
Exploring images with deep learning for classification, retrieval and
synthesis
Liu, Y.

Citation
Liu, Y. (2018, October 24). Exploring images with deep learning for classification, retrieval
and synthesis. ASCI dissertation series. Retrieved from https://hdl.handle.net/1887/66480

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/66480

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/66480

Cover Page

The handle http://hdl.handle.net/1887/66480 holds various files of this Leiden University
dissertation.

Author: Liu, Y.
Title: Exploring images with deep learning for classification, retrieval and synthesis
Issue Date: 2018-10-24

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/66480
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 3

Recognizing Image Edges

In the previous chapter, we have shown the generalization power of deep neural

networks for pixel-level classi�cation. In this chapter, we focus on how we can

develop diverse supervision in CNNs for edge detection (RQ 2).

To improve the robustness of edge detection, we build hierarchical supervisory sig-

nals with additional relaxed labels and adapt the signals to consider the diversities

in hierarchial layers. Speci�cally, we begin by capturing the relaxed labels from sim-

ple detectors (e.g. Canny). These relaxed labels can be seen as some false positives

that are di�cult to be classi�ed. Then we merge them with the general ground-

truth to generate the relaxed deep supervision (RDS). We can employ the RDS to

supervise the edge detection network in a coarse-to-�ne paradigm. Moreover, we

compensate for the lack of training images by capturing coarse edge annotations

from a segmentation dataset. We pre-train the model with coarse annotations and

then �ne-tune it with �ne annotations. Extensive experiments demonstrate that our

approach achieves superior performance on the BSDS500 dataset (ODS F-score of

.792) and promising cross-dataset results on the NYUD dataset.

Keywords
Edge detection, Fully convolutional networks, Deep supervision, Pre-training

43

3. RECOGNIZING IMAGE EDGES

3.1 Introduction

Edge detection, which aims to extract the important edges from images, has served

as a fundamental task in the computer vision community for several decades. Typ-

ically, edge detection is considered as a low-level problem, and it is frequently used

for other high-level vision applications, for example, object detection [147] and seg-

mentation [126]. Most of the traditional edge detection approaches [109, 110, 111,

112, 148, 149, 150, 151] extract discriminative local features with color and gradient

clues, such as gPb [126], Sketch tokens [152] and Structured Edges (SE) [127].

Recently, edge detection has achieved signi�cant advances due to the developments

of deep features. Figure 3.1 displays the basic pipeline of current edge detection

systems based on deep learning. Based on di�erent levels in predicting edges, we

broadly divide them into three categories.

(1) Pixel-level prediction: extract deep feature per pixel and classify it to edge or

non-edge class. Early work such as [113] developed a convolutional RBM to learn

pixel-level features. Hwang and Liu [153] stacked pixel features in a multi-scale CNN

model and then fed them to an SVM classi�er. Bertasius et al. [29] built four CNN

models to learn multi-scale features to detect edge points. Then they improved their

network structure with less computational cost [154].

(2) Patch-level prediction: estimate edge maps for the input patches and then in-

tegrate them for the whole edge map. For example, the N4-Fields [155] extracted

patch features from a pre-trained CNN model, and then mapped them to the nearest

neighbor annotation from a pre-built dictionary. Shen et al. [30] clustered contour

patches for mid-level shape classes and solved the model using a positive-sharing

loss function.

(3) Image-level prediction: predict the whole edge map end-to-end given one input

image. Considering the ine�ciency of the above two categories, Xie and Tu [31]

proposed a holistically-nested edge detection (HED) approach that was the �rst at-

tempt to perform holistic image training and prediction for edge detection. Their

work took advantage of the high e�ciency of end-to-end fully convolutional networks

(FCNs) [26], and additional deep supervision of deeply supervised nets (DSN) [125].

Input

image

Deep

model

Edge prediction:

--pixel-level

--patch-level

--image-level

NMS
Edge-map

generation

Figure 3.1: Pipeline of deep learning based edge detection. NMS is short for non-
maximal suppression.

44

3.1 Introduction

One di�culty in edge detection is attributed to false positives : many non-edge pixels

are incorrectly predicted as edges compared with the human annotated ground-

truth. To alleviate this issue, HED [31] imposed additional supervision (i.e. the

annotated ground-truth) on the intermediate layers while training the deep model,

and therefore the false positives could be corrected earlier. However, using only a

general supervision for all the layers is inconsistent with the diverse representations

of hierarchical layers. In addition, the general supervision can not be well-suited to

all intermediate layers. Driven by this issue, in this chapter we pose a new research

question RQ 2: How can we explore diverse supervision that can adapt

to di�erent intermediate layers in deep neural networks for robust edge

detection?

To this end, we propose diverse deep supervision that can vary from coarse level to

�ne level as deep features become more discriminative. Our diverse supervision is

called relaxed deep supervision (RDS), having additional relaxed labels, in addition

to the positive labels (i.e. edge points) and negative labels (i.e. non-edge points).

The relaxed labels are used to adapt to the diversities of intermediate layers. To be

speci�c, we capture the relaxed labels from simple and e�cient o�-the-shelf detec-

tors, for instance, Canny [109] or SE [127]. Then, we insert the extracted relaxed

labels into the original ground-truth to generate RDS. In contrast to using a �xed

general supervision, RDS can guide intermediate layers in a coarse-to-�ne paradigm

and process the false positives using a �delayed strategy�. In this way, the loss cost

of the relaxed labels are ignored in current supervision, and will be reconsidered in

the next supervision. Therefore, more discriminative layers are assigned to process

more false positives (di�cult points). RDS can incorporate network diversities to

improve the performance of edge detection.

Another problem about edge detection is that it requires more expensive human an-

notations, than other vision tasks like image classi�cation and object detection. In

addition, the frequently benchmarked BSDS500 dataset [126] has only 200 training

images that limits the learning ability of various edge detectors based on deep learn-

ing. To alleviate this de�ciency, we propose to generate coarse edge annotations

(CEA) from a large collection of segmentation annotations such as the PASCAL

Context dataset [156]. We pre-train the model with CEA and then �ne-tune it with

the target dataset, BSDS500.

The contributions of this work are as follows:

� We propose relaxed deep supervision to guide the intermediate predictions.

Compared with traditional deep supervision, RDS can adapt to the hierarchi-

cal diversities with minimal manual e�orts.

� We show that pre-training the model with a large collection of CEA is an

e�cient way to enhance the learning ability of CNNs and thus can achieve

considerable improvements.

45

3. RECOGNIZING IMAGE EDGES

� Despite the apparent simplicity of RDS, our approach achieves competitive

accuracy (ODS=.792) on the well-known benchmark BSDS500. In addition,

our approach shows promising generalization between di�erent datasets.

The rest of this chapter is structured as follows. Section 3.2 presents the proposed

relaxed deep supervision for edge detection. The pre-training procedure with CEA is

introduced in Section 3.3. In 3.4, we describe the implementation details in Section

and report the experimental results. Finally, Section 3.5 summarizes the conclusions

and future work.

3.2 Relaxed Deep Supervision

In this section, we present the proposed network with relaxed deep supervision for

edge detection and formulate the algorithm.

3.2.1 Network details

Model Architecture

Our edge detection architecture is built on top of HED network [31], which is

trimmed from the VGG-16 net [7] (Figure 3.2). The network architecture contains

�ve convolutional nets connected with the max-pooling layers. Each convolutional

net has several convolutional layers. In order to add deep supervision to guide the

intermediate layers, �ve side-output layers (from side-output 1 to side-output 5) are

inserted behind the intermediate layers. Due to the deconvolutional operation, the

side-output predictions keep the same spatial size as the input image. In order to in-

tegrate multi-scale predictions, one weighted-fusion layer followed by fusion-output

prediction is concatenated with �ve side-output predictions. Notably, HED utilizes

the original ground-truth G as a general supervisory signal to guide the whole net-

work, including �ve side-output predictions and the last fusion-output prediction.

Although the fusion-output prediction in HED is integrated with multi-scale predic-

tions, their general supervision fails to present hierarchical diversities. Instead, our

main aim is to explicitly make use of diverse supervision associated with di�erent in-

termediate layers. To this end, we propose to integrate additional relaxed labels into

the general supervision, and generate hierarchical and speci�c supervision, called

relaxed deep supervision (RDS). Our approach stems from the fact that hierarchical

layers can represent speci�c abstracts of the input image [157, 158]. In Figure 3.2,

the bottom side-output predictions (e.g. side-output 1, 2) easily detect a large num-

ber of small edges and noise. In contrast, the top predictions(e.g. side-output 4, 5)

46

3.2 Relaxed Deep Supervision

Input image Conv1 net Conv2 net Conv3 net Conv4 net Conv5 net

Side-output1 Side-output5Side-output4Side-output3Side-output2 Fusion-output

G

Positive labels

Relaxed labels

RDS

M
ax

-p
o

o
li

n
g

M
ax

-p
o

o
li

n
g

M
ax

-p
o

o
li

n
g

M
ax

-p
o

o
li

n
g

𝑅 1 𝑅 2 𝑅 3 𝑅 4 𝑅 5

𝑙𝑠𝑖𝑑𝑒 𝑙𝑠𝑖𝑑𝑒 𝑙𝑠𝑖𝑑𝑒 𝑙𝑠𝑖𝑑𝑒 𝑙𝑠𝑖𝑑𝑒 𝑙𝑓𝑢𝑠𝑒

Figure 3.2: The network architecture with RDS (best viewed in color and zoom-in).
The proposed RDS, including positive labels (green color), negative labels (white color
for clear visualization), relaxed labels (blue color), is used to supervise the correspond-
ing side-output prediction. The last fusion-output is still supervised by the original
ground-truth G. The total loss cost in the network is the sum of all lside and lfuse.

𝜎 = 1 𝜎 = 5 𝜎 = 9

𝜂 = 0.5 𝜂 = 1.5 𝜂 = 2.5

Figure 3.3: Illustration of extracting relaxed labels (blue color). The �rst and second
rows display three edge responses from Canny [109] and SE [127], respectively.

can �re stronger responses around the positive labels. However, the general super-

vision can not be well-suited to all side-output predictions. In contrast, our RDS

can not only preserve the strong supervision from the ground-truth, but also allow

speci�c diversities by introducing the relaxed labels. In the following, we present

two simple and e�cient ways to capture the relaxed labels based on o�-the-shelf

edge detectors, including Canny [109] and SE [127].

Relaxed labels based on Canny detector

The Canny algorithm [109] can detect di�erent scales of edge responses based on

the parameter σ, which is the standard deviation of the Gaussian �lter. The afore-

mentioned relaxed labels can be extracted from Canny edge responses. First, we

adjust di�erent scales (σ ∈ {1, 3, 5, 7, 9}) to obtain various edge responses for �ve

side-output predictions. We denote these binary edge responses with {C(k)}5k=1. For

example, C(3) is the edge response when σ = 5. Second, for the k-th side-output

47

3. RECOGNIZING IMAGE EDGES

prediction, we de�ne its relaxed labels : �belong to the positive labels of C(k), but are

not included in the positive labels of the original ground-truth G.� The relaxed labels

can present the complementary clues that are not in the ground-truth. Therefore,

the set of relaxed labels can be computed as follows:

D(k) = H(C(k) − C(k) ∩G), (3.1)

where the function H is used to collect the set of positive labels from the input

binary map. As shown in Figure 3.3, the �rst row gives three scales of Canny edge

responses (both red and blue color) when σ = 1, 5, 9. We highlight the relaxed labels

in blue color, and the red points indicate the overlap edges between C(k) and G. The

ground-truth G can be seen in Figure 3.2.

Relaxed labels based on SE detector

To demonstrate the generalization of our method, we also employ another edge

detector: Structured Edges (SE) [127]. SE outputs one edge map with pixel-wise

probabilities ranging from 0 to 1. Similarly, we need to create �ve binary edge

responses from the SE edge map. We begin by computing the mean value of edge

probabilities in the SE edge map, denoted as v. Then we adjust a threshold t to

binarize the SE edge map by t = η · v, where η ∈ {0.5, 1.0, 1.5, 2.0, 2.5}. As a result,
we can have �ve binary edge responses, denoted as {S(k)}5k=1. Similar to the above

de�nition of relaxed labels, we compute the set of relaxed labels based on SE

D(k) = H(S(k) − S(k) ∩G). (3.2)

The second row in Figure 3.3 displays the edge responses from SE and their relaxed

labels (blue color). We can observe that the relaxed labels from SE detector are

visually sparser than those from Canny detector.

RDS generation

It can be observed that various relaxed labels are well-suited to our needs of high-

lighting hierarchical diversities within the supervision. In the next stage, we need

to insert the set of relaxed labels into the original ground-truth. This merging oper-

ation is used to generate the desirable RDS, which is an union of positive, negative,

and relaxed labels. We denote �ve di�erent RDS by {R(k)}5k=1. The construction

step can be seen in Figure 3.4, where the set D(3) is extracted based on S(3). The

generated R(3) can not only preserve the positive labels in the ground-truth G, but

also contain speci�c relaxed labels. Notably, the relaxed labels correspond to the

non-edge points in G. These non-edge points can be viewed as some false positives

that are di�cult to classify.

48

3.2 Relaxed Deep Supervision

relaxed labels

𝐷 3

𝑅 3𝐺

Figure 3.4: Illustration of generating the RDS (best viewed in zoom-in). R(3) is
merged by the set D(3) and G.

BP6 BP5 BP4 BP3 BP2 BP1

𝑅 3𝑅 2𝑅 1 𝑅 4 𝑅 5 𝐺

𝑃1

𝑃3

𝑃5

𝑃4

𝑃2

𝑃6

𝑃3

𝑃5

𝑃4

𝑃2

𝑃6

𝑃3

𝑃5

𝑃4

𝑃6 𝑃5

𝑃4

𝑃6 𝑃5 𝑃6 𝑃6

Figure 3.5: RDS employs a coarse-to-�ne supervision strategy. The blue points
indicate the relaxed labels, and the green point is one positive label.

3.2.2 Loss formulation

For a training dataset containing N images: {Ii, Gi}Ni=1, Ii is the i-th input image

and Gi is its edge ground-truth. Ii,j denotes the j-th raw pixel over the spatial

dimensions of Ii. Assume that we use the relaxed labels derived from SE detector(
{D(k)}Kk=1

)
. The corresponding RDS are denoted as {R(k)

i }Kk=1, and K = 5 in the

network. Five di�erent side-output predictions are separately supervised with the

corresponding RDS, and the fusion-output prediction is still supervised with the

original ground-truth (Figure 3.2). In addition, early supervision (e.g. R(1) and

R(2)) has more relaxed labels than late supervision (e.g. R(4) and R(5)). This is

consistent with the hierarchical characteristics of CNN models. Finally, the total

loss function LRDS is expressed with

N∑
i=1

|Ii|∑
j=1

(
K∑
k=1

lside(Ĝ
(k)
i,j , R

(k)
i,j) + lfuse(Ĝ

fuse
i,j , Gi,j)

)
, (3.3)

where |Ii| is the total number of pixels in Ii. lside and lfuse represent the loss cost
per pixel, from the side-output and fusion-output, respectively. Ĝ

(k)
i,j and Ĝfuse

i,j

indicates the j-th pixel prediction from the k-th side-output and the fusion-output,

respectively. For notational simplicity, the network parameters, such as weights and

bias, are not included in the equation. In R
(k)
i , the relaxed labels are set to 2,

di�erent from the positive labels (set to 1) and negative labels (set to 0). Therefore,

we compute lside based on the types of pixel labels

lside(Ĝ
(k)
i,j , R

(k)
i,j) =


α · logP(Ĝ

(k)
i,j), R

(k)
i,j = 1

β · log(1− P(Ĝ
(k)
i,j)), R

(k)
i,j = 0

0, R
(k)
i,j = 2

(3.4)

49

3. RECOGNIZING IMAGE EDGES

where P(Ĝ
(k)
i,j), using sigmoid function, indicates the probability of current pixel

being an edge point; α and β are used to balance the biased distribution between

edge and non-edge pixels. Since about 90% pixels belong to non-edge class, we set

α = 9β to enhance the edge class, for instance, α = 9 and β = 1. Notice that, we

compute lside when the pixel has positive or negative label. However, when the pixel

has a relaxed label (R
(k)
i,j = 2), we do not compute its loss cost and set lside = 0.

On the other hand, the computation of lfuse excludes the third term in Eq. (3.4),

because there are no relaxed labels in Gi. Next, we consider the back propagation

(BP). We can deduce the partial derivatives of lside w.r.t. Ĝ
(k)
i,j by

5 lside

Ĝ
(k)
i,j

=


α · (sigmoid(Ĝ

(k)
i,j)− 1), R

(k)
i,j = 1

β · sigmoid(Ĝ
(k)
i,j), R

(k)
i,j = 0

0, R
(k)
i,j = 2

(3.5)

We follow the chain rule [159] to update the network parameters using stochastic

gradient descent (SGD) with a mini-batch size [157].

Discussion. Training with RDS can maintain the strong supervision from the

ground-truth, and incorporate hierarchical diversities. Here we will discuss how RDS

improves edge detection. As mentioned before, one di�cult issue in edge detection

is attributed to the false positives. The relaxed labels based on Canny/SE actually

correspond to some false positives that are di�cult to classify. RDS processes these

false positives using a coarse-to-�ne paradigm: the false positives (with relaxed

labels) in current supervision are ignored without computing their loss cost, but can

be reconsidered in the next supervision. In this way, top layers are responsible for

classifying the ambiguous false positives due to their high discriminative power. This

paradigm is similar to hierarchical object classi�cation [160], in which di�cult classes

are classi�ed from coarse-category prediction to �ne-category prediction.

We further demonstrate the paradigm in Figure 3.5. In R(1), P1 serves as a relaxed

label that is di�cult to be predicted in the side-output 1. Thus we do not compute

the loss cost of P1 and delay its prediction until in R(2). In R(2), P1 is converted

to be a negative label (no-edge), so this provides evidence that the side-output 2

associated with stronger discrimination is able to predict P1. Similarly, R(5) is able

to recognize most relaxed labels except for P5. Therefore, RDS can incrementally

improve the strength of the supervision and assign more false positives to more high-

level layers. Moreover, the network can run in a coarse-to-�ne BP procedure. First,

the whole network can be updated with coarse supervision G; Then, �ne supervision

R(k) (with speci�c relaxed labels) is used to �ne-tune their local nets. For example,

P6 can be updated by all BPs (six times), and P4 will be updated twice (by G and

R(5)). In a nutshell, RDS can bene�t the whole training for edge detection. It can

help reduce the total loss in the forward pass stage and facilitate e�cient updates

in the back propagation stage.

50

3.3 Pre-training Procedure

(a) Fine edge annotations

(b) Coarse edge annotations

Figure 3.6: Comparison between �ne and coarse edge annotations. (a) displays
three images and their ground-truth from BSDS500 [126]. (b) shows the images,
segmentations from Pascal Context [156] in the �rst and second row, and coarse edge
annotations (CEA) in the third row.

3.3 Pre-training Procedure

Generally, collecting more training data can develop the learning ability of CNNs.

For many visual recognition tasks such as image classi�cation and object detection,

large-scale datasets are often available, e.g. ImageNet [5], MSCOCO [117] and PAS-

CAL VOC [129]. However, the BSDS500 dataset [126] contains only 200 training

images for learning edge detectors. This small training set limits current edge de-

tection algorithms in improving the performance. In addition, �ne edge annotations

(FEA) require more expensive human e�ort than image classi�cation.

To alleviate this issue, we attempt to extract coarse edge annotations (CEA) from

a large collection of segmentation annotations. Here, we utilize the Pascal Context

51

3. RECOGNIZING IMAGE EDGES

Algorithm 1: RDS: training and testing procedure

1: Input: Training dataset; VGG-16 net; training iterations T1,T2
2: Initializing: network parameters W using VGG model
3: Preparation: for one image Ii, extract the set of relaxed labels {D(k)

i }5k=1 and

generate RDS {R(k)
i }5k=1.

4: Pre-training: use Pascal Context data and its CEA, t = 0
while t < T1 do
t← t+ 1
Forward propagate to compute LCEA in Eq. (3.6);
Backward propagate to get gradients ∆W, like Eq. (3.5);
Update Wt = Wt−1 − λt∆W with SGD;

end while
5: Training: use the target training data set (e.g. BSDS500), t = 0

while t < T2 do
t← t+ 1
Forward propagate to compute LRDS in Eq. (3.3);
Backward propagate to get gradients ∆W, like Eq. (3.5);
Update Wt = Wt−1 − λt4W with SGD;

end while
6: Testing: feed one image into the learned network with parameters W and

output edge map Ei

7: Post-processing: non-max suppression on Ei

8: Output: �nal edge map E
′
i

dataset [156], which provides full-scene segmentations for more than 400 classes, and

has 10,103 train and validation images in total. Thus we extract the edges alongside

the segmentations. In contrast to FEA, CEA only provides the outside boundaries

of objects (See the car, people and building in Figure 3.6), but it can facilitate the

network learning due to a large number of images. Notably, there are no overlap

images between Pascal Context and BSDS500, which are from Flickr and Corel,

respectively. During training with CEA, we simply compute the fusion-output loss

function and exclude the intermediate supervision by

LCEA =
N∑
i=1

|Ii|∑
j=1

(
lfuse(Ĝ

fuse
i,j , Gi,j)

)
. (3.6)

In summary, we pre-train the model with the Pascal Context dataset and its CEA

according to Eq. (3.6), and then �ne-tune the model with the BSDS500 dataset as

Eq. (3.3). We show the whole algorithm procedure in Algorithm 1, including the

training and testing stages.

52

3.4 Experiments

Figure 3.7: Qualitative comparison of edge detection results between without and
with ground-truth dilation.

3.4 Experiments

3.4.1 Implementation details

Training details. We implemented our approach using the publicly available Ca�e

framework [130] and HED implementation [31]. We refer to some basic parameters

as HED net, including momentum (0.9), weight decay (0.0002), initialization of the

side-output �lters (0), and initialization of fusion-output �lter (0.2). The training

images are resized to 400×400 and the batch size is 8. More importantly, we present

some di�erent parameters in our experiments. For example, the learning rate is

�xed with 1e-9. This learning rate is quite e�cient and reducing it during training

iterations has no remarkable improvement. The training will be terminated after 25

epoches. Another di�erence is the class-balanced parameters α and β in Eq. (3.4).

We utilize the �xed class-balanced parameters (α = 9, β = 1) for all images.

Ground-truth dilation. Frequently, human subjects annotate the ground-truth

edges with thin boundaries (e.g. one pixel width). However, the predicted edges

from deep models have rather thick boundaries. To tackle this inconsistency, we

dilate the positive labels in the ground-truth of a train set using a traditional mor-

phologic dilation operator. Figure 3.7 compares the detection results between with

and without dilation training. It can be seen that training with the dilated ground-

truth contributes to predicting stronger edge maps. Quantitatively, the dilation

process can increase the ODS accuracy about .02 on the BSDS500 test set. Hence,

the ground-truth dilation is a simple and e�cient step for improving the perfor-

mance on edge detection. Note that we do not dilate the test set. In addition,

the postprocessing non-maximal suppression (NMS) [109] can be used to thin the

predicted edges.

3.4.2 Ablation study on BSDS500

Dataset. The BSDS500 dataset [126] consists of 200 training, 100 validation, and

200 testing images. The validation set is used to �ne-tune the hyper-parameters.

Each image is manually annotated by �ve human annotators on average. For training

images, we just preserve their positive labels annotated by at least three human

annotators. In testing stage, we extract the fusion-output prediction to evaluate

53

3. RECOGNIZING IMAGE EDGES

Table 3.1: Results on BSDS500 testing set. RDS(Canny) and RDS(SE) derive the
relaxed labels from Canny and SE. CEA uses the extra data from Pascal Context.

ODS OIS AP

Baseline 1 .762 .782 .766
Baseline 2 .780 .802 .786

RDS(Canny) .785 .803 .813
RDS(SE) .787 .804 .817
RDS(gPb) .786 .803 .814

CEA .765 .785 .724
RDS(Canny) + CEA .790 .809 .819
RDS(SE) + CEA .792 .810 .818

the performance. As mentioned in Section 2.4.5, we use the �xed contour threshold

(ODS), the per-image best threshold (OIS) and the average precision (AP).

Baseline methods. To experimentally evaluate the e�ectiveness of RDS, we im-

plemented two baseline methods. (1) Baseline 1 : only supervises the fusion-output

prediction with the general supervision (i.e. original ground-truth). (2) Baseline

2 : imposes the general supervision to not only the fusion-output prediction, but

also �ve side-output predictions. In Table 3.1, the Baseline 1 achieves ODS=.762

on BSDS500. Relatively, the Baseline 2 improves the accuracy to ODS=.780. This

veri�es the bene�t of using additional intermediate supervision. The performance

gap with/without intermediate supervision in HED [31] is less than that of our Base-

line1 and Baseline2. The reason is that we do not perform data augmentation (e.g.

rotation and �ip) that has been employed in HED. Although the data augmentation

may decrease the improvement of intermediate supervision, we believe that it should

not remove our awareness of its importance.

Component analysis

Table 3.1 reports the results of our approach. To give more insights, we discuss

them from three aspects.

(1) RDS yields considerable improvements over the general supervision approach

(Baseline 2). This veri�es the advantage of RDS for incorporating hierarchical diver-

sities. The result of RDS with relaxed labels from Canny, denoted as RDS(Canny),

achieves ODS=.785. The RDS(SE) result reaches ODS=.787.

(2) RDS is relatively insensitive to di�erent choices of relaxed labels. First, we

can see that RDS can obtain similar results with Canny and SE. In addition, we

use another detector, gPb [126], to capture the relaxed labels. Similarly, its re-

sult (ODS=.786) is consistent with RDS(Canny) and RDS(SE). Thus we have not

invested too much e�ort in optimizing various relaxed labels now.

54

3.4 Experiments

Table 3.2: Comparing the importance of early and late supervision on BSDS500
testing dataset.

R(1) R(2) R(3) R(4) R(5) G ODS OIS AP√
.762 .782 .766√ √ √ √
.770 .795 .778√ √ √
.780 .801 .785√ √ √ √ √ √
.787 .804 .817

(3) Pre-training with CEA demonstrate further gains for both RDS(Canny) and

RDS(SE), reaching ODS=.790 and .792, respectively. In addition, we also evaluate

the model pre-trained with CEA (without �ne-tuning on the BSDS500 training set),

which achieves ODS=.765. These results show the necessity and advantage of using

a large-scale dataset.

Early supervision and late supervision

We have known the advantage of additional deep supervision. This experiment aims

to examine whether all the intermediate supervision has the same importance or not.

We employ the RDS(SE) method in an attempt to resolve this question. As shown in

Table 3.2, we brie�y divide two groups: early supervision and late supervision. The

early supervision consists of R(1), R(2), and R(3), and the late supervision includes

R(4) and R(5). In addition, the fuse-output supervision with G is necessary all the

time. We train the model with early and late supervision separately and compare

their e�ects. We can see that (1) compared with no intermediate supervision, using

the late supervision achieves more boosts than the early supervision; (2) training

with both early and late supervision outperforms any single way. These results show

that all intermediate supervision provides useful and complementary information.

Comparisons with other approaches

Here we compare our RDS(SE)+CEA result against other leading methods on

BSDS500. These methods can be categorized into non deep-learning and deep

learning approaches, as seen in the upper part and lower part in Table 3.3). Preci-

sion/recall curves are illustrated in Figure 3.8. As far as we know, the recent work,

MES [112], shows superior results for the non deep-learning approaches. On the

other hand, HED [31], as an edge detector based on deep learning, leads the other

methods, meanwhile retaining high e�ciency. Our method, RDS, improves the ODS

by 1 point and OIS by 0.6 point as compared with HED-latemerge. It is worth men-

tioning that HED has better average precision (AP), due to its late-merging step.

However, we do not perform this optional late-merging step. Besides, HED further

presents better results using multi-scale augmentation. Nevertheless, our results are

55

3. RECOGNIZING IMAGE EDGES

Table 3.3: Edge detection results on the BSDS500 dataset. Our approach is compet-
itive with other state-of-the-art approaches. Note that, HED-multiscale augments the
training images with three scales.

ODS OIS AP

gPb-owt-ucm [126] .726 .757 .696
Sketch Tokens [152] .727 .746 .780

SCG [110] .739 .758 .773
MS [150] .74 .77 .78

SE-Var [127] .746 .767 .803
OEF [151] .749 .772 .817
MES [112] .756 .776 .756

DeepNet [113] .738 .759 .758
N4-Fields [155] .753 .769 .784
DeepEdge [29] .753 .772 .807
MSC [161] .756 .776 .787

CSCNN [153] .756 775 .798
DeepContour [30] .757 .776 .790

HFL [154] .767 .788 .795
HED-latemerge [31] .782 .804 .833
HED-multiscale [31] .790 .808 .811

RDS (ours) .792 .810 .818

still competitive. In addition to the above quantitative results, we further show

some qualitative image examples. In Figure 3.9, we illustrate some examples of our

results.

3.4.3 Cross-dataset generalization

To investigate the generalization of one edge detector, it is necessary to conduct

experiments on another dataset. Following the experimental setup in [30, 127], the

NYUD dataset (v2) [162] is used as the cross dataset. With the model trained

on BSDS500 training set, we evaluate the BSDS500 models on the NYUD dataset

with its 654 testing images. Since these models are trained with color images, we

only test the color images in the NYUD dataset. In Table 3.4, we compare our

ODS results with SE [127, 163] and DeepContour [30]. To compensate for the rela-

tively inexact ground truth in NYUD dataset, we increase the maximum tolerance

(maxDist) allowed for correct matches of edge predictions to ground truth from

.0075 to .011 [127]. We can see that, RDS achieves better cross-dataset generaliza-

tion results, no matter what the maximum tolerance is.

56

3.4 Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

[F=.800] Human

[F=.792] RDS (ours)

[F=.782] HED

[F=.767] HFL

[F=.757] DeepContour

[F=.756] CSCNN

[F=.756] MES

[F=.756] MSC

[F=.753] DeepEdge

[F=.747] SE−Var

[F=.741] SE

[F=.739] SCG

[F=.727] Sketch Tokens

[F=.726] gPb−owt−ucm

[F=.694] Gb

[F=.600] Canny

Figure 3.8: Precision and recall curves on BSDS500 test dataset. These methods are
ranked according to their best F-score (ODS). Our method achieves superior result as
compared with other top-tier performance.

Im
ag

e
G

ro
u
n
d
 t

ru
th

O
u
r

re
su

lt
s

Figure 3.9: Illustration of �ve edge detection results. Our method can detect mean-
ingful edges, even though they still have some di�erences from the ground-truth an-
notations.

57

3. RECOGNIZING IMAGE EDGES

Table 3.4: Cross-dataset generalization results (ODS F-score). The model trained
on BSDS500 is used to evaluate the NYUD test set.

maxDist=.0075 maxDist=.011

DeepContour [30] .550 -
SE [127, 163] .550 .64
RDS(SE) .611 .627

RDS(SE) + CEA .655 .674

3.4.4 Computational cost

Moreover, we report the computational cost of the proposed RDS method, including

the training and testing stages. The experimental environment is Intel i7 CPU with

64GB RAM and NVIDIA K40 GPU. (1) Training stage: we need to extract the

relaxed labels using o�-the-shelf Canny or SE. They are both quite e�cient detectors

with about 15 and 2.5 FPS (frames per second), respectively. Next, we use the CEA

data to pre-train the network with for 10,000 iterations, which takes about 10 hours

on one K40 GPU. Finally, it spends less than one hour to train the model on the

BSDS500 training set (200 images) for 25 epoches. (2) Testing stage: apart from

computing the relaxed labels, our method takes about 500ms to predict the fusion-

output edge map. Similar to HED, RDS has the similar order of magnitude in terms

of computational speed.

3.5 Chapter Conclusions

In this chapter, we developed an edge detection method in�uenced by relaxed deep

supervision (RDS) to guide the training of deep neural networks. Compared with

the general deep supervision, RDS generated diverse supervisory signals to guide

di�erent intermediate layers. It can make the network have more focus on the false

positives. Consequently, our method achieved considerable improvements, mean-

while retaining high e�ciency. In addition, we proposed to pre-trained the model

with coarse edge annotations (CEA) extracted from a large collection of segmen-

tation annotations. This pre-training step can alleviate the lack of expensive edge

annotations. Our results on the BSDS500 dataset demonstarted competitive per-

formance (ODS=.792) with the state-of-the-art approaches. Another cross-dataset

test indicated the promising generalization power of our method.

Future work. The work in this chapter has provided promising insights into ef-

�ciently exploiting diverse deep supervision to guide the network. Therefore, it is

feasible to apply this relaxation strategy to other visual recognition tasks, such as

object recognition and image segmentation. In addition, we will study theoretical

analysis to provide more insights into diverse deep supervision.

58

