representation from the fully connected (fc) layers

[6, 168], because they are closer to class posteriors. However, it is still questionable

about which fc layer is favorable for image retrieval. Di�erent from prior works using

either the �rst or the second fc feature, we aim to study the bene�t of aggregating

multiple fc features.

Speci�cally, we employ two common CNN architectures pre-trained on ImageNet [5].

The �rst one is AlexNet proposed by Krizhevsky et al. [157] in 2012. The second

one is the VGG-19 model from Simonyan et al. [169] proposed in 2014. AlexNet has

eight successive layers (5 convolutional layers, 3 fully connected layers), and the �rst

and second fc layers are named by fc6 and fc7 respectively. VGG-19 consists of 16

convolutional layers and 3 fully connected layers and we name the �rst and second fc

layers fc17 and fc18. To visually demonstrate deep features, we select three groups

of images from the Holidays dataset[47]. The fc18 features of the image patches

are extracted (4096-dimension). Then we map the features into a 3D space by the

classical Multi-Dimensional Scaling (MDS). As seen in Figure 4.2, the separability

of three groups is clear in the 3D space.

After feature extraction, we perform feature quantization based on the BoW model.

Given an image I, xi represents the feature vector of the i-th patch. After extract-

ing the features of all image patches, we can learn a codebook with the k -means

algorithm. Then the quantization function q(·) is used to map a patch feature xi
to its nearest visual word vk in the codebook, i.e. q(xi) 7→ vk. Note that, the code-

books associated with di�erent fc features (i.e. fc6, fc7, fc17, fc18) are constructed

independently. L2 normalization is used to normalize the features.

4.3 DeepIndex

To reduce the retrieval time and memory cost, we propose the DeepIndex framework

in which the inverted index is created based on the visual words. In addition, we

can integrate multiple deep features with a multiple DeepIndex variant. Finally, the

global image signature is utilized to increase the matching accuracy.

4.3.1 Single DeepIndex

We create an inverted index structure in which each entry corresponds to a vi-

sual word de�ned by the pre-computed codebook {vi}Ki=1. We represent the in-

verted index as W = {W1,W2, . . . ,WK}, where each entry Wi consists of a list

63



4. DEEPINDEX FOR IMAGE RETRIEVAL

 

 

 Figure 4.3: The �owchart of Single DeepIndex framework, including o�-line and on-
line stages. Here, the fc6 features from AlexNet are extracted to cluster the visual
words, which are used to construct the inverted index structure. More details are in
Section 4.3.

of indexed items, such as image ID, term-frequency (TF) score and other meta-

data [39, 164, 170]. The indexed items following each entry Wi are counted as the

retrieved candidates of the query feature. Therefore, the matching function hq(·) for
two deep features x and y can be expressed with

hq(x, y) = δq(x),q(y), (4.1)

where δ is the Kronecker delta response and q(·) ∈ [1, K]. However, this matching

function cannot weight the visual words according to their frequency. Generally, rare

visual words are assumed to be more discriminative and should be assigned higher

weights. Driven by the tf-idf scheme[19], we update the matching function

h(x, y) = δq(x),q(y) · idf(q(y))2, (4.2)

where idf(i) = N/ni and ni is the number of images containing vi.

For simplicity, we call the proposed indexing scheme single DeepIndex (1-D DPI)

because it uses one kind of deep features. Speci�cally, we present four variants of 1-

D DPI, including DPI6,DPI7,DPI17 and DPI18, depending on which fully-connected

feature of AlexNet and VGG-19 is used. The entire procedure of DeepIndex for

image retrieval is illustrated in Figure 4.3. It takes the DPI6 method as an example,

but it is suitable for other deep features as well. There are two stages: o�-line

stage and on-line stage. During the o�-line stage, we mainly cluster the codebook

with the training image patches, and construct the inverted index structure. The

on-line stage will query an image with its patch features and obtain similar images

by searching the inverted index structure.

64



4.3 DeepIndex

 

Figure 4.4: The framework of 2-D DeepIndex with deep features, including intra-
CNN and inter-CNN. For intra-CNN, it uses the fc6 and fc7 jointly. For inter-CNN,
the fc7 and fc18 are incorporated for indexing. Besides, the global image signature,
being an additional clue in the indexed items, is stored in a table.

mid level high level

fc17

fc18

fc6

fc7

Intra-CNN Intra-CNN

Inter-CNN

Gap

Figure 4.5: A conceptual comparison between Intra-CNN and Inter-CNN.

4.3.2 Multiple DeepIndex

Currently, most works mainly focus on comparing performance of di�erent fully

connected layers and choose a superior one. However, di�erent neural layers imply

di�erent levels of abstraction of the image. Thus we utilize di�erent deep features

to compensate each other and to improve the retrieval accuracy. Based on this

idea, we present an extended framework, called multiple DeepIndex (multi-DPI).

The multi-index structure was �rst proposed in Babenko et al. [171]. It decomposes

the SIFT descriptor into several blocks by product quantization. The multi-index

structure is then organized around the codebooks of corresponding blocks. Similarly,

Zheng et al. [164] built the coupled multi-index with traditional SIFT features and

additional discriminative color names. Their results demonstrate that the feature

fusion at the indexing level is better than the single indexing. Motivated by these

works, we exploit a multiple DeepIndex that can incorporate multiple deep features

into a multi-index structure. In this work, we take the two dimensional DeepIndex

(2-D DPI) as an example.

To be speci�c, we denote X = [xr, xc] as a coupled deep features for a patch Pi,

where xr is extracted from one fc layer as the row indexing, and xc comes from

another fc layer as the column indexing. Then, two codebooks are pre-computed

with di�erent fc features separately, i.e. U = u1, u2, . . . , uM and V = v1, v2, . . . , vN ,

where M and N are codebook sizes. The 2-D DPI structure contains M × N

65



4. DEEPINDEX FOR IMAGE RETRIEVAL

entries, where W = W11,W12, . . . ,Wij, . . . ,WMN , i = 1, 2, . . . ,M, j = 1, 2, . . . , N .

After building the 2-D DPI, each feature tuple like X = [xr, xc] can be quantized

into a visual word pair (ui, vj) based on the codebooks U and V , where ui and vj are
the nearest centroids to xr and xc, respectively. Similar to the 1-D DPI, additional

clues (e.g. image ID and other meta-data) related to the feature tuple X are saved

in the corresponding entry Wij.

Given two feature tuples X = [xr, xc] and Y = [yr, yc], the matching function for

2-D indexing can be rewritten by

h(X ,Y) = δqr(xr),qr(yr) · δqc(xc),qc(yc) · idf 2, (4.3)

where qr(·) and qc(·) present two di�erent quantization functions. Notice that, a

right match is valid only if the two features tuples are similar in both row and column

indexing. In this way, the 2-D DeepIndex can enhance the matching strength so as

to improve the retrieval accuracy.

Moreover, we de�ne two methods for selecting fc features, named intra-CNN and

inter-CNN. (1) The Intra-CNN method uses two fc layers from the same CNN

architecture. As the two black solid lines seen in Figure 4.4, fc6 activation is taken

as column indexing, and the fc7 activation serves as row indexing. We can construct

two Intra-CNN members: DPI6,7 and DPI17,18. (2) The Inter-CNN method chooses

two fc layers coming from two di�erent CNN architectures. For example, the two

black dash lines in Figure 4.4, fc7 in Alexnet and fc18 in VGG-19 can serve as column

and row indexing respectively. In total, we can have four Inter-CNN members,

including DPI6,17, DPI7,17, DPI6,18 and DPI7,18.

We provide more insights into Intra-CNN and Inter-CNN in Figure 4.5. By com-

paring the depth of AlexNet and VGG-19, we categorize fc6 and fc7 as mid-level

features, and fc17 and fc18 as high-level features. Intra-CNN is simpler to build

than Inter-CNN. However, Inter-CNN can be viewed as a solution to bridge the

gap between mid-level and high-level deep networks. More comparison and analysis

about intra-CNN and inter-CNN is reported in the experiments.

4.3.3 Global image signature

To further improve the matching accuracy in the inverted index structure, we employ

an additional discriminative feature to constrain the matching condition and �lter

out false matches, which is called the `signature'. The most popular one is the

hamming embedding signature [47] that uses a 64-D binary signature for each SIFT

descriptor, and stores it in the meta-data of the inverted items. Also, Zheng et al.

[164] use the hamming embedding for SIFT features and generate another signature

for color names. The discrimination of deep image features has been demonstrated

66



4.4 Experiments

in existing works [6, 42, 172], for example, only one fc feature vector extracted from

the whole image can achieve desirable results for many tasks.

In this work, we propose to use this global deep feature as an additional signature

for DeepIndex, called global image signature(GIS). Although the spatial patches

already contains global feature representation at Level 1, they are used to enrich the

representations of images and exploit more features at local regions. In addition, all

the patch features are clustered into visual words and quantized to another space

that is di�erent from the original feature space. Thus, it is not a redundant process to

use the global feature again. Since GIS is quite e�cient, all the patches in one image

can share the same GIS. We store all GIS features in a Global Features Table and

search them by the GIS ID stored in the indexed items, as seen in Figure 4.4.

We compute the similarity of two GIS features with the root feature process [166,

173]. Speci�cally, we obtain the root feature by �rst L1 normalizing the feature

vector and then computing the square root per dimension. The distance d(x, y) is

computed using the Hellinger kernel S(x, y) =
∑m

i=1
2
√
xiyi:

d(x, y) = 2− 2 · S(x, y).

Then we take GIS into DeepIndex, and add this distance to update the match-

ing score. For 1-D DeepIndex, given two patch features x and y, we can update

Eq. 4.2

h(x, y) = δq(x),q(y) · idf 2 · c(x, y), (4.4)

where c(x, y) = exp(α · d(gis(x), gis(y))); gis(·) returns the corresponding global

image feature of the current image patch; α adjusts the GIS matching strength. For

2-D DeepIndex, there are two feature tuples, its matching function becomes

h(X ,Y) = δqr(xr),qr(yr) · δqc(xc),qc(yc) · idf 2 · c(X ,Y), (4.5)

where c(X ,Y) = c(gis(xr), gis(yr)) · c(gis(xc), gis(yc)). We �nd that GIS is an

e�cient global constraint and can compensate for patch matching. Finally, two

patches can be matched only when their visual words are identical and their GIS

features are similar.

4.4 Experiments

We evaluate the proposed method on three datasets and conduct component analysis

to verify its e�ectiveness. In addition, we present its computational complexity in

terms of memory cost and query time.

67



4. DEEPINDEX FOR IMAGE RETRIEVAL

1000 2000 5000 7000
0.4

0.5

0.6

0.7

0.8

Codebook Size

m
A

P

 

 

fc6

fc7

fc17

fc18

Holidays

(a)

2000 5000 7000 10000
0.3

0.35

0.4

0.45

Codebook Size

m
A

P

 

 

Paris

(b)

2000 5000 7000 10000
2

2.5

3

3.5

Codebook Size

N
−

S

 

 

UKB

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.75

0.77

0.79

0.81

0.83

0.85

parameter α

m
A

P

0 5 10 15
3.4

3.6

3.8

 

 

UKB, DPI
7,18

Paris, DPI
7,18

Holidays, DPI
6,18

N−S

(d)

Figure 4.6: (a)-(c) E�ect of codebook sizes on three dataset. The selected sizes
are 5000, 5000 and 10000 for Holidays, Paris and UKB, respectively. (d) In�uence of
parameter α.

4.4.1 Datasets and metrics

Holidays [47] contains 1,491 vacation photographs corresponding to 500 groups.

There are 500 queries, most of which have 1-2 ground truth images which have been

recti�ed to a natural orientation. The performance is measured by mean average

precision(mAP) over the provided queries (also seen in Section 2.4.3).

Paris [174] has 6,412 images obtained from Flickr. 55 images serve as queries. For

each image and landmark, one of four possible labels is generated: good, ok, bad,

and junk. The mAP is again used as the accuracy measurement.

UKB [175] includes 10,200 indoor photos of 2,550 objects(4 images per object).

Each image is used to query the rest of the dataset in turn. The performance is

reported by the average recall of the top four results, referred to as N-S score that

is a number between 0 and 4 (also seen in Section 2.4.3) . But some works still use

mAP to measure the performance on this dataset.

4.4.2 Results and discussion

Codebook size.

The visual words are clustered using features from the training images. To elevate

the e�ciency of k -means, we use the algorithm from Fast Library for Approximate

68



4.4 Experiments

Table 4.1: Quantitative results on the 1-D DeepIndex and 2-D DeepIndex. Multiple
assignment (MA) is used to increase the retrieval recall. We compare the performance
of four 1-D DPI methods, two Intra-CNN methods and four Inter-CNN methods. The
best results on the datasets are in boldface.

Method
Holidays (mAP) Paris (mAP) UKB (N-S)

MA=1 MA=3 MA=5 MA=1 MA=5 MA=10 MA=1 MA=5 MA=10

DPI6 71.73 73.54 72.01 40.94 56.89 65.21 2.90 3.03 3.02
DPI7 72.34 74.90 73.58 41.24 57.45 65.78 3.05 3.12 3.04
DPI17 73.02 73.22 72.62 44.87 61.01 70.24 3.16 3.19 3.15
DPI18 76.31 76.72 75.63 45.03 61.23 71.33 3.21 3.25 3.19
DPI6+7 72.00 78.88 77.17 29.35 62.89 71.20 3.02 3.13 3.05
DPI17+18 75.75 79.96 79.34 32.28 63.29 71.69 3.16 3.25 3.26
DPI7+17 74.01 80.53 80.20 33.45 64.12 73.24 3.21 3.25 3.19
DPI6+17 73.32 81.62 81.15 33.95 65.08 74.35 3.22 3.26 3.22
DPI7+18 74.66 81.23 81.74 36.56 66.18 75.35 3.26 3.37 3.32
DPI6+18 73.82 81.64 82.38 34.12 65.40 74.52 3.19 3.23 3.29

Nearest Neighbors(FLANN) [176]. We test four kinds of 1-D DeepIndex (i.e. DPI6,

DPI7, DPI17 and DPI18) to �nd proper codebook sizes. The results are shown in Fig-

ure 4.6. To balance the accuracy and e�ciency, we set the codebook size K =5000,

5000 and 10000 for Holidays, Paris and UKB, respectively. It is noteworthy that the

codebook sizes of deep features are much smaller than traditional BoW with local

features, because the number of image patches is much smaller than the number of

key points.

Ablation study of DeepIndex

We report ablation results of 1-D DPI and 2-D DPI on the three datasets in Table 4.1.

First, we analyze the e�ect of multiple assignment (MA) [170] on the performance,

which is a common technique when retrieving the inverted index items. When

MA=1, it means that only the nearest inverted index item can be retrieved. In this

case, we can see that the 2-D method is not better than the 1-D method because of

the low recall. To further improve the recall, we can increase the multiple assignment

(MA) [170]. In this way, the 2-D DPI can perform better than the 1-D DPI, which

demonstrates the bene�t of integrating di�erent features.

Next, we can observe that the inter-CNN methods are better than the intra-CNN

ones. The reason is that two deep features in intra-CNN are from the same CNN

architecture, such as fc6 and fc7 in AlexNet, and their implicit relationships (i.e. fc6

is the input of fc7) may limit the learning of the 2-D inverted index. For simplicity,

we call the fc6 and fc7 features as `mid-level' descriptions and the fc17 and fc18

features as `high-level' descriptions. As a result of the mutual compensation of mid-

level and high-level features in inter-CNN, it can bridge the gap between di�erent

CNNs at the 2-D inverted index level and achieve superior retrieval accuracy. In

details, DPI6,18 obtains 82.38% mAP on Holidays; DPI7,18 has 75.35% mAP on Paris;

DPI7,18 achieves 3.37 N-S score.

69



4. DEEPINDEX FOR IMAGE RETRIEVAL

DPI6

DPI18

DPI6,18

Holidays

UKB

DPI7

DPI18

DPI7,18

Positive image

Negative image

Query image

Figure 4.7: Retrieval results on the Holidays and UKB datasets. The 2-D DPI
method can have more relevant retrieved candidates than the 1-D DPI.

Table 4.2: E�ect of PCA Compression on the performance of DeepIndex.

Dimensions Holidays (mAP) Paris (mAP) UKB (N-S)

4096 83.30 78.24 3.68
2048 84.11 79.45 3.72
1024 84.63 80.65 3.74
512 85.65 81.24 3.76
256 83.67 78.75 3.71
128 82.72 77.24 3.65

Moreover, we study the in�uence of the global image signature on 2-D DPI. We

choose to test the superior methods on each dataset, as listed in Table 4.1. The

parameter α in GIS ranges from 1 to 15 and the results are shown in Figure 4.6d.

For Holidays, the GIS increases DPI6,18 to 83.3% mAP when α is 8. Similarly,

the result of DPI7,18 for Paris reaches 78.24% mAP with α = 4. Also, the DPI7,18
method gets 3.68 N-S score on UKB with α = 10. All these results show that GIS

can help in providing a global constraint to enhance the matching accuracy. All the

following results contain the GIS process. In addition to the quantitative evaluation,

we show two queries from Holidays and UKB in Figure 4.7. It can be seen that the

2-D DPI method can retrieve more relevant images than the 1-D DPI.

Dimensionality reduction

The deep visual features we use have 4096 dimensions. To reduce the feature dimen-

sionality, we further study the in�uence of feature compression for deep features.

Speci�cally, we conduct PCA compression for the 4096-Dimension deep features.

Also, the GIS is compressed by PCA. We report the results in Table 4.2. Interest-

ingly, when the dimension decreases to 512, we achieve the best results on all the

70



4.4 Experiments

Table 4.3: Comparison results with other methods on three datasets.

Groups Methods Holidays (mAP) Paris (mAP) UKB (N-S and mAP)

Non-CNN [41] 78.90 - 3.50
Non-CNN [177] 80.86 - 3.60
Non-CNN [170] 81.30 - 3.42(87.8)
Non-CNN [178] 82.20 78.20 -
Non-CNN [179] 83.90 - 3.54(90.7)
Non-CNN [164] 84.02 - 3.71(94.7)
Non-CNN [178] 88.00 80.50 -
CNN [45] 74.70 - 3.43
CNN [166] 79.00 - 3.61
CNN [22] 80.20 - -
CNN [6] 84.30 79.50 -(91.1)
CNN [42] - 86.83 -
CNN Ours 85.65 81.24 3.76

SIFT-CNN [46] 85.30 - 3.79
SIFT-CNN [46] 88.08 - 3.85

three datasets. Even in the extreme case where the dimensionality is down to 128, it

can still obtain desirable results compared with many of SIFT-based methods. This

implies that the original deep feature is discriminative while containing some redun-

dant information for the retrieval tasks. Feature compression can help re�ne the

feature representation and maintain the high performance. A similar observation is

also suggested in other related works [42, 45].

4.4.3 Comparison with other methods

We compare our results with other state-of-the-art methods. We simply divide them

into three groups: CNN methods, Non-CNN methods and SIFT-CNN methods.

We do not consider and perform various post-processing algorithms, such as query

expansion, spatial veri�cation and graph fusion. For CNN methods, we do not

consider �ne-tuning for speci�c tasks. For fairness, we compare the results with

other methods that exclude the post-processing and �ne-tuning steps.

The whole comparison is listed in Table 4.3. For Holidays, our proposed method

(85.56%) exceeds other CNN-based methods, and is in competition with the best

results [178] and [46]. In the work by Tolias et al. [178], their representation takes

several millions of features per image which is not scalable to large datasets. In

Zhang et al. [46], they use both the SIFT descriptor and CNN features to increase

the accuracy. On the Paris dataset, our result (81.24%) outperforms most methods,

except [42] that introduces the similarity learning algorithm into deep learning. In

UKB, our method (3.76) is better than the coupled multi-index method [164], and

71



4. DEEPINDEX FOR IMAGE RETRIEVAL

Table 4.4: Memory cost (bytes) and query time (seconds) for one image on Holidays.

Complexity [46] 1-D DPI 2-D DPI

ImageID 4× 500 4× 14 4× 14
Signature 10.18KB 512× 4 512× 4× 2

Total Memory 12.13KB 2.06KB 4.06KB
Query Time 2.32 0.25 0.45

is also competitive with [46].

Complexity analysis

Although our results are inferior to those of [46], our method is more e�cient in terms

of memory cost and query time. As seen in Table 4.4, we compare the computing

complexity of DeepIndex with [46] on Holidays. Our experimental environment

is Intel i7 CPU at 2.67Ghz with 12GB RAM and NVIDIA GTX 660 with 2GB

GRAM. Zheng et al. [46] extracts 500 SIFT keypoints for each image. Considering

the memory cost per image, both the 1-D DPI (2.06KB) and 2-D DPI (4.06KB)

are more e�cient than [46] that requires signi�cantly more memory for the SIFT

descriptors. Also, our average query time is shorter, i.e. less than 0.5 seconds

compared to 2.3 seconds for [46]. These results are consistent with our motivation

of exploiting an accurate and e�cient image retrieval method.

4.5 Chapter Conclusions

In this chapter, we exploited the DeepIndex framework for accurate and e�cient

image retrieval that could incorporate deep features into the inverted index scheme.

In addition, we integrated multiple deep features with the multiple DeepIndex which

was able to bridge di�erent deep representations at an indexing level. Experimental

results showed that our method achieved competitive performance on the Holidays,

Paris and UKB datasets, while retaining the retrieval e�ciency in terms of memory

cost and query time.

Future work. One the one hand, a straightforward improvement is to further

extend multiple DeepIndex by using more deep features, e.g. 3-D DeepIndex and

so on. But we should note that it will increase the computational cost. On the

other hand, it is encouraged to integrate some traditional retrieval techniques with

DeepIndex, such as query expansion and late fusion. We believe that deep learning

approaches would be compatible with other traditional algorithms.

72


