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Chapter 2

Convolutional Fusion Networks for

Image Classi�cation

In the previous chapter we have introduced the background and research questions

for this thesis. Starting with this chapter, we begin to answer the research questions

with our proposed approaches. In this chapter, we address how we can develop a

simple and e�cient deep fusion network upon a plain CNN (RQ 1).

Despite recent advances in deep fusion networks, they still have limitations due to

expensive parameters and weak fusion modules. To address this issue, we propose

a novel convolutional fusion network (CFN) to integrate multi-level deep features

and fuse a richer visual representation. Speci�cally, CFN uses 1×1 convolutional

layers and global average pooling to generate side branches with adding only a few

parameters, and employs a locally-connected fusion module, which can learn adap-

tive weights for di�erent side branches and form a better fused feature. Moreover,

we propose fully convolutional fusion networks (FCFNs) that are an extension of

CFNs for pixel-level classi�cation, including semantic segmentation and edge de-

tection. Our experiments demonstrate that our approach can achieve consistent

performance improvements for diverse tasks.

Keywords
Image classi�cation, Convolutional neural networks, Fully convolutional networks,

Adaptive fusion
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2. CONVOLUTIONAL FUSION NETWORKS FOR IMAGE CLASSIFICATION

2.1 Introduction

A signi�cant progress on convolutional neural networks is increasing their depth to

learn more powerful visual representations. In particular, the depth has increased

from several layers (e.g. LeNet [3] and Alexnet [4]) to several tens of layers (e.g.

VGGnet [7] and GoogLeNet [8]). Nevertheless, training a very deep network is

extremely di�cult because of vanishing gradients and degradation. To overcome

this challenge, recent work in both Highway networks [9] and ResNet [10] proposes

to add shortcut connections between neighboring convolutional layers, which are able

to alleviate the vanishing gradient issue and ease the training stage. Nevertheless,

it is non-tractable to optimize very deep neural networks due to their large amount

of parameters and the expensive cost of physical memory.

An alternative is to explore integration with the existing intermediate layers in a deep

neural network, rather than deepening the network with new layers. Commonly, the

topmost activations in deep networks (i.e. fully-connected layers) serve as discrimi-

native visual representations to describe the image content. However, it is important

to note that intermediate activations (i.e. convolutional layers) can also provide

informative and complementary clues about images, including low-level textures,

boundaries, and local parts. Therefore, researchers [15, 16, 25] have given greater

attention to intermediate layers, and evaluated their contributions regarding image

recognition performance. In addition, a large number of approaches [16, 23, 24, 121]

have leveraged sophisticated encoding schemes (e.g. BoW, VLAD and Fisher Vec-

tor) to further encode intermediate feature activations. These approaches extract

deep features from o�-the-shelf CNNs without training new networks.

Moreover, extensive research e�orts [17, 18, 26, 31] have turned to explicitly train-

ing deep fusion networks where multi-level intermediate layers are fused together

by adding new side branches. As a result, the deep fused representation allows

us to integrate the strengths of individual layers and generate superior prediction.

Although these deep fusion networks have achieved promising performance, they

may spend a large number of additional parameters required for generating the side

branches [18]. In addition, their fusion modules (e.g. sum pooling) do not fully

consider the importance of di�erent side branches. Motivated by this problem, this

chapter focuses on the research question RQ 1: How can we develop a simple

and e�cient deep fusion network upon a plain CNN?

To address this question, we propose a convolutional fusion networks (CFN), which

is a new fusion architecture to integrate intermediate layers with adaptive weights.

To be speci�c, CFN mainly consists of three key components: (1) E�cient side

outputs : we use e�cient 1×1 convolution and global average pooling [122] to gener-

ate side branches from intermediate layers and as a result it has a small number of

additional parameters. (2) Early fusion and late prediction: it can not only provide

a richer representation, but also reduce the number of parameters, compared to the
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Figure 2.1: Illustration of features activations of the last convolutional layer in (a)
CNN and (b) CFN. The CIFAR-10 images are used here. Compared with CNN, CFN
can learn complementary clues in the side branches to the full depth main branch. For
example, the side branch 1 mainly learns the boundaries or shapes around objects, and
the side branch 2 focuses on some semantic �parts� that �re strong near the objects.

�early prediction and late fusion� strategy [18]. (3) Locally-connected fusion: we

propose to adapt a locally-connected layer to act as a fusion module. It allows us to

learn adaptive weights for di�erent side outputs and generate a better fused repre-

sentation. Figure 2.1 visually compares the feature activations learned in CNN and

CFN, respectively. It can be seen that aggregating multi-level intermediate layers is

essential to integrate their individual information.

The contributions of this chapter are as follows:

� We propose a new fusion architecture (CFN) which can provide promising

insights towards how to e�ciently exploit and fuse multi-level features in deep

neural networks. In particular, to the best of our knowledge, this is the �rst

attempt to use a locally-connected layer as a fusion module.

� We introduce CFN models to address the image-level classi�cation task. The

results on the CIFAR and ImageNet datasets demonstrate that CFN can

achieve promising improvements over the plain CNN. In addition, we transfer

the trained CFN model to three new tasks, including scene recognition, �ne-

grained recognition and image retrieval. By using the transferred model, we

can achieve consistent performance improvements on these tasks.

� We further develop fully convolutional fusion networks (FCFN), which are able

to perform pixel-level classi�cation tasks including semantic segmentation and
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2. CONVOLUTIONAL FUSION NETWORKS FOR IMAGE CLASSIFICATION

edge detection. As a result, FCFN, as a fully convolutional extension, reveals

the strong generalization capabilities of CFN for diverse tasks.

The rest of this chapter is organized as follows. Section 2.2 introduces the details of

constructing the proposed CFN for image-level classi�cation problem. In addition,

we compare and highlight the di�erences of CFN from other deep models. The

FCFN counterpart for pixel-level classi�cation is described in Section 2.3. Section 2.4

presents experimental results that demonstrate the performance of CFN and FCFN

on various visual recognition tasks. Finally, Section 2.5 concludes this work and

point out two future directions.

2.2 Convolutional Fusion Networks

In this section, we introduce the details of building CFN on top of a plain CNN

model, and formulate its training procedure. In addition, we compare its di�erences

from other deep models.

2.2.1 Network architecture

First, we show a general architecture of a plain CNN model. As illustrated in Fig-

ure 2.2, it mainly comprises of successive convolutional layers and pooling layers.

In addition, a 1×1 convolutional layer followed by global average pooling is used

because of its high e�ciency [8, 10, 122]. Based on this plain CNN, we can de-

velop the proposed CFN by adding new side branches from intermediate layers and

aggregating them in a locally-connected fusion module. Figure 2.3 illustrates the

architecture of the proposed CFN. Our CFN is built on top of a plain CNN. To be

speci�c, CFN mainly consists of the following three key components.

(1) E�cient side outputs

Prior work often added new fully-connected (FC) layers in the side branch [18],

but this strategy may severely increase the number of parameters. Instead, CFN is

able to e�ciently create the side branches from the intermediate layers by adding

only a few parameters. First, the side branches are built from the pooling layers

(Figure 2.3). Each side branch has a 1×1 convolutional and global average pooling

as well. All 1×1 convolutional layers must have the same number of channels so that

they can be integrated together. Then, global average pooling (GAP) is performed

over the 1×1 convolutional maps so as to obtain a one-dimensional feature vector,

called the GAP feature. As a result, the side branches have the similar top layers

(1×1 Conv and GAP) to the full-depth main branch. One di�erence is that the 1×1
Conv in the main branch follows a convolutional layer but not a pooling layer. For
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Figure 2.2: The general pipeline of a plain CNN model. Note that one 1×1 convo-
lutional layer and global average pooling are used on the top layers.
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Figure 2.3: The general pipeline of the proposed CFN. First, the side branches start
from the pooling layers and consist of a 1×1 convolution layer and global average
pooling. Then, all side outputs are stacked together. A locally-connected layer is used
to learn adaptive weights for the side outputs (drawn in di�erent color). Finally, the
fused feature is fed to the FC layer to make a better prediction.

concise formulation, we consider the full-depth main branch as another side branch.

Assume that there are S side branches in total and the last side branch (i.e. S-th)

indicates the main branch. We notate h
(s)
i,j as the input of the 1×1 convolution in

the s-th side branch, where s = 1, 2, . . . , S and (i, j) is the spatial location in the

feature maps. As the 1×1 convolution has K channels, its output associated with

the k-th kernel is denoted as f
(s)
i,j,k, where k = 1, . . . , K. Let H(s) and W (s) be the

height and width of features maps derived from the s-th 1×1 convolution. Then, the
global average pooling performed over the feature map f

(s)
k is calculated by

g
(s)
k =

1

H(s)W (s)

H(s)∑
i=1

W (s)∑
j=1

f
(s)
i,j,k, (2.1)

Where g
(s)
k is the k-th element in the s-th GAP feature vector. We notate g(s) =

[g
(s)
1 , . . . , g

(s)
K ], a 1×K dimensional vector, as the GAP feature from the s-th side

branch. g(S) represents the GAP feature from the full-depth main branch.
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Figure 2.4: Comparison between EPLF and EFLP. (a) The schematic pipeline of
EPLF strategy; (b) The schematic pipeline of EFLP strategy.

(2) Early fusion and late prediction

Considering how to incorporate the side branches, some work [18, 26, 31] used an

�early prediction and late fusion� (EPLF) strategy. In Figure 2.4a, EPLF computes

a prediction from the GAP feature using a fully-connected layer and then fuses side

predictions together to make the �nal prediction. In contrast to EPLF [18], in which

a couple of FC layers are added, we present another strategy called �early fusion and

late prediction� (EFLP). EFLP �rst fuses the GAP features from the side branches

and obtains a fused feature. Then, a fully-connected layer following the fused feature

is used to estimate the �nal prediction. As seen in Figure 2.4b, EFLP has fewer

parameters due to using only one fully-connected layer. Assume that each fully-

connected layer has C units that correspond to the number of object categories. The

fusion module has Wfuse parameters. Quantitatively, we can compare the number

of parameters between EFLP and EPLF by

WEFLP = K(C + 1) +Wfuse < WEPLF = SK(C + 1) +Wfuse. (2.2)

Hence, we make use of EFLP to fuse intermediate features earlier due to its e�ciency.

We observe that EFLP can achieve the same accuracy as EPLF, though EPLF

contains more parameters. More importantly, the fused feature in EFLP is able to

act as a richer image representation, however, EPLF cannot generate such a rich

fused representation. In the experiments, we transfer the fused feature in EFLP to

diverse vision tasks and show its promising generalization ability.

(3) Locally-connected fusion

Another signi�cant component in CFN is that it employs a locally-connected (LC)

layer to fuse the side branches. Owing to its no-sharing �lters over spatial dimen-

sions, LC layer can learn di�erent weights in each local �eld [123]. For example,

DeepFace [124] used the LC �lters to learn more discriminative face representations

instead of spatially-sharing convolutional �lters. Di�erently, our aim is to adapt a

LC layer to learn adaptive weights for di�erent side branches, and generate a better

24



2.2 Convolutional Fusion Networks

…

Sum-pooling

S1

K
K

(a)

…

Convolution

K K

S1

(b)

…

Locally-connected

K K

1 S

(c)

Figure 2.5: Comparison of three fusion modules. (a) No weights: Sum-pooling fu-
sion has no weights; (b) Sharing weights: Convolution fusion learns sharing weights
over spatial dimensions, as drawn in the same color; (c) No-sharing weights: Locally-
connected fusion learns no-sharing weights over spatial dimensions, as drawn in di�er-
ent colors. To learn element-wise weights, we use the 1×1 kernel size.

fused feature. To the best of our knowledge, this is the �rst attempt to apply a

locally-connected layer to a fusion module.

At �rst, we stack all GAP features together from g(1) to g(S), and form a layer G

with size of 1×K × S, see Figure 2.3. For example, the s-th feature map of G is

g(s). Then, one LC layer which has K of no-sharing �lters is convolved over G. Each

�lter has 1×1×S kernel size. Since LC is able to learn adaptive weights for di�erent

elements in the GAP features which measure the importance of the side branches, it

is able to produce a better fused feature. Finally, the fused feature convolved by LC

also has a 1×K shape, denoted as g(f). The i-th element in g(f) is expressed:

g
(f)
i = σ

(
S∑

j=1

W
(f)
i,j · g

(j)
i + b

(f)
i

)
, (2.3)

where i = 1, 2, . . . , K; σ indicates the ReLU activation function. W
(f)
i,j and b

(f)
i

represent the weights and bias for fusing the i-th elements of GAP features from

di�erent side branches. The number of parameters in the LC fusion is K × (S + 1).

Using these additional parameters gives the bene�t of adaptive fusion while it does

not require any manual tuning.

To clearly demonstrate the advantage of the LC fusion module, Figure 2.5 compares

LC fusion with other fusion methods. In Figure 2.5a, the sum-pooling fusion simply

sums up the side outputs together without learning any weights, whereas this way

treats each side branch equally and fails to consider their di�erent importance. In

Figure 2.5b, the convolutional fusion can learn only one sharing �lter over all spatial

dimensions (as drawn with the same blue color). In contrast, LC enables the fusion

module to learn independent weights over each local �eld (i.e. size 1×1×S) (drawn
in di�erent colors in Figure 2.5c). Although LC fusion consumes more parameters

than the sum-pooling fusion (no weights) and the convolutional fusion (S + 1),
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2. CONVOLUTIONAL FUSION NETWORKS FOR IMAGE CLASSIFICATION

these parameters are a negligible proportion of the total number of the network

parameters.

2.2.2 Training procedure

CFN has a similar training procedure as a standard CNN, including forward pass

and backward propagation. Assume a training dataset which contains N images:

{x(i), y(i)}, where x(i) is the i-th input image and y(i) is its ground-truth class label.

W indicates the set of all parameters learned in the CFN (including the LC fusion

weights). The full objective is to minimize the total loss cost

argminW

1

N

N∑
i=1

L(f(x(i);W ), y(i)), (2.4)

where f(x(i);W ) indicates the predicted class of x(i). We use the softmax loss func-

tion to compute the cost L. To minimize the loss cost, the partial derivatives of

the loss cost with respect to any weight are recursively computed by the chain rule

during the backward propagation [3]. Since the main parts in the CFN model are

the side branches, we will induce the computations of their partial derivatives. We

consider each image independently for notational simplicity.

First, we compute the gradient of the loss cost with respect to the outputs of the

side branches. Taking the s-th side branch as an example, we compute the gradient

of L with respect to the side output g(s)

∂L
∂g(s)

=
∂L
∂g(f)

· ∂g
(f)

∂g(s)
, s = 1, 2, . . . , S. (2.5)

Second, we formulate the gradient of L with respect to the inputs of the side

branches. Let a(s) be the input of the s-th side branch. As depicted in Figure 2.3,

a(s) corresponds to the pooling layer. However, the input of the main branch, de-

noted as a(S), refers to the last convolutional layer (i.e. conv S). It is important to

note that the gradient of a(s) depends on several side branches. To be more speci�c,

the gradient of a(1) is in�uenced by S branches; the gradient of a(2) needs to consider

the gradient from the 2-nd to S-th branch; but the gradient of a(S) is updated by

only the main branch. Then, the gradient of L with respect to the side input a(s)

can be computed via

∂L
∂a(s)

=
S∑
i=s

∂L
∂g(i)

· ∂g
(i)

∂a(i)
, (2.6)

where i indexes the related branch that contributes to the gradient of a(s). It needs

to sum up the gradients from several side branches. As is common practice, we

employ a standard stochastic gradient descent (SGD) algorithm with mini-batch [4]

to train the entire CFN model.
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2.3 Fully Convolutional Fusion Networks

2.2.3 Comparisons with other models

To get more insights into CFN, we compare it with other deep models.

Comparison with CNN. Typically, a plain CNN only estimates a �nal prediction

based on the topmost layer. As a result, the e�ects of intermediate layers towards

the prediction are implicit and indirect. In contrast, CFN connects the intermedi-

ate layers using additional side branches, and fuses them to jointly make the �nal

predictions. In this way, CFN allows us to take advantage of intermediate layers

explicitly and directly. This advantage explains why CFN is able to achieve more

accurate prediction than a plain CNN.

Comparison with DSN. Deeply supervised nets (DSNs) [125] are the �rst model

to add extra supervision to intermediate layers for earlier guidance. As a result,

it can improve the directness and transparency of learning a deep neural network.

Therefore, we can view DSN as a �loss fusion� model. Instead, CFN still uses

one supervision towards the �nal prediction derived from the fused representation,

however it is able to increase the e�ects of the loss cost on the intermediate layers

without adding more supervision signals. In a word, we clarify that CFN is a

�feature fusion� model. It is important to note that there is no technical con�ict

between CFN and DSN, so combining these two models together is a promising

research direction.

Comparison with ResNet. ResNet [10] addresses the vanishing gradient prob-

lem by adding densely shortcut connections. CFN has three main di�erences with

ResNet: (1) The side branches in CFN are not shortcut connections. They start

from pooling layers and merge into a fusion module together. (2) In contrast to

adding a �linear� connection in a residual block, we still use the non-linear ReLU in

the side branches of CFN. (3) CFN employs a sophisticated fusion module to gen-

erate a richer feature, rather than using the simple summation employed in ResNet.

As mentioned in the ResNet work, when the network is not overly deep, for example

having 11 or 18 layers, ResNet may show few improvements over a plain CNN. How-

ever, CFN can obtain some considerable gains over CNN. Hence, CFN can serve as

an alternative for improving the discriminative capabilities of not-very-deep models,

instead of purely increasing the depth. ResNet tells us that �depth that matters�,

but CFN concludes to �fusion that matters�.

2.3 Fully Convolutional Fusion Networks

Deep neural networks allow to bridge the gap between di�erent vision tasks. For

instance, CNN models for image-level classi�cation can be well-adapted to other

pixel-level classi�cation tasks which aim to generate a per-pixel prediction in im-

ages. As a common practice, it is essential to cast traditional convolutional neural
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2. CONVOLUTIONAL FUSION NETWORKS FOR IMAGE CLASSIFICATION

networks to their corresponding fully convolutional networks (FCNs) by replacing

the fully-connected layers with more convolutional layers. FCNs are able to infer

any size of images without requiring speci�c input dimensionality. In this section,

we introduce fully convolutional fusion networks (FCFN), which are used for two

representative pixel-level classi�cation tasks: semantic segmentation and edge de-

tection. Similar to CFN, FCFN models are able to learn better pixel predictions

based on the locally-connected fusion module.

2.3.1 Semantic segmentation

Semantic segmentation intends to predict a category label for spatial pixels in an

image. FCN-8s [26] is a milestone model in the development of employing CNNs for

semantic segmentation, and yields signi�cant improvements in comparison with non-

deep-learning approaches. First, FCN-8s is �ne-tuned from the VGG-16 model [7]

pre-trained on the ImageNet dataset [5]. Then, it adds two side branches to the

full-depth main branch, which allow to integrate both coarse-level and �ne-level

pixel predictions to improve the semantic segmentation performance. Particularly,

FCN-8s uses a simple sum-pooling to fuse the multi-level predictions. In contrast to

FCN-8s, we extend the proposed CFN model and build the FCFN counterpart for

generating fused pixel features. Moreover, we use two locally-connected layers in a

two-stage fusion manner.

Recall that the locally-connected (LC) fusion module is able to learn independent

weights for each spatial pixel in an image. We need to extend its formulations

to be suitable for the LC fusion module in FCFN. In the �rst fusion module, two

branches involving K channels of feature maps are taken as input. Note that the top

layers are upsampled 2 times to retain the same spatial dimensions as the bottom

layers. We consider the adaptive weights of each channel separately and reshape each

two-dimensional feature map to a one-dimensional feature vector. For example, g
(1)
k,i

indicates the feature activation of the i-th pixel of the k-th channel in the �rst branch,

and g
(2)
k,i is the corresponding activation in the second branch, where i = 1, . . . , H×W

and k = 1, . . . , K. Therefore, the fused pixel feature is given by

g
(f)
k,i = σ

(
2∑

j=1

W
(f)
k,i,j · g

(j)
k,i + b

(f)
k,i

)
, (2.7)

The number of parameters in this fusion module is H ×W ×C × 2, where C is the

number of object categories. Moreover, the second fusion module integrates coarser

feature maps with the output of the �rst fusion module. Let g
′(1)
k,i be the activation

in the coarser layer. For notational simplicity, the activation g
(f)
k,i from the output

of the �rst fusion module, is renamed to g
′(2)
k,i . The computation in the second LC
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2.3 Fully Convolutional Fusion Networks

fusion is

g
′(f)
k,i = σ

(
2∑

j=1

W
′(f)
k,i,j · g

′(j)
k,i + b

′(f)
k,i

)
, (2.8)

where g
′(f)
k,i represents the �nal fused feature by using the two-stage fusion. Con-

sidering the computation of the loss cost with respect to the ground-truth, we still

employ the softmax loss function and accumulate the loss of all pixels together.

L = −
H×W∑
i=1

K∑
k=1

h(yi = k) log pk,i, (2.9)

where yi is the ground-truth pixel label. h(yi = k) is equal to 1 when yi = k, and 0

otherwise. The predicted pixel probability is normalized with the softmax function,

where pk,i =
exp(g

′(f)
k,i )∑K

k=1 exp(g
′(f)
k,i )

. As above, we give the loss computation for one image,

but it is straightforward to extend it to a mini-batch size of images. Likewise, we

use the SGD with mini-batch to train the entire FCFN model.

2.3.2 Edge detection

The problem of edge detection is to extract semantically meaningful edges in im-

ages, Typically, edge detection acts as a low-level task, but has signi�cant contri-

butions to other high-level visual tasks, such as object detection and image seg-

mentation. Driven by the increasing developments of deep learning, edge features

have moved from carefully-engineered descriptors such as Canny [109], gPb [126]

and Structured Edges (SE) [127]), to discriminative deep features [29, 30, 31]. In

particular, HED [31] is the �rst work to use FCNs for end-to-end edge detection,

and leads to state-of-the-art performance on well-known benchmarks. HED inte-

grates the strengths of e�cient end-to-end FCNs [26] and additional deep supervi-

sion [125].

In contrast to HED that uses a convolutional fusion module, our FCFN fuses �ve

intermediate side branches with a locally-connected layer. To be speci�c, one side

branch generates a feature map where the activations measure the probabilities of

pixels being edges. Five feature maps from side branches stack together, and are

reshaped from (H,W, 5) to (H ×W, 5). We compute the fused prediction g
(f)
i

g
(f)
i = σ

(
5∑

j=1

W
(f)
i,j · g

(j)
i + b

(f)
i

)
, (2.10)

where i = 1, . . . , H ×W . The sigmoid cross-entropy loss function is

Lfuse = −
H×W∑
i=1

[
βi log g

(f)
i + (1− βi) log(1− g(f)i )

]
, (2.11)
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where the parameter βi regulates the importance of edge and non-edge pixels, as

mentioned in [31]. It is important to note that we also impose the intermediate

supervision on the side branches similar to [31, 125], to discard the negative edges

in the earlier intermediate layers. The loss cost in the k-th side branch (i.e. k =

1, . . . , 5) is represented as follows

L(k)
side = −

H×W∑
i=1

[
βi log g

(k)
i + (1− βi) log(1− g(k)i )

]
, (2.12)

where g
(k)
i accounts for the predicted probability of the i-th pixel being an edge

point. Finally, the overall loss cost in FCFN integrates a fused loss term and �ve

intermediate loss terms together:

L = Lfuse +
5∑

k=1

L(k)
side. (2.13)

This edge detection network is also �ne-tuned end-to-end from the VGG-16 model

and updated with the SGD algorithm with mini-batch.

2.4 Experiments

This experimental section evaluates the performance of the proposed CFN for image-

level classi�cation and FCFN for pixel-level classi�cation. First, we train the CFN

models on the datasets: CIFAR-10/100 [128] and ImageNet 2012 [5]. Then, we

transfer the trained CFN model to three new tasks, including scene recognition,

�ne-grained recognition and image retrieval. Moreover, we train the speci�c FCFN

models for semantic segmentation on the PASCAL dataset [129], and edge detection

on the BSDS dataset [126], respectively. All experiments were conducted using the

Ca�e library [130] on a NVIDIA TITAN X card with 12 GB memory.

2.4.1 Image classi�cation on CIFAR

Both CIFAR-10 [128] and CIFAR-100 [128] consist of 50,000 training images and

10,000 testing images. They de�ne 10 and 100 object categories, respectively. We

preprocessed their RGB images by global contrast normalization [131], and randomly

shu�ed the training set. We measure the classi�cation performance by computing

the error rates.
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Table 2.1: Two plain CNN models built for the classi�cation experiments on the
CIFAR-10/100 dataset.

CNN-A CNN-B

Input 32 × 32 RGB image
5 × 5 × 64 conv, ReLU 3 × 3 × 96 conv, ReLU

3 × 3 × 96 conv, ReLU
3 × 3 max-pooling, stride 2. Dropout ratio 0.5

5 × 5 × 64 conv, ReLU 3 × 3 × 192 conv, ReLU
3 × 3 × 192 conv, ReLU

3 × 3 average-pooling, stride 2. Dropout ratio 0.5
5 × 5 × 64 conv, ReLU 3 × 3 × 192 conv, ReLU

3 × 3 × 192 conv, ReLU
1 × 1 × 192 conv, ReLU

8 × 8 global average pooling. Dropout ratio 0.5
10 or 100-way fully-connected layer

Softmax classi�er

Network architecture and training details

We employ two plain CNNs models to build their CFN counterparts. Table 2.1

describes the two CNNs used for CIFAR-10/100, called CNN-A and CNN-B. (1)

CNN-A is a shallow network similar to the Ca�e-Quick model [130]. It has three

5×5 convolutions and a 1×1 convolution. The global average pooling is performed

over the 1×1 convolutional maps. Finally, a fully-connected layer with 10 or 100

units is used to predict object categories; (2) CNN-B replaces each 5×5 convolutional
layer in CNN-A with two 3×3 layers, as suggested in VGGnet [7]. In addition, CNN-
B utilizes more feature channels than CNN-A. Note that, when training the CNN-B

model on the CIFAR-100 dataset, the �rst and second convolutional layer use 192

channels instead of 96 channels. Correspondingly, the CFN-A and CFN-B models

are built upon CNN-A and CNN-B respectively, by constructing two additional side

branches after the pooling layers, as depicted in Figure 2.6(a) and (b).

We use the same hyper-parameters to train CNN and CFN, for example, a weight

decay of 0.0001, a momentum of 0.9, and a mini-batch size of 100. The learning

rate is initialized with 0.1 and is divided by 10 after 10× 104 iterations. The whole

training will be terminated after 12 × 104 iterations. As for CFN, the initialized

weights in the LC fusion module are set to 0.333, as there are three side branches

in total (including the full-depth main branch).

Results and discussion

Table 2.2 shows the results on CIFAR-10/100 test sets. We can analyze the results

considering the following three aspects:
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Figure 2.6: Illustration of the proposed CFN models built for the CIFAR dataset.
For the convolutional layers (denoted as C), the right lower number indicates the kernel
size; the right upper numbers indicate the number of channels. For the pooling layers
(denoted as P ), the right lower numbers indicate the window size; the right upper
numbers equal the size of strides.

Table 2.2: Error rates (%) of image classi�cation on the CIFAR-10/100 test set
(without data augmentation). Better results are in bold face. CFNs can outperform
the baseline CNNs by adding only a few parameters.

Model #Parameters CIFAR-10 CIFAR-100
CNN-A 0.224M (basic) 15.57 40.62

CNN-Sum-A 0.224M (basic) + 0.025M (side) + 0 (fusion) 15.33 40.32
CNN-Conv-A 0.224M (basic) + 0.025M (side) + 4 (fusion) 15.19 40.15

CFN-A 0.224M (basic) + 0.025M (side) + 768 (fusion) 14.73 39.54
CNN-B 1.287M (basic) 9.28 31.89

CNN-Sum-B 1.287M + 0.074M (side) + 0 (fusion) 8.84 31.42
CNN-Conv-B 1.287M + 0.074M (side) + 4 (fusion) 8.68 31.16

CFN-B 1.287M + 0.074M (side) + 768 (fusion) 8.27 30.68

(1) CFN achieves ∼1% improvements on the classi�cation performance compared to

the plain CNNs (both CNN-A and CNN-B). For example, on the CIFAR-10 dataset,

CFN-A and CFN-B obtain 14.73 and 8.27 error rates that are ∼1% lower than the

results of CNN-A and CNN-B, that are 15.57 and 9.28, respectively. The comparison

between CFN and CNN demonstrates the e�ectiveness of fusing multi-level inter-

mediate layers. Additionally, CFN is able to improve the expressive capabilities of

deep neural networks for learning superior visual representations.

(2) In order to analyze the advantage of using the LC fusion, we also implement the

existing sum-pooling fusion and convolutional fusion methods, denoted as CNN-

Sum and CNN-Conv. By comparing CFN with CNN-Sum and CNN-Conv, we

can observe that the LC fusion outperforms the other two fusion methods by a

considerable margin. Hence, learning adaptive weights is essential to generate a

better fused feature.

(3) Moreover, we compute the number of parameters in the models to estimate their

e�ciency. In the second column of Table 2.2, the additional number of parameters
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Figure 2.7: Comparison between CFN and CNN on the CIFAR-10 dataset. (a) The
training loss when training CFN and CNN. (b) The test error rates along with the
increasing iterations.
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Figure 2.8: Illustration of adaptive weights of the side branches learned in the LC
fusion. All side branches are initialized with the same weights before training. During
the training stage, we can observe that the top branches have larger weights than the
bottom branches.

for extra side branches and LC fusion are signi�cantly smaller than the number of

basic parameters in the models. Although the LC fusion consumes more parameters

than the sum-pooling fusion and convolutional fusion, these parameters result in a

minimal increase of the network complexity. In addition, we compare the training

time between CNN and CFN. For example on the CIFAR-10 dataset, CNN-B and

CFN-B train for approximately 1.67 and 2.08 hours, respectively.

Figure 2.7 shows the training loss and the test accuracy while training CFN and

CNN. It can be seen that, both CFN-A and CFN-B models have less training loss

and lower test error rates than the corresponding CNN models. In addition, Fig-

ure 2.8a presents the adaptive weights learned in the LC fusion of CFN-B. Recall

that LC learns 192 �lters (each �lter is of size 1×3) and each �lter has 1×3 weights.
We compute the average weight in each branch, and estimate its �uctuation. By
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Table 2.3: Test error rates on CIFAR-10/100 to compare CFN-B with other deep
models. A superscripted * indicates the use of the standard data augmentation [125].

Method Layers CIFAR-10 CIFAR-10∗ CIFAR-100

Maxout Networks [131] 5 11.68% 9.38% 38.57%
NIN [122] 9 10.41% 8.81% 35.68%
DSN [125] 9 9.69% 7.97% 34.54%

ALL-CNN [132] 9 9.08% 7.25% 33.71%
RCNN-160 [133] 6 8.69% 7.09% 31.75%

NIN + SReLU [134] 9 8.41% 6.98% 31.10%
CNN (baseline) 8 9.28% 7.34% 31.89%
CFN (ours) 8 8.27% 6.77% 30.68%

comparison, the side branch 3 (a.k.a. the full-depth main branch) plays a core role,

while the other two side branches are complementary to the main branch. After a

large amount of training iterations, the adaptive weights tend to be stable. More-

over, in Figure 2.1, we visualize and compare the learned feature maps in CNN-B

and CFN-B. We select ten images from the CIFAR-10 dataset. The feature maps

in the 1×1 convolutional layer of three side branches are extracted. We rank the

feature maps by averaging spatial activations and select the top-4 maps to visualize.

We can observe that CFN can learn complementary clues in the side branches, while

retaining the necessary information in the main branch.

Comparison with other approaches.

Table 2.3 reports recent results on CIFAR datasets. For fair comparisons, we com-

pare CFN-B with other not-very-deep models. Notably, �not-very-deep� is a relative

concept. We use it to emphasize the di�erences between the models in Table 2.3

and other ResNet-like models [10]. Our method (CFN) and the compared methods

develop less than 10-layer models to evaluate their e�ectiveness. These models cer-

tainly belong to deep neural networks, however, they are not very deep, compared to

the ResNets that have more than hundreds of layers built on datasets like CIFAR-

10/100. In addition, we report the depth of these models for a clear comparison

and analysis. In summary, CFN obtains comparative results and outperforms these

compared methods. In this work, we aim to investigate the potential of integrat-

ing multiple intermediate layers, and these results verify the e�ectiveness of CFN.

Building CFN on top of a much deeper model (e.g. ResNet) is beyond the focus of

our work, but it is suggestive for future research.

2.4.2 Image classi�cation on ImageNet

The ImageNet 2012 dataset [5] consists of about 1.2 million training images, 50,000

validation images and 100,000 test images.
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Figure 2.9: Overview of the CFN-11 architecture built on top of CNN-11. Three
additional side branches are generated from the pooling layers, and fused together
with the full-depth main branch (i.e. the last side branch).
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Figure 2.10: Overview of the DSN-11 architecture built on top of CNN-11. DSN-11
creates three side branches that can provide intermediate predictions for the input
image. The ground-truth label is also used to guide these intermediate predictions, to
enhance the discriminative abilities of hidden layers.
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Figure 2.11: Overview of the ResNet-11 architecture built on top of CNN-11. There
are four residual connections in total. Due to inconsistent numbers of channels, 1x1
convolution layers are needed in the residual connections, but they are not followed by
ReLU to make sure linear transformation.

Network architecture and training details

We developed a basic 11-layer plain CNN (called CNN-11) where the channels of

convolutional layers range from 64 to 1024. This baseline model is inspired by

prior widely-used deep models [7, 8, 10]. Based on this CNN, we built its CFN

counterpart (called CFN-11) as illustrated in Figure 2.9. Notably, we can create

three extra side branches from the intermediate pooling layers (excluding the �rst

pooling layer).

The training setup in our implementation follows the empirical practice in existing

literature [4, 7, 8, 10]. The original image is resized to 256×256. In training phase,

a 224×224 crop is randomly sampled from the resized image or its �ipped one. The

cropped input image is subtracted with per-pixel mean. We initialize the weights
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and biases following GoogLeNet [8], for example a weight decay of 0.0001, and a

momentum of 0.9. Batch normalization (BN) [135] is added after every convolutional

layer. The learning rate starts from 0.01 and decreases to 0.001 and to 0.0001 at

10 × 104 iterations and 15 × 104 iterations respectively. The whole training will

be terminated after 20 × 104 iterations. The LC weights in the fusion module are

initialized with 0.25, as there are four side branches in total. We use SGD to optimize

the models in a mini batch of size 64.

Results and discussion

Table 2.4 compares the results on the validation set. The following gives an analysis

of the results from several aspects.

(1) CNN-11 is able to achieve competitive results when compared to AlexNet [4],

however, it consumes much fewer parameters (∼6.3 millions) than Alexnet (∼60
millions). This is due to replacing several fully-connected layers with simple global

average pooling.

(2) CFN-11 obtains an improvement of ∼1% over CNN-11 with adding only a few

parameters (∼0.5 millions). It shows a consistent performance improvement by CFN

for a large-scale dataset. Moreover, for fair comparison with other deep models, we

implement the DSN-11 and ResNet-11 based on the plain CNN-11, which are shown

in Figure 2.10 and Figure 2.11, respectively. It can be seen that, CFN-11 can still

achieve better accuracy than DSN-11 and ResNet-11. Therefore, we can view CFN

as an alternative to improve the feature representational abalities of such a not-

overly deep CNN model, rather than increasing the depth as in ResNet. Notably,

CFN-11 can improve CNN-11, but ResNet-11 cannot. But this does not show that

CFN may be better than ResNet, as the networks are not very deep. Our primary

purpose is to evaluate the superiority of CFN over CNN.

(3) To test the generalization of CFN to deeper networks, we build a 19-layer model

following a similar principle as for the 11-layer model. Likewise, CFN-19 outper-

forms CNN-19 with ∼1% gains for both the top-1 and top-5 performance. For

simplicity, we did not use the same hyperparameters as in ResNet [10], such as scale

augmentation, large mini-batch size, multi-scale test. Therefore, our results of CNN-

19 and CFN-19 are not as high as CNN-18 and ResNet-18 in [10]. We believe that

our results can raise awareness of the potential of building deep multi-layer fusion

networks. It is promising to develop much deeper networks to test the e�ectiveness

of CFN, such as 50 or 100 layers.

Similar to CIFAR-10, Figure 2.8b illustrates the adaptive weights learned in the

LC fusion of CFN-11. It is important to note that, the top branches (i.e. side 3

and side 4) have larger weights than the bottom branches (i.e. side 1 and side 2).

Additionally, we extract the feature activations of the 1×1 convolutional layer in
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Table 2.4: Error rates (%) regarding image classi�cation on the ImageNet 2012
validation set.

Method AlexNet CNN-11 DSN-11 ResNet-11 CFN-11 CNN-19 CFN-19
Top-1 42.90 43.11 42.24 43.02 41.96 36.99 35.47
Top-5 19.80 19.91 19.24 19.85 19.09 14.74 13.93

Table 2.5: Con�gurations of six datasets for scene recognition, �ne-grained recogni-
tion and image retrieval.

Scene 15 Indoor 67 Flower Bird Holidays UKB

#categories 15 67 102 200 � �
#train images 1,500 5,360 2,040 5,994 991 10,200
#test images 2,985 1,340 6,149 5,794 500 10,200

one side branch. Figure 2.12 shows and compares the feature maps learned from

di�erent side branches.

2.4.3 Transferring deep fused features

To evaluate the generalization of CFN, we transfer the trained ImageNet model (e.g.

CFN-11) to three new tasks: scene recognition, �ne-grained recognition and image

retrieval. Each task is evaluated on two widelly-used datasets: Scene-15 [136] and

Indoor-67 [137], Flower [138] and Bird [139], and Holidays [140] and UKB [141].

The con�gurations of these six datasets are summarized in Table 2.5. Also, image

examples are shown in Figure 2.13.

Speci�cally, AlexNet [4] acts as a baseline that uses the fc7 layer (4096-Dim) to

provide an image representation. For CNN-11, we use the output of the global

average pooling (1024-Dim) as image feature. Notably, CFN-11 allows us to utilize a

fused feature (1024-Dim) that integrates multiple intermediate layers. For scene and

�ne-grained recognition, a linear SVM [142] is trained to compute the classi�cation

accuracy. For image retrieval, we compute the mean average precision (mAP) on

Holidays and the N-S score on UKB. In terms of mAP, we take a ranked list of

retrieved candidates and calculate performance based on the rank of the positive

instances in the list. Given a query image, N-S is used to measure how many of the

matched images are in the top-4 rank.

Results and discussion

Table 2.6 reports the transfer learning results on the six datasets. Although it is

challenging to generalize a deep model to diverse visual tasks, he following summa-

rizes the capability of CFNs in this respect.
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Side branch 1 Side branch 2 Side branch 3 Side branch 4Image

Figure 2.12: Illustration of feature maps in the four side branches. On one hand, the
side branch 1 and 2 can capture some low-level clues about images, such as boundaries
and textures. On the other hand, side branch 3 and 4 aim to obtain more abstract
features that �re strong around objects. Therefore, CFN can incorporate multi-layer
intermediate features explicitly and adaptively so as to improve visual representation.

Scene 15 Indoor 67 Flower Bird Holiday UKB

Figure 2.13: Image examples from six datasets about scene recognition, �ne-grained
recognition and image retrieval. We can see their signi�cant di�erences with respect
to the image content.

(1) Overall, CFN-11 obtains consistent improvements for the three tasks on all

datasets, compared with the baseline CNN-11. In addition, CFN-11 outperforms

Alexnet while using a much lower dimensional feature vector. These results reveal

that learning fused deep representations is bene�cial for not only image classi�cation,

but also a variety of visual tasks, even though the images in these tasks have large

di�erences.

(2) Notably, the improvements on these three tasks are more signi�cant than those

on the ImageNet itself. In particular, CFN-11 yields a gain of ∼6% on the Flower

dataset for �ne-grained recognition. On other datasets, an accuracy improvement

of ∼2% is obtained as well (Note that the UKB uses the N-S score which is di�erent

from precision accuracy). We believe that �ne-tuning the models on the target

datasets will further improve the results.
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Table 2.6: Results on transferring the ImageNet model to three target tasks.

Method #Dim
Scene recognition Fine-grained recognition Image retrieval

Scene 15 Indoor 67 Flower Bird Holidays UKB
AlexNet [4] 4096 83.99 58.28 78.68 45.79 76.77 3.45
CNN-11 1024 84.32 60.45 76.79 45.98 78.33 3.47
CFN-11 1024 86.83 62.24 82.57 48.12 80.32 3.54

2.4.4 Semantic segmentation on PASCAL VOC

We conduct the semantic segmentation experiment on the PASCAL VOC 2012 seg-

mentation dataset [129] that consists of 20 foreground object classes and a back-

ground class. The original dataset contains 1,464 training images, 1,449 validation

images and 1,456 test images. When evaluating the validation set, we use a merged

training dataset with the original training images and the augmented training im-

ages as in [143]. As there are validation images included in the merged training

set, we need to pick the non-intersecting set of 904 images [26] as a new validation

set.

We used the same hyper-parameters to train both the baseline FCN-8s [26] and the

proposed FCFN, including a �xed learning rate of 10−4, a weight decay of 0.0001, a

momentum of 0.9, and a mini-batch size of 1. The training stage will be terminated

after 100K iterations. It is worth mentioning that, we �ne-tune FCN-8s directly from

the VGG-16 model, without pre-training FCN-32s and FCN-16s. FCFN undergoes

the same training procedure. The segmentation performance is measured with the

pixel intersection-over-union (IoU):

IoU =
TP

TP + FP + FN
, (2.14)

where TP , FP and FN denote the true positive, false positive and false negative

counts, respectively.

Results and discussion

Table 2.7 reports the mean IoU accuracy and the detailed results of 20 object classes.

The proposed FCFN achieves 1.6% gains on the mean IoU performance compared

to the baseline FCN-8s. In addition, FCFN achieves superior results for more ob-

ject classes, compared to FCN-8s. Figure 2.14 shows a visual example to highlight

the segmentation details between the two models. We clarify that FCFN is a gen-

eral architecture that can be integrated with other sophisticated techniques such as

CRF [27] and Recurrent Neural Networks (RNN) [144], in order to further recover

the segmentation details.
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Table 2.7: Semantic segmentation results (IoU accuracy) on the PASCAL VOC 2012
validation set. For the 20 object classes, better results are in bold face.

FCN-8s [26] FCFN

aero 75.5 75.2
bike 34.5 33.8
bird 69.5 72.0
boat 56.7 53.3
bottle 59.7 63.8
bus 68.7 71.2
car 70.3 69.2
cat 73.4 75.0
chair 23.8 24.0
cow 53.0 63.4
table 39.7 40.7
dog 63.3 65.6
horse 46.3 57.6
mbike 75.2 74.5
person 73.9 75.4
plant 42.2 40.2
sheep 59.7 62.3
sofa 27.0 30.3
train 73.4 74.0
tv 58.7 55.7

mean 57.1 60.3

2.4.5 Edge detection on BSDS500

We evaluate the edge detection performance on the BSDS500 dataset [126] that con-

sists of 200 training, 100 validation and 200 testing images. One image is manually

annotated by �ve human annotators on average. The validation set is used to �ne-

tune the hyper-parameters, similar to HED [31]. For example, we use a momentum

of 0.9 and a weight decay of 0.0002. In addition, the weights of the side-output

convolutional �lters are initialized with 0, and the initialization of the LC fusion

�lter is set to 0.2 due to fusing �ve side branches. The training images are resized to

400×400 and the batch size is 8. The learning rate is initialized with 10−6, and the

training is terminated after 25 epoches. The performance measurements for edge

detection include the �xed contour threshold (ODS), the per-image best threshold

(OIS) and the average precision (AP). Both ODS and OIS compute the F-score

F =
2 · precision · recall
precision+ recall

. (2.15)

Notably, ODS uses a �xed threshold to binarize all edge detection images in the test

set, while OIS computes the best threshold for each image separately.
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2.4 Experiments

FCFNFCN-8sGround truthImage

Figure 2.14: Comparison of a semantic segmentation example between the baseline
FCN-8s and the proposed FCFN.

FCFNHEDGround truthImage

Figure 2.15: Comparison of an edge detection example between the baseline HED
and the proposed FCFN. The FCFN results look more similar with the ground-truth
annotations than the HED results.

Table 2.8: Edge detection results on the BSDS dataset. The upper group lists some
representative approaches without using deep learning. The lower group gives the deep
learning based approaches.

Method ODS OIS AP

Canny [109] .600 .630 .580
gPb-owt-ucm [126] .726 .757 .696

SE-Var [127] .746 .767 .803
DeepEdge [29] .753 .772 .807

DeepContour [30] .757 .776 .790
HED [31] 0.780 0.802 0.786
FCFN 0.784 0.806 0.788

Results and discussion

Table 2.8 provides a comparison of edge detection results on the BSDS dataset.

First, we can see that deep learning approaches (in the lower group) largely pro-

mote the state-of-the-art performance compared to the hand-crafted edge detection

approaches (in the upper group). In addition, the proposed FCFN outperforms the

baseline HED with considerable improvements. This shows the advantage of learn-

ing adaptive weights in the locally-connected fusion module. Figure 2.15 shows an

edge detection example and compares the visual details between FCFN and HED.

FCFN can detect more satisfactory edges than HED.
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2. CONVOLUTIONAL FUSION NETWORKS FOR IMAGE CLASSIFICATION

2.5 Chapter Conclusions

In this chapter, we proposed a deep fusion architecture (CFN) built on top of

plain CNNs. It allowed to aggregate intermediate layers with adaptive weights,

and generated a discriminative feature representation. We conducted comprehen-

sive experiments to evaluate its e�ectiveness for both image-level and pixel-level

classi�cation tasks. We can summarize several remarks and insights based on the

experiments:

(1) On the CIFAR and ImageNet datasets, the CFN models have achieved consid-

erable improvements while adding few parameters, even though these models are

not very deep. CFN is a simple yet e�cient architecture that has potential to be

adapted to both deep (e.g. 10 layers) and much deeper (e.g. 100 layers) networks.

In future work, we aim to build CFN on top of other deeper networks.

(2) CFN shows promising results when it is transferred to three di�erent tasks,

since CFN inherits the generalization capabilities of CNN. Additionally, CFN yields

remarkable gains over CNN in the Flower dataset for �ne-grained recognition. We

�nd that it is quite important and necessary to make use of intermediate features

to describe �ne-grained attributes of objects.

(3) Although the FCFN models need to learn more adaptive weights in the fusion

module, it can bring considerable performance improvements for semantic segmen-

tation and edge detection. We �nd that many complementary details related to

objects (e.g. boundary) are obtained from the intermediate layers.

Future work. Recall that the proposed CFN (and FCFN) model is a general ex-

tension of a plain CNN, and can be applied to a variety of visual recognition tasks.

We can further improve CFN from the following two promising directions.

(1) While computing adaptive weights in the LC fusion module, we use a 1 × 1

kernel �lter to independently consider each spatial location in the feature maps. A

potential improvement would be to utilize larger kernel sizes such as 1×2 and 1×3,

which can incorporate the contextual information in the feature maps.

(2) The adaptive weights are learned with the training images and are then directly

applied to the test images for inference. It may be bene�cial to learn input-speci�c

weights to decrease the variance between images. Jaderberg, et al. [145] proposed

a new learnable module, called the Spatial Transformer, that can perform explicit

spatial transformations of features within CNNs. Similarly, Brabandere, et al. [146]

proposed a Dynamic Filter Network (DFN), where �lters are dynamically gener-

ated conditioned on an input image. Driven by these works, CFN can also learn

dynamical �lters conditioned on an input image.
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