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Chapter 1

Introduction



1. INTRODUCTION

1.1 Motivation

In 2018, the number of mobile phone users will reach about 4.9 billion. Assuming an
average of 5 photos taken per day using the built-in cameras would result in about
9 trillion photos annually. In addition, these photos are frequently uploaded, shared
and retrieved in social networks and thus have become an important part of our daily
lives. However, it is challenging to mine semantically meaningful visual information
from such a huge amount of data. Thanks to the major advances of deep neural
networks since 2012, they have been a powerful tool to help analyze visual content
for a variety of tasks and have triggered a massive amount of research in content
based multimedia analysis and computer vision. This thesis aims towards developing
new paradigms and architectures in deep learning to address three common and
important research themes: classification, retrieval and synthesis. As shown in
Figure [1.1} we visibly depicts the three themes.

e Classification is the most fundamental task in the field of computer vision.
It aims to correctly predict the class label for a given image, for example, we
can use a classification model to classify the input horse image. In addition to
image-level classification, we also study the tasks of pixel-level classification,
including semantic segmentation and edge detection. (Chapters 2 and 3)

e Retrieval aims to efficiently search for similar samples from the database to
the query. For instance, we develop a retrieval model to retrieve similar horse
images. Besides, we also consider the cross-modal retrieval problem between
images and texts, and do some work to bridge the modality gap between vision
and language. (Chapters 4, 5, 6 and 7)

e Synthesis is able to generate new image samples that never existed in the
image database. For example, by training a synthesis model, we can translate
a horse image to a zebra image. In addition, we can synthesize diverse zebra
images based on different branches of the network. In this thesis, we mainly
focus on two synthesis applications: image-to-image translation and fashion
style transfer. (Chapter 8)

In the next sections, we first introduce the background and developments related to
the three themes in recent years. Then we present the thesis outline, our research

questions and main contributions.

1.2 Background and Related Work

Deep learning [II, 2] has been one of the pillars of numerous artificial intelligence
research fields, such as computer vision, machine learning and natural language
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Figure 1.1: Conceptual illustration of the three research themes in this thesis, in-
cluding classification, retrieval and synthesis.

processing. By distilling high-level semantic information with deep network archi-
tectures, deep learning approaches can help narrow the gap between visual represen-
tations and human-level vision. In recent years, deep learning has been extensively
studied in the field of computer vision to help tackle many challenging tasks, such
as image classification, image retrieval and image synthesis.

1.2.1 Classification

In recent decades, exploiting and developing convolutional neural networks (CNNs) [3]
has been a leading and promising trend in computer vision community. CNNs can
explore high-level visual concepts in images by employing deep architectures com-
posed of multiple neural layers. In 2012, Krizhevsky et al. [4] proposed a new
CNN model named AlexNet for generic image classification, which has been a mile-
stone in the developments of CNNs. Its success in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) competitions [5] motivates a huge amount of work
leveraging CNNs to solve various vision tasks. According to the empirical observa-
tions in [6], CNNs based approaches can achieve new state-of-the-art performance
for different recognition tasks by fine-tuning the ImageNet models on the target
datasets. We summarize the related work on classification from the following four
aspects.

Increasing the depth

A dominant line of research on CNNs is to increase the network depth to learn more
discriminative representations (Figure [l.2(a)). For instance, the depth has increased
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Figure 1.2: Illustration of three classification pipelines. (a) increasing the depth with
more new layers. (b) fusing intermediate layers to produce an aggregation feature. (c)
encoding deep features with sophisticated feature encoders.

from several layers (e.g. LeNet [3] and Alexnet [4]) to several tens of layers (e.g.
VGGuet [7] and GoogLeNet [§]). However, training deeper networks becomes more
difficult because of vanishing gradients and degradation. To overcome this chal-
lenge, Highway networks [9] and ResNet [10] proposed to add shortcut connections
between neighboring layers, which can help alleviate the vanishing gradient issue
and ease the training convergence. Their approaches have promoted the study on
constructing deeper neural networks (e.g. hundreds of layers) and breaking the po-
tential bottleneck that may limit the learning capabilities. Furthermore, extended
studies [111, 12 13}, 14] based on ResNet provided additional insights by delving into
the residual learning mechanism. Nevertheless, it is non-tractable to optimize much
deeper neural networks due to the large amount of network parameters and the
expensive cost of physical memory.

Fusing multiple layers

An alternative to creating shortcuts between adjacent layers is to integrate exist-
ing intermediate layers in a deep neural network to generate a fused feature (Fig-
ure [1.2(b)), rather than deepening the network with additional new layers. Com-
monly, the topmost activations in deep networks (i.e. fully-connected layers) can
act as the most important features to describe the image content. However, it
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is important to note that intermediate activations (i.e. convolutional layers) can
also provide informative and complementary clues about images, including low-level
boundaries, textures and spatial contexts. Therefore, researchers [15, [16] began
to transfer their attention to intermediate layers, and explored their influence on
the classification performance. In contrast to using pre-trained models, extensive
research efforts [I7, 18| turned to training deep fusion networks where multi-level
intermediate layers are fused together by adding new side branches. It is worth
noting that the fused information occurs not just from adjacent layers but from
the earliest layers as well. In the literature, deep fused representations have been
shown to generate better predictions due to integrating the strengths of different
intermediate layers within deep neural network.

Encoding deep features

Although CNNs are able to express more powerful visual features, they have weak
robustness to severe geometrical deformations and spatial contexts. Fortunately,
sophisticated encoding techniques including BoW [19], VLAD [20] and Fisher Vec-
tor [21] have been adopted to address these issues. Motivated by the strengths of
encoding techniques, it is natural to encode deep features to further improve their
discriminatory power (Figure [1.2[c)). To obtain local features from CNN models,
most approaches [22] 23, 24] 25] have examined local patches or region proposals in
one image. The local CNN features are used to construct a visual codebook, based
on which an encoder technique can be used to aggregate them to a deep image
representation. For example, Gong et al. [22] employed image patches at multiple
scales, and then aggregated local patch responses at the finer scales with the VLAD
method. Yoo et al. [25] utilized multi-scale dense local CNN features to compute
the Fisher Vector kernels.

Pixel-level classification

In addition to image-level classification, CNNs also show strong generalization power
for diverse tasks of pixel-level classification, such as semantic segmentation [26], 27,
28|, edge detection [29] 30, BI], depth estimation [32 B33, [34] and saliency detec-
tion [35, B6, B7]. In particular, fully convolutional networks (FCNs) [26] have be-
come a fundamental architecture to perform pixel-level predictions. Specifically,
FCNs are recast from the pre-trained CNN counterparts, by replacing the fully-
connected layers with extra convolutional layers while retaining the parameters. In
this way, the size of the input images can be arbitrary and the output can be viewed
as two-dimensional feature maps. In addition, it is beneficial to extract richer region
features from FCNs, compared to a global representation from CNNs.
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1.2.2 Retrieval

One of the primary aims of image retrieval is to search for similar images (usually
based on pictorial content) to the query from the database. It has become important
to numerous practical scenarios (e.g. Google image search, face recognition, etc.)
and therefore has triggered a massive amount of research activities in both multi-
media and computer vision fields |19} 38, B39]. Bag-of-Words (BoW) is one of the
most widely-used models in image retrieval systems, where local features, such as
SIFT [40] and color clues [41], are quantized to visual words based on a pre-trained
codebook. Then, similar to document retrieval [19, B9, an inverted index struc-
ture is built with the visual words towards making the retrieval system scalable and
efficient. However, image retrieval remains challenging in bridging low-level image
representations and high-level semantic concepts.

Image retrieval

To alleviate the above challenge, recent works in the literature have paid attention on
utilizing deep visual features for image retrieval [42] [43], [44]. The work of Wan et al.
[42] suggested that a deep CNN model pre-trained on a large dataset can be trans-
ferred to new content-based image retrieval (CBIR) tasks and fine-tuning the model
with a similarity metric could further boost the retrieval performance. Babenko et
al. [45] focused on holistic descriptors where the whole image was mapped to a single
deep feature vector. They further designed a simple global image descriptor based
on sum-pooled convolutional features for image retrieval. Zheng et al. [46] proposed
a deep embedding method using deep features as global and regional signatures in-
stead of a Hamming embedding[47]. It is an incorporation of the SIFT descriptor
and CNN features and could achieve promising improvements. Moreover, Zheng et
al. [48] presented a comprehensive review on SIFT and CNN-based methods and
discussed the benefits of integrating SIFT and CNN features.

Cross-modal retrieval

Nowadays, multimedia data in various media types (e.g. image, video, text, and
audio) is growing exponentially due to the increasing popularity of the Internet and
social networks. This trend motivates a massive amount of research activities in
multi-modal understanding and reasoning. For example, we can recognize a picture
of a panda after hearing the description “black and white bears” without ever having
seen one. This demonstrates the cross-modal interaction between vision and lan-
guage. These heterogeneous data offers us the opportunity to understand the world
better, while giving rise to the challenges of bridging different modalities. Specifi-
cally, the matching problem between images and texts [49, 50} 511, 52| 53], 54] is one of
the most important tasks in multi-modal research. In practice, image-text matching
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Image Query Text Query: An old man holding a camera while

walking with a small brown dog.

(1) a cat snuggled next to luggage on the floor.
(2) a cat laying in front of luggage on the floor.
(3) a white, blue and black cat lays on the floor
near several suitcases.

(4) a brown cat sleeping in a black piece of
luggage.

(5) a cat sitting in a black piece of luggage.

(a) Image-to-text retrieval (b) Text-to-image retrieval

Figure 1.3: Example of cross-modal retrieval. (a) Given an image query, related text
samples are retrieved to describe the image. (b) For a text query, it can search for
several image samples from the database. The matched samples are highlighted with
green color.

approaches are usually developed for cross-modal retrieval (Figure . This task
remains challenging due to the heterogenous representations and the cross-modal
gap between vision and language, which is also a core issue for other multi-modal
applications such as image captioning |55, [56] and visual question answering [57, 58],

zero-shot recognition [59, [60].

With the increasing progress of deep learning, research efforts have been made
to incorporate Canonical Correlation Analysis (CCA) [61] into deep neural net-
works [49, B0, 511, 62, 63]. However, existing deep CCA models rely on expensive
decorrelation computations, which limit their generalization abilities at large-scale
data. Alternatively, a number of recent approaches [52] 55 [64], 65, [66] address the
task by designing two-branch networks to embed visual and textual features into a
common latent space, and then learn latent embeddings by optimizing a ranking loss
to discriminate matched and unmatched image-text pairs. For instance, Wang et
al. [53] built a simple and efficient matching network to preserve the structure re-
lations between images and texts in the latent space. To associate image regions
with words, the attention mechanism was integrated into visual-textual embedding
models [67, 68]. In addition to the pairwise ranking loss, recent approaches [69, [70]
leveraged extra loss functions (e.g. instance loss and classification loss) to enhance

the discrimination of the learned embedding features.

Another line of research [71], [72, [73, [74] [75] focused on learning dual embeddings
between two modalities, e.g. projecting visual features into the textual feature space
and vice versa. For instance, Feng et al. [71] proposed a correspondence cross-modal
autoencoder model. 2WayNet [76] built the projections between two modalities and
regularized them with Euclidean loss. Recently, Gu et al. [77] utilized two generative
models to synthesize grounded visual and textual representations. Essentially, these

dual embedding models are motivated by autoencoders.
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Figure 1.4: Illustration of the GAN framework. In this example, given a labelled
map, the generator can synthesize a fake photo image similar to the real one, but The
discriminator learns to correctly classify real and fake images.

1.2.3 Synthesis

Together with the increasing progress of deep neural networks, numerous approaches
based on supervised learning have been developed to address diverse image trans-
lation tasks, such as contour detection [31I], semantic segmentation [26] and face
conversion [78]. However, these supervised models highly depend on a large amount
of fully labelled image pairs which are time consuming to create manually and some-
times biased when collecting annotated data. In addition, some ground-truth data
are not available in some cases, for example, the painting stylization transfer be-
tween Monet to Van Gogh. Driven by these limitations, researchers have turned to
examine unsupervised learning approaches to break the bottleneck of limited data.

Generative adversarial networks

Generative models have attracted increasing attention with the emergence of gen-
erative adversarial networks (GANs)[79]. Informally, the GAN framework can be
viewed as a game between two players: the generator and the discriminator (Fig-
ure . To be specific, the generator aims to synthesize fake images and tries to
trick the discriminator into thinking that the synthesized images are real. In con-
trast, the discriminator needs to distinguish the real images from the fake images. By
continuing this game iteratively, both players learn to become better until the gener-
ator can generate realistic-looking images and the discriminator can not tell real and
fake samples. Typically, a simple analogy is that: an art forger (the generator) at-
tempts to forge artistic paintings, but an art investigator (the discriminator) is able
to detect imitations. In recent years, GANs have been widely adopted for addressing
a wide range of image synthesis applications, such as style transfer |80, 8I], texture
synthesis [82] 83] and text-to-image synthesis [84, [85]. To improve the quality and
diversity of generative models, conditional GANs (cGAN) have been designed to
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guide image generation conditioned on class labels [86], attributes [87], images [8§]
and texts [84].

Image-to-image translation

GANSs have shown great success on the task of general-purpose image-to-image trans-
lation [88], which learns to model mapping functions between different image do-
mains. Many recent approaches [89, 90, 01, ©2] were focused on using unpaired
images to tackle the problem of unsupervised image translation. In addition to the
adversarial constraint, they further exploited extra constraints to enhance relations
of two different domains. On the one hand, some of them [89, 90, 93] fed image sam-
ples into a unified encoder to discover their common representations. Then another
generator was used to translate common representations to samples in the target
domain. On the other hand, some work [92, 94] attempted to relate two different
domains by using additional self-constraints within one domain. Representatively,
CycleGAN [94] proposed a cycle-consistency constraint that can reconstruct the
input image itself.

Fashion style transfer

Online shopping has driven a range of fashion oriented applications recently, for
example, fashion clothing retrieval [95], fashion recommendation [96], fashion pars-
ing [97] and fashion style transfer [81]. Specifically, fashion clothing swapping, which
is a common application belonging to fashion style transfer, aims to visualize what
the person would look like with the target clothes. This application allows con-
sumers to see what they would look like by wearing different clothes, without the
effort of dressing them physically. In the past, this problem has been studied in the
fields of multimedia and computer graphics [98, [99] 100, T0T]. For example, the work
in [I02] used an image-based visual hull rendering approach to transfer the appear-
ance of a target garment to another person image. The ClothCap approach [103]
captured the 3D deformations of the clothing and estimated the minimally clothed
body shape and pose under the clothing. These non-parametric solutions [100, 104]
involve using extra information to model the deformations, such as from motion
capture, 3D measurements and depth sensors. During the test stage, they still re-
quire online image warping or registration algorithms which are time-consuming
for real-time applications. Recent research turned to address this problem using
deep generative approaches (e.g. GANs), without requiring complicated 2D image
warping and 3D graphic algorithms. For example, FashionGAN [85] employed a
textual description as condition to perform the clothing swapping. The methods
in [105], T06] took a stand-alone and flat clothing image to re-dress the person in the
reference image.
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1.3 Thesis Outline and Research Questions

In Section [I.2] we have introduced recent advances on the three research themes.
Although deep learning is leading state-of-the-art performance for numerous tasks,
we should notice its limitations and challenges, such as theoretical interpretability,
model complexity, training with limited data, etc. There is still considerable space
for promoting the developments of deep learning. In the next research chapters
(Chapters 2-8), we propose new approaches to address the research questions (RQ)
and challenges in terms of the three research themes. In Chapter 9, we discuss our
main findings, limitations & possible solutions and future research directions.

e Chapter 2 aims to address the first research question RQ 1: How can
we develop a simple and efficient deep fusion network upon a plain
CNN? As discussed in Section [1.2.1] some works [17, [I8, 26] B1] attempt to
create new side branches upon a plain CNN and integrate multi-level interme-
diate layers to generate a fused representation. However, they still have two
main limitations. First, some of them spend a large number of new param-
eters creating the side branches. For example, DAG-CNNs [I8] add several
fully-connected layers on top of intermediate convolutional layers, which will
largely increase the total number of parameters. Second, the fusion mod-
ules for integrating different side branches are inferior. DAG-CNNs [18] and
FCN-8s [26] use a simple sum pooling to fuse the side branches, which fails to
consider the weights of different side branches. Although HED [31] employs
a 1x1 convolution to learn the fused weights, they are shared over spatial
dimensions, failing to discover the spatial properties. In this chapter, we pro-
pose a novel convolutional fusion network (CFN) built on top of plain CNNs,
which can aggregate intermediate layers with adaptive weights and generate a
discriminatively fused representation. This chapter is based on the published
papers [107, 108]:

Liu, Y., Guo, Y., and Lew, M.S., “On the Exploration of Convolu-
tional Fusion Networks for Visual Recognition.” Proceedings of the
23rd International Conference on MultiMedia Modeling (MMM),
2017. (Best Paper Award)

Liu, Y., Guo, Y., Georgiou, T., and Lew, M.S., “Fusion that mat-
ters: convolutional fusion networks for visual recognition.” Multi-
media Tools and Applications, 2018.

e The work in Chapter 3 aims to tackle the second question RQ 2: How
can we explore diverse supervision that can adapt to different inter-
mediate layers in deep neural networks for robust edge detection?
Edge detection that aims to distinguish important edges from image pixels,
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can generally act as a fundamental task for other high-level vision applica-
tions, like object detection and segmentation. Recently, the developments
in the design of edge features have moved from carefully-engineered descrip-
tors [109, 110, T1T) T12] to hierarchical deep features [29] B0, B, T13]. Nev-
ertheless, we should still realize one difficult issue in edge detection that is
caused by false positives: many non-edge pixels are incorrectly predicted as
edges when comparing with the human annotated ground-truth. To correct
the false positives earlier, HED [31] imposes the ground-truth supervision on
the intermediate layers while training the deep model. However, using only
a general supervision (i.e. the ground-truth annotation) for all the layers is
inconsistent with the diverse representations of hierarchical layers. In addi-
tion, the general supervision can not be well-suited to all intermediate layers.
In contrast to using the general supervision, we propose and develop relaxed
deep supervision (RDS) within convolutional neural networks for robust edge
detection. This chapter is based on the published paper [114]:

Liu, Y. and Lew, M.S., “Learning Relaxed Deep Supervision for
Better Edge Detection.” Proceedings of the 29th IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

In Chapter 4, we move our attention to the retrieval theme and tackle the
third question RQ 3: How can we incorporate deep visual represen-
tations into the inverted index structure for accurate and efficient
image retrieval? A robust image retrieval system should be typically opti-
mized regarding two factors: accuracy and efficiency. To increase the retrieval
accuracy, some works [22 42] [45] begin to utilize deep visual features to dis-
cover the similarities among images. However, they are inefficient due to rely-
ing on the nearest neighbouring search. To maintain the efficiency, traditional
methods [19, 39|, take advantage of the inverted index structure that is able
to reduce computational time and memory cost for scalable image search. Re-
garding both the accuracy and efficiency, we exploit a Deeplndex framework
for accurate and efficient image retrieval, by incorporating deep visual fea-
tures into the inverted index scheme. This chapter is based on the published
paper [115]:

Liu, Y., Guo, Y., Wu, S.; and Lew, M.S., “DeepIndex for Accurate
and Efficient Image Retrieval.” Proceedings of the 5th ACM on
International Conference on Multimedia Retrieval (ICMR), 2015.

In addition to image retrieval, in Chapter 5 we further address the problem
of cross-modal retrieval with RQ 4: How can we build a deep match-
ing network to unify images and texts into a more discriminative
space without increasing the number of network parameters? The
image-text matching problem remains challenging due to the heterogenous
representations and the cross-modal gap between two modalities. In recent
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years, a variety of multi-modal deep neural networks have been proposed to
model the matching task [52, 53] [76]. However, the multi-modal matching per-
formance is still far from competitive with the intra-modal tasks, for example,
image retrieval. In this chapter, we introduce an efficient approach to couple
visual and textual features based on a new recurrent residual fusion (RRF)
building block. This chapter is based on the published paper [64]:

Liu, Y., Guo, Y., Bakker, E.M., and Lew, M.S., “Learning a Recur-
rent Residual Fusion Network for Multimodal Matching.” Proceed-

ings of the 16th IEEE International Conference on Computer Vision
(ICCV), 2017.

e In terms of cross-modal retrieval, in Chapter 6 we further pose the fifth
research question RQ 5: How can we preserve both inter-modal cor-
relations and intra-modal consistency for learning robust visual and
textual embeddings? Currently, there are two main paradigms to per-
form visual-textual embeddings. The first one is to learn a common space
where related images and texts can be unified into similar latent embed-
dings [52], 53] [76]. Second, it exploits dual embeddings by reconstructing an
input feature in the source space to be the one in the target space |72}, [76] [77].
Both the latent and dual embeddings can capture inter-modal semantic cor-
relations between visual and textual data. In addition, they can be combined
together to integrate individual advantages. However, they fail to preserve
the intra-modal semantic consistency, .e. image-to-image and text-to-text.
Importantly, a robust embedding method should be able to reconstruct rep-
resentations of both the source and target modalities. To achieve this, we
propose cycle-consistent embeddings in a deep neural network for matching
visual and textual representations. This chapter is based on the submitted
journal paper [116]:

Liu, Y., Guo, Y., Liu, L., Bakker, E.M., and Lew, M.S., “Cy-
cleMatch: A Cycle-consistent Embedding Network for Image-Text
Matching.” Submitted to IEEE Transactions on Multimedia (In Re-
vision).

e In Chapter 7, we aim to integrate both matching and classification by an-
swering the sixth question RQ 6: How can we design a unified net-
work for joint multi-modal matching and classification? We note that,
learning visual-textual embeddings is influenced by the notable variance in
images or texts. For example, in the MSCOCO dataset [117], each image is
described with five sentences from human labelers. Although the sentences
can consistently mention some primary objects in the image, they have some
biased differences that may make it difficult to perform a robust matching.
However, object labels can generally provide more consistent and less biased
information than sentences. Classification with the object labels is beneficial
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to correct the biased sentences and improve the image-text matching. Ad-
ditionally, the matching component can help the classification component to
generate a discriminative multi-modal representation. Unlike many current
approaches which only focus on either multi-modal matching or classification,
we propose a unified network to jointly learn Multi-modal Matching and Clas-
sification (MMC-Net) between images and texts. This chapter is based on the
submitted paper [118]:

Liu, Y., Liu, L., Guo, Y., and Lew, M.S., “Learning Visual and Tex-
tual Representations for Multimodal Matching and Classification.”
Pattern Recognition, vol 84: 51-67, 2018.

Chapter 8 presents two applications about image synthesis: image-to-image
translation and fashion style transfer.

For image-to-image translation, we pose the seventh research question RQ 7:
What factors will affect the performance of generative models on the
translation tasks? Image-to-image translation between different domains is
a common image synthesis task, with the aim of arbitrarily manipulating the
source image content given a target one. To tackle the challenging case of un-
paired image-to-image translation, CycleGAN [94] presents a cycle-consistency
loss by reconstructing the generated image back to the source domain. In con-
junction with the original adversarial loss, the cycle-consistency loss is benefi-
cial to constrain the unsupervised domain mappings. CycleGAN has become
a fundamental approach for general-purpose image-to-image translation, while
few work investigate the important factors within it. To address the problem,
we present an extensive and empirical study on cycle-consistent generative
networks. This work is based on the published paper [119]:

Liu, Y., Guo, Y., Chen, W., and Lew, M.S., “An Extensive Study of
Cycle-Consistent Generative Networks for Image-to-Image Transla-
tion.” Proceedings of the 24th International Conference on Pattern
Recognition (ICPR), 2018.

In terms of fashion style transfer, we need to tackle the last research question
RQ 8: How can we exploit a generative model to directly transfer
the fashion style between two person images?” Currently, fashion style
transfer based on image synthesis has become a popular application for online
shopping. Specifically, fashion clothing swapping aims to visualize what the
person would look like with the target clothes. It can be viewed as a specific
task belonging to fashion style transfer. Recently, FashionGAN [85] specifies
a textual description and uses it to re-dress the person in the reference image.
other works in CAGAN [I05] and VITON [106] employ a stand-alone and flat
clothing image to condition the image synthesis, which may provide richer
visual content than the textual description. However, the stand-alone and flat
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clothing images are not always available to users or consumers. Therefore, we
pose a more practical task, that is, person-to-person clothing swapping, where
the input condition is also a person image like the reference image. In this case,
the goal becomes transferring the wearing clothes between two person images.
It is more challenging as the desired clothes worn on the condition person
image have varying deformations due to different human poses. To tackle this
challenge, we propose a novel multi-stage generative network (SwapGAN) that
integrates three generators to perform a multi-stage synthesis process. This
work is based on the submitted journal paper [120]:

Liu, Y., Chen, W., Liu, L., and Lew, M.S., “SwapGAN: A Multi-
stage Generative Approach for Person-to-Person Fashion Style Trans-
fer.” Submitted to IEEE Transactions on Multimedia (In Review).

Finally, Chapter 9 summaries the main findings from the research of this
thesis. Also, we discuss the limitations and potential solutions, and point out

directions for future research.

Additionally, this thesis draws on insights and experiences from the related work in

other publications during my PhD studies:

Liu, Y. and Lew, M.S., “Improving the Discrimination between Foreground
and Background for Semantic Segmentation.” Proceedings of the 24th TEEE
International Conference on Image Processing (ICIP), 2017.

Liu, Y., Guo, Y., and Lew, M.S., “What Convnets Make for Image Cap-
tioning.” Proceedings of the 23rd International Conference on MultiMedia
Modeling (MMM), 2017.

Guo, Y., Liu, Y., Lao, S., Bakker, E.M., Bai, L., and Lew, M.S., “Bag of
Surrogate Parts Feature for Visual Recognition.” IEEE Transactions on Mul-
timedia, vol 20: 1525-1536, 2018.

Shan, H., Liu, Y., and Stefanov, T., “A Simple Convolutional Neural Net-
work for Accurate P300 Detection and Character Spelling in Brain Computer
Interface.” International Joint Conference on Artificial Intelligence (IJCAI),
2018.

Guo, Y., Liu, Y., de Boer, M.H.T., Liu, L., and Lew, M.S., “A Dual Prediction
Network for Image Captioning.” Proceedings of the 19-th TEEE International
Conference on Multimedia and Expo (ICME), 2018.

Georgiou, T., Schmitt, S., Olhofer, M., Liu, Y., Back, T., and Lew, M.S.,
“Learning Fluid Flows.” Proceedings of International Joint Conference on
Neural Networks (IJCNN), 2018.
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e Guo, Y., Liu, Y., Bakker, E.M., Guo, Y., and Lew, M.S., “CNN-RNN: a
large-scale hierarchical image classification framework.” Multimedia Tools and
Applications, vol 77: 10251-10271, 2018.

e Guo, Y., Liu, Y., Georgiou, T., and Lew, M.S., “A review of semantic seg-
mentation using deep neural networks.” International Journal of Multimedia
Information Retrieval, vol 7: 87-93, 2018.

e Jia, Q., Fan, X., Liu, Y., Luo, Z., and Guo, H., “Hierarchical projective
invariant contexts for shape recognition.” Pattern Recognition, vol 52: 358-
374, 2016.

e Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M.S., “Deep
learning for visual understanding: A review.” Neurocomputing, vol 187: 27-
48, 2016.

e Guo, Y., Lao, S., Liu, Y., Bai, L., Liu, S., and Lew, M.S., “Convolutional
Neural Networks Features: Principal Pyramidal Convolution.” Proceedings of
the 16th Pacific-Rim Conference on Multimedia (PCM), 2015.

1.4 Main Contributions

The research of this thesis contributes at three levels: models and algorithms, prac-
tical scenarios and empirical analysis.

1.4.1 Models and algorithms

From Chapter 2 to Chapter 8, we develop new approaches based on deep learning
to address the research questions regarding the three themes. The key contributions
in these approaches are listed below.

An efficient deep fusion model for image classification. We propose a novel
deep fusion network, the convolutional fusion network (CFN), where we can effi-
ciently integrate multiple intermediate layers in CNNs with adaptive weights. In
addition, our CFN is adaptive to not only image-level classification, but also pixel-
level classification.

A diverse deep supervision algorithm for edge detection. In contrast to
prior work using a general supervision, we develop relaxed deep supervision (RDS)
with additional relaxed labels. Consequently, more discriminative layers can process
more false positives in edge detection. RDS can incorporate the diversities into the
supervisory signals to improve the performance of edge detection.

An accurate and efficient model for image retrieval. We propose a novel im-
age retrieval approach (DeepIndex) which can integrate deep visual representations
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with the inverted index scheme. Our approach takes advantage of the discriminatory
capabilities of deep features and the efficient search of the inverted index.

An efficient image-text matching model for cross-modal retrieval. We
develop a novel recurrent residual fusion network (RRF-Net) to couple visual and
textual features. Since RRF-Net connects the residual learning with the recurrent
mechanism, it can recursively improve visual-textual embeddings while sharing the
network parameters. In addition, we develop a fusion module to efficiently integrate
intermediate recurrent outputs.

A cycle-consistent embedding algorithm for cross-modal retrieval. To pre-
serve both inter-modal correlations and intra-modal consistency, we propose cycle-
consistent embeddings by cascading dual mappings and reconstructed mappings in
a cyclic fashion. Our embedding method can effectively promote the performance
of cross-modal retrieval, compared to traditional embedding methods.

A unified model for multi-modal matching and classification. We propose
a unified network (MMC-Net) to jointly model multi-modal matching and classifi-
cation. Our approach can suggest that combining the matching and classification
components can help boost each other. In addition, we employ a multi-stage training
algorithm to make the two components compatible.

Two extended deep generative models for image-to-image translation.
As few work investigate the important factors within cycle-consistent generative
networks (CycleGAN), we present two extended models, namely Long CycleGAN
and Nest CycleGAN, and then conduct an extensive and empirical study on the
models. Our work examines the benefits of using more generators and cycles on the
generation quality.

A multi-stage generative model for fashion style transfer. In contrast to
traditional non-parametric approaches, we propose a novel multi-stage generative
network (SwapGAN) to transfer the clothing style in one person image to another
one. The SwapGAN model can be trained end-to-end with three different generators
and one discriminator.

1.4.2 Practical scenarios

In addition to improve the performance of diverse tasks, our research also aims
towards adapting to practical scenarios in real world.

Accurate and efficient image retrieval. Image retrieval is a widely used ap-
plication in ours lives. In some cases, the retrieval speed is the same important as
the accuracy. Our Deeplndex framework (in Chapter 4) can take into account both
accuracy and efficiency in image retrieval. Specifically, deep visual features can help
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improve the retrieval accuracy, and the inverted index scheme is more efficient than
the nearest neighboring search.

Joint multi-modal matching and classification. In practice, we may need to
search for similar samples as the query sample, and know its class label as well.
Motivated by this need, we develop MMC-Net (in Chapter 7) to unify both multi-
modal matching and classification in one model, unlike prior approaches which focus
on either matching or classification. Our work shows a simple and efficient way to
fulfill the two tasks simultaneously.

Person-to-person fashion style transfer. Prior work performs the clothes-to-
person style transfer, however, in practice stand-alone and flat clothing images are
not always available. Instead, our work (in Chapter 8) aims to address a more
practical case, in which the goal is to swap the clothes between two person images
directly. This task becomes more challenging due to varying human poses. Our
SwapGAN is proposed to solve this practical problem by cascading three generators
in a multi-stage manner.

1.4.3 Empirical analysis

Furthermore, this thesis provides numerous experiments and in-depth analysis, which
can help motivate further research on the three research themes.

Fusion that matters deep neural networks. Instead of deepening neural net-
works with more layers; our CFN model (in Chapter 2) is an efficient alternative
to improving the capabilities of CNNs while maintaining the model complexity. In
the experiments, we provide a detailed analysis to verify the effectiveness of CFN.
In addition, we compare CFN with other deep models and offer an extensive dis-
cussion about them. Moreover, our CFN can be adaptive to different computer
vision tasks like image classification, semantic segmentation, edge detection, etc. In
a nutshell, our work suggests that deep fusion networks can efficiently promote the
feature representational abilities of plain CNNs.

Cycle-consistency that matters visual-textual embeddings. Our proposed
cycle-consistent embedding approach (in Chapter 6) is an integration of three em-
beddings, namely dual embedding, reconstructed embedding and latent embedding.
Our approach can model both inter-modal correlations and intra-modal consistency
while matching visual and textual representations. In the experiments, we conduct
a comparable analysis between our approach and existing embedding approaches.
The superiority of our approach over others can increase the awareness of using
cycle-consistency for multi-modal research tasks.

Two factors that matter cycle-consistent adversarial networks. To provide
deep insights into CycleGAN, we developed two extended models (in Chapter 8)
for examining two factors: the number of generators and the number of cycles.
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The qualitative and quantitative results for a range of translation tasks verify the
benefits of using more generators and cycles, compared to the vanilla CycleGAN.
The results in our study can help ease future research based on cycle-consistent
generative networks.
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Chapter 2

Convolutional Fusion Networks for
Image Classification

In the previous chapter we have introduced the background and research questions
for this thesis. Starting with this chapter, we begin to answer the research questions
with our proposed approaches. In this chapter, we address how we can develop a
simple and efficient deep fusion network upon a plain CNN (RQ 1).

Despite recent advances in deep fusion networks, they still have limitations due to
expensive parameters and weak fusion modules. To address this issue, we propose
a novel convolutional fusion network (CEFN) to integrate multi-level deep features
and fuse a richer visual representation. Specifically, CFN uses 1x1 convolutional
layers and global average pooling to generate side branches with adding only a few
parameters, and employs a locally-connected fusion module, which can learn adap-
tive weights for different side branches and form a better fused feature. Moreover,
we propose fully convolutional fusion networks (FCFNs) that are an extension of
CFNs for pixel-level classification, including semantic segmentation and edge de-
tection. Our experiments demonstrate that our approach can achieve consistent
performance improvements for diverse tasks.

Keywords

Image classification, Convolutional neural networks, Fully convolutional networks,
Adaptive fusion

19



2. CONVOLUTIONAL FUSION NETWORKS FOR IMAGE CLASSIFICATION

2.1 Introduction

A significant progress on convolutional neural networks is increasing their depth to
learn more powerful visual representations. In particular, the depth has increased
from several layers (e.g. LeNet [3] and Alexnet [4]) to several tens of layers (e.g.
VGGnet [7] and GooglLeNet [8]). Nevertheless, training a very deep network is
extremely difficult because of vanishing gradients and degradation. To overcome
this challenge, recent work in both Highway networks [9] and ResNet [10] proposes
to add shortcut connections between neighboring convolutional layers, which are able
to alleviate the vanishing gradient issue and ease the training stage. Nevertheless,
it is non-tractable to optimize very deep neural networks due to their large amount
of parameters and the expensive cost of physical memory.

An alternative is to explore integration with the existing intermediate layers in a deep
neural network, rather than deepening the network with new layers. Commonly, the
topmost activations in deep networks (i.e. fully-connected layers) serve as discrimi-
native visual representations to describe the image content. However, it is important
to note that intermediate activations (i.e. convolutional layers) can also provide
informative and complementary clues about images, including low-level textures,
boundaries, and local parts. Therefore, researchers [I5] 16, 25] have given greater
attention to intermediate layers, and evaluated their contributions regarding image
recognition performance. In addition, a large number of approaches [16], 23], 24], 121]
have leveraged sophisticated encoding schemes (e.g. BoW, VLAD and Fisher Vec-
tor) to further encode intermediate feature activations. These approaches extract
deep features from off-the-shelf CNNs without training new networks.

Moreover, extensive research efforts [17, 18| 26, BT] have turned to explicitly train-
ing deep fusion networks where multi-level intermediate layers are fused together
by adding new side branches. As a result, the deep fused representation allows
us to integrate the strengths of individual layers and generate superior prediction.
Although these deep fusion networks have achieved promising performance, they
may spend a large number of additional parameters required for generating the side
branches [I8]. In addition, their fusion modules (e.g. sum pooling) do not fully
consider the importance of different side branches. Motivated by this problem, this
chapter focuses on the research question RQ 1: How can we develop a simple
and efficient deep fusion network upon a plain CNN?

To address this question, we propose a convolutional fusion networks (CFN), which
is a new fusion architecture to integrate intermediate layers with adaptive weights.
To be specific, CFN mainly consists of three key components: (1) Efficient side
outputs: we use efficient 1x1 convolution and global average pooling [122] to gener-
ate side branches from intermediate layers and as a result it has a small number of
additional parameters. (2) Early fusion and late prediction: it can not only provide
a richer representation, but also reduce the number of parameters, compared to the
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Figure 2.1: Mlustration of features activations of the last convolutional layer in (a)
CNN and (b) CFN. The CIFAR-10 images are used here. Compared with CNN, CFN
can learn complementary clues in the side branches to the full depth main branch. For
example, the side branch 1 mainly learns the boundaries or shapes around objects, and
the side branch 2 focuses on some semantic “parts” that fire strong near the objects.

“early prediction and late fusion” strategy [I8]. (3) Locally-connected fusion: we
propose to adapt a locally-connected layer to act as a fusion module. It allows us to
learn adaptive weights for different side outputs and generate a better fused repre-
sentation. Figure visually compares the feature activations learned in CNN and
CFN, respectively. It can be seen that aggregating multi-level intermediate layers is

essential to integrate their individual information.
The contributions of this chapter are as follows:

e We propose a new fusion architecture (CFN) which can provide promising
insights towards how to efficiently exploit and fuse multi-level features in deep
neural networks. In particular, to the best of our knowledge, this is the first

attempt to use a locally-connected layer as a fusion module.

e We introduce CFN models to address the image-level classification task. The
results on the CIFAR and ImageNet datasets demonstrate that CFN can
achieve promising improvements over the plain CNN. In addition, we transfer
the trained CFN model to three new tasks, including scene recognition, fine-
grained recognition and image retrieval. By using the transferred model, we

can achieve consistent performance improvements on these tasks.

e We further develop fully convolutional fusion networks (FCFN), which are able
to perform pixel-level classification tasks including semantic segmentation and
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edge detection. As a result, FCFN, as a fully convolutional extension, reveals
the strong generalization capabilities of CFN for diverse tasks.

The rest of this chapter is organized as follows. Section [2.2|introduces the details of
constructing the proposed CFN for image-level classification problem. In addition,
we compare and highlight the differences of CFN from other deep models. The
FCEN counterpart for pixel-level classification is described in Section Section
presents experimental results that demonstrate the performance of CEFN and FCFN
on various visual recognition tasks. Finally, Section concludes this work and
point out two future directions.

2.2 Convolutional Fusion Networks

In this section, we introduce the details of building CFN on top of a plain CNN
model, and formulate its training procedure. In addition, we compare its differences
from other deep models.

2.2.1 Network architecture

First, we show a general architecture of a plain CNN model. As illustrated in Fig-
ure it mainly comprises of successive convolutional layers and pooling layers.
In addition, a 1x1 convolutional layer followed by global average pooling is used
because of its high efficiency [8, 10, 122]. Based on this plain CNN, we can de-
velop the proposed CFN by adding new side branches from intermediate layers and
aggregating them in a locally-connected fusion module. Figure illustrates the
architecture of the proposed CFN. Our CFN is built on top of a plain CNN. To be
specific, CFN mainly consists of the following three key components.

(1) Efficient side outputs

Prior work often added new fully-connected (FC) layers in the side branch [I§],
but this strategy may severely increase the number of parameters. Instead, CFN is
able to efficiently create the side branches from the intermediate layers by adding
only a few parameters. First, the side branches are built from the pooling layers
(Figure . Each side branch has a 1x1 convolutional and global average pooling
as well. All 1x1 convolutional layers must have the same number of channels so that
they can be integrated together. Then, global average pooling (GAP) is performed
over the 1x1 convolutional maps so as to obtain a one-dimensional feature vector,
called the GAP feature. As a result, the side branches have the similar top layers
(1x1 Conv and GAP) to the full-depth main branch. One difference is that the 1x1
Conv in the main branch follows a convolutional layer but not a pooling layer. For
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Figure 2.2: The general pipeline of a plain CNN model. Note that one 1x1 convo-
lutional layer and global average pooling are used on the top layers.
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Figure 2.3: The general pipeline of the proposed CFN. First, the side branches start
from the pooling layers and consist of a 1x1 convolution layer and global average
pooling. Then, all side outputs are stacked together. A locally-connected layer is used
to learn adaptive weights for the side outputs (drawn in different color). Finally, the
fused feature is fed to the FC layer to make a better prediction.

concise formulation, we consider the full-depth main branch as another side branch.

Assume that there are S side branches in total and the last side branch (i.e. S-th)
indicates the main branch. We notate hfj) as the input of the 1x1 convolution in
the s-th side branch, where s = 1,2,...,5 and (i,7) is the spatial location in the
feature maps. As the 1x1 convolution has K channels, its output associated with
the k-th kernel is denoted as fi(j?k, where k = 1,..., K. Let H® and W be the
height and width of features maps derived from the s-th 1x1 convolution. Then, the
global average pooling performed over the feature map fés) is calculated by

HG) wis)

(s) _ 1 (s)
e = gOW®O Z Z figo (2.1)

i=1 j=1

Where gl(f) is the k-th element in the s-th GAP feature vector. We notate ¢(®) =
[g§s), o ,g}?)], a 1x K dimensional vector, as the GAP feature from the s-th side

branch. g% represents the GAP feature from the full-depth main branch.
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Figure 2.4: Comparison between EPLF and EFLP. (a) The schematic pipeline of
EPLF strategy; (b) The schematic pipeline of EFLP strategy.

(2) Early fusion and late prediction

Considering how to incorporate the side branches, some work [I8, 26] BI] used an
“early prediction and late fusion” (EPLF) strategy. In Figure EPLF computes
a prediction from the GAP feature using a fully-connected layer and then fuses side
predictions together to make the final prediction. In contrast to EPLF [18], in which
a couple of FC layers are added, we present another strategy called “early fusion and
late prediction” (EFLP). EFLP first fuses the GAP features from the side branches
and obtains a fused feature. Then, a fully-connected layer following the fused feature
is used to estimate the final prediction. As seen in Figure EFLP has fewer
parameters due to using only one fully-connected layer. Assume that each fully-
connected layer has C' units that correspond to the number of object categories. The
fusion module has Wy,, parameters. Quantitatively, we can compare the number
of parameters between EFLP and EPLF by

WgrrLp = K(C + 1) + quse < Wgprr = SK(C + 1) + quse. (2.2)

Hence, we make use of EFLP to fuse intermediate features earlier due to its efficiency.
We observe that EFLP can achieve the same accuracy as EPLF, though EPLF
contains more parameters. More importantly, the fused feature in EFLP is able to
act as a richer image representation, however, EPLF cannot generate such a rich
fused representation. In the experiments, we transfer the fused feature in EFLP to
diverse vision tasks and show its promising generalization ability.

(3) Locally-connected fusion

Another significant component in CFN is that it employs a locally-connected (LC)
layer to fuse the side branches. Owing to its no-sharing filters over spatial dimen-
sions, LC layer can learn different weights in each local field [123]. For example,
DeepFace [124] used the LC filters to learn more discriminative face representations
instead of spatially-sharing convolutional filters. Differently, our aim is to adapt a
LC layer to learn adaptive weights for different side branches, and generate a better
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Figure 2.5: Comparison of three fusion modules. (a) No weights: Sum-pooling fu-
sion has no weights; (b) Sharing weights: Convolution fusion learns sharing weights
over spatial dimensions, as drawn in the same color; (c¢) No-sharing weights: Locally-
connected fusion learns no-sharing weights over spatial dimensions, as drawn in differ-
ent colors. To learn element-wise weights, we use the 1x1 kernel size.

fused feature. To the best of our knowledge, this is the first attempt to apply a
locally-connected layer to a fusion module.

At first, we stack all GAP features together from ¢ to ¢*®), and form a layer G
with size of 1xK x S, see Figure 2.3 For example, the s-th feature map of G is
g®). Then, one LC layer which has K of no-sharing filters is convolved over G. Each
filter has 1x1x.S kernel size. Since LC is able to learn adaptive weights for different
elements in the GAP features which measure the importance of the side branches, it
is able to produce a better fused feature. Finally, the fused feature convolved by LC
also has a 1x K shape, denoted as ¢g\f). The i-th element in ¢/) is expressed:

S
9" =0 (Z WP g + bg”) : (2:3)
j=1

where ¢ = 1,2,..., K; o indicates the ReLLU activation function. Wz(f) and bz(»f)
represent the weights and bias for fusing the i-th elements of GAP features from
different side branches. The number of parameters in the LC fusion is K x (S + 1).
Using these additional parameters gives the benefit of adaptive fusion while it does

not require any manual tuning.

To clearly demonstrate the advantage of the LC fusion module, Figure [2.5|compares
LC fusion with other fusion methods. In Figure the sum-pooling fusion simply
sums up the side outputs together without learning any weights, whereas this way
treats each side branch equally and fails to consider their different importance. In
Figure 2.5D] the convolutional fusion can learn only one sharing filter over all spatial
dimensions (as drawn with the same blue color). In contrast, LC enables the fusion
module to learn independent weights over each local field (i.e. size 1x1xS) (drawn
in different colors in Figure . Although LC fusion consumes more parameters
than the sum-pooling fusion (no weights) and the convolutional fusion (S + 1),
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these parameters are a negligible proportion of the total number of the network
parameters.

2.2.2 Training procedure

CFN has a similar training procedure as a standard CNN, including forward pass
and backward propagation. Assume a training dataset which contains N images:
{2@ 4@} where 21 is the i-th input image and y® is its ground-truth class label.
W indicates the set of all parameters learned in the CEN (including the LC fusion
weights). The full objective is to minimize the total loss cost

N
) 1 i i
sy 3 £(F(030), o), (2.4)
i1

where f(2; W) indicates the predicted class of (. We use the softmax loss func-
tion to compute the cost £. To minimize the loss cost, the partial derivatives of
the loss cost with respect to any weight are recursively computed by the chain rule
during the backward propagation [3]. Since the main parts in the CFN model are
the side branches, we will induce the computations of their partial derivatives. We
consider each image independently for notational simplicity.

First, we compute the gradient of the loss cost with respect to the outputs of the
side branches. Taking the s-th side branch as an example, we compute the gradient
of £ with respect to the side output ¢(®

oL oL g
99® — agh g7 T L2, 8. (2:5)

Second, we formulate the gradient of £ with respect to the inputs of the side
branches. Let a'® be the input of the s-th side branch. As depicted in Figure [2 .
a®®) corresponds to the pooling layer. However, the input of the main branch, de-
noted as a'®), refers to the last convolutional layer (i.e. conv S). It is important to
note that the gradient of a® depends on several side branches. To be more specific,
the gradient of a(!) is influenced by S branches; the gradient of a(? needs to consider
the gradient from the 2-nd to S-th branch; but the gradient of a'® is updated by
only the main branch. Then, the gradient of £ with respect to the side input a
can be computed via

or 9y
aa<s Z FOMEROE (2:6)

where i indexes the related branch that contributes to the gradient of a®). It needs
to sum up the gradients from several side branches. As is common practice, we
employ a standard stochastic gradient descent (SGD) algorithm with mini-batch [4]
to train the entire CFN model.
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2.2.3 Comparisons with other models

To get more insights into CFN, we compare it with other deep models.

Comparison with CNN. Typically, a plain CNN only estimates a final prediction
based on the topmost layer. As a result, the effects of intermediate layers towards
the prediction are implicit and indirect. In contrast, CFN connects the intermedi-
ate layers using additional side branches, and fuses them to jointly make the final
predictions. In this way, CFN allows us to take advantage of intermediate layers
explicitly and directly. This advantage explains why CFN is able to achieve more
accurate prediction than a plain CNN.

Comparison with DSN. Deeply supervised nets (DSNs) [125] are the first model
to add extra supervision to intermediate layers for earlier guidance. As a result,
it can improve the directness and transparency of learning a deep neural network.
Therefore, we can view DSN as a “loss fusion” model. Instead, CEFN still uses
one supervision towards the final prediction derived from the fused representation,
however it is able to increase the effects of the loss cost on the intermediate layers
without adding more supervision signals. In a word, we clarify that CFN is a
“feature fusion” model. It is important to note that there is no technical conflict
between CFN and DSN, so combining these two models together is a promising
research direction.

Comparison with ResNet. ResNet [I0] addresses the vanishing gradient prob-
lem by adding densely shortcut connections. CFN has three main differences with
ResNet: (1) The side branches in CEN are not shortcut connections. They start
from pooling layers and merge into a fusion module together. (2) In contrast to
adding a “linear” connection in a residual block, we still use the non-linear ReLLU in
the side branches of CFN. (3) CFN employs a sophisticated fusion module to gen-
erate a richer feature, rather than using the simple summation employed in ResNet.
As mentioned in the ResNet work, when the network is not overly deep, for example
having 11 or 18 layers, ResNet may show few improvements over a plain CNN. How-
ever, CFN can obtain some considerable gains over CNN. Hence, CFN can serve as
an alternative for improving the discriminative capabilities of not-very-deep models,
instead of purely increasing the depth. ResNet tells us that “depth that matters”,
but CEN concludes to “fusion that matters”.

2.3 Fully Convolutional Fusion Networks

Deep neural networks allow to bridge the gap between different vision tasks. For
instance, CNN models for image-level classification can be well-adapted to other
pixel-level classification tasks which aim to generate a per-pixel prediction in im-
ages. As a common practice, it is essential to cast traditional convolutional neural
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networks to their corresponding fully convolutional networks (FCNs) by replacing
the fully-connected layers with more convolutional layers. FCNs are able to infer
any size of images without requiring specific input dimensionality. In this section,
we introduce fully convolutional fusion networks (FCFN), which are used for two
representative pixel-level classification tasks: semantic segmentation and edge de-
tection. Similar to CFN, FCFN models are able to learn better pixel predictions
based on the locally-connected fusion module.

2.3.1 Semantic segmentation

Semantic segmentation intends to predict a category label for spatial pixels in an
image. FCN-8s [20] is a milestone model in the development of employing CNNs for
semantic segmentation, and yields significant improvements in comparison with non-
deep-learning approaches. First, FCN-8s is fine-tuned from the VGG-16 model [7]
pre-trained on the ImageNet dataset [5]. Then, it adds two side branches to the
full-depth main branch, which allow to integrate both coarse-level and fine-level
pixel predictions to improve the semantic segmentation performance. Particularly,
FCN-8s uses a simple sum-pooling to fuse the multi-level predictions. In contrast to
FCN-8s, we extend the proposed CFN model and build the FCFN counterpart for
generating fused pixel features. Moreover, we use two locally-connected layers in a

two-stage fusion manner.

Recall that the locally-connected (LC) fusion module is able to learn independent
weights for each spatial pixel in an image. We need to extend its formulations
to be suitable for the LC fusion module in FCFN. In the first fusion module, two
branches involving K channels of feature maps are taken as input. Note that the top
layers are upsampled 2 times to retain the same spatial dimensions as the bottom
layers. We consider the adaptive weights of each channel separately and reshape each
two-dimensional feature map to a one-dimensional feature vector. For example, g,(fz)
indicates the feature activation of the ¢-th pixel of the k-th channel in the first branch,
and g,(fz) is the corresponding activation in the second branch, where: =1,... HxW

and k =1,..., K. Therefore, the fused pixel feature is given by

2
oW (z Wéﬁ?j~g£f3+béf?>, o)

J=1

The number of parameters in this fusion module is H x W x C' x 2, where C' is the
number of object categories. Moreover, the second fusion module integrates coarser
feature maps with the output of the first fusion module. Let g;ﬁ) be the activation
in the coarser layer. For notational simplicity, the activation g,i{? from the output

of the first fusion module, is renamed to g;g(f) The computation in the second LC
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fusion is )
ol =0 (Z Wil o + b,f,{)) , (2.8)

j=1
where g;:({ ) represents the final fused feature by using the two-stage fusion. Con-

sidering the computation of the loss cost with respect to the ground-truth, we still
employ the softmax loss function and accumulate the loss of all pixels together.

HxW K

L=-Y"> h(y =k)logp,, (2.9)

=1 k=1

where y; is the ground-truth pixel label. h(y; = k) is equal to 1 when y; = k, and 0
otherwise. The predicted pixel probability is normalized with the softmax function,
exp(g;f,f )
S exp(g, )
but it is straightforward to extend it to a mini-batch size of images. Likewise, we

use the SGD with mini-batch to train the entire FCFN model.

where pi; = . As above, we give the loss computation for one image,

2.3.2 [Edge detection

The problem of edge detection is to extract semantically meaningful edges in im-
ages, Typically, edge detection acts as a low-level task, but has significant contri-
butions to other high-level visual tasks, such as object detection and image seg-
mentation. Driven by the increasing developments of deep learning, edge features
have moved from carefully-engineered descriptors such as Canny [109], gPb [126]
and Structured Edges (SE) [127]), to discriminative deep features [29, B30, BI]. In
particular, HED [31] is the first work to use FCNs for end-to-end edge detection,
and leads to state-of-the-art performance on well-known benchmarks. HED inte-
grates the strengths of efficient end-to-end FCNs [26] and additional deep supervi-
sion [125].

In contrast to HED that uses a convolutional fusion module, our FCFEN fuses five
intermediate side branches with a locally-connected layer. To be specific, one side
branch generates a feature map where the activations measure the probabilities of
pixels being edges. Five feature maps from side branches stack together, and are
reshaped from (H,W,5) to (H x W,5). We compute the fused prediction g(f)

%

5
g9 =0 (Z Wi - g + bgf)> : (2.10)

j=1
where ¢ = 1,..., H x W. The sigmoid cross-entropy loss function is
HxW
Efuse - - Z [ﬁz loggz(f) + (1 - 62) log(l - gz(f))i| ) (211)
i=1
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where the parameter [3; regulates the importance of edge and non-edge pixels, as
mentioned in [3I]. It is important to note that we also impose the intermediate
supervision on the side branches similar to [31], [125], to discard the negative edges

in the earlier intermediate layers. The loss cost in the k-th side branch (i.e. k =

1,...,5) is represented as follows
HxW
£8. == 3 [B1ogg® + (1 - 5 1og(1 - o)) (2.12)
i=1
where gfk) accounts for the predicted probability of the i-th pixel being an edge

point. Finally, the overall loss cost in FCFN integrates a fused loss term and five

intermediate loss terms together:
L=Lpuset+» LY. (2.13)
k=1

This edge detection network is also fine-tuned end-to-end from the VGG-16 model
and updated with the SGD algorithm with mini-batch.

2.4 Experiments

This experimental section evaluates the performance of the proposed CFN for image-
level classification and FCFN for pixel-level classification. First, we train the CFN
models on the datasets: CIFAR-10/100 [128] and ImageNet 2012 [5]. Then, we
transfer the trained CFN model to three new tasks, including scene recognition,
fine-grained recognition and image retrieval. Moreover, we train the specific FCFN
models for semantic segmentation on the PASCAL dataset [129)], and edge detection
on the BSDS dataset [120], respectively. All experiments were conducted using the
Caffe library [130] on a NVIDIA TITAN X card with 12 GB memory.

2.4.1 Image classification on CIFAR

Both CIFAR-10 [128] and CIFAR-100 [128] consist of 50,000 training images and
10,000 testing images. They define 10 and 100 object categories, respectively. We
preprocessed their RGB images by global contrast normalization [131], and randomly
shuffled the training set. We measure the classification performance by computing

the error rates.
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Table 2.1: Two plain CNN models built for the classification experiments on the
CIFAR-10/100 dataset.

CNN-A | CNN-B
Input 32 x 32 RGB image
5 X 5 x 64 conv, ReLLU 3 x 3 x 96 conv, ReLLU

3 X 3 x 96 conv, ReLU
3 X 3 max-pooling, stride 2. Dropout ratio 0.5

5 X 5 x 64 conv, ReLLU 3 x 3 x 192 conv, ReLLU
3 x 3 x 192 conv, ReLLU

3 x 3 average-pooling, stride 2. Dropout ratio 0.5
5 X 5 x 64 conv, ReLLU 3 x 3 x 192 conv, ReLLU
3 x 3 x 192 conv, ReLLU

1 x 1 x 192 conv, ReLU
8 x 8 global average pooling. Dropout ratio 0.5
10 or 100-way fully-connected layer
Softmax classifier

Network architecture and training details

We employ two plain CNNs models to build their CFN counterparts. Table
describes the two CNNs used for CIFAR-10/100, called CNN-A and CNN-B. (1)
CNN-A is a shallow network similar to the Caffe-Quick model [I30]. It has three
5x5 convolutions and a 1x1 convolution. The global average pooling is performed
over the 1x1 convolutional maps. Finally, a fully-connected layer with 10 or 100
units is used to predict object categories; (2) CNN-B replaces each 5x5 convolutional
layer in CNN-A with two 3x 3 layers, as suggested in VGGnet [7]. In addition, CNN-
B utilizes more feature channels than CNN-A. Note that, when training the CNN-B
model on the CIFAR-100 dataset, the first and second convolutional layer use 192
channels instead of 96 channels. Correspondingly, the CFN-A and CFN-B models
are built upon CNN-A and CNN-B respectively, by constructing two additional side
branches after the pooling layers, as depicted in Figure 2.6(a) and (b).

We use the same hyper-parameters to train CNN and CFN, for example, a weight
decay of 0.0001, a momentum of 0.9, and a mini-batch size of 100. The learning
rate is initialized with 0.1 and is divided by 10 after 10 x 10* iterations. The whole
training will be terminated after 12 x 10* iterations. As for CFN, the initialized
weights in the LC fusion module are set to 0.333, as there are three side branches
in total (including the full-depth main branch).

Results and discussion

Table 2.2 shows the results on CIFAR-10/100 test sets. We can analyze the results
considering the following three aspects:
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Figure 2.6: Illustration of the proposed CFN models built for the CIFAR dataset.
For the convolutional layers (denoted as C'), the right lower number indicates the kernel
size; the right upper numbers indicate the number of channels. For the pooling layers
(denoted as P), the right lower numbers indicate the window size; the right upper
numbers equal the size of strides.

Table 2.2: Error rates (%) of image classification on the CIFAR-10/100 test set
(without data augmentation). Better results are in bold face. CFNs can outperform
the baseline CNNs by adding only a few parameters.

Model #Parameters CIFAR-10 CIFAR-100
CNN-A 0.224M (basic) 15.57 40.62
CNN-Sum-A | 0.224M (basic) 4+ 0.025M (side) + 0 (fusion) 15.33 40.32
CNN-Conv-A | 0.224M (basic) + 0.025M (side) + 4 (fusion) 15.19 40.15
CFN-A 0.224M (basic) + 0.025M (side) + 768 (fusion) 14.73 39.54
CNN-B 1.287M (basic) 9.28 31.89
CNN-Sum-B 1.287M + 0.074M (side) + 0 (fusion) 8.84 31.42
CNN-Conv-B 1.287M + 0.074M (side) + 4 (fusion) 8.68 31.16
CFN-B 1.287M + 0.074M (side) + 768 (fusion) 8.27 30.68

(1) CFN achieves ~1% improvements on the classification performance compared to
the plain CNNs (both CNN-A and CNN-B). For example, on the CIFAR-10 dataset,
CFN-A and CFN-B obtain 14.73 and 8.27 error rates that are ~1% lower than the
results of CNN-A and CNN-B, that are 15.57 and 9.28, respectively. The comparison
between CFN and CNN demonstrates the effectiveness of fusing multi-level inter-
mediate layers. Additionally, CFN is able to improve the expressive capabilities of
deep neural networks for learning superior visual representations.

(2) In order to analyze the advantage of using the L.C fusion, we also implement the
existing sum-pooling fusion and convolutional fusion methods, denoted as CNN-
Sum and CNN-Conv. By comparing CFN with CNN-Sum and CNN-Conv, we
can observe that the LC fusion outperforms the other two fusion methods by a
considerable margin. Hence, learning adaptive weights is essential to generate a
better fused feature.

(3) Moreover, we compute the number of parameters in the models to estimate their
efficiency. In the second column of Table the additional number of parameters
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Figure 2.7: Comparison between CEN and CNN on the CIFAR-10 dataset. (a) The
training loss when training CFN and CNN. (b) The test error rates along with the
increasing iterations.
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Figure 2.8: Tllustration of adaptive weights of the side branches learned in the LC
fusion. All side branches are initialized with the same weights before training. During
the training stage, we can observe that the top branches have larger weights than the
bottom branches.

for extra side branches and LC fusion are significantly smaller than the number of
basic parameters in the models. Although the LC fusion consumes more parameters
than the sum-pooling fusion and convolutional fusion, these parameters result in a
minimal increase of the network complexity. In addition, we compare the training
time between CNN and CFN. For example on the CIFAR-10 dataset, CNN-B and
CFN-B train for approximately 1.67 and 2.08 hours, respectively.

Figure shows the training loss and the test accuracy while training CFN and
CNN. It can be seen that, both CFN-A and CFN-B models have less training loss
and lower test error rates than the corresponding CNN models. In addition, Fig-
ure presents the adaptive weights learned in the L.C fusion of CFN-B. Recall
that LC learns 192 filters (each filter is of size 1x3) and each filter has 1x3 weights.
We compute the average weight in each branch, and estimate its fluctuation. By
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Table 2.3: Test error rates on CIFAR-10/100 to compare CFN-B with other deep
models. A superscripted * indicates the use of the standard data augmentation [125].

Method Layers | CIFAR-10 CIFAR-10* CIFAR-100
Maxout Networks [131] 5 11.68% 9.38% 38.57%
NIN [122] 9 10.41% 8.81% 35.68%
DSN [125] 9 9.69% 7.97% 34.54%
ALL-CNN [132] 9 9.08% 7.25% 33.71%
RCNN-160 [133] 6 8.69% 7.09% 31.75%
NIN + SReLU [134] 9 8.41% 6.98% 31.10%
CNN (baseline) 8 0.28% 7.34% 31.89%
CFN (ours) 8 8.27% 6.77% 30.68%

comparison, the side branch 3 (a.k.a. the full-depth main branch) plays a core role,
while the other two side branches are complementary to the main branch. After a
large amount of training iterations, the adaptive weights tend to be stable. More-
over, in Figure [2.1, we visualize and compare the learned feature maps in CNN-B
and CFN-B. We select ten images from the CIFAR-10 dataset. The feature maps
in the 1x1 convolutional layer of three side branches are extracted. We rank the
feature maps by averaging spatial activations and select the top-4 maps to visualize.
We can observe that CEFN can learn complementary clues in the side branches, while
retaining the necessary information in the main branch.

Comparison with other approaches.

Table reports recent results on CIFAR datasets. For fair comparisons, we com-
pare CFN-B with other not-very-deep models. Notably, “not-very-deep” is a relative
concept. We use it to emphasize the differences between the models in Table
and other ResNet-like models [10]. Our method (CEFN) and the compared methods
develop less than 10-layer models to evaluate their effectiveness. These models cer-
tainly belong to deep neural networks, however, they are not very deep, compared to
the ResNets that have more than hundreds of layers built on datasets like CIFAR-
10/100. In addition, we report the depth of these models for a clear comparison
and analysis. In summary, CFN obtains comparative results and outperforms these
compared methods. In this work, we aim to investigate the potential of integrat-
ing multiple intermediate layers, and these results verify the effectiveness of CFN.
Building CEN on top of a much deeper model (e.g. ResNet) is beyond the focus of
our work, but it is suggestive for future research.

2.4.2 Image classification on ImageNet

The ImageNet 2012 dataset [5] consists of about 1.2 million training images, 50,000
validation images and 100,000 test images.
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Figure 2.9: Overview of the CFN-11 architecture built on top of CNN-11. Three

additional side branches are generated from the pooling layers, and fused together
with the full-depth main branch (i.e. the last side branch).
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Figure 2.10: Overview of the DSN-11 architecture built on top of CNN-11. DSN-11
creates three side branches that can provide intermediate predictions for the input
image. The ground-truth label is also used to guide these intermediate predictions, to
enhance the discriminative abilities of hidden layers.
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Figure 2.11: Overview of the ResNet-11 architecture built on top of CNN-11. There
are four residual connections in total. Due to inconsistent numbers of channels, 1x1
convolution layers are needed in the residual connections, but they are not followed by
ReLU to make sure linear transformation.

Network architecture and training details

We developed a basic 11-layer plain CNN (called CNN-11) where the channels of
convolutional layers range from 64 to 1024. This baseline model is inspired by
prior widely-used deep models [7, [8, T0]. Based on this CNN, we built its CFN
counterpart (called CFN-11) as illustrated in Figure Notably, we can create
three extra side branches from the intermediate pooling layers (excluding the first
pooling layer).

The training setup in our implementation follows the empirical pract