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1. INTRODUCTION

1.1 Motivation

In 2018, the number of mobile phone users will reach about 4.9 billion. Assuming an

average of 5 photos taken per day using the built-in cameras would result in about

9 trillion photos annually. In addition, these photos are frequently uploaded, shared

and retrieved in social networks and thus have become an important part of our daily

lives. However, it is challenging to mine semantically meaningful visual information

from such a huge amount of data. Thanks to the major advances of deep neural

networks since 2012, they have been a powerful tool to help analyze visual content

for a variety of tasks and have triggered a massive amount of research in content

based multimedia analysis and computer vision. This thesis aims towards developing

new paradigms and architectures in deep learning to address three common and

important research themes: classi�cation, retrieval and synthesis. As shown in

Figure 1.1, we visibly depicts the three themes.

� Classi�cation is the most fundamental task in the �eld of computer vision.

It aims to correctly predict the class label for a given image, for example, we

can use a classi�cation model to classify the input horse image. In addition to

image-level classi�cation, we also study the tasks of pixel-level classi�cation,

including semantic segmentation and edge detection. (Chapters 2 and 3)

� Retrieval aims to e�ciently search for similar samples from the database to

the query. For instance, we develop a retrieval model to retrieve similar horse

images. Besides, we also consider the cross-modal retrieval problem between

images and texts, and do some work to bridge the modality gap between vision

and language. (Chapters 4, 5, 6 and 7)

� Synthesis is able to generate new image samples that never existed in the

image database. For example, by training a synthesis model, we can translate

a horse image to a zebra image. In addition, we can synthesize diverse zebra

images based on di�erent branches of the network. In this thesis, we mainly

focus on two synthesis applications: image-to-image translation and fashion

style transfer. (Chapter 8)

In the next sections, we �rst introduce the background and developments related to

the three themes in recent years. Then we present the thesis outline, our research

questions and main contributions.

1.2 Background and Related Work

Deep learning [1, 2] has been one of the pillars of numerous arti�cial intelligence

research �elds, such as computer vision, machine learning and natural language

2
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Classification

Theme

Input Image

Synthesis

Theme

Retrieval

Theme

Horse

Segmentation Edge detectionClass label

Similar horse images in the database

Horse-to-zebra translation

Figure 1.1: Conceptual illustration of the three research themes in this thesis, in-
cluding classi�cation, retrieval and synthesis.

processing. By distilling high-level semantic information with deep network archi-

tectures, deep learning approaches can help narrow the gap between visual represen-

tations and human-level vision. In recent years, deep learning has been extensively

studied in the �eld of computer vision to help tackle many challenging tasks, such

as image classi�cation, image retrieval and image synthesis.

1.2.1 Classi�cation

In recent decades, exploiting and developing convolutional neural networks (CNNs) [3]

has been a leading and promising trend in computer vision community. CNNs can

explore high-level visual concepts in images by employing deep architectures com-

posed of multiple neural layers. In 2012, Krizhevsky et al. [4] proposed a new

CNN model named AlexNet for generic image classi�cation, which has been a mile-

stone in the developments of CNNs. Its success in the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) competitions [5] motivates a huge amount of work

leveraging CNNs to solve various vision tasks. According to the empirical observa-

tions in [6], CNNs based approaches can achieve new state-of-the-art performance

for di�erent recognition tasks by �ne-tuning the ImageNet models on the target

datasets. We summarize the related work on classi�cation from the following four

aspects.

Increasing the depth

A dominant line of research on CNNs is to increase the network depth to learn more

discriminative representations (Figure 1.2(a)). For instance, the depth has increased

3
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Layer 1

Layer 2

Layer N

…

Layer

Layer

…

M
o

re
 L

ay
er

s

Prediction

Layer 1

Layer 2

Layer N

…

Prediction

Fusion Module

Layer 1

Layer 2

Layer N

…

Prediction

Feature Encoder
(BoW, VLAD, 

Fisher Vector, etc.)

(a) (b) (c) 

Figure 1.2: Illustration of three classi�cation pipelines. (a) increasing the depth with
more new layers. (b) fusing intermediate layers to produce an aggregation feature. (c)
encoding deep features with sophisticated feature encoders.

from several layers (e.g. LeNet [3] and Alexnet [4]) to several tens of layers (e.g.

VGGnet [7] and GoogLeNet [8]). However, training deeper networks becomes more

di�cult because of vanishing gradients and degradation. To overcome this chal-

lenge, Highway networks [9] and ResNet [10] proposed to add shortcut connections

between neighboring layers, which can help alleviate the vanishing gradient issue

and ease the training convergence. Their approaches have promoted the study on

constructing deeper neural networks (e.g. hundreds of layers) and breaking the po-

tential bottleneck that may limit the learning capabilities. Furthermore, extended

studies [11, 12, 13, 14] based on ResNet provided additional insights by delving into

the residual learning mechanism. Nevertheless, it is non-tractable to optimize much

deeper neural networks due to the large amount of network parameters and the

expensive cost of physical memory.

Fusing multiple layers

An alternative to creating shortcuts between adjacent layers is to integrate exist-

ing intermediate layers in a deep neural network to generate a fused feature (Fig-

ure 1.2(b)), rather than deepening the network with additional new layers. Com-

monly, the topmost activations in deep networks (i.e. fully-connected layers) can

act as the most important features to describe the image content. However, it

4



1.2 Background and Related Work

is important to note that intermediate activations (i.e. convolutional layers) can

also provide informative and complementary clues about images, including low-level

boundaries, textures and spatial contexts. Therefore, researchers [15, 16] began

to transfer their attention to intermediate layers, and explored their in�uence on

the classi�cation performance. In contrast to using pre-trained models, extensive

research e�orts [17, 18] turned to training deep fusion networks where multi-level

intermediate layers are fused together by adding new side branches. It is worth

noting that the fused information occurs not just from adjacent layers but from

the earliest layers as well. In the literature, deep fused representations have been

shown to generate better predictions due to integrating the strengths of di�erent

intermediate layers within deep neural network.

Encoding deep features

Although CNNs are able to express more powerful visual features, they have weak

robustness to severe geometrical deformations and spatial contexts. Fortunately,

sophisticated encoding techniques including BoW [19], VLAD [20] and Fisher Vec-

tor [21] have been adopted to address these issues. Motivated by the strengths of

encoding techniques, it is natural to encode deep features to further improve their

discriminatory power (Figure 1.2(c)). To obtain local features from CNN models,

most approaches [22, 23, 24, 25] have examined local patches or region proposals in

one image. The local CNN features are used to construct a visual codebook, based

on which an encoder technique can be used to aggregate them to a deep image

representation. For example, Gong et al. [22] employed image patches at multiple

scales, and then aggregated local patch responses at the �ner scales with the VLAD

method. Yoo et al. [25] utilized multi-scale dense local CNN features to compute

the Fisher Vector kernels.

Pixel-level classi�cation

In addition to image-level classi�cation, CNNs also show strong generalization power

for diverse tasks of pixel-level classi�cation, such as semantic segmentation [26, 27,

28], edge detection [29, 30, 31], depth estimation [32, 33, 34] and saliency detec-

tion [35, 36, 37]. In particular, fully convolutional networks (FCNs) [26] have be-

come a fundamental architecture to perform pixel-level predictions. Speci�cally,

FCNs are recast from the pre-trained CNN counterparts, by replacing the fully-

connected layers with extra convolutional layers while retaining the parameters. In

this way, the size of the input images can be arbitrary and the output can be viewed

as two-dimensional feature maps. In addition, it is bene�cial to extract richer region

features from FCNs, compared to a global representation from CNNs.

5



1. INTRODUCTION

1.2.2 Retrieval

One of the primary aims of image retrieval is to search for similar images (usually

based on pictorial content) to the query from the database. It has become important

to numerous practical scenarios (e.g. Google image search, face recognition, etc.)

and therefore has triggered a massive amount of research activities in both multi-

media and computer vision �elds [19, 38, 39]. Bag-of-Words (BoW) is one of the

most widely-used models in image retrieval systems, where local features, such as

SIFT [40] and color clues [41], are quantized to visual words based on a pre-trained

codebook. Then, similar to document retrieval [19, 39], an inverted index struc-

ture is built with the visual words towards making the retrieval system scalable and

e�cient. However, image retrieval remains challenging in bridging low-level image

representations and high-level semantic concepts.

Image retrieval

To alleviate the above challenge, recent works in the literature have paid attention on

utilizing deep visual features for image retrieval [42, 43, 44]. The work of Wan et al.

[42] suggested that a deep CNN model pre-trained on a large dataset can be trans-

ferred to new content-based image retrieval (CBIR) tasks and �ne-tuning the model

with a similarity metric could further boost the retrieval performance. Babenko et

al. [45] focused on holistic descriptors where the whole image was mapped to a single

deep feature vector. They further designed a simple global image descriptor based

on sum-pooled convolutional features for image retrieval. Zheng et al. [46] proposed

a deep embedding method using deep features as global and regional signatures in-

stead of a Hamming embedding[47]. It is an incorporation of the SIFT descriptor

and CNN features and could achieve promising improvements. Moreover, Zheng et

al. [48] presented a comprehensive review on SIFT and CNN-based methods and

discussed the bene�ts of integrating SIFT and CNN features.

Cross-modal retrieval

Nowadays, multimedia data in various media types (e.g. image, video, text, and

audio) is growing exponentially due to the increasing popularity of the Internet and

social networks. This trend motivates a massive amount of research activities in

multi-modal understanding and reasoning. For example, we can recognize a picture

of a panda after hearing the description �black and white bears� without ever having

seen one. This demonstrates the cross-modal interaction between vision and lan-

guage. These heterogeneous data o�ers us the opportunity to understand the world

better, while giving rise to the challenges of bridging di�erent modalities. Speci�-

cally, the matching problem between images and texts [49, 50, 51, 52, 53, 54] is one of

the most important tasks in multi-modal research. In practice, image-text matching

6



1.2 Background and Related Work

Text Query: An old man holding a camera while 

walking with a small brown dog.

Image Query
(1) a cat snuggled next to luggage on the floor.

(2) a cat laying in front of luggage on the floor.

(3) a white, blue and black cat lays on the floor 

near several suitcases.

(4) a brown cat sleeping in a black piece of 

luggage.

(5) a cat sitting in a black piece of luggage.

(a) Image-to-text retrieval (b) Text-to-image retrieval

Figure 1.3: Example of cross-modal retrieval. (a) Given an image query, related text
samples are retrieved to describe the image. (b) For a text query, it can search for
several image samples from the database. The matched samples are highlighted with
green color.

approaches are usually developed for cross-modal retrieval (Figure 1.3). This task

remains challenging due to the heterogenous representations and the cross-modal

gap between vision and language, which is also a core issue for other multi-modal

applications such as image captioning [55, 56] and visual question answering [57, 58],

zero-shot recognition [59, 60].

With the increasing progress of deep learning, research e�orts have been made

to incorporate Canonical Correlation Analysis (CCA) [61] into deep neural net-

works [49, 50, 51, 62, 63]. However, existing deep CCA models rely on expensive

decorrelation computations, which limit their generalization abilities at large-scale

data. Alternatively, a number of recent approaches [52, 55, 64, 65, 66] address the

task by designing two-branch networks to embed visual and textual features into a

common latent space, and then learn latent embeddings by optimizing a ranking loss

to discriminate matched and unmatched image-text pairs. For instance, Wang et

al. [53] built a simple and e�cient matching network to preserve the structure re-

lations between images and texts in the latent space. To associate image regions

with words, the attention mechanism was integrated into visual-textual embedding

models [67, 68]. In addition to the pairwise ranking loss, recent approaches [69, 70]

leveraged extra loss functions (e.g. instance loss and classi�cation loss) to enhance

the discrimination of the learned embedding features.

Another line of research [71, 72, 73, 74, 75] focused on learning dual embeddings

between two modalities, e.g. projecting visual features into the textual feature space

and vice versa. For instance, Feng et al. [71] proposed a correspondence cross-modal

autoencoder model. 2WayNet [76] built the projections between two modalities and

regularized them with Euclidean loss. Recently, Gu et al. [77] utilized two generative

models to synthesize grounded visual and textual representations. Essentially, these

dual embedding models are motivated by autoencoders.
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0
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Figure 1.4: Illustration of the GAN framework. In this example, given a labelled
map, the generator can synthesize a fake photo image similar to the real one, but The
discriminator learns to correctly classify real and fake images.

1.2.3 Synthesis

Together with the increasing progress of deep neural networks, numerous approaches

based on supervised learning have been developed to address diverse image trans-

lation tasks, such as contour detection [31], semantic segmentation [26] and face

conversion [78]. However, these supervised models highly depend on a large amount

of fully labelled image pairs which are time consuming to create manually and some-

times biased when collecting annotated data. In addition, some ground-truth data

are not available in some cases, for example, the painting stylization transfer be-

tween Monet to Van Gogh. Driven by these limitations, researchers have turned to

examine unsupervised learning approaches to break the bottleneck of limited data.

Generative adversarial networks

Generative models have attracted increasing attention with the emergence of gen-

erative adversarial networks (GANs)[79]. Informally, the GAN framework can be

viewed as a game between two players: the generator and the discriminator (Fig-

ure 1.4). To be speci�c, the generator aims to synthesize fake images and tries to

trick the discriminator into thinking that the synthesized images are real. In con-

trast, the discriminator needs to distinguish the real images from the fake images. By

continuing this game iteratively, both players learn to become better until the gener-

ator can generate realistic-looking images and the discriminator can not tell real and

fake samples. Typically, a simple analogy is that: an art forger (the generator) at-

tempts to forge artistic paintings, but an art investigator (the discriminator) is able

to detect imitations. In recent years, GANs have been widely adopted for addressing

a wide range of image synthesis applications, such as style transfer [80, 81], texture

synthesis [82, 83] and text-to-image synthesis [84, 85]. To improve the quality and

diversity of generative models, conditional GANs (cGAN) have been designed to
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guide image generation conditioned on class labels [86], attributes [87], images [88]

and texts [84].

Image-to-image translation

GANs have shown great success on the task of general-purpose image-to-image trans-

lation [88], which learns to model mapping functions between di�erent image do-

mains. Many recent approaches [89, 90, 91, 92] were focused on using unpaired

images to tackle the problem of unsupervised image translation. In addition to the

adversarial constraint, they further exploited extra constraints to enhance relations

of two di�erent domains. On the one hand, some of them [89, 90, 93] fed image sam-

ples into a uni�ed encoder to discover their common representations. Then another

generator was used to translate common representations to samples in the target

domain. On the other hand, some work [92, 94] attempted to relate two di�erent

domains by using additional self-constraints within one domain. Representatively,

CycleGAN [94] proposed a cycle-consistency constraint that can reconstruct the

input image itself.

Fashion style transfer

Online shopping has driven a range of fashion oriented applications recently, for

example, fashion clothing retrieval [95], fashion recommendation [96], fashion pars-

ing [97] and fashion style transfer [81]. Speci�cally, fashion clothing swapping, which

is a common application belonging to fashion style transfer, aims to visualize what

the person would look like with the target clothes. This application allows con-

sumers to see what they would look like by wearing di�erent clothes, without the

e�ort of dressing them physically. In the past, this problem has been studied in the

�elds of multimedia and computer graphics [98, 99, 100, 101]. For example, the work

in [102] used an image-based visual hull rendering approach to transfer the appear-

ance of a target garment to another person image. The ClothCap approach [103]

captured the 3D deformations of the clothing and estimated the minimally clothed

body shape and pose under the clothing. These non-parametric solutions [100, 104]

involve using extra information to model the deformations, such as from motion

capture, 3D measurements and depth sensors. During the test stage, they still re-

quire online image warping or registration algorithms which are time-consuming

for real-time applications. Recent research turned to address this problem using

deep generative approaches (e.g. GANs), without requiring complicated 2D image

warping and 3D graphic algorithms. For example, FashionGAN [85] employed a

textual description as condition to perform the clothing swapping. The methods

in [105, 106] took a stand-alone and �at clothing image to re-dress the person in the

reference image.

9
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1.3 Thesis Outline and Research Questions

In Section 1.2, we have introduced recent advances on the three research themes.

Although deep learning is leading state-of-the-art performance for numerous tasks,

we should notice its limitations and challenges, such as theoretical interpretability,

model complexity, training with limited data, etc. There is still considerable space

for promoting the developments of deep learning. In the next research chapters

(Chapters 2-8), we propose new approaches to address the research questions (RQ)

and challenges in terms of the three research themes. In Chapter 9, we discuss our

main �ndings, limitations & possible solutions and future research directions.

� Chapter 2 aims to address the �rst research question RQ 1: How can

we develop a simple and e�cient deep fusion network upon a plain

CNN? As discussed in Section 1.2.1, some works [17, 18, 26, 31] attempt to

create new side branches upon a plain CNN and integrate multi-level interme-

diate layers to generate a fused representation. However, they still have two

main limitations. First, some of them spend a large number of new param-

eters creating the side branches. For example, DAG-CNNs [18] add several

fully-connected layers on top of intermediate convolutional layers, which will

largely increase the total number of parameters. Second, the fusion mod-

ules for integrating di�erent side branches are inferior. DAG-CNNs [18] and

FCN-8s [26] use a simple sum pooling to fuse the side branches, which fails to

consider the weights of di�erent side branches. Although HED [31] employs

a 1×1 convolution to learn the fused weights, they are shared over spatial

dimensions, failing to discover the spatial properties. In this chapter, we pro-

pose a novel convolutional fusion network (CFN) built on top of plain CNNs,

which can aggregate intermediate layers with adaptive weights and generate a

discriminatively fused representation. This chapter is based on the published

papers [107, 108]:

Liu, Y., Guo, Y., and Lew, M.S., �On the Exploration of Convolu-

tional Fusion Networks for Visual Recognition.� Proceedings of the

23rd International Conference on MultiMedia Modeling (MMM),

2017. (Best Paper Award)

Liu, Y., Guo, Y., Georgiou, T., and Lew, M.S., �Fusion that mat-

ters: convolutional fusion networks for visual recognition.� Multi-

media Tools and Applications, 2018.

� The work in Chapter 3 aims to tackle the second question RQ 2: How

can we explore diverse supervision that can adapt to di�erent inter-

mediate layers in deep neural networks for robust edge detection?

Edge detection that aims to distinguish important edges from image pixels,
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can generally act as a fundamental task for other high-level vision applica-

tions, like object detection and segmentation. Recently, the developments

in the design of edge features have moved from carefully-engineered descrip-

tors [109, 110, 111, 112] to hierarchical deep features [29, 30, 31, 113]. Nev-

ertheless, we should still realize one di�cult issue in edge detection that is

caused by false positives : many non-edge pixels are incorrectly predicted as

edges when comparing with the human annotated ground-truth. To correct

the false positives earlier, HED [31] imposes the ground-truth supervision on

the intermediate layers while training the deep model. However, using only

a general supervision (i.e. the ground-truth annotation) for all the layers is

inconsistent with the diverse representations of hierarchical layers. In addi-

tion, the general supervision can not be well-suited to all intermediate layers.

In contrast to using the general supervision, we propose and develop relaxed

deep supervision (RDS) within convolutional neural networks for robust edge

detection. This chapter is based on the published paper [114]:

Liu, Y. and Lew, M.S., �Learning Relaxed Deep Supervision for

Better Edge Detection.� Proceedings of the 29th IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016.

� In Chapter 4, we move our attention to the retrieval theme and tackle the

third question RQ 3: How can we incorporate deep visual represen-

tations into the inverted index structure for accurate and e�cient

image retrieval? A robust image retrieval system should be typically opti-

mized regarding two factors: accuracy and e�ciency. To increase the retrieval

accuracy, some works [22, 42, 45] begin to utilize deep visual features to dis-

cover the similarities among images. However, they are ine�cient due to rely-

ing on the nearest neighbouring search. To maintain the e�ciency, traditional

methods [19, 39], take advantage of the inverted index structure that is able

to reduce computational time and memory cost for scalable image search. Re-

garding both the accuracy and e�ciency, we exploit a DeepIndex framework

for accurate and e�cient image retrieval, by incorporating deep visual fea-

tures into the inverted index scheme. This chapter is based on the published

paper [115]:

Liu, Y., Guo, Y., Wu, S., and Lew, M.S., �DeepIndex for Accurate

and E�cient Image Retrieval.� Proceedings of the 5th ACM on

International Conference on Multimedia Retrieval (ICMR), 2015.

� In addition to image retrieval, in Chapter 5 we further address the problem

of cross-modal retrieval with RQ 4: How can we build a deep match-

ing network to unify images and texts into a more discriminative

space without increasing the number of network parameters? The

image-text matching problem remains challenging due to the heterogenous

representations and the cross-modal gap between two modalities. In recent
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years, a variety of multi-modal deep neural networks have been proposed to

model the matching task [52, 53, 76]. However, the multi-modal matching per-

formance is still far from competitive with the intra-modal tasks, for example,

image retrieval. In this chapter, we introduce an e�cient approach to couple

visual and textual features based on a new recurrent residual fusion (RRF)

building block. This chapter is based on the published paper [64]:

Liu, Y., Guo, Y., Bakker, E.M., and Lew, M.S., �Learning a Recur-

rent Residual Fusion Network for Multimodal Matching.� Proceed-

ings of the 16th IEEE International Conference on Computer Vision

(ICCV), 2017.

� In terms of cross-modal retrieval, in Chapter 6 we further pose the �fth

research question RQ 5: How can we preserve both inter-modal cor-

relations and intra-modal consistency for learning robust visual and

textual embeddings? Currently, there are two main paradigms to per-

form visual-textual embeddings. The �rst one is to learn a common space

where related images and texts can be uni�ed into similar latent embed-

dings [52, 53, 76]. Second, it exploits dual embeddings by reconstructing an

input feature in the source space to be the one in the target space [72, 76, 77].

Both the latent and dual embeddings can capture inter-modal semantic cor-

relations between visual and textual data. In addition, they can be combined

together to integrate individual advantages. However, they fail to preserve

the intra-modal semantic consistency, i.e. image-to-image and text-to-text.

Importantly, a robust embedding method should be able to reconstruct rep-

resentations of both the source and target modalities. To achieve this, we

propose cycle-consistent embeddings in a deep neural network for matching

visual and textual representations. This chapter is based on the submitted

journal paper [116]:

Liu, Y., Guo, Y., Liu, L., Bakker, E.M., and Lew, M.S., �Cy-

cleMatch: A Cycle-consistent Embedding Network for Image-Text

Matching.� Submitted to IEEE Transactions on Multimedia (In Re-

vision).

� In Chapter 7, we aim to integrate both matching and classi�cation by an-

swering the sixth question RQ 6: How can we design a uni�ed net-

work for joint multi-modal matching and classi�cation? We note that,

learning visual-textual embeddings is in�uenced by the notable variance in

images or texts. For example, in the MSCOCO dataset [117], each image is

described with �ve sentences from human labelers. Although the sentences

can consistently mention some primary objects in the image, they have some

biased di�erences that may make it di�cult to perform a robust matching.

However, object labels can generally provide more consistent and less biased

information than sentences. Classi�cation with the object labels is bene�cial
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to correct the biased sentences and improve the image-text matching. Ad-

ditionally, the matching component can help the classi�cation component to

generate a discriminative multi-modal representation. Unlike many current

approaches which only focus on either multi-modal matching or classi�cation,

we propose a uni�ed network to jointly learn Multi-modal Matching and Clas-

si�cation (MMC-Net) between images and texts. This chapter is based on the

submitted paper [118]:

Liu, Y., Liu, L., Guo, Y., and Lew, M.S., �Learning Visual and Tex-

tual Representations for Multimodal Matching and Classi�cation.�

Pattern Recognition, vol 84: 51-67, 2018.

� Chapter 8 presents two applications about image synthesis: image-to-image

translation and fashion style transfer.

For image-to-image translation, we pose the seventh research question RQ 7:

What factors will a�ect the performance of generative models on the

translation tasks? Image-to-image translation between di�erent domains is

a common image synthesis task, with the aim of arbitrarily manipulating the

source image content given a target one. To tackle the challenging case of un-

paired image-to-image translation, CycleGAN [94] presents a cycle-consistency

loss by reconstructing the generated image back to the source domain. In con-

junction with the original adversarial loss, the cycle-consistency loss is bene�-

cial to constrain the unsupervised domain mappings. CycleGAN has become

a fundamental approach for general-purpose image-to-image translation, while

few work investigate the important factors within it. To address the problem,

we present an extensive and empirical study on cycle-consistent generative

networks. This work is based on the published paper [119]:

Liu, Y., Guo, Y., Chen, W., and Lew, M.S., �An Extensive Study of

Cycle-Consistent Generative Networks for Image-to-Image Transla-

tion.� Proceedings of the 24th International Conference on Pattern

Recognition (ICPR), 2018.

In terms of fashion style transfer, we need to tackle the last research question

RQ 8: How can we exploit a generative model to directly transfer

the fashion style between two person images? Currently, fashion style

transfer based on image synthesis has become a popular application for online

shopping. Speci�cally, fashion clothing swapping aims to visualize what the

person would look like with the target clothes. It can be viewed as a speci�c

task belonging to fashion style transfer. Recently, FashionGAN [85] speci�es

a textual description and uses it to re-dress the person in the reference image.

other works in CAGAN [105] and VITON [106] employ a stand-alone and �at

clothing image to condition the image synthesis, which may provide richer

visual content than the textual description. However, the stand-alone and �at
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clothing images are not always available to users or consumers. Therefore, we

pose a more practical task, that is, person-to-person clothing swapping, where

the input condition is also a person image like the reference image. In this case,

the goal becomes transferring the wearing clothes between two person images.

It is more challenging as the desired clothes worn on the condition person

image have varying deformations due to di�erent human poses. To tackle this

challenge, we propose a novel multi-stage generative network (SwapGAN) that

integrates three generators to perform a multi-stage synthesis process. This

work is based on the submitted journal paper [120]:

Liu, Y., Chen, W., Liu, L., and Lew, M.S., �SwapGAN: A Multi-

stage Generative Approach for Person-to-Person Fashion Style Trans-

fer.� Submitted to IEEE Transactions on Multimedia (In Review).

� Finally, Chapter 9 summaries the main �ndings from the research of this

thesis. Also, we discuss the limitations and potential solutions, and point out

directions for future research.

Additionally, this thesis draws on insights and experiences from the related work in

other publications during my PhD studies:

� Liu, Y. and Lew, M.S., �Improving the Discrimination between Foreground

and Background for Semantic Segmentation.� Proceedings of the 24th IEEE

International Conference on Image Processing (ICIP), 2017.

� Liu, Y., Guo, Y., and Lew, M.S., �What Convnets Make for Image Cap-

tioning.� Proceedings of the 23rd International Conference on MultiMedia

Modeling (MMM), 2017.

� Guo, Y., Liu, Y., Lao, S., Bakker, E.M., Bai, L., and Lew, M.S., �Bag of

Surrogate Parts Feature for Visual Recognition.� IEEE Transactions on Mul-

timedia, vol 20: 1525-1536, 2018.

� Shan, H., Liu, Y., and Stefanov, T., �A Simple Convolutional Neural Net-

work for Accurate P300 Detection and Character Spelling in Brain Computer

Interface.� International Joint Conference on Arti�cial Intelligence (IJCAI),

2018.

� Guo, Y., Liu, Y., de Boer, M.H.T., Liu, L., and Lew, M.S., �A Dual Prediction

Network for Image Captioning.� Proceedings of the 19-th IEEE International

Conference on Multimedia and Expo (ICME), 2018.

� Georgiou, T., Schmitt, S., Olhofer, M., Liu, Y., Back, T., and Lew, M.S.,

�Learning Fluid Flows.� Proceedings of International Joint Conference on

Neural Networks (IJCNN), 2018.
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� Guo, Y., Liu, Y., Bakker, E.M., Guo, Y., and Lew, M.S., �CNN-RNN: a

large-scale hierarchical image classi�cation framework.� Multimedia Tools and

Applications, vol 77: 10251-10271, 2018.

� Guo, Y., Liu, Y., Georgiou, T., and Lew, M.S., �A review of semantic seg-

mentation using deep neural networks.� International Journal of Multimedia

Information Retrieval, vol 7: 87-93, 2018.

� Jia, Q., Fan, X., Liu, Y., Luo, Z., and Guo, H., �Hierarchical projective

invariant contexts for shape recognition.� Pattern Recognition, vol 52: 358-

374, 2016.

� Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M.S., �Deep

learning for visual understanding: A review.� Neurocomputing, vol 187: 27-

48, 2016.

� Guo, Y., Lao, S., Liu, Y., Bai, L., Liu, S., and Lew, M.S., �Convolutional

Neural Networks Features: Principal Pyramidal Convolution.� Proceedings of

the 16th Paci�c-Rim Conference on Multimedia (PCM), 2015.

1.4 Main Contributions

The research of this thesis contributes at three levels: models and algorithms, prac-

tical scenarios and empirical analysis.

1.4.1 Models and algorithms

From Chapter 2 to Chapter 8, we develop new approaches based on deep learning

to address the research questions regarding the three themes. The key contributions

in these approaches are listed below.

An e�cient deep fusion model for image classi�cation. We propose a novel

deep fusion network, the convolutional fusion network (CFN), where we can e�-

ciently integrate multiple intermediate layers in CNNs with adaptive weights. In

addition, our CFN is adaptive to not only image-level classi�cation, but also pixel-

level classi�cation.

A diverse deep supervision algorithm for edge detection. In contrast to

prior work using a general supervision, we develop relaxed deep supervision (RDS)

with additional relaxed labels. Consequently, more discriminative layers can process

more false positives in edge detection. RDS can incorporate the diversities into the

supervisory signals to improve the performance of edge detection.

An accurate and e�cient model for image retrieval. We propose a novel im-

age retrieval approach (DeepIndex) which can integrate deep visual representations
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with the inverted index scheme. Our approach takes advantage of the discriminatory

capabilities of deep features and the e�cient search of the inverted index.

An e�cient image-text matching model for cross-modal retrieval. We

develop a novel recurrent residual fusion network (RRF-Net) to couple visual and

textual features. Since RRF-Net connects the residual learning with the recurrent

mechanism, it can recursively improve visual-textual embeddings while sharing the

network parameters. In addition, we develop a fusion module to e�ciently integrate

intermediate recurrent outputs.

A cycle-consistent embedding algorithm for cross-modal retrieval. To pre-

serve both inter-modal correlations and intra-modal consistency, we propose cycle-

consistent embeddings by cascading dual mappings and reconstructed mappings in

a cyclic fashion. Our embedding method can e�ectively promote the performance

of cross-modal retrieval, compared to traditional embedding methods.

A uni�ed model for multi-modal matching and classi�cation. We propose

a uni�ed network (MMC-Net) to jointly model multi-modal matching and classi�-

cation. Our approach can suggest that combining the matching and classi�cation

components can help boost each other. In addition, we employ a multi-stage training

algorithm to make the two components compatible.

Two extended deep generative models for image-to-image translation.

As few work investigate the important factors within cycle-consistent generative

networks (CycleGAN), we present two extended models, namely Long CycleGAN

and Nest CycleGAN, and then conduct an extensive and empirical study on the

models. Our work examines the bene�ts of using more generators and cycles on the

generation quality.

A multi-stage generative model for fashion style transfer. In contrast to

traditional non-parametric approaches, we propose a novel multi-stage generative

network (SwapGAN) to transfer the clothing style in one person image to another

one. The SwapGAN model can be trained end-to-end with three di�erent generators

and one discriminator.

1.4.2 Practical scenarios

In addition to improve the performance of diverse tasks, our research also aims

towards adapting to practical scenarios in real world.

Accurate and e�cient image retrieval. Image retrieval is a widely used ap-

plication in ours lives. In some cases, the retrieval speed is the same important as

the accuracy. Our DeepIndex framework (in Chapter 4) can take into account both

accuracy and e�ciency in image retrieval. Speci�cally, deep visual features can help
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improve the retrieval accuracy, and the inverted index scheme is more e�cient than

the nearest neighboring search.

Joint multi-modal matching and classi�cation. In practice, we may need to

search for similar samples as the query sample, and know its class label as well.

Motivated by this need, we develop MMC-Net (in Chapter 7) to unify both multi-

modal matching and classi�cation in one model, unlike prior approaches which focus

on either matching or classi�cation. Our work shows a simple and e�cient way to

ful�ll the two tasks simultaneously.

Person-to-person fashion style transfer. Prior work performs the clothes-to-

person style transfer, however, in practice stand-alone and �at clothing images are

not always available. Instead, our work (in Chapter 8) aims to address a more

practical case, in which the goal is to swap the clothes between two person images

directly. This task becomes more challenging due to varying human poses. Our

SwapGAN is proposed to solve this practical problem by cascading three generators

in a multi-stage manner.

1.4.3 Empirical analysis

Furthermore, this thesis provides numerous experiments and in-depth analysis, which

can help motivate further research on the three research themes.

Fusion that matters deep neural networks. Instead of deepening neural net-

works with more layers, our CFN model (in Chapter 2) is an e�cient alternative

to improving the capabilities of CNNs while maintaining the model complexity. In

the experiments, we provide a detailed analysis to verify the e�ectiveness of CFN.

In addition, we compare CFN with other deep models and o�er an extensive dis-

cussion about them. Moreover, our CFN can be adaptive to di�erent computer

vision tasks like image classi�cation, semantic segmentation, edge detection, etc. In

a nutshell, our work suggests that deep fusion networks can e�ciently promote the

feature representational abilities of plain CNNs.

Cycle-consistency that matters visual-textual embeddings. Our proposed

cycle-consistent embedding approach (in Chapter 6) is an integration of three em-

beddings, namely dual embedding, reconstructed embedding and latent embedding.

Our approach can model both inter-modal correlations and intra-modal consistency

while matching visual and textual representations. In the experiments, we conduct

a comparable analysis between our approach and existing embedding approaches.

The superiority of our approach over others can increase the awareness of using

cycle-consistency for multi-modal research tasks.

Two factors that matter cycle-consistent adversarial networks. To provide

deep insights into CycleGAN, we developed two extended models (in Chapter 8)

for examining two factors: the number of generators and the number of cycles.
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The qualitative and quantitative results for a range of translation tasks verify the

bene�ts of using more generators and cycles, compared to the vanilla CycleGAN.

The results in our study can help ease future research based on cycle-consistent

generative networks.
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Chapter 2

Convolutional Fusion Networks for

Image Classi�cation

In the previous chapter we have introduced the background and research questions

for this thesis. Starting with this chapter, we begin to answer the research questions

with our proposed approaches. In this chapter, we address how we can develop a

simple and e�cient deep fusion network upon a plain CNN (RQ 1).

Despite recent advances in deep fusion networks, they still have limitations due to

expensive parameters and weak fusion modules. To address this issue, we propose

a novel convolutional fusion network (CFN) to integrate multi-level deep features

and fuse a richer visual representation. Speci�cally, CFN uses 1×1 convolutional

layers and global average pooling to generate side branches with adding only a few

parameters, and employs a locally-connected fusion module, which can learn adap-

tive weights for di�erent side branches and form a better fused feature. Moreover,

we propose fully convolutional fusion networks (FCFNs) that are an extension of

CFNs for pixel-level classi�cation, including semantic segmentation and edge de-

tection. Our experiments demonstrate that our approach can achieve consistent

performance improvements for diverse tasks.

Keywords
Image classi�cation, Convolutional neural networks, Fully convolutional networks,

Adaptive fusion
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2. CONVOLUTIONAL FUSION NETWORKS FOR IMAGE CLASSIFICATION

2.1 Introduction

A signi�cant progress on convolutional neural networks is increasing their depth to

learn more powerful visual representations. In particular, the depth has increased

from several layers (e.g. LeNet [3] and Alexnet [4]) to several tens of layers (e.g.

VGGnet [7] and GoogLeNet [8]). Nevertheless, training a very deep network is

extremely di�cult because of vanishing gradients and degradation. To overcome

this challenge, recent work in both Highway networks [9] and ResNet [10] proposes

to add shortcut connections between neighboring convolutional layers, which are able

to alleviate the vanishing gradient issue and ease the training stage. Nevertheless,

it is non-tractable to optimize very deep neural networks due to their large amount

of parameters and the expensive cost of physical memory.

An alternative is to explore integration with the existing intermediate layers in a deep

neural network, rather than deepening the network with new layers. Commonly, the

topmost activations in deep networks (i.e. fully-connected layers) serve as discrimi-

native visual representations to describe the image content. However, it is important

to note that intermediate activations (i.e. convolutional layers) can also provide

informative and complementary clues about images, including low-level textures,

boundaries, and local parts. Therefore, researchers [15, 16, 25] have given greater

attention to intermediate layers, and evaluated their contributions regarding image

recognition performance. In addition, a large number of approaches [16, 23, 24, 121]

have leveraged sophisticated encoding schemes (e.g. BoW, VLAD and Fisher Vec-

tor) to further encode intermediate feature activations. These approaches extract

deep features from o�-the-shelf CNNs without training new networks.

Moreover, extensive research e�orts [17, 18, 26, 31] have turned to explicitly train-

ing deep fusion networks where multi-level intermediate layers are fused together

by adding new side branches. As a result, the deep fused representation allows

us to integrate the strengths of individual layers and generate superior prediction.

Although these deep fusion networks have achieved promising performance, they

may spend a large number of additional parameters required for generating the side

branches [18]. In addition, their fusion modules (e.g. sum pooling) do not fully

consider the importance of di�erent side branches. Motivated by this problem, this

chapter focuses on the research question RQ 1: How can we develop a simple

and e�cient deep fusion network upon a plain CNN?

To address this question, we propose a convolutional fusion networks (CFN), which

is a new fusion architecture to integrate intermediate layers with adaptive weights.

To be speci�c, CFN mainly consists of three key components: (1) E�cient side

outputs : we use e�cient 1×1 convolution and global average pooling [122] to gener-

ate side branches from intermediate layers and as a result it has a small number of

additional parameters. (2) Early fusion and late prediction: it can not only provide

a richer representation, but also reduce the number of parameters, compared to the

20



2.1 Introduction

Image

airplane

Main branch

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Main branch Side branch 1 Side branch 2

Feature maps in CNN Feature maps in CFN

Figure 2.1: Illustration of features activations of the last convolutional layer in (a)
CNN and (b) CFN. The CIFAR-10 images are used here. Compared with CNN, CFN
can learn complementary clues in the side branches to the full depth main branch. For
example, the side branch 1 mainly learns the boundaries or shapes around objects, and
the side branch 2 focuses on some semantic �parts� that �re strong near the objects.

�early prediction and late fusion� strategy [18]. (3) Locally-connected fusion: we

propose to adapt a locally-connected layer to act as a fusion module. It allows us to

learn adaptive weights for di�erent side outputs and generate a better fused repre-

sentation. Figure 2.1 visually compares the feature activations learned in CNN and

CFN, respectively. It can be seen that aggregating multi-level intermediate layers is

essential to integrate their individual information.

The contributions of this chapter are as follows:

� We propose a new fusion architecture (CFN) which can provide promising

insights towards how to e�ciently exploit and fuse multi-level features in deep

neural networks. In particular, to the best of our knowledge, this is the �rst

attempt to use a locally-connected layer as a fusion module.

� We introduce CFN models to address the image-level classi�cation task. The

results on the CIFAR and ImageNet datasets demonstrate that CFN can

achieve promising improvements over the plain CNN. In addition, we transfer

the trained CFN model to three new tasks, including scene recognition, �ne-

grained recognition and image retrieval. By using the transferred model, we

can achieve consistent performance improvements on these tasks.

� We further develop fully convolutional fusion networks (FCFN), which are able

to perform pixel-level classi�cation tasks including semantic segmentation and
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edge detection. As a result, FCFN, as a fully convolutional extension, reveals

the strong generalization capabilities of CFN for diverse tasks.

The rest of this chapter is organized as follows. Section 2.2 introduces the details of

constructing the proposed CFN for image-level classi�cation problem. In addition,

we compare and highlight the di�erences of CFN from other deep models. The

FCFN counterpart for pixel-level classi�cation is described in Section 2.3. Section 2.4

presents experimental results that demonstrate the performance of CFN and FCFN

on various visual recognition tasks. Finally, Section 2.5 concludes this work and

point out two future directions.

2.2 Convolutional Fusion Networks

In this section, we introduce the details of building CFN on top of a plain CNN

model, and formulate its training procedure. In addition, we compare its di�erences

from other deep models.

2.2.1 Network architecture

First, we show a general architecture of a plain CNN model. As illustrated in Fig-

ure 2.2, it mainly comprises of successive convolutional layers and pooling layers.

In addition, a 1×1 convolutional layer followed by global average pooling is used

because of its high e�ciency [8, 10, 122]. Based on this plain CNN, we can de-

velop the proposed CFN by adding new side branches from intermediate layers and

aggregating them in a locally-connected fusion module. Figure 2.3 illustrates the

architecture of the proposed CFN. Our CFN is built on top of a plain CNN. To be

speci�c, CFN mainly consists of the following three key components.

(1) E�cient side outputs

Prior work often added new fully-connected (FC) layers in the side branch [18],

but this strategy may severely increase the number of parameters. Instead, CFN is

able to e�ciently create the side branches from the intermediate layers by adding

only a few parameters. First, the side branches are built from the pooling layers

(Figure 2.3). Each side branch has a 1×1 convolutional and global average pooling

as well. All 1×1 convolutional layers must have the same number of channels so that

they can be integrated together. Then, global average pooling (GAP) is performed

over the 1×1 convolutional maps so as to obtain a one-dimensional feature vector,

called the GAP feature. As a result, the side branches have the similar top layers

(1×1 Conv and GAP) to the full-depth main branch. One di�erence is that the 1×1
Conv in the main branch follows a convolutional layer but not a pooling layer. For
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Figure 2.2: The general pipeline of a plain CNN model. Note that one 1×1 convo-
lutional layer and global average pooling are used on the top layers.
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Figure 2.3: The general pipeline of the proposed CFN. First, the side branches start
from the pooling layers and consist of a 1×1 convolution layer and global average
pooling. Then, all side outputs are stacked together. A locally-connected layer is used
to learn adaptive weights for the side outputs (drawn in di�erent color). Finally, the
fused feature is fed to the FC layer to make a better prediction.

concise formulation, we consider the full-depth main branch as another side branch.

Assume that there are S side branches in total and the last side branch (i.e. S-th)

indicates the main branch. We notate h
(s)
i,j as the input of the 1×1 convolution in

the s-th side branch, where s = 1, 2, . . . , S and (i, j) is the spatial location in the

feature maps. As the 1×1 convolution has K channels, its output associated with

the k-th kernel is denoted as f
(s)
i,j,k, where k = 1, . . . , K. Let H(s) and W (s) be the

height and width of features maps derived from the s-th 1×1 convolution. Then, the
global average pooling performed over the feature map f

(s)
k is calculated by

g
(s)
k =

1

H(s)W (s)

H(s)∑
i=1

W (s)∑
j=1

f
(s)
i,j,k, (2.1)

Where g
(s)
k is the k-th element in the s-th GAP feature vector. We notate g(s) =

[g
(s)
1 , . . . , g

(s)
K ], a 1×K dimensional vector, as the GAP feature from the s-th side

branch. g(S) represents the GAP feature from the full-depth main branch.
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Figure 2.4: Comparison between EPLF and EFLP. (a) The schematic pipeline of
EPLF strategy; (b) The schematic pipeline of EFLP strategy.

(2) Early fusion and late prediction

Considering how to incorporate the side branches, some work [18, 26, 31] used an

�early prediction and late fusion� (EPLF) strategy. In Figure 2.4a, EPLF computes

a prediction from the GAP feature using a fully-connected layer and then fuses side

predictions together to make the �nal prediction. In contrast to EPLF [18], in which

a couple of FC layers are added, we present another strategy called �early fusion and

late prediction� (EFLP). EFLP �rst fuses the GAP features from the side branches

and obtains a fused feature. Then, a fully-connected layer following the fused feature

is used to estimate the �nal prediction. As seen in Figure 2.4b, EFLP has fewer

parameters due to using only one fully-connected layer. Assume that each fully-

connected layer has C units that correspond to the number of object categories. The

fusion module has Wfuse parameters. Quantitatively, we can compare the number

of parameters between EFLP and EPLF by

WEFLP = K(C + 1) +Wfuse < WEPLF = SK(C + 1) +Wfuse. (2.2)

Hence, we make use of EFLP to fuse intermediate features earlier due to its e�ciency.

We observe that EFLP can achieve the same accuracy as EPLF, though EPLF

contains more parameters. More importantly, the fused feature in EFLP is able to

act as a richer image representation, however, EPLF cannot generate such a rich

fused representation. In the experiments, we transfer the fused feature in EFLP to

diverse vision tasks and show its promising generalization ability.

(3) Locally-connected fusion

Another signi�cant component in CFN is that it employs a locally-connected (LC)

layer to fuse the side branches. Owing to its no-sharing �lters over spatial dimen-

sions, LC layer can learn di�erent weights in each local �eld [123]. For example,

DeepFace [124] used the LC �lters to learn more discriminative face representations

instead of spatially-sharing convolutional �lters. Di�erently, our aim is to adapt a

LC layer to learn adaptive weights for di�erent side branches, and generate a better
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Figure 2.5: Comparison of three fusion modules. (a) No weights: Sum-pooling fu-
sion has no weights; (b) Sharing weights: Convolution fusion learns sharing weights
over spatial dimensions, as drawn in the same color; (c) No-sharing weights: Locally-
connected fusion learns no-sharing weights over spatial dimensions, as drawn in di�er-
ent colors. To learn element-wise weights, we use the 1×1 kernel size.

fused feature. To the best of our knowledge, this is the �rst attempt to apply a

locally-connected layer to a fusion module.

At �rst, we stack all GAP features together from g(1) to g(S), and form a layer G

with size of 1×K × S, see Figure 2.3. For example, the s-th feature map of G is

g(s). Then, one LC layer which has K of no-sharing �lters is convolved over G. Each

�lter has 1×1×S kernel size. Since LC is able to learn adaptive weights for di�erent

elements in the GAP features which measure the importance of the side branches, it

is able to produce a better fused feature. Finally, the fused feature convolved by LC

also has a 1×K shape, denoted as g(f). The i-th element in g(f) is expressed:

g
(f)
i = σ

(
S∑

j=1

W
(f)
i,j · g

(j)
i + b

(f)
i

)
, (2.3)

where i = 1, 2, . . . , K; σ indicates the ReLU activation function. W
(f)
i,j and b

(f)
i

represent the weights and bias for fusing the i-th elements of GAP features from

di�erent side branches. The number of parameters in the LC fusion is K × (S + 1).

Using these additional parameters gives the bene�t of adaptive fusion while it does

not require any manual tuning.

To clearly demonstrate the advantage of the LC fusion module, Figure 2.5 compares

LC fusion with other fusion methods. In Figure 2.5a, the sum-pooling fusion simply

sums up the side outputs together without learning any weights, whereas this way

treats each side branch equally and fails to consider their di�erent importance. In

Figure 2.5b, the convolutional fusion can learn only one sharing �lter over all spatial

dimensions (as drawn with the same blue color). In contrast, LC enables the fusion

module to learn independent weights over each local �eld (i.e. size 1×1×S) (drawn
in di�erent colors in Figure 2.5c). Although LC fusion consumes more parameters

than the sum-pooling fusion (no weights) and the convolutional fusion (S + 1),
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these parameters are a negligible proportion of the total number of the network

parameters.

2.2.2 Training procedure

CFN has a similar training procedure as a standard CNN, including forward pass

and backward propagation. Assume a training dataset which contains N images:

{x(i), y(i)}, where x(i) is the i-th input image and y(i) is its ground-truth class label.

W indicates the set of all parameters learned in the CFN (including the LC fusion

weights). The full objective is to minimize the total loss cost

argminW

1

N

N∑
i=1

L(f(x(i);W ), y(i)), (2.4)

where f(x(i);W ) indicates the predicted class of x(i). We use the softmax loss func-

tion to compute the cost L. To minimize the loss cost, the partial derivatives of

the loss cost with respect to any weight are recursively computed by the chain rule

during the backward propagation [3]. Since the main parts in the CFN model are

the side branches, we will induce the computations of their partial derivatives. We

consider each image independently for notational simplicity.

First, we compute the gradient of the loss cost with respect to the outputs of the

side branches. Taking the s-th side branch as an example, we compute the gradient

of L with respect to the side output g(s)

∂L
∂g(s)

=
∂L
∂g(f)

· ∂g
(f)

∂g(s)
, s = 1, 2, . . . , S. (2.5)

Second, we formulate the gradient of L with respect to the inputs of the side

branches. Let a(s) be the input of the s-th side branch. As depicted in Figure 2.3,

a(s) corresponds to the pooling layer. However, the input of the main branch, de-

noted as a(S), refers to the last convolutional layer (i.e. conv S). It is important to

note that the gradient of a(s) depends on several side branches. To be more speci�c,

the gradient of a(1) is in�uenced by S branches; the gradient of a(2) needs to consider

the gradient from the 2-nd to S-th branch; but the gradient of a(S) is updated by

only the main branch. Then, the gradient of L with respect to the side input a(s)

can be computed via

∂L
∂a(s)

=
S∑
i=s

∂L
∂g(i)

· ∂g
(i)

∂a(i)
, (2.6)

where i indexes the related branch that contributes to the gradient of a(s). It needs

to sum up the gradients from several side branches. As is common practice, we

employ a standard stochastic gradient descent (SGD) algorithm with mini-batch [4]

to train the entire CFN model.
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2.2.3 Comparisons with other models

To get more insights into CFN, we compare it with other deep models.

Comparison with CNN. Typically, a plain CNN only estimates a �nal prediction

based on the topmost layer. As a result, the e�ects of intermediate layers towards

the prediction are implicit and indirect. In contrast, CFN connects the intermedi-

ate layers using additional side branches, and fuses them to jointly make the �nal

predictions. In this way, CFN allows us to take advantage of intermediate layers

explicitly and directly. This advantage explains why CFN is able to achieve more

accurate prediction than a plain CNN.

Comparison with DSN. Deeply supervised nets (DSNs) [125] are the �rst model

to add extra supervision to intermediate layers for earlier guidance. As a result,

it can improve the directness and transparency of learning a deep neural network.

Therefore, we can view DSN as a �loss fusion� model. Instead, CFN still uses

one supervision towards the �nal prediction derived from the fused representation,

however it is able to increase the e�ects of the loss cost on the intermediate layers

without adding more supervision signals. In a word, we clarify that CFN is a

�feature fusion� model. It is important to note that there is no technical con�ict

between CFN and DSN, so combining these two models together is a promising

research direction.

Comparison with ResNet. ResNet [10] addresses the vanishing gradient prob-

lem by adding densely shortcut connections. CFN has three main di�erences with

ResNet: (1) The side branches in CFN are not shortcut connections. They start

from pooling layers and merge into a fusion module together. (2) In contrast to

adding a �linear� connection in a residual block, we still use the non-linear ReLU in

the side branches of CFN. (3) CFN employs a sophisticated fusion module to gen-

erate a richer feature, rather than using the simple summation employed in ResNet.

As mentioned in the ResNet work, when the network is not overly deep, for example

having 11 or 18 layers, ResNet may show few improvements over a plain CNN. How-

ever, CFN can obtain some considerable gains over CNN. Hence, CFN can serve as

an alternative for improving the discriminative capabilities of not-very-deep models,

instead of purely increasing the depth. ResNet tells us that �depth that matters�,

but CFN concludes to �fusion that matters�.

2.3 Fully Convolutional Fusion Networks

Deep neural networks allow to bridge the gap between di�erent vision tasks. For

instance, CNN models for image-level classi�cation can be well-adapted to other

pixel-level classi�cation tasks which aim to generate a per-pixel prediction in im-

ages. As a common practice, it is essential to cast traditional convolutional neural
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networks to their corresponding fully convolutional networks (FCNs) by replacing

the fully-connected layers with more convolutional layers. FCNs are able to infer

any size of images without requiring speci�c input dimensionality. In this section,

we introduce fully convolutional fusion networks (FCFN), which are used for two

representative pixel-level classi�cation tasks: semantic segmentation and edge de-

tection. Similar to CFN, FCFN models are able to learn better pixel predictions

based on the locally-connected fusion module.

2.3.1 Semantic segmentation

Semantic segmentation intends to predict a category label for spatial pixels in an

image. FCN-8s [26] is a milestone model in the development of employing CNNs for

semantic segmentation, and yields signi�cant improvements in comparison with non-

deep-learning approaches. First, FCN-8s is �ne-tuned from the VGG-16 model [7]

pre-trained on the ImageNet dataset [5]. Then, it adds two side branches to the

full-depth main branch, which allow to integrate both coarse-level and �ne-level

pixel predictions to improve the semantic segmentation performance. Particularly,

FCN-8s uses a simple sum-pooling to fuse the multi-level predictions. In contrast to

FCN-8s, we extend the proposed CFN model and build the FCFN counterpart for

generating fused pixel features. Moreover, we use two locally-connected layers in a

two-stage fusion manner.

Recall that the locally-connected (LC) fusion module is able to learn independent

weights for each spatial pixel in an image. We need to extend its formulations

to be suitable for the LC fusion module in FCFN. In the �rst fusion module, two

branches involving K channels of feature maps are taken as input. Note that the top

layers are upsampled 2 times to retain the same spatial dimensions as the bottom

layers. We consider the adaptive weights of each channel separately and reshape each

two-dimensional feature map to a one-dimensional feature vector. For example, g
(1)
k,i

indicates the feature activation of the i-th pixel of the k-th channel in the �rst branch,

and g
(2)
k,i is the corresponding activation in the second branch, where i = 1, . . . , H×W

and k = 1, . . . , K. Therefore, the fused pixel feature is given by

g
(f)
k,i = σ

(
2∑

j=1

W
(f)
k,i,j · g

(j)
k,i + b

(f)
k,i

)
, (2.7)

The number of parameters in this fusion module is H ×W ×C × 2, where C is the

number of object categories. Moreover, the second fusion module integrates coarser

feature maps with the output of the �rst fusion module. Let g
′(1)
k,i be the activation

in the coarser layer. For notational simplicity, the activation g
(f)
k,i from the output

of the �rst fusion module, is renamed to g
′(2)
k,i . The computation in the second LC
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fusion is

g
′(f)
k,i = σ

(
2∑

j=1

W
′(f)
k,i,j · g

′(j)
k,i + b

′(f)
k,i

)
, (2.8)

where g
′(f)
k,i represents the �nal fused feature by using the two-stage fusion. Con-

sidering the computation of the loss cost with respect to the ground-truth, we still

employ the softmax loss function and accumulate the loss of all pixels together.

L = −
H×W∑
i=1

K∑
k=1

h(yi = k) log pk,i, (2.9)

where yi is the ground-truth pixel label. h(yi = k) is equal to 1 when yi = k, and 0

otherwise. The predicted pixel probability is normalized with the softmax function,

where pk,i =
exp(g

′(f)
k,i )∑K

k=1 exp(g
′(f)
k,i )

. As above, we give the loss computation for one image,

but it is straightforward to extend it to a mini-batch size of images. Likewise, we

use the SGD with mini-batch to train the entire FCFN model.

2.3.2 Edge detection

The problem of edge detection is to extract semantically meaningful edges in im-

ages, Typically, edge detection acts as a low-level task, but has signi�cant contri-

butions to other high-level visual tasks, such as object detection and image seg-

mentation. Driven by the increasing developments of deep learning, edge features

have moved from carefully-engineered descriptors such as Canny [109], gPb [126]

and Structured Edges (SE) [127]), to discriminative deep features [29, 30, 31]. In

particular, HED [31] is the �rst work to use FCNs for end-to-end edge detection,

and leads to state-of-the-art performance on well-known benchmarks. HED inte-

grates the strengths of e�cient end-to-end FCNs [26] and additional deep supervi-

sion [125].

In contrast to HED that uses a convolutional fusion module, our FCFN fuses �ve

intermediate side branches with a locally-connected layer. To be speci�c, one side

branch generates a feature map where the activations measure the probabilities of

pixels being edges. Five feature maps from side branches stack together, and are

reshaped from (H,W, 5) to (H ×W, 5). We compute the fused prediction g
(f)
i

g
(f)
i = σ

(
5∑

j=1

W
(f)
i,j · g

(j)
i + b

(f)
i

)
, (2.10)

where i = 1, . . . , H ×W . The sigmoid cross-entropy loss function is

Lfuse = −
H×W∑
i=1

[
βi log g

(f)
i + (1− βi) log(1− g(f)i )

]
, (2.11)
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where the parameter βi regulates the importance of edge and non-edge pixels, as

mentioned in [31]. It is important to note that we also impose the intermediate

supervision on the side branches similar to [31, 125], to discard the negative edges

in the earlier intermediate layers. The loss cost in the k-th side branch (i.e. k =

1, . . . , 5) is represented as follows

L(k)
side = −

H×W∑
i=1

[
βi log g

(k)
i + (1− βi) log(1− g(k)i )

]
, (2.12)

where g
(k)
i accounts for the predicted probability of the i-th pixel being an edge

point. Finally, the overall loss cost in FCFN integrates a fused loss term and �ve

intermediate loss terms together:

L = Lfuse +
5∑

k=1

L(k)
side. (2.13)

This edge detection network is also �ne-tuned end-to-end from the VGG-16 model

and updated with the SGD algorithm with mini-batch.

2.4 Experiments

This experimental section evaluates the performance of the proposed CFN for image-

level classi�cation and FCFN for pixel-level classi�cation. First, we train the CFN

models on the datasets: CIFAR-10/100 [128] and ImageNet 2012 [5]. Then, we

transfer the trained CFN model to three new tasks, including scene recognition,

�ne-grained recognition and image retrieval. Moreover, we train the speci�c FCFN

models for semantic segmentation on the PASCAL dataset [129], and edge detection

on the BSDS dataset [126], respectively. All experiments were conducted using the

Ca�e library [130] on a NVIDIA TITAN X card with 12 GB memory.

2.4.1 Image classi�cation on CIFAR

Both CIFAR-10 [128] and CIFAR-100 [128] consist of 50,000 training images and

10,000 testing images. They de�ne 10 and 100 object categories, respectively. We

preprocessed their RGB images by global contrast normalization [131], and randomly

shu�ed the training set. We measure the classi�cation performance by computing

the error rates.
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Table 2.1: Two plain CNN models built for the classi�cation experiments on the
CIFAR-10/100 dataset.

CNN-A CNN-B

Input 32 × 32 RGB image
5 × 5 × 64 conv, ReLU 3 × 3 × 96 conv, ReLU

3 × 3 × 96 conv, ReLU
3 × 3 max-pooling, stride 2. Dropout ratio 0.5

5 × 5 × 64 conv, ReLU 3 × 3 × 192 conv, ReLU
3 × 3 × 192 conv, ReLU

3 × 3 average-pooling, stride 2. Dropout ratio 0.5
5 × 5 × 64 conv, ReLU 3 × 3 × 192 conv, ReLU

3 × 3 × 192 conv, ReLU
1 × 1 × 192 conv, ReLU

8 × 8 global average pooling. Dropout ratio 0.5
10 or 100-way fully-connected layer

Softmax classi�er

Network architecture and training details

We employ two plain CNNs models to build their CFN counterparts. Table 2.1

describes the two CNNs used for CIFAR-10/100, called CNN-A and CNN-B. (1)

CNN-A is a shallow network similar to the Ca�e-Quick model [130]. It has three

5×5 convolutions and a 1×1 convolution. The global average pooling is performed

over the 1×1 convolutional maps. Finally, a fully-connected layer with 10 or 100

units is used to predict object categories; (2) CNN-B replaces each 5×5 convolutional
layer in CNN-A with two 3×3 layers, as suggested in VGGnet [7]. In addition, CNN-
B utilizes more feature channels than CNN-A. Note that, when training the CNN-B

model on the CIFAR-100 dataset, the �rst and second convolutional layer use 192

channels instead of 96 channels. Correspondingly, the CFN-A and CFN-B models

are built upon CNN-A and CNN-B respectively, by constructing two additional side

branches after the pooling layers, as depicted in Figure 2.6(a) and (b).

We use the same hyper-parameters to train CNN and CFN, for example, a weight

decay of 0.0001, a momentum of 0.9, and a mini-batch size of 100. The learning

rate is initialized with 0.1 and is divided by 10 after 10× 104 iterations. The whole

training will be terminated after 12 × 104 iterations. As for CFN, the initialized

weights in the LC fusion module are set to 0.333, as there are three side branches

in total (including the full-depth main branch).

Results and discussion

Table 2.2 shows the results on CIFAR-10/100 test sets. We can analyze the results

considering the following three aspects:
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Figure 2.6: Illustration of the proposed CFN models built for the CIFAR dataset.
For the convolutional layers (denoted as C), the right lower number indicates the kernel
size; the right upper numbers indicate the number of channels. For the pooling layers
(denoted as P ), the right lower numbers indicate the window size; the right upper
numbers equal the size of strides.

Table 2.2: Error rates (%) of image classi�cation on the CIFAR-10/100 test set
(without data augmentation). Better results are in bold face. CFNs can outperform
the baseline CNNs by adding only a few parameters.

Model #Parameters CIFAR-10 CIFAR-100
CNN-A 0.224M (basic) 15.57 40.62

CNN-Sum-A 0.224M (basic) + 0.025M (side) + 0 (fusion) 15.33 40.32
CNN-Conv-A 0.224M (basic) + 0.025M (side) + 4 (fusion) 15.19 40.15

CFN-A 0.224M (basic) + 0.025M (side) + 768 (fusion) 14.73 39.54
CNN-B 1.287M (basic) 9.28 31.89

CNN-Sum-B 1.287M + 0.074M (side) + 0 (fusion) 8.84 31.42
CNN-Conv-B 1.287M + 0.074M (side) + 4 (fusion) 8.68 31.16

CFN-B 1.287M + 0.074M (side) + 768 (fusion) 8.27 30.68

(1) CFN achieves ∼1% improvements on the classi�cation performance compared to

the plain CNNs (both CNN-A and CNN-B). For example, on the CIFAR-10 dataset,

CFN-A and CFN-B obtain 14.73 and 8.27 error rates that are ∼1% lower than the

results of CNN-A and CNN-B, that are 15.57 and 9.28, respectively. The comparison

between CFN and CNN demonstrates the e�ectiveness of fusing multi-level inter-

mediate layers. Additionally, CFN is able to improve the expressive capabilities of

deep neural networks for learning superior visual representations.

(2) In order to analyze the advantage of using the LC fusion, we also implement the

existing sum-pooling fusion and convolutional fusion methods, denoted as CNN-

Sum and CNN-Conv. By comparing CFN with CNN-Sum and CNN-Conv, we

can observe that the LC fusion outperforms the other two fusion methods by a

considerable margin. Hence, learning adaptive weights is essential to generate a

better fused feature.

(3) Moreover, we compute the number of parameters in the models to estimate their

e�ciency. In the second column of Table 2.2, the additional number of parameters
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Figure 2.7: Comparison between CFN and CNN on the CIFAR-10 dataset. (a) The
training loss when training CFN and CNN. (b) The test error rates along with the
increasing iterations.
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Figure 2.8: Illustration of adaptive weights of the side branches learned in the LC
fusion. All side branches are initialized with the same weights before training. During
the training stage, we can observe that the top branches have larger weights than the
bottom branches.

for extra side branches and LC fusion are signi�cantly smaller than the number of

basic parameters in the models. Although the LC fusion consumes more parameters

than the sum-pooling fusion and convolutional fusion, these parameters result in a

minimal increase of the network complexity. In addition, we compare the training

time between CNN and CFN. For example on the CIFAR-10 dataset, CNN-B and

CFN-B train for approximately 1.67 and 2.08 hours, respectively.

Figure 2.7 shows the training loss and the test accuracy while training CFN and

CNN. It can be seen that, both CFN-A and CFN-B models have less training loss

and lower test error rates than the corresponding CNN models. In addition, Fig-

ure 2.8a presents the adaptive weights learned in the LC fusion of CFN-B. Recall

that LC learns 192 �lters (each �lter is of size 1×3) and each �lter has 1×3 weights.
We compute the average weight in each branch, and estimate its �uctuation. By
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Table 2.3: Test error rates on CIFAR-10/100 to compare CFN-B with other deep
models. A superscripted * indicates the use of the standard data augmentation [125].

Method Layers CIFAR-10 CIFAR-10∗ CIFAR-100

Maxout Networks [131] 5 11.68% 9.38% 38.57%
NIN [122] 9 10.41% 8.81% 35.68%
DSN [125] 9 9.69% 7.97% 34.54%

ALL-CNN [132] 9 9.08% 7.25% 33.71%
RCNN-160 [133] 6 8.69% 7.09% 31.75%

NIN + SReLU [134] 9 8.41% 6.98% 31.10%
CNN (baseline) 8 9.28% 7.34% 31.89%
CFN (ours) 8 8.27% 6.77% 30.68%

comparison, the side branch 3 (a.k.a. the full-depth main branch) plays a core role,

while the other two side branches are complementary to the main branch. After a

large amount of training iterations, the adaptive weights tend to be stable. More-

over, in Figure 2.1, we visualize and compare the learned feature maps in CNN-B

and CFN-B. We select ten images from the CIFAR-10 dataset. The feature maps

in the 1×1 convolutional layer of three side branches are extracted. We rank the

feature maps by averaging spatial activations and select the top-4 maps to visualize.

We can observe that CFN can learn complementary clues in the side branches, while

retaining the necessary information in the main branch.

Comparison with other approaches.

Table 2.3 reports recent results on CIFAR datasets. For fair comparisons, we com-

pare CFN-B with other not-very-deep models. Notably, �not-very-deep� is a relative

concept. We use it to emphasize the di�erences between the models in Table 2.3

and other ResNet-like models [10]. Our method (CFN) and the compared methods

develop less than 10-layer models to evaluate their e�ectiveness. These models cer-

tainly belong to deep neural networks, however, they are not very deep, compared to

the ResNets that have more than hundreds of layers built on datasets like CIFAR-

10/100. In addition, we report the depth of these models for a clear comparison

and analysis. In summary, CFN obtains comparative results and outperforms these

compared methods. In this work, we aim to investigate the potential of integrat-

ing multiple intermediate layers, and these results verify the e�ectiveness of CFN.

Building CFN on top of a much deeper model (e.g. ResNet) is beyond the focus of

our work, but it is suggestive for future research.

2.4.2 Image classi�cation on ImageNet

The ImageNet 2012 dataset [5] consists of about 1.2 million training images, 50,000

validation images and 100,000 test images.
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Figure 2.9: Overview of the CFN-11 architecture built on top of CNN-11. Three
additional side branches are generated from the pooling layers, and fused together
with the full-depth main branch (i.e. the last side branch).
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Figure 2.10: Overview of the DSN-11 architecture built on top of CNN-11. DSN-11
creates three side branches that can provide intermediate predictions for the input
image. The ground-truth label is also used to guide these intermediate predictions, to
enhance the discriminative abilities of hidden layers.
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Figure 2.11: Overview of the ResNet-11 architecture built on top of CNN-11. There
are four residual connections in total. Due to inconsistent numbers of channels, 1x1
convolution layers are needed in the residual connections, but they are not followed by
ReLU to make sure linear transformation.

Network architecture and training details

We developed a basic 11-layer plain CNN (called CNN-11) where the channels of

convolutional layers range from 64 to 1024. This baseline model is inspired by

prior widely-used deep models [7, 8, 10]. Based on this CNN, we built its CFN

counterpart (called CFN-11) as illustrated in Figure 2.9. Notably, we can create

three extra side branches from the intermediate pooling layers (excluding the �rst

pooling layer).

The training setup in our implementation follows the empirical practice in existing

literature [4, 7, 8, 10]. The original image is resized to 256×256. In training phase,

a 224×224 crop is randomly sampled from the resized image or its �ipped one. The

cropped input image is subtracted with per-pixel mean. We initialize the weights

35



2. CONVOLUTIONAL FUSION NETWORKS FOR IMAGE CLASSIFICATION

and biases following GoogLeNet [8], for example a weight decay of 0.0001, and a

momentum of 0.9. Batch normalization (BN) [135] is added after every convolutional

layer. The learning rate starts from 0.01 and decreases to 0.001 and to 0.0001 at

10 × 104 iterations and 15 × 104 iterations respectively. The whole training will

be terminated after 20 × 104 iterations. The LC weights in the fusion module are

initialized with 0.25, as there are four side branches in total. We use SGD to optimize

the models in a mini batch of size 64.

Results and discussion

Table 2.4 compares the results on the validation set. The following gives an analysis

of the results from several aspects.

(1) CNN-11 is able to achieve competitive results when compared to AlexNet [4],

however, it consumes much fewer parameters (∼6.3 millions) than Alexnet (∼60
millions). This is due to replacing several fully-connected layers with simple global

average pooling.

(2) CFN-11 obtains an improvement of ∼1% over CNN-11 with adding only a few

parameters (∼0.5 millions). It shows a consistent performance improvement by CFN

for a large-scale dataset. Moreover, for fair comparison with other deep models, we

implement the DSN-11 and ResNet-11 based on the plain CNN-11, which are shown

in Figure 2.10 and Figure 2.11, respectively. It can be seen that, CFN-11 can still

achieve better accuracy than DSN-11 and ResNet-11. Therefore, we can view CFN

as an alternative to improve the feature representational abalities of such a not-

overly deep CNN model, rather than increasing the depth as in ResNet. Notably,

CFN-11 can improve CNN-11, but ResNet-11 cannot. But this does not show that

CFN may be better than ResNet, as the networks are not very deep. Our primary

purpose is to evaluate the superiority of CFN over CNN.

(3) To test the generalization of CFN to deeper networks, we build a 19-layer model

following a similar principle as for the 11-layer model. Likewise, CFN-19 outper-

forms CNN-19 with ∼1% gains for both the top-1 and top-5 performance. For

simplicity, we did not use the same hyperparameters as in ResNet [10], such as scale

augmentation, large mini-batch size, multi-scale test. Therefore, our results of CNN-

19 and CFN-19 are not as high as CNN-18 and ResNet-18 in [10]. We believe that

our results can raise awareness of the potential of building deep multi-layer fusion

networks. It is promising to develop much deeper networks to test the e�ectiveness

of CFN, such as 50 or 100 layers.

Similar to CIFAR-10, Figure 2.8b illustrates the adaptive weights learned in the

LC fusion of CFN-11. It is important to note that, the top branches (i.e. side 3

and side 4) have larger weights than the bottom branches (i.e. side 1 and side 2).

Additionally, we extract the feature activations of the 1×1 convolutional layer in
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Table 2.4: Error rates (%) regarding image classi�cation on the ImageNet 2012
validation set.

Method AlexNet CNN-11 DSN-11 ResNet-11 CFN-11 CNN-19 CFN-19
Top-1 42.90 43.11 42.24 43.02 41.96 36.99 35.47
Top-5 19.80 19.91 19.24 19.85 19.09 14.74 13.93

Table 2.5: Con�gurations of six datasets for scene recognition, �ne-grained recogni-
tion and image retrieval.

Scene 15 Indoor 67 Flower Bird Holidays UKB

#categories 15 67 102 200 � �
#train images 1,500 5,360 2,040 5,994 991 10,200
#test images 2,985 1,340 6,149 5,794 500 10,200

one side branch. Figure 2.12 shows and compares the feature maps learned from

di�erent side branches.

2.4.3 Transferring deep fused features

To evaluate the generalization of CFN, we transfer the trained ImageNet model (e.g.

CFN-11) to three new tasks: scene recognition, �ne-grained recognition and image

retrieval. Each task is evaluated on two widelly-used datasets: Scene-15 [136] and

Indoor-67 [137], Flower [138] and Bird [139], and Holidays [140] and UKB [141].

The con�gurations of these six datasets are summarized in Table 2.5. Also, image

examples are shown in Figure 2.13.

Speci�cally, AlexNet [4] acts as a baseline that uses the fc7 layer (4096-Dim) to

provide an image representation. For CNN-11, we use the output of the global

average pooling (1024-Dim) as image feature. Notably, CFN-11 allows us to utilize a

fused feature (1024-Dim) that integrates multiple intermediate layers. For scene and

�ne-grained recognition, a linear SVM [142] is trained to compute the classi�cation

accuracy. For image retrieval, we compute the mean average precision (mAP) on

Holidays and the N-S score on UKB. In terms of mAP, we take a ranked list of

retrieved candidates and calculate performance based on the rank of the positive

instances in the list. Given a query image, N-S is used to measure how many of the

matched images are in the top-4 rank.

Results and discussion

Table 2.6 reports the transfer learning results on the six datasets. Although it is

challenging to generalize a deep model to diverse visual tasks, he following summa-

rizes the capability of CFNs in this respect.
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Side branch 1 Side branch 2 Side branch 3 Side branch 4Image

Figure 2.12: Illustration of feature maps in the four side branches. On one hand, the
side branch 1 and 2 can capture some low-level clues about images, such as boundaries
and textures. On the other hand, side branch 3 and 4 aim to obtain more abstract
features that �re strong around objects. Therefore, CFN can incorporate multi-layer
intermediate features explicitly and adaptively so as to improve visual representation.

Scene 15 Indoor 67 Flower Bird Holiday UKB

Figure 2.13: Image examples from six datasets about scene recognition, �ne-grained
recognition and image retrieval. We can see their signi�cant di�erences with respect
to the image content.

(1) Overall, CFN-11 obtains consistent improvements for the three tasks on all

datasets, compared with the baseline CNN-11. In addition, CFN-11 outperforms

Alexnet while using a much lower dimensional feature vector. These results reveal

that learning fused deep representations is bene�cial for not only image classi�cation,

but also a variety of visual tasks, even though the images in these tasks have large

di�erences.

(2) Notably, the improvements on these three tasks are more signi�cant than those

on the ImageNet itself. In particular, CFN-11 yields a gain of ∼6% on the Flower

dataset for �ne-grained recognition. On other datasets, an accuracy improvement

of ∼2% is obtained as well (Note that the UKB uses the N-S score which is di�erent

from precision accuracy). We believe that �ne-tuning the models on the target

datasets will further improve the results.
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Table 2.6: Results on transferring the ImageNet model to three target tasks.

Method #Dim
Scene recognition Fine-grained recognition Image retrieval

Scene 15 Indoor 67 Flower Bird Holidays UKB
AlexNet [4] 4096 83.99 58.28 78.68 45.79 76.77 3.45
CNN-11 1024 84.32 60.45 76.79 45.98 78.33 3.47
CFN-11 1024 86.83 62.24 82.57 48.12 80.32 3.54

2.4.4 Semantic segmentation on PASCAL VOC

We conduct the semantic segmentation experiment on the PASCAL VOC 2012 seg-

mentation dataset [129] that consists of 20 foreground object classes and a back-

ground class. The original dataset contains 1,464 training images, 1,449 validation

images and 1,456 test images. When evaluating the validation set, we use a merged

training dataset with the original training images and the augmented training im-

ages as in [143]. As there are validation images included in the merged training

set, we need to pick the non-intersecting set of 904 images [26] as a new validation

set.

We used the same hyper-parameters to train both the baseline FCN-8s [26] and the

proposed FCFN, including a �xed learning rate of 10−4, a weight decay of 0.0001, a

momentum of 0.9, and a mini-batch size of 1. The training stage will be terminated

after 100K iterations. It is worth mentioning that, we �ne-tune FCN-8s directly from

the VGG-16 model, without pre-training FCN-32s and FCN-16s. FCFN undergoes

the same training procedure. The segmentation performance is measured with the

pixel intersection-over-union (IoU):

IoU =
TP

TP + FP + FN
, (2.14)

where TP , FP and FN denote the true positive, false positive and false negative

counts, respectively.

Results and discussion

Table 2.7 reports the mean IoU accuracy and the detailed results of 20 object classes.

The proposed FCFN achieves 1.6% gains on the mean IoU performance compared

to the baseline FCN-8s. In addition, FCFN achieves superior results for more ob-

ject classes, compared to FCN-8s. Figure 2.14 shows a visual example to highlight

the segmentation details between the two models. We clarify that FCFN is a gen-

eral architecture that can be integrated with other sophisticated techniques such as

CRF [27] and Recurrent Neural Networks (RNN) [144], in order to further recover

the segmentation details.
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Table 2.7: Semantic segmentation results (IoU accuracy) on the PASCAL VOC 2012
validation set. For the 20 object classes, better results are in bold face.

FCN-8s [26] FCFN

aero 75.5 75.2
bike 34.5 33.8
bird 69.5 72.0
boat 56.7 53.3
bottle 59.7 63.8
bus 68.7 71.2
car 70.3 69.2
cat 73.4 75.0
chair 23.8 24.0
cow 53.0 63.4
table 39.7 40.7
dog 63.3 65.6
horse 46.3 57.6
mbike 75.2 74.5
person 73.9 75.4
plant 42.2 40.2
sheep 59.7 62.3
sofa 27.0 30.3
train 73.4 74.0
tv 58.7 55.7

mean 57.1 60.3

2.4.5 Edge detection on BSDS500

We evaluate the edge detection performance on the BSDS500 dataset [126] that con-

sists of 200 training, 100 validation and 200 testing images. One image is manually

annotated by �ve human annotators on average. The validation set is used to �ne-

tune the hyper-parameters, similar to HED [31]. For example, we use a momentum

of 0.9 and a weight decay of 0.0002. In addition, the weights of the side-output

convolutional �lters are initialized with 0, and the initialization of the LC fusion

�lter is set to 0.2 due to fusing �ve side branches. The training images are resized to

400×400 and the batch size is 8. The learning rate is initialized with 10−6, and the

training is terminated after 25 epoches. The performance measurements for edge

detection include the �xed contour threshold (ODS), the per-image best threshold

(OIS) and the average precision (AP). Both ODS and OIS compute the F-score

F =
2 · precision · recall
precision+ recall

. (2.15)

Notably, ODS uses a �xed threshold to binarize all edge detection images in the test

set, while OIS computes the best threshold for each image separately.
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FCFNFCN-8sGround truthImage

Figure 2.14: Comparison of a semantic segmentation example between the baseline
FCN-8s and the proposed FCFN.

FCFNHEDGround truthImage

Figure 2.15: Comparison of an edge detection example between the baseline HED
and the proposed FCFN. The FCFN results look more similar with the ground-truth
annotations than the HED results.

Table 2.8: Edge detection results on the BSDS dataset. The upper group lists some
representative approaches without using deep learning. The lower group gives the deep
learning based approaches.

Method ODS OIS AP

Canny [109] .600 .630 .580
gPb-owt-ucm [126] .726 .757 .696

SE-Var [127] .746 .767 .803
DeepEdge [29] .753 .772 .807

DeepContour [30] .757 .776 .790
HED [31] 0.780 0.802 0.786
FCFN 0.784 0.806 0.788

Results and discussion

Table 2.8 provides a comparison of edge detection results on the BSDS dataset.

First, we can see that deep learning approaches (in the lower group) largely pro-

mote the state-of-the-art performance compared to the hand-crafted edge detection

approaches (in the upper group). In addition, the proposed FCFN outperforms the

baseline HED with considerable improvements. This shows the advantage of learn-

ing adaptive weights in the locally-connected fusion module. Figure 2.15 shows an

edge detection example and compares the visual details between FCFN and HED.

FCFN can detect more satisfactory edges than HED.
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2.5 Chapter Conclusions

In this chapter, we proposed a deep fusion architecture (CFN) built on top of

plain CNNs. It allowed to aggregate intermediate layers with adaptive weights,

and generated a discriminative feature representation. We conducted comprehen-

sive experiments to evaluate its e�ectiveness for both image-level and pixel-level

classi�cation tasks. We can summarize several remarks and insights based on the

experiments:

(1) On the CIFAR and ImageNet datasets, the CFN models have achieved consid-

erable improvements while adding few parameters, even though these models are

not very deep. CFN is a simple yet e�cient architecture that has potential to be

adapted to both deep (e.g. 10 layers) and much deeper (e.g. 100 layers) networks.

In future work, we aim to build CFN on top of other deeper networks.

(2) CFN shows promising results when it is transferred to three di�erent tasks,

since CFN inherits the generalization capabilities of CNN. Additionally, CFN yields

remarkable gains over CNN in the Flower dataset for �ne-grained recognition. We

�nd that it is quite important and necessary to make use of intermediate features

to describe �ne-grained attributes of objects.

(3) Although the FCFN models need to learn more adaptive weights in the fusion

module, it can bring considerable performance improvements for semantic segmen-

tation and edge detection. We �nd that many complementary details related to

objects (e.g. boundary) are obtained from the intermediate layers.

Future work. Recall that the proposed CFN (and FCFN) model is a general ex-

tension of a plain CNN, and can be applied to a variety of visual recognition tasks.

We can further improve CFN from the following two promising directions.

(1) While computing adaptive weights in the LC fusion module, we use a 1 × 1

kernel �lter to independently consider each spatial location in the feature maps. A

potential improvement would be to utilize larger kernel sizes such as 1×2 and 1×3,

which can incorporate the contextual information in the feature maps.

(2) The adaptive weights are learned with the training images and are then directly

applied to the test images for inference. It may be bene�cial to learn input-speci�c

weights to decrease the variance between images. Jaderberg, et al. [145] proposed

a new learnable module, called the Spatial Transformer, that can perform explicit

spatial transformations of features within CNNs. Similarly, Brabandere, et al. [146]

proposed a Dynamic Filter Network (DFN), where �lters are dynamically gener-

ated conditioned on an input image. Driven by these works, CFN can also learn

dynamical �lters conditioned on an input image.
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Chapter 3

Recognizing Image Edges

In the previous chapter, we have shown the generalization power of deep neural

networks for pixel-level classi�cation. In this chapter, we focus on how we can

develop diverse supervision in CNNs for edge detection (RQ 2).

To improve the robustness of edge detection, we build hierarchical supervisory sig-

nals with additional relaxed labels and adapt the signals to consider the diversities

in hierarchial layers. Speci�cally, we begin by capturing the relaxed labels from sim-

ple detectors (e.g. Canny). These relaxed labels can be seen as some false positives

that are di�cult to be classi�ed. Then we merge them with the general ground-

truth to generate the relaxed deep supervision (RDS). We can employ the RDS to

supervise the edge detection network in a coarse-to-�ne paradigm. Moreover, we

compensate for the lack of training images by capturing coarse edge annotations

from a segmentation dataset. We pre-train the model with coarse annotations and

then �ne-tune it with �ne annotations. Extensive experiments demonstrate that our

approach achieves superior performance on the BSDS500 dataset (ODS F-score of

.792) and promising cross-dataset results on the NYUD dataset.

Keywords
Edge detection, Fully convolutional networks, Deep supervision, Pre-training
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3. RECOGNIZING IMAGE EDGES

3.1 Introduction

Edge detection, which aims to extract the important edges from images, has served

as a fundamental task in the computer vision community for several decades. Typ-

ically, edge detection is considered as a low-level problem, and it is frequently used

for other high-level vision applications, for example, object detection [147] and seg-

mentation [126]. Most of the traditional edge detection approaches [109, 110, 111,

112, 148, 149, 150, 151] extract discriminative local features with color and gradient

clues, such as gPb [126], Sketch tokens [152] and Structured Edges (SE) [127].

Recently, edge detection has achieved signi�cant advances due to the developments

of deep features. Figure 3.1 displays the basic pipeline of current edge detection

systems based on deep learning. Based on di�erent levels in predicting edges, we

broadly divide them into three categories.

(1) Pixel-level prediction: extract deep feature per pixel and classify it to edge or

non-edge class. Early work such as [113] developed a convolutional RBM to learn

pixel-level features. Hwang and Liu [153] stacked pixel features in a multi-scale CNN

model and then fed them to an SVM classi�er. Bertasius et al. [29] built four CNN

models to learn multi-scale features to detect edge points. Then they improved their

network structure with less computational cost [154].

(2) Patch-level prediction: estimate edge maps for the input patches and then in-

tegrate them for the whole edge map. For example, the N4-Fields [155] extracted

patch features from a pre-trained CNN model, and then mapped them to the nearest

neighbor annotation from a pre-built dictionary. Shen et al. [30] clustered contour

patches for mid-level shape classes and solved the model using a positive-sharing

loss function.

(3) Image-level prediction: predict the whole edge map end-to-end given one input

image. Considering the ine�ciency of the above two categories, Xie and Tu [31]

proposed a holistically-nested edge detection (HED) approach that was the �rst at-

tempt to perform holistic image training and prediction for edge detection. Their

work took advantage of the high e�ciency of end-to-end fully convolutional networks

(FCNs) [26], and additional deep supervision of deeply supervised nets (DSN) [125].

Input

image

Deep 

model

Edge prediction:

--pixel-level

--patch-level

--image-level

NMS
Edge-map

generation

Figure 3.1: Pipeline of deep learning based edge detection. NMS is short for non-
maximal suppression.
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One di�culty in edge detection is attributed to false positives : many non-edge pixels

are incorrectly predicted as edges compared with the human annotated ground-

truth. To alleviate this issue, HED [31] imposed additional supervision (i.e. the

annotated ground-truth) on the intermediate layers while training the deep model,

and therefore the false positives could be corrected earlier. However, using only a

general supervision for all the layers is inconsistent with the diverse representations

of hierarchical layers. In addition, the general supervision can not be well-suited to

all intermediate layers. Driven by this issue, in this chapter we pose a new research

question RQ 2: How can we explore diverse supervision that can adapt

to di�erent intermediate layers in deep neural networks for robust edge

detection?

To this end, we propose diverse deep supervision that can vary from coarse level to

�ne level as deep features become more discriminative. Our diverse supervision is

called relaxed deep supervision (RDS), having additional relaxed labels, in addition

to the positive labels (i.e. edge points) and negative labels (i.e. non-edge points).

The relaxed labels are used to adapt to the diversities of intermediate layers. To be

speci�c, we capture the relaxed labels from simple and e�cient o�-the-shelf detec-

tors, for instance, Canny [109] or SE [127]. Then, we insert the extracted relaxed

labels into the original ground-truth to generate RDS. In contrast to using a �xed

general supervision, RDS can guide intermediate layers in a coarse-to-�ne paradigm

and process the false positives using a �delayed strategy�. In this way, the loss cost

of the relaxed labels are ignored in current supervision, and will be reconsidered in

the next supervision. Therefore, more discriminative layers are assigned to process

more false positives (di�cult points). RDS can incorporate network diversities to

improve the performance of edge detection.

Another problem about edge detection is that it requires more expensive human an-

notations, than other vision tasks like image classi�cation and object detection. In

addition, the frequently benchmarked BSDS500 dataset [126] has only 200 training

images that limits the learning ability of various edge detectors based on deep learn-

ing. To alleviate this de�ciency, we propose to generate coarse edge annotations

(CEA) from a large collection of segmentation annotations such as the PASCAL

Context dataset [156]. We pre-train the model with CEA and then �ne-tune it with

the target dataset, BSDS500.

The contributions of this work are as follows:

� We propose relaxed deep supervision to guide the intermediate predictions.

Compared with traditional deep supervision, RDS can adapt to the hierarchi-

cal diversities with minimal manual e�orts.

� We show that pre-training the model with a large collection of CEA is an

e�cient way to enhance the learning ability of CNNs and thus can achieve

considerable improvements.
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3. RECOGNIZING IMAGE EDGES

� Despite the apparent simplicity of RDS, our approach achieves competitive

accuracy (ODS=.792) on the well-known benchmark BSDS500. In addition,

our approach shows promising generalization between di�erent datasets.

The rest of this chapter is structured as follows. Section 3.2 presents the proposed

relaxed deep supervision for edge detection. The pre-training procedure with CEA is

introduced in Section 3.3. In 3.4, we describe the implementation details in Section

and report the experimental results. Finally, Section 3.5 summarizes the conclusions

and future work.

3.2 Relaxed Deep Supervision

In this section, we present the proposed network with relaxed deep supervision for

edge detection and formulate the algorithm.

3.2.1 Network details

Model Architecture

Our edge detection architecture is built on top of HED network [31], which is

trimmed from the VGG-16 net [7] (Figure 3.2). The network architecture contains

�ve convolutional nets connected with the max-pooling layers. Each convolutional

net has several convolutional layers. In order to add deep supervision to guide the

intermediate layers, �ve side-output layers (from side-output 1 to side-output 5) are

inserted behind the intermediate layers. Due to the deconvolutional operation, the

side-output predictions keep the same spatial size as the input image. In order to in-

tegrate multi-scale predictions, one weighted-fusion layer followed by fusion-output

prediction is concatenated with �ve side-output predictions. Notably, HED utilizes

the original ground-truth G as a general supervisory signal to guide the whole net-

work, including �ve side-output predictions and the last fusion-output prediction.

Although the fusion-output prediction in HED is integrated with multi-scale predic-

tions, their general supervision fails to present hierarchical diversities. Instead, our

main aim is to explicitly make use of diverse supervision associated with di�erent in-

termediate layers. To this end, we propose to integrate additional relaxed labels into

the general supervision, and generate hierarchical and speci�c supervision, called

relaxed deep supervision (RDS). Our approach stems from the fact that hierarchical

layers can represent speci�c abstracts of the input image [157, 158]. In Figure 3.2,

the bottom side-output predictions (e.g. side-output 1, 2) easily detect a large num-

ber of small edges and noise. In contrast, the top predictions(e.g. side-output 4, 5)
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Figure 3.2: The network architecture with RDS (best viewed in color and zoom-in).
The proposed RDS, including positive labels (green color), negative labels (white color
for clear visualization), relaxed labels (blue color), is used to supervise the correspond-
ing side-output prediction. The last fusion-output is still supervised by the original
ground-truth G. The total loss cost in the network is the sum of all lside and lfuse.

𝜎 = 1 𝜎 = 5 𝜎 = 9

𝜂= 0.5 𝜂= 1.5 𝜂= 2.5

Figure 3.3: Illustration of extracting relaxed labels (blue color). The �rst and second
rows display three edge responses from Canny [109] and SE [127], respectively.

can �re stronger responses around the positive labels. However, the general super-

vision can not be well-suited to all side-output predictions. In contrast, our RDS

can not only preserve the strong supervision from the ground-truth, but also allow

speci�c diversities by introducing the relaxed labels. In the following, we present

two simple and e�cient ways to capture the relaxed labels based on o�-the-shelf

edge detectors, including Canny [109] and SE [127].

Relaxed labels based on Canny detector

The Canny algorithm [109] can detect di�erent scales of edge responses based on

the parameter σ, which is the standard deviation of the Gaussian �lter. The afore-

mentioned relaxed labels can be extracted from Canny edge responses. First, we

adjust di�erent scales (σ ∈ {1, 3, 5, 7, 9}) to obtain various edge responses for �ve

side-output predictions. We denote these binary edge responses with {C(k)}5k=1. For

example, C(3) is the edge response when σ = 5. Second, for the k-th side-output
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3. RECOGNIZING IMAGE EDGES

prediction, we de�ne its relaxed labels : �belong to the positive labels of C(k), but are

not included in the positive labels of the original ground-truth G.� The relaxed labels

can present the complementary clues that are not in the ground-truth. Therefore,

the set of relaxed labels can be computed as follows:

D(k) = H(C(k) − C(k) ∩G), (3.1)

where the function H is used to collect the set of positive labels from the input

binary map. As shown in Figure 3.3, the �rst row gives three scales of Canny edge

responses (both red and blue color) when σ = 1, 5, 9. We highlight the relaxed labels

in blue color, and the red points indicate the overlap edges between C(k) and G. The

ground-truth G can be seen in Figure 3.2.

Relaxed labels based on SE detector

To demonstrate the generalization of our method, we also employ another edge

detector: Structured Edges (SE) [127]. SE outputs one edge map with pixel-wise

probabilities ranging from 0 to 1. Similarly, we need to create �ve binary edge

responses from the SE edge map. We begin by computing the mean value of edge

probabilities in the SE edge map, denoted as v. Then we adjust a threshold t to

binarize the SE edge map by t = η · v, where η ∈ {0.5, 1.0, 1.5, 2.0, 2.5}. As a result,
we can have �ve binary edge responses, denoted as {S(k)}5k=1. Similar to the above

de�nition of relaxed labels, we compute the set of relaxed labels based on SE

D(k) = H(S(k) − S(k) ∩G). (3.2)

The second row in Figure 3.3 displays the edge responses from SE and their relaxed

labels (blue color). We can observe that the relaxed labels from SE detector are

visually sparser than those from Canny detector.

RDS generation

It can be observed that various relaxed labels are well-suited to our needs of high-

lighting hierarchical diversities within the supervision. In the next stage, we need

to insert the set of relaxed labels into the original ground-truth. This merging oper-

ation is used to generate the desirable RDS, which is an union of positive, negative,

and relaxed labels. We denote �ve di�erent RDS by {R(k)}5k=1. The construction

step can be seen in Figure 3.4, where the set D(3) is extracted based on S(3). The

generated R(3) can not only preserve the positive labels in the ground-truth G, but

also contain speci�c relaxed labels. Notably, the relaxed labels correspond to the

non-edge points in G. These non-edge points can be viewed as some false positives

that are di�cult to classify.
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Figure 3.4: Illustration of generating the RDS (best viewed in zoom-in). R(3) is
merged by the set D(3) and G.
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Figure 3.5: RDS employs a coarse-to-�ne supervision strategy. The blue points
indicate the relaxed labels, and the green point is one positive label.

3.2.2 Loss formulation

For a training dataset containing N images: {Ii, Gi}Ni=1, Ii is the i-th input image

and Gi is its edge ground-truth. Ii,j denotes the j-th raw pixel over the spatial

dimensions of Ii. Assume that we use the relaxed labels derived from SE detector(
{D(k)}Kk=1

)
. The corresponding RDS are denoted as {R(k)

i }Kk=1, and K = 5 in the

network. Five di�erent side-output predictions are separately supervised with the

corresponding RDS, and the fusion-output prediction is still supervised with the

original ground-truth (Figure 3.2). In addition, early supervision (e.g. R(1) and

R(2)) has more relaxed labels than late supervision (e.g. R(4) and R(5)). This is

consistent with the hierarchical characteristics of CNN models. Finally, the total

loss function LRDS is expressed with

N∑
i=1

|Ii|∑
j=1

(
K∑
k=1

lside(Ĝ
(k)
i,j , R

(k)
i,j ) + lfuse(Ĝ

fuse
i,j , Gi,j)

)
, (3.3)

where |Ii| is the total number of pixels in Ii. lside and lfuse represent the loss cost
per pixel, from the side-output and fusion-output, respectively. Ĝ

(k)
i,j and Ĝfuse

i,j

indicates the j-th pixel prediction from the k-th side-output and the fusion-output,

respectively. For notational simplicity, the network parameters, such as weights and

bias, are not included in the equation. In R
(k)
i , the relaxed labels are set to 2,

di�erent from the positive labels (set to 1) and negative labels (set to 0). Therefore,

we compute lside based on the types of pixel labels

lside(Ĝ
(k)
i,j , R

(k)
i,j ) =


α · logP(Ĝ

(k)
i,j ), R

(k)
i,j = 1

β · log(1− P(Ĝ
(k)
i,j )), R

(k)
i,j = 0

0, R
(k)
i,j = 2

(3.4)
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where P(Ĝ
(k)
i,j ), using sigmoid function, indicates the probability of current pixel

being an edge point; α and β are used to balance the biased distribution between

edge and non-edge pixels. Since about 90% pixels belong to non-edge class, we set

α = 9β to enhance the edge class, for instance, α = 9 and β = 1. Notice that, we

compute lside when the pixel has positive or negative label. However, when the pixel

has a relaxed label (R
(k)
i,j = 2), we do not compute its loss cost and set lside = 0.

On the other hand, the computation of lfuse excludes the third term in Eq. (3.4),

because there are no relaxed labels in Gi. Next, we consider the back propagation

(BP). We can deduce the partial derivatives of lside w.r.t. Ĝ
(k)
i,j by

5 lside

Ĝ
(k)
i,j

=


α · (sigmoid(Ĝ

(k)
i,j )− 1), R

(k)
i,j = 1

β · sigmoid(Ĝ
(k)
i,j ), R

(k)
i,j = 0

0, R
(k)
i,j = 2

(3.5)

We follow the chain rule [159] to update the network parameters using stochastic

gradient descent (SGD) with a mini-batch size [157].

Discussion. Training with RDS can maintain the strong supervision from the

ground-truth, and incorporate hierarchical diversities. Here we will discuss how RDS

improves edge detection. As mentioned before, one di�cult issue in edge detection

is attributed to the false positives. The relaxed labels based on Canny/SE actually

correspond to some false positives that are di�cult to classify. RDS processes these

false positives using a coarse-to-�ne paradigm: the false positives (with relaxed

labels) in current supervision are ignored without computing their loss cost, but can

be reconsidered in the next supervision. In this way, top layers are responsible for

classifying the ambiguous false positives due to their high discriminative power. This

paradigm is similar to hierarchical object classi�cation [160], in which di�cult classes

are classi�ed from coarse-category prediction to �ne-category prediction.

We further demonstrate the paradigm in Figure 3.5. In R(1), P1 serves as a relaxed

label that is di�cult to be predicted in the side-output 1. Thus we do not compute

the loss cost of P1 and delay its prediction until in R(2). In R(2), P1 is converted

to be a negative label (no-edge), so this provides evidence that the side-output 2

associated with stronger discrimination is able to predict P1. Similarly, R(5) is able

to recognize most relaxed labels except for P5. Therefore, RDS can incrementally

improve the strength of the supervision and assign more false positives to more high-

level layers. Moreover, the network can run in a coarse-to-�ne BP procedure. First,

the whole network can be updated with coarse supervision G; Then, �ne supervision

R(k) (with speci�c relaxed labels) is used to �ne-tune their local nets. For example,

P6 can be updated by all BPs (six times), and P4 will be updated twice (by G and

R(5)). In a nutshell, RDS can bene�t the whole training for edge detection. It can

help reduce the total loss in the forward pass stage and facilitate e�cient updates

in the back propagation stage.
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(a) Fine edge annotations

(b) Coarse edge annotations

Figure 3.6: Comparison between �ne and coarse edge annotations. (a) displays
three images and their ground-truth from BSDS500 [126]. (b) shows the images,
segmentations from Pascal Context [156] in the �rst and second row, and coarse edge
annotations (CEA) in the third row.

3.3 Pre-training Procedure

Generally, collecting more training data can develop the learning ability of CNNs.

For many visual recognition tasks such as image classi�cation and object detection,

large-scale datasets are often available, e.g. ImageNet [5], MSCOCO [117] and PAS-

CAL VOC [129]. However, the BSDS500 dataset [126] contains only 200 training

images for learning edge detectors. This small training set limits current edge de-

tection algorithms in improving the performance. In addition, �ne edge annotations

(FEA) require more expensive human e�ort than image classi�cation.

To alleviate this issue, we attempt to extract coarse edge annotations (CEA) from

a large collection of segmentation annotations. Here, we utilize the Pascal Context

51



3. RECOGNIZING IMAGE EDGES

Algorithm 1: RDS: training and testing procedure

1: Input: Training dataset; VGG-16 net; training iterations T1,T2
2: Initializing: network parameters W using VGG model
3: Preparation: for one image Ii, extract the set of relaxed labels {D(k)

i }5k=1 and

generate RDS {R(k)
i }5k=1.

4: Pre-training: use Pascal Context data and its CEA, t = 0
while t < T1 do
t← t+ 1
Forward propagate to compute LCEA in Eq. (3.6);
Backward propagate to get gradients ∆W, like Eq. (3.5);
Update Wt = Wt−1 − λt∆W with SGD;

end while
5: Training: use the target training data set (e.g. BSDS500), t = 0

while t < T2 do
t← t+ 1
Forward propagate to compute LRDS in Eq. (3.3);
Backward propagate to get gradients ∆W, like Eq. (3.5);
Update Wt = Wt−1 − λt4W with SGD;

end while
6: Testing: feed one image into the learned network with parameters W and

output edge map Ei

7: Post-processing: non-max suppression on Ei

8: Output: �nal edge map E
′
i

dataset [156], which provides full-scene segmentations for more than 400 classes, and

has 10,103 train and validation images in total. Thus we extract the edges alongside

the segmentations. In contrast to FEA, CEA only provides the outside boundaries

of objects (See the car, people and building in Figure 3.6), but it can facilitate the

network learning due to a large number of images. Notably, there are no overlap

images between Pascal Context and BSDS500, which are from Flickr and Corel,

respectively. During training with CEA, we simply compute the fusion-output loss

function and exclude the intermediate supervision by

LCEA =
N∑
i=1

|Ii|∑
j=1

(
lfuse(Ĝ

fuse
i,j , Gi,j)

)
. (3.6)

In summary, we pre-train the model with the Pascal Context dataset and its CEA

according to Eq. (3.6), and then �ne-tune the model with the BSDS500 dataset as

Eq. (3.3). We show the whole algorithm procedure in Algorithm 1, including the

training and testing stages.
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Figure 3.7: Qualitative comparison of edge detection results between without and
with ground-truth dilation.

3.4 Experiments

3.4.1 Implementation details

Training details. We implemented our approach using the publicly available Ca�e

framework [130] and HED implementation [31]. We refer to some basic parameters

as HED net, including momentum (0.9), weight decay (0.0002), initialization of the

side-output �lters (0), and initialization of fusion-output �lter (0.2). The training

images are resized to 400×400 and the batch size is 8. More importantly, we present

some di�erent parameters in our experiments. For example, the learning rate is

�xed with 1e-9. This learning rate is quite e�cient and reducing it during training

iterations has no remarkable improvement. The training will be terminated after 25

epoches. Another di�erence is the class-balanced parameters α and β in Eq. (3.4).

We utilize the �xed class-balanced parameters (α = 9, β = 1) for all images.

Ground-truth dilation. Frequently, human subjects annotate the ground-truth

edges with thin boundaries (e.g. one pixel width). However, the predicted edges

from deep models have rather thick boundaries. To tackle this inconsistency, we

dilate the positive labels in the ground-truth of a train set using a traditional mor-

phologic dilation operator. Figure 3.7 compares the detection results between with

and without dilation training. It can be seen that training with the dilated ground-

truth contributes to predicting stronger edge maps. Quantitatively, the dilation

process can increase the ODS accuracy about .02 on the BSDS500 test set. Hence,

the ground-truth dilation is a simple and e�cient step for improving the perfor-

mance on edge detection. Note that we do not dilate the test set. In addition,

the postprocessing non-maximal suppression (NMS) [109] can be used to thin the

predicted edges.

3.4.2 Ablation study on BSDS500

Dataset. The BSDS500 dataset [126] consists of 200 training, 100 validation, and

200 testing images. The validation set is used to �ne-tune the hyper-parameters.

Each image is manually annotated by �ve human annotators on average. For training

images, we just preserve their positive labels annotated by at least three human

annotators. In testing stage, we extract the fusion-output prediction to evaluate
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Table 3.1: Results on BSDS500 testing set. RDS(Canny) and RDS(SE) derive the
relaxed labels from Canny and SE. CEA uses the extra data from Pascal Context.

ODS OIS AP

Baseline 1 .762 .782 .766
Baseline 2 .780 .802 .786

RDS(Canny) .785 .803 .813
RDS(SE) .787 .804 .817
RDS(gPb) .786 .803 .814

CEA .765 .785 .724
RDS(Canny) + CEA .790 .809 .819
RDS(SE) + CEA .792 .810 .818

the performance. As mentioned in Section 2.4.5, we use the �xed contour threshold

(ODS), the per-image best threshold (OIS) and the average precision (AP).

Baseline methods. To experimentally evaluate the e�ectiveness of RDS, we im-

plemented two baseline methods. (1) Baseline 1 : only supervises the fusion-output

prediction with the general supervision (i.e. original ground-truth). (2) Baseline

2 : imposes the general supervision to not only the fusion-output prediction, but

also �ve side-output predictions. In Table 3.1, the Baseline 1 achieves ODS=.762

on BSDS500. Relatively, the Baseline 2 improves the accuracy to ODS=.780. This

veri�es the bene�t of using additional intermediate supervision. The performance

gap with/without intermediate supervision in HED [31] is less than that of our Base-

line1 and Baseline2. The reason is that we do not perform data augmentation (e.g.

rotation and �ip) that has been employed in HED. Although the data augmentation

may decrease the improvement of intermediate supervision, we believe that it should

not remove our awareness of its importance.

Component analysis

Table 3.1 reports the results of our approach. To give more insights, we discuss

them from three aspects.

(1) RDS yields considerable improvements over the general supervision approach

(Baseline 2). This veri�es the advantage of RDS for incorporating hierarchical diver-

sities. The result of RDS with relaxed labels from Canny, denoted as RDS(Canny),

achieves ODS=.785. The RDS(SE) result reaches ODS=.787.

(2) RDS is relatively insensitive to di�erent choices of relaxed labels. First, we

can see that RDS can obtain similar results with Canny and SE. In addition, we

use another detector, gPb [126], to capture the relaxed labels. Similarly, its re-

sult (ODS=.786) is consistent with RDS(Canny) and RDS(SE). Thus we have not

invested too much e�ort in optimizing various relaxed labels now.
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Table 3.2: Comparing the importance of early and late supervision on BSDS500
testing dataset.

R(1) R(2) R(3) R(4) R(5) G ODS OIS AP√
.762 .782 .766√ √ √ √
.770 .795 .778√ √ √
.780 .801 .785√ √ √ √ √ √
.787 .804 .817

(3) Pre-training with CEA demonstrate further gains for both RDS(Canny) and

RDS(SE), reaching ODS=.790 and .792, respectively. In addition, we also evaluate

the model pre-trained with CEA (without �ne-tuning on the BSDS500 training set),

which achieves ODS=.765. These results show the necessity and advantage of using

a large-scale dataset.

Early supervision and late supervision

We have known the advantage of additional deep supervision. This experiment aims

to examine whether all the intermediate supervision has the same importance or not.

We employ the RDS(SE) method in an attempt to resolve this question. As shown in

Table 3.2, we brie�y divide two groups: early supervision and late supervision. The

early supervision consists of R(1), R(2), and R(3), and the late supervision includes

R(4) and R(5). In addition, the fuse-output supervision with G is necessary all the

time. We train the model with early and late supervision separately and compare

their e�ects. We can see that (1) compared with no intermediate supervision, using

the late supervision achieves more boosts than the early supervision; (2) training

with both early and late supervision outperforms any single way. These results show

that all intermediate supervision provides useful and complementary information.

Comparisons with other approaches

Here we compare our RDS(SE)+CEA result against other leading methods on

BSDS500. These methods can be categorized into non deep-learning and deep

learning approaches, as seen in the upper part and lower part in Table 3.3). Preci-

sion/recall curves are illustrated in Figure 3.8. As far as we know, the recent work,

MES [112], shows superior results for the non deep-learning approaches. On the

other hand, HED [31], as an edge detector based on deep learning, leads the other

methods, meanwhile retaining high e�ciency. Our method, RDS, improves the ODS

by 1 point and OIS by 0.6 point as compared with HED-latemerge. It is worth men-

tioning that HED has better average precision (AP), due to its late-merging step.

However, we do not perform this optional late-merging step. Besides, HED further

presents better results using multi-scale augmentation. Nevertheless, our results are
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Table 3.3: Edge detection results on the BSDS500 dataset. Our approach is compet-
itive with other state-of-the-art approaches. Note that, HED-multiscale augments the
training images with three scales.

ODS OIS AP

gPb-owt-ucm [126] .726 .757 .696
Sketch Tokens [152] .727 .746 .780

SCG [110] .739 .758 .773
MS [150] .74 .77 .78

SE-Var [127] .746 .767 .803
OEF [151] .749 .772 .817
MES [112] .756 .776 .756

DeepNet [113] .738 .759 .758
N4-Fields [155] .753 .769 .784
DeepEdge [29] .753 .772 .807
MSC [161] .756 .776 .787

CSCNN [153] .756 775 .798
DeepContour [30] .757 .776 .790

HFL [154] .767 .788 .795
HED-latemerge [31] .782 .804 .833
HED-multiscale [31] .790 .808 .811

RDS (ours) .792 .810 .818

still competitive. In addition to the above quantitative results, we further show

some qualitative image examples. In Figure 3.9, we illustrate some examples of our

results.

3.4.3 Cross-dataset generalization

To investigate the generalization of one edge detector, it is necessary to conduct

experiments on another dataset. Following the experimental setup in [30, 127], the

NYUD dataset (v2) [162] is used as the cross dataset. With the model trained

on BSDS500 training set, we evaluate the BSDS500 models on the NYUD dataset

with its 654 testing images. Since these models are trained with color images, we

only test the color images in the NYUD dataset. In Table 3.4, we compare our

ODS results with SE [127, 163] and DeepContour [30]. To compensate for the rela-

tively inexact ground truth in NYUD dataset, we increase the maximum tolerance

(maxDist) allowed for correct matches of edge predictions to ground truth from

.0075 to .011 [127]. We can see that, RDS achieves better cross-dataset generaliza-

tion results, no matter what the maximum tolerance is.
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Figure 3.8: Precision and recall curves on BSDS500 test dataset. These methods are
ranked according to their best F-score (ODS). Our method achieves superior result as
compared with other top-tier performance.
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Figure 3.9: Illustration of �ve edge detection results. Our method can detect mean-
ingful edges, even though they still have some di�erences from the ground-truth an-
notations.
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Table 3.4: Cross-dataset generalization results (ODS F-score). The model trained
on BSDS500 is used to evaluate the NYUD test set.

maxDist=.0075 maxDist=.011

DeepContour [30] .550 -
SE [127, 163] .550 .64
RDS(SE) .611 .627

RDS(SE) + CEA .655 .674

3.4.4 Computational cost

Moreover, we report the computational cost of the proposed RDS method, including

the training and testing stages. The experimental environment is Intel i7 CPU with

64GB RAM and NVIDIA K40 GPU. (1) Training stage: we need to extract the

relaxed labels using o�-the-shelf Canny or SE. They are both quite e�cient detectors

with about 15 and 2.5 FPS (frames per second), respectively. Next, we use the CEA

data to pre-train the network with for 10,000 iterations, which takes about 10 hours

on one K40 GPU. Finally, it spends less than one hour to train the model on the

BSDS500 training set (200 images) for 25 epoches. (2) Testing stage: apart from

computing the relaxed labels, our method takes about 500ms to predict the fusion-

output edge map. Similar to HED, RDS has the similar order of magnitude in terms

of computational speed.

3.5 Chapter Conclusions

In this chapter, we developed an edge detection method in�uenced by relaxed deep

supervision (RDS) to guide the training of deep neural networks. Compared with

the general deep supervision, RDS generated diverse supervisory signals to guide

di�erent intermediate layers. It can make the network have more focus on the false

positives. Consequently, our method achieved considerable improvements, mean-

while retaining high e�ciency. In addition, we proposed to pre-trained the model

with coarse edge annotations (CEA) extracted from a large collection of segmen-

tation annotations. This pre-training step can alleviate the lack of expensive edge

annotations. Our results on the BSDS500 dataset demonstarted competitive per-

formance (ODS=.792) with the state-of-the-art approaches. Another cross-dataset

test indicated the promising generalization power of our method.

Future work. The work in this chapter has provided promising insights into ef-

�ciently exploiting diverse deep supervision to guide the network. Therefore, it is

feasible to apply this relaxation strategy to other visual recognition tasks, such as

object recognition and image segmentation. In addition, we will study theoretical

analysis to provide more insights into diverse deep supervision.
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Chapter 4

DeepIndex for Image Retrieval

The previous two research chapters focused on research about image-level and pixel-

level classi�cation. In this chapter, we turn our focus on the second research theme:

retrieval, and answer how we can utilize deep visual representations for accurate and

e�cient image retrieval (RQ 3).

In a conventional image retrieval system, a number of local features are designed to

describe key points in images. Then the well-known Bag-of-Words model is used to

quantize the local features into visual words. In addition, an inverted index scheme

is created to reduce the computational burden and query time. However, the local

features are weak to distill high-level semantic concepts from the images. In the past

few years, deep visual representations have shown powerful capabilities of bridging

the semantic gap between low-level and high-level features. Inspired by this, in this

chapter we exploit a DeepIndex framework for accurate and e�cient image retrieval,

by incorporating deep visual features into the inverted index scheme. DeepIndex can

take advantage of the powerful discrimination of deep features and the fast search of

the inverted index. To integrate more deep features, we further extend our frame-

work to be a multiple DeepIndex. We �nd that the multiple DeepIndex can be

viewed as a good attempt to couple di�erent deep features. Extensive experiments

on three benchmarks demonstrate the e�ectiveness of the proposed method. Our

method is e�cient in terms of memory cost and query time.

Keywords
Image retrieval, Convolutional neural networks, Bag of words, Inverted index
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4.1 Introduction

Image retrieval is a practical and common application in the real world and there-

fore has triggered a massive amount of research activities in both multimedia and

computer vision �elds [19, 38, 39]. Bag-of-Words (BoW) is a traditional and e�-

cient method in existing image retrieval systems, where local features, such as the

SIFT [40] and color clues [41], are quantized to visual words with a pre-trained

codebook. Then, similar to document retrieval [19, 39], an inverted index is built

with the visual words to reduce computational and memory cost for scalable image

search. Recently, Zheng et al. [164] performed low-level feature fusion with the

SIFT and color features using a coupled inverted index framework. However, image

retrieval remains challenging due to the well-known semantic gap between low-level

image representations and high-level semantic concepts.

To bridge the semantic gap, recent works are dedicated to using more discriminative

visual features learned in deep neural networks. The work of Wan et al. [42] �nds

that a deep CNN model pre-trained on a large dataset can be transferred for new

content-based image retrieval (CBIR) tasks and that similarity learning can further

boost the retrieval performance. Babenko et al. [45] focus on holistic descriptors

where the whole image is mapped to a single deep feature vector. To extract richer

regional features, Gong et al. [22] employed image patches at multiple scales, and

then aggregated local patch responses at the �ner scales via the VLAD [20] encoding.

Yoo et al. [25] utilized multi-scale dense local CNN features to compute the Fisher

Vector kernels. Zhang et al. [46] proposed a deep embedding method by incorpo-

rating the SIFT descriptor and CNN features. However, these prior works mainly

focus on the accuracy and omit the importance of the retrieval e�ciency, including

memory cost and query time. To ensure both the accuracy and e�ciency for image

retrieval, we need to answer the question RQ 3: How can we incorporate deep

visual representations into the inverted index structure for accurate and

e�cient image retrieval?

In this chapter, we propose a novel DeepIndex framework for accurate and e�cient

image retrieval, which can incorporate deep features into the inverted index scheme.

We present a Bag-of-Deep-Features(BDF) model to cluster deep features into a

number of visual words. In contrast to prior works that use resource-consuming

algorithms for matching deep features, our DeepIndex(DPI) employs an e�cient in-

verted index for fast image search, which can achieve competitive performance while

reducing the computational time and memory cost. Furthermore, we extend DeepIn-

dex by integrating di�erent deep features and build a 2-D DeepIndex structure that

consists of two kinds of variants: intra-CNN and inter-CNN. Intra-CNN uses two

deep features from the same CNN architecture (e.g. AlexNet [157]), while inter-

CNN selects the features from two di�erent CNN architectures (e.g. AlexNet [157]

and VGG [7]). The performance of inter-CNN is better than that of intra-CNN,
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because the former one can fuse mutual deep features learned by di�erent CNN

models. However, intra-CNN is simpler and faster than inter-CNN. Notably, both

intra-CNN and inter-CNN can serve as a solution to couple di�erent deep features at

an indexing level. Last but not least, we introduce a global image signature (GIS)

into DeepIndex in order to enhance the query accuracy. In the experiments, we

evaluate the proposed method on three datasets, where the results demonstrate its

e�ectiveness and e�ciency. Also, our results can compete with the state-of-the-art

performance in terms of retrieval accuracy and computational cost.

The contributions of this work are as follows:

� We present a good attempt to incorporate deep features into the inverted index

scheme and exploit a novel DeepIndex framework for accurate and e�cient

image retrieval.

� We present a 2-D DeepIndex variant that can be an alternative to e�ectively

integrate di�erent deep features at an indexing level.

� Our experiments show the promising advantages of leveraging deep visual rep-

resentations to improve traditional image retrieval methods.

The rest of this chapter is structured as follows. Section 4.2 describes the bag-of-

deep-features method. The DeepIndex framework is introduced in Section 4.3. The

experimental results are reported in Section 4.4. Finally, Section 4.5 summarizes

the conclusions.

4.2 Bag of Deep Features

Traditional image retrieval methods extract low-level features from images, such

as SIFT and color descriptors, and employ them to construct the Bag-of-Features

(BoF) or Bag-of-Words (BoW) model. However, few works have shown the utility

of deep features into BoF. In this section, we present a Bag-of-Deep-Features (BDF)

model, where visual words can be clustered based on CNN features.

4.2.1 Spatial patches

Generally, extracting only the global image feature is not discriminative enough

for image retrieval, and may miss some local clues, such as spatial locations and

contexts. Thus it is encouraged to extract rich regional features within �ner scales.

There are three common approaches to search for local regions in an image, including

sliding window, region proposal and spatial pyramid.

Firstly, the sliding window approach is a quite common approach in object recog-

nition and object detection that scans an image using windows of di�erent scales,
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Figure 4.1: A three-level spatial pyramid. There are 14 image patches Pi in total,
i = 1, . . . , 14. we can describe each patch with a CNN feature.
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Figure 4.2: Visualizing the CNN
features for three groups of im-
ages from the Holidays dataset [47].
Note that, each group has a few
images and we show one of them
in the right side. Each point in
the 3D space represents an image
patch, and its color corresponds to
one of the three groups. We can
see the clear separations of di�erent
groups.

locations, and aspect ratios. For example, Gong et al. [22] scan the whole image

with two levels of overlapping windows that generates numerous local patches. Sec-

ondly, the region proposal approach can detect the objects of interest in images

using fewer candidates than sliding windows. For object detection, RCNN [165]

adopts the selective search into CNNs replacing sliding windows. Sun et al. [166]

extract CNN features for object-like image patches with a region proposal detector.

Thirdly, in contrast to the above two methods, the spatial pyramid approach [167]

is an e�cient way to preserve the spatial information in the images. Razavian et

al. [6], augment the datasets by cropping and rotating images in several directions,

and then use spatial search to divide the whole image into di�erent levels of patches

whose union covers the whole image.

Considering the above three approaches, we employ the spatial pyramid one to en-

rich the image representation because of its simplicity and e�ciency. As seen in

Figure 4.1, we partition one image into three levels: Level 1 contains only one

patch P1 that is the whole image; Level 2 divides the image into four patches

(P2, P3, P4, P5) whose union covers the whole image; Level 3 consists of nine non-

overlapping patches, denoted with P6 to P14. In total, there are 14 patches for one

image, and their CNN features can be computed independently. In contrast to [6]

which uses larger levels for training images than query images, we apply the same

spatial levels for all images in the training and testing sets.
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4.2.2 Feature extraction and quantization

The success of convolutional neural networks in image classi�cation[157] has shown

the strong e�ciency and discriminative ability of learning deep visual features. It

is common to extract the image representation from the fully connected (fc) layers

[6, 168], because they are closer to class posteriors. However, it is still questionable

about which fc layer is favorable for image retrieval. Di�erent from prior works using

either the �rst or the second fc feature, we aim to study the bene�t of aggregating

multiple fc features.

Speci�cally, we employ two common CNN architectures pre-trained on ImageNet [5].

The �rst one is AlexNet proposed by Krizhevsky et al. [157] in 2012. The second

one is the VGG-19 model from Simonyan et al. [169] proposed in 2014. AlexNet has

eight successive layers (5 convolutional layers, 3 fully connected layers), and the �rst

and second fc layers are named by fc6 and fc7 respectively. VGG-19 consists of 16

convolutional layers and 3 fully connected layers and we name the �rst and second fc

layers fc17 and fc18. To visually demonstrate deep features, we select three groups

of images from the Holidays dataset[47]. The fc18 features of the image patches

are extracted (4096-dimension). Then we map the features into a 3D space by the

classical Multi-Dimensional Scaling (MDS). As seen in Figure 4.2, the separability

of three groups is clear in the 3D space.

After feature extraction, we perform feature quantization based on the BoW model.

Given an image I, xi represents the feature vector of the i-th patch. After extract-

ing the features of all image patches, we can learn a codebook with the k -means

algorithm. Then the quantization function q(·) is used to map a patch feature xi
to its nearest visual word vk in the codebook, i.e. q(xi) 7→ vk. Note that, the code-

books associated with di�erent fc features (i.e. fc6, fc7, fc17, fc18) are constructed

independently. L2 normalization is used to normalize the features.

4.3 DeepIndex

To reduce the retrieval time and memory cost, we propose the DeepIndex framework

in which the inverted index is created based on the visual words. In addition, we

can integrate multiple deep features with a multiple DeepIndex variant. Finally, the

global image signature is utilized to increase the matching accuracy.

4.3.1 Single DeepIndex

We create an inverted index structure in which each entry corresponds to a vi-

sual word de�ned by the pre-computed codebook {vi}Ki=1. We represent the in-

verted index as W = {W1,W2, . . . ,WK}, where each entry Wi consists of a list
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 Figure 4.3: The �owchart of Single DeepIndex framework, including o�-line and on-
line stages. Here, the fc6 features from AlexNet are extracted to cluster the visual
words, which are used to construct the inverted index structure. More details are in
Section 4.3.

of indexed items, such as image ID, term-frequency (TF) score and other meta-

data [39, 164, 170]. The indexed items following each entry Wi are counted as the

retrieved candidates of the query feature. Therefore, the matching function hq(·) for
two deep features x and y can be expressed with

hq(x, y) = δq(x),q(y), (4.1)

where δ is the Kronecker delta response and q(·) ∈ [1, K]. However, this matching

function cannot weight the visual words according to their frequency. Generally, rare

visual words are assumed to be more discriminative and should be assigned higher

weights. Driven by the tf-idf scheme[19], we update the matching function

h(x, y) = δq(x),q(y) · idf(q(y))2, (4.2)

where idf(i) = N/ni and ni is the number of images containing vi.

For simplicity, we call the proposed indexing scheme single DeepIndex (1-D DPI)

because it uses one kind of deep features. Speci�cally, we present four variants of 1-

D DPI, including DPI6,DPI7,DPI17 and DPI18, depending on which fully-connected

feature of AlexNet and VGG-19 is used. The entire procedure of DeepIndex for

image retrieval is illustrated in Figure 4.3. It takes the DPI6 method as an example,

but it is suitable for other deep features as well. There are two stages: o�-line

stage and on-line stage. During the o�-line stage, we mainly cluster the codebook

with the training image patches, and construct the inverted index structure. The

on-line stage will query an image with its patch features and obtain similar images

by searching the inverted index structure.
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Figure 4.4: The framework of 2-D DeepIndex with deep features, including intra-
CNN and inter-CNN. For intra-CNN, it uses the fc6 and fc7 jointly. For inter-CNN,
the fc7 and fc18 are incorporated for indexing. Besides, the global image signature,
being an additional clue in the indexed items, is stored in a table.
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Figure 4.5: A conceptual comparison between Intra-CNN and Inter-CNN.

4.3.2 Multiple DeepIndex

Currently, most works mainly focus on comparing performance of di�erent fully

connected layers and choose a superior one. However, di�erent neural layers imply

di�erent levels of abstraction of the image. Thus we utilize di�erent deep features

to compensate each other and to improve the retrieval accuracy. Based on this

idea, we present an extended framework, called multiple DeepIndex (multi-DPI).

The multi-index structure was �rst proposed in Babenko et al. [171]. It decomposes

the SIFT descriptor into several blocks by product quantization. The multi-index

structure is then organized around the codebooks of corresponding blocks. Similarly,

Zheng et al. [164] built the coupled multi-index with traditional SIFT features and

additional discriminative color names. Their results demonstrate that the feature

fusion at the indexing level is better than the single indexing. Motivated by these

works, we exploit a multiple DeepIndex that can incorporate multiple deep features

into a multi-index structure. In this work, we take the two dimensional DeepIndex

(2-D DPI) as an example.

To be speci�c, we denote X = [xr, xc] as a coupled deep features for a patch Pi,

where xr is extracted from one fc layer as the row indexing, and xc comes from

another fc layer as the column indexing. Then, two codebooks are pre-computed

with di�erent fc features separately, i.e. U = u1, u2, . . . , uM and V = v1, v2, . . . , vN ,

where M and N are codebook sizes. The 2-D DPI structure contains M × N
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entries, where W = W11,W12, . . . ,Wij, . . . ,WMN , i = 1, 2, . . . ,M, j = 1, 2, . . . , N .

After building the 2-D DPI, each feature tuple like X = [xr, xc] can be quantized

into a visual word pair (ui, vj) based on the codebooks U and V , where ui and vj are
the nearest centroids to xr and xc, respectively. Similar to the 1-D DPI, additional

clues (e.g. image ID and other meta-data) related to the feature tuple X are saved

in the corresponding entry Wij.

Given two feature tuples X = [xr, xc] and Y = [yr, yc], the matching function for

2-D indexing can be rewritten by

h(X ,Y) = δqr(xr),qr(yr) · δqc(xc),qc(yc) · idf 2, (4.3)

where qr(·) and qc(·) present two di�erent quantization functions. Notice that, a

right match is valid only if the two features tuples are similar in both row and column

indexing. In this way, the 2-D DeepIndex can enhance the matching strength so as

to improve the retrieval accuracy.

Moreover, we de�ne two methods for selecting fc features, named intra-CNN and

inter-CNN. (1) The Intra-CNN method uses two fc layers from the same CNN

architecture. As the two black solid lines seen in Figure 4.4, fc6 activation is taken

as column indexing, and the fc7 activation serves as row indexing. We can construct

two Intra-CNN members: DPI6,7 and DPI17,18. (2) The Inter-CNN method chooses

two fc layers coming from two di�erent CNN architectures. For example, the two

black dash lines in Figure 4.4, fc7 in Alexnet and fc18 in VGG-19 can serve as column

and row indexing respectively. In total, we can have four Inter-CNN members,

including DPI6,17, DPI7,17, DPI6,18 and DPI7,18.

We provide more insights into Intra-CNN and Inter-CNN in Figure 4.5. By com-

paring the depth of AlexNet and VGG-19, we categorize fc6 and fc7 as mid-level

features, and fc17 and fc18 as high-level features. Intra-CNN is simpler to build

than Inter-CNN. However, Inter-CNN can be viewed as a solution to bridge the

gap between mid-level and high-level deep networks. More comparison and analysis

about intra-CNN and inter-CNN is reported in the experiments.

4.3.3 Global image signature

To further improve the matching accuracy in the inverted index structure, we employ

an additional discriminative feature to constrain the matching condition and �lter

out false matches, which is called the `signature'. The most popular one is the

hamming embedding signature [47] that uses a 64-D binary signature for each SIFT

descriptor, and stores it in the meta-data of the inverted items. Also, Zheng et al.

[164] use the hamming embedding for SIFT features and generate another signature

for color names. The discrimination of deep image features has been demonstrated
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in existing works [6, 42, 172], for example, only one fc feature vector extracted from

the whole image can achieve desirable results for many tasks.

In this work, we propose to use this global deep feature as an additional signature

for DeepIndex, called global image signature(GIS). Although the spatial patches

already contains global feature representation at Level 1, they are used to enrich the

representations of images and exploit more features at local regions. In addition, all

the patch features are clustered into visual words and quantized to another space

that is di�erent from the original feature space. Thus, it is not a redundant process to

use the global feature again. Since GIS is quite e�cient, all the patches in one image

can share the same GIS. We store all GIS features in a Global Features Table and

search them by the GIS ID stored in the indexed items, as seen in Figure 4.4.

We compute the similarity of two GIS features with the root feature process [166,

173]. Speci�cally, we obtain the root feature by �rst L1 normalizing the feature

vector and then computing the square root per dimension. The distance d(x, y) is

computed using the Hellinger kernel S(x, y) =
∑m

i=1
2
√
xiyi:

d(x, y) = 2− 2 · S(x, y).

Then we take GIS into DeepIndex, and add this distance to update the match-

ing score. For 1-D DeepIndex, given two patch features x and y, we can update

Eq. 4.2

h(x, y) = δq(x),q(y) · idf 2 · c(x, y), (4.4)

where c(x, y) = exp(α · d(gis(x), gis(y))); gis(·) returns the corresponding global

image feature of the current image patch; α adjusts the GIS matching strength. For

2-D DeepIndex, there are two feature tuples, its matching function becomes

h(X ,Y) = δqr(xr),qr(yr) · δqc(xc),qc(yc) · idf 2 · c(X ,Y), (4.5)

where c(X ,Y) = c(gis(xr), gis(yr)) · c(gis(xc), gis(yc)). We �nd that GIS is an

e�cient global constraint and can compensate for patch matching. Finally, two

patches can be matched only when their visual words are identical and their GIS

features are similar.

4.4 Experiments

We evaluate the proposed method on three datasets and conduct component analysis

to verify its e�ectiveness. In addition, we present its computational complexity in

terms of memory cost and query time.
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Figure 4.6: (a)-(c) E�ect of codebook sizes on three dataset. The selected sizes
are 5000, 5000 and 10000 for Holidays, Paris and UKB, respectively. (d) In�uence of
parameter α.

4.4.1 Datasets and metrics

Holidays [47] contains 1,491 vacation photographs corresponding to 500 groups.

There are 500 queries, most of which have 1-2 ground truth images which have been

recti�ed to a natural orientation. The performance is measured by mean average

precision(mAP) over the provided queries (also seen in Section 2.4.3).

Paris [174] has 6,412 images obtained from Flickr. 55 images serve as queries. For

each image and landmark, one of four possible labels is generated: good, ok, bad,

and junk. The mAP is again used as the accuracy measurement.

UKB [175] includes 10,200 indoor photos of 2,550 objects(4 images per object).

Each image is used to query the rest of the dataset in turn. The performance is

reported by the average recall of the top four results, referred to as N-S score that

is a number between 0 and 4 (also seen in Section 2.4.3) . But some works still use

mAP to measure the performance on this dataset.

4.4.2 Results and discussion

Codebook size.

The visual words are clustered using features from the training images. To elevate

the e�ciency of k -means, we use the algorithm from Fast Library for Approximate
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Table 4.1: Quantitative results on the 1-D DeepIndex and 2-D DeepIndex. Multiple
assignment (MA) is used to increase the retrieval recall. We compare the performance
of four 1-D DPI methods, two Intra-CNN methods and four Inter-CNN methods. The
best results on the datasets are in boldface.

Method
Holidays (mAP) Paris (mAP) UKB (N-S)

MA=1 MA=3 MA=5 MA=1 MA=5 MA=10 MA=1 MA=5 MA=10

DPI6 71.73 73.54 72.01 40.94 56.89 65.21 2.90 3.03 3.02
DPI7 72.34 74.90 73.58 41.24 57.45 65.78 3.05 3.12 3.04
DPI17 73.02 73.22 72.62 44.87 61.01 70.24 3.16 3.19 3.15
DPI18 76.31 76.72 75.63 45.03 61.23 71.33 3.21 3.25 3.19
DPI6+7 72.00 78.88 77.17 29.35 62.89 71.20 3.02 3.13 3.05
DPI17+18 75.75 79.96 79.34 32.28 63.29 71.69 3.16 3.25 3.26
DPI7+17 74.01 80.53 80.20 33.45 64.12 73.24 3.21 3.25 3.19
DPI6+17 73.32 81.62 81.15 33.95 65.08 74.35 3.22 3.26 3.22
DPI7+18 74.66 81.23 81.74 36.56 66.18 75.35 3.26 3.37 3.32
DPI6+18 73.82 81.64 82.38 34.12 65.40 74.52 3.19 3.23 3.29

Nearest Neighbors(FLANN) [176]. We test four kinds of 1-D DeepIndex (i.e. DPI6,

DPI7, DPI17 and DPI18) to �nd proper codebook sizes. The results are shown in Fig-

ure 4.6. To balance the accuracy and e�ciency, we set the codebook size K =5000,

5000 and 10000 for Holidays, Paris and UKB, respectively. It is noteworthy that the

codebook sizes of deep features are much smaller than traditional BoW with local

features, because the number of image patches is much smaller than the number of

key points.

Ablation study of DeepIndex

We report ablation results of 1-D DPI and 2-D DPI on the three datasets in Table 4.1.

First, we analyze the e�ect of multiple assignment (MA) [170] on the performance,

which is a common technique when retrieving the inverted index items. When

MA=1, it means that only the nearest inverted index item can be retrieved. In this

case, we can see that the 2-D method is not better than the 1-D method because of

the low recall. To further improve the recall, we can increase the multiple assignment

(MA) [170]. In this way, the 2-D DPI can perform better than the 1-D DPI, which

demonstrates the bene�t of integrating di�erent features.

Next, we can observe that the inter-CNN methods are better than the intra-CNN

ones. The reason is that two deep features in intra-CNN are from the same CNN

architecture, such as fc6 and fc7 in AlexNet, and their implicit relationships (i.e. fc6

is the input of fc7) may limit the learning of the 2-D inverted index. For simplicity,

we call the fc6 and fc7 features as `mid-level' descriptions and the fc17 and fc18

features as `high-level' descriptions. As a result of the mutual compensation of mid-

level and high-level features in inter-CNN, it can bridge the gap between di�erent

CNNs at the 2-D inverted index level and achieve superior retrieval accuracy. In

details, DPI6,18 obtains 82.38% mAP on Holidays; DPI7,18 has 75.35% mAP on Paris;

DPI7,18 achieves 3.37 N-S score.
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Figure 4.7: Retrieval results on the Holidays and UKB datasets. The 2-D DPI
method can have more relevant retrieved candidates than the 1-D DPI.

Table 4.2: E�ect of PCA Compression on the performance of DeepIndex.

Dimensions Holidays (mAP) Paris (mAP) UKB (N-S)

4096 83.30 78.24 3.68
2048 84.11 79.45 3.72
1024 84.63 80.65 3.74
512 85.65 81.24 3.76
256 83.67 78.75 3.71
128 82.72 77.24 3.65

Moreover, we study the in�uence of the global image signature on 2-D DPI. We

choose to test the superior methods on each dataset, as listed in Table 4.1. The

parameter α in GIS ranges from 1 to 15 and the results are shown in Figure 4.6d.

For Holidays, the GIS increases DPI6,18 to 83.3% mAP when α is 8. Similarly,

the result of DPI7,18 for Paris reaches 78.24% mAP with α = 4. Also, the DPI7,18
method gets 3.68 N-S score on UKB with α = 10. All these results show that GIS

can help in providing a global constraint to enhance the matching accuracy. All the

following results contain the GIS process. In addition to the quantitative evaluation,

we show two queries from Holidays and UKB in Figure 4.7. It can be seen that the

2-D DPI method can retrieve more relevant images than the 1-D DPI.

Dimensionality reduction

The deep visual features we use have 4096 dimensions. To reduce the feature dimen-

sionality, we further study the in�uence of feature compression for deep features.

Speci�cally, we conduct PCA compression for the 4096-Dimension deep features.

Also, the GIS is compressed by PCA. We report the results in Table 4.2. Interest-

ingly, when the dimension decreases to 512, we achieve the best results on all the
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Table 4.3: Comparison results with other methods on three datasets.

Groups Methods Holidays (mAP) Paris (mAP) UKB (N-S and mAP)

Non-CNN [41] 78.90 - 3.50
Non-CNN [177] 80.86 - 3.60
Non-CNN [170] 81.30 - 3.42(87.8)
Non-CNN [178] 82.20 78.20 -
Non-CNN [179] 83.90 - 3.54(90.7)
Non-CNN [164] 84.02 - 3.71(94.7)
Non-CNN [178] 88.00 80.50 -
CNN [45] 74.70 - 3.43
CNN [166] 79.00 - 3.61
CNN [22] 80.20 - -
CNN [6] 84.30 79.50 -(91.1)
CNN [42] - 86.83 -
CNN Ours 85.65 81.24 3.76

SIFT-CNN [46] 85.30 - 3.79
SIFT-CNN [46] 88.08 - 3.85

three datasets. Even in the extreme case where the dimensionality is down to 128, it

can still obtain desirable results compared with many of SIFT-based methods. This

implies that the original deep feature is discriminative while containing some redun-

dant information for the retrieval tasks. Feature compression can help re�ne the

feature representation and maintain the high performance. A similar observation is

also suggested in other related works [42, 45].

4.4.3 Comparison with other methods

We compare our results with other state-of-the-art methods. We simply divide them

into three groups: CNN methods, Non-CNN methods and SIFT-CNN methods.

We do not consider and perform various post-processing algorithms, such as query

expansion, spatial veri�cation and graph fusion. For CNN methods, we do not

consider �ne-tuning for speci�c tasks. For fairness, we compare the results with

other methods that exclude the post-processing and �ne-tuning steps.

The whole comparison is listed in Table 4.3. For Holidays, our proposed method

(85.56%) exceeds other CNN-based methods, and is in competition with the best

results [178] and [46]. In the work by Tolias et al. [178], their representation takes

several millions of features per image which is not scalable to large datasets. In

Zhang et al. [46], they use both the SIFT descriptor and CNN features to increase

the accuracy. On the Paris dataset, our result (81.24%) outperforms most methods,

except [42] that introduces the similarity learning algorithm into deep learning. In

UKB, our method (3.76) is better than the coupled multi-index method [164], and
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Table 4.4: Memory cost (bytes) and query time (seconds) for one image on Holidays.

Complexity [46] 1-D DPI 2-D DPI

ImageID 4× 500 4× 14 4× 14
Signature 10.18KB 512× 4 512× 4× 2

Total Memory 12.13KB 2.06KB 4.06KB
Query Time 2.32 0.25 0.45

is also competitive with [46].

Complexity analysis

Although our results are inferior to those of [46], our method is more e�cient in terms

of memory cost and query time. As seen in Table 4.4, we compare the computing

complexity of DeepIndex with [46] on Holidays. Our experimental environment

is Intel i7 CPU at 2.67Ghz with 12GB RAM and NVIDIA GTX 660 with 2GB

GRAM. Zheng et al. [46] extracts 500 SIFT keypoints for each image. Considering

the memory cost per image, both the 1-D DPI (2.06KB) and 2-D DPI (4.06KB)

are more e�cient than [46] that requires signi�cantly more memory for the SIFT

descriptors. Also, our average query time is shorter, i.e. less than 0.5 seconds

compared to 2.3 seconds for [46]. These results are consistent with our motivation

of exploiting an accurate and e�cient image retrieval method.

4.5 Chapter Conclusions

In this chapter, we exploited the DeepIndex framework for accurate and e�cient

image retrieval that could incorporate deep features into the inverted index scheme.

In addition, we integrated multiple deep features with the multiple DeepIndex which

was able to bridge di�erent deep representations at an indexing level. Experimental

results showed that our method achieved competitive performance on the Holidays,

Paris and UKB datasets, while retaining the retrieval e�ciency in terms of memory

cost and query time.

Future work. One the one hand, a straightforward improvement is to further

extend multiple DeepIndex by using more deep features, e.g. 3-D DeepIndex and

so on. But we should note that it will increase the computational cost. On the

other hand, it is encouraged to integrate some traditional retrieval techniques with

DeepIndex, such as query expansion and late fusion. We believe that deep learning

approaches would be compatible with other traditional algorithms.
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Chapter 5

Image-Text Matching for

Cross-modal Retrieval

In the previous chapter, we have started the research theme on image retrieval.

Nowadays, cross-modal retrieval using vision and language has drawn increasing

attention due to the availability of large-scale multimedia data. This observation

motivates our research on how we can develop an e�cient deep matching network

for cross-modal retrieval (RQ 4).

A major challenge in matching visual and textual representations is that they typi-

cally have di�erent modality-speci�c features based on individual feature encoders.

Existing approaches take advantage of the power of deep models to learn a discrim-

inative embedding space where related images and texts can be gathered, however,

few of them consider maintaining the model complexity. In this chapter, we intro-

duce an e�cient approach to couple visual and textual features based on a recurrent

residual fusion (RRF) block. RRF adapts the residual learning to the recurrent

mechanism, so that it can recursively improve feature embeddings while retaining

the shared parameters. In addition, a fusion module is used to integrate the in-

termediate recurrent outputs and generate a more powerful representation. In the

matching network, RRF can be viewed as a feature enhancement component that

gathers visual and textual representations into a more discriminative embedding

space. Moreover, we present a bi-rank loss function to enforce separability of the

two modalities in the embedding space. In the experiments, we verify the e�ective-

ness of the proposed approach on two multi-modal datasets where it can achieve

competitive performance with the state-of-the-art approaches.

Keywords
Cross-modal retrieval, Image-text matching, Deep neural networks, Ranking loss
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5.1 Introduction

The matching problem between images and texts [49, 50, 51, 52, 53, 54] is one of the

most important tasks in the area of multi-modal information retrieval. This task

remains challenging due to the heterogenous representations and the cross-modal

gap between vision and language, which is also a core issue for other multi-modal

applications such as image captioning [55, 56], visual question answering [57, 58]

and zero-shot recognition [59, 60].

A main line of research for multi-modal matching is to learn a latent embed-

ding space where related images and texts can be uni�ed into similar represen-

tations [63, 180, 181]. Previously, Canonical Correlation Analysis (CCA) [61] has

been a well-known and representative embedding technique for decades. CCA can

learn a linear transformation to project two modalities into a common space where

their correlations are maximized. Also, some extensive techniques are applied to

the classical CCA, including randomized CCA [182], nonparametric CCA [183], and

kernel CCA [184].

Driven by the successful developments of deep learning, more and more works extract

powerful visual and textual features from deep neural networks. For example, recent

works [50, 51, 52, 53, 55, 185] employ convolutional neural networks (CNNs) [4] to

extract deep image features, and learn descriptive text features based on recurrent

neural networks (RNNs) [186]. Then they can incorporate deep learning features

with traditional embedding techniques (e.g. CCA and its variants). In addition,

extensive research e�orts [49, 62] have been dedicated to directly learning a deep

CCA model that can be end-to-end trainable. Instead of using CCA, recent works

developed a variety of multi-modal deep neural networks to model the matching

task [52, 53, 55, 76, 181]. Nevertheless, the performance of multi-modal matching

is still far from competitive with that of an intra-modal task like image retrieval.

In addition, most of prior works are ine�cient with respect to the model complex-

ity. Regarding this task, we aim to address RQ 4: How can we build a deep

matching network to unify images and texts into a more discriminative

space without increasing the number of network parameters?

In this chapter, we propose a deep matching network using recurrent residual fusion

(RRF) as building blocks for improving feature embeddings. Our new matching

network (RRF-Net) has two branches for representing images and texts, respectively.

Each branch consists of four fully-connected layers that are used to project a source

representation into a common latent space. The proposed RRF building block is

introduced in the third fully-connected layer of the two branches. Speci�cally, RRF

integrates three main components to improve the feature embedding procedure in

the network.

74



5.2 Recurrent Residual Fusion

The �rst component in RRF is inspired by the residual learning in ResNet [10]. We

add an identity connection to sum the input of a fully-connected layer with its out-

put. This component enables the fully-connected layer to learn residual embedding

features and provides high performance. Secondly, RRF employs a recurrent mech-

anism with the residual learning by adding a recurrent connection whose direction is

inverse to the identity connection. As the parameters of the fully-connected layer are

shared during the recurrent procedure, RRF is able to recurrently improve feature

embeddings while retaining the parameters. The third component is the use of a

fusion module, which aims to integrate intermediate recurrent outputs to generate a

more powerful fused output. The fusion module facilitates making use of more com-

plementary information in the intermediate layers and explicitly transferring their

e�ects to the �nal output. We provide two e�cient fusion modules: sum-pooling

fusion and convolutional fusion.

Moreover, we present a bi-directional rank loss function (called bi-rank loss), in-

cluding image-to-text rank loss and text-to-image rank loss, to train the proposed

RRF-Net. The original bi-directional loss function only considers the cross-modal

relationships between images and texts. Instead, the bi-rank loss can preserve not

only cross-modal relationships, but also intra-modal relationships (e.g. image-image

and text-text). As a result, it is able to enforce separability of the two modalities in

a uni�ed embedding space. Extensive experiments show remarkable improvements

of the bi-rank loss over the original bi-directional loss.

The contributions of this work are as follows:

� We introduce a new RRF building block and adapt it to a deep matching

network. RRF provides promising insights into e�ciently improving the co-

embedding between images and texts.

� We present a bi-rank loss function to train the RRF-Net for better ensuring

the cross-modal and intra-modal constraints in the uni�ed space.

� The experimental results demonstrate that our approach achieves competi-

tive performance on public benchmarks for image-to-text and text-to-image

retrieval.

The rest of this chapter is structured as follows. Section 5.2 describes the proposed

recurrent residual fusion method. The image-text matching network is presented

in Section 5.3. The experimental results are reported in Section 5.4. Section 5.5

summarizes the conclusions.

5.2 Recurrent Residual Fusion

We describe the details of the RRF block (Figure 5.2) with three components: an

identity connection, a recurrent connection and a fusion module.
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Figure 5.1: Illustration of basic building blocks. (a) An identity mapping (blue) is
added to a fully-connected layer. (b) A recurrent connection (green) is introduced
that uses the current output state to update the next input state. (c) We unfold the
building block in (b) over recurrent steps, resulting in a very deep network. All fully-
connected layers (in green) share the same parameters. t represents the recurrent step,
ranging from 1 to T .
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Figure 5.2: The RRF building block. Built upon recurrent residual learning, we
develop a fusion module (in red) to integrate the intermediate output vectors from
each recurrent step. The �nal output vector learns more information than the orig-
inal output in Figure 5.1c. Speci�cally, there are two types of fusion modules: the
sum-pooling fusion simply �xes equal weights, but the convolutional fusion can learn
adaptive weights (drawn in di�erent colors).

Identity connection

The basic building block in ResNet [10] adds an extra identity mapping with the

traditional non-linear transformations based on convolutional layers. Instead of

using a convolutional layer, we develop an identity connection on top of a fully-

connected layer. As can be seen in Figure 5.1a, our residual block consists of a
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fully-connected layer (FC), a batch normalization layer (BN) [135] and a Recti�ed

Linear Unit (ReLU) layer [4]. The input and output channels of the FC layer should

have the same size. The computation can be presented by

h(x) = σ(f(x)) + x, (5.1)

where x and h(x) represent the input and output of the building block, respectively.

f(·) indicates the FC layer, and σ(·) is the ReLU activation function.

Recurrent connection

RNNs [186, 187] are proposed for modeling sequential contexts in tasks like machine

translation and image captioning. We seek to introduce the recurrent mechanism

to the residual learning block. As can be seen in Figure 5.1b, we add a recurrent

connection whose direction is inverse to the identity connection. As a result, the

current output can be used as the next input, and then the next input continues

adding an identity mapping to the residual mapping to compute the next output.

As the fully-connected parameters are shared during the recurrent procedure, the

whole structure is able to become much deeper without consuming more parameters.

We unfold the structure across recurrent steps in Figure 5.1c. Assume that there

are T recurrent steps in total, so the structure has T +1 layers inside, and each layer

uses the same parameters as drawn in green. Mathematically, the recurrent residual

procedure is formulated via

xt = h(xt−1) (5.2)

f(xt) = w · xt + b (5.3)

h(xt) = σ(f(xt)) + xt (5.4)

where t = 1, . . . , T and x0 = x is the original input vector. xt is updated by the

previous output h(xt−1) which adds the residual mapping f(xt) with the identity

mapping xt. The parameters w, b indicate the shared weights and bias in the fully-

connected layer. Note that the parameters used in the BN layer are not shared during

recurrence, however, the number of these parameters is much lower than that of the

total parameters in the model. The input vector can be re�ned over recurrence while

maintaining the e�ciency due to tying the shared parameters. Finally, the output

vector learns to be a more discriminative representation.

Fusion module

Typically, a plain network can learn multiple representations from bottom layers

to top layers, however, the �nal output only connects with the topmost layer. For

example in Figure 5.1c, the output vector is directly a�ected by the result at the

last recurrent step. Although the recurrent procedure can transfer the e�ects of
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intermediate layers to the �nal output, their e�ects are implicit and indirect com-

pared with the topmost layer. Therefore, we develop a fusion module to explicitly

aggregate the intermediate layers involved in the recurrent procedure. Figure 5.2

highlights the fusion module in red. Speci�cally, several new side branches (dot

lines in red) are generated from intermediate layers and then merged into a fusion

module. As the intermediate layers have the same dimension, the fusion module

is able to integrate them without adding extra new transition layers. In a fusion

module, T + 1 side outputs are stacked as a layer S. S is of size 1 × N × (T + 1),

where N is the dimension of each side output. Based on S, we employ two fusion

methods to compute a fused output vector: sum-pooling fusion and convolutional

fusion.

(1) Sum-pooling fusion. As can be seen in the right bottom of Figure 5.2, it computes

a summation across the feature channels of the stack layer S. The fused output

vector Ssum is represented by

Ssum =
T∑
i=0

h(xi) =
T∑
i=0

σ(f(xi)) + xi. (5.5)

The sum-pooling fusion supposes that each side branch has the same importance

without learning any weights.

(2) Convolutional fusion. Normally, each side branch (or intermediate layer) may

in�uence the output vector with di�erent importance. Therefore, we use a con-

volutional layer in the fusion module to learn adaptive weights (or importance) for

better fusing side branches. The �lter f in the convolutional layer has 1×1×(T +1)

dimensions. S is convolved by f to generate the fused vector Sconv:

Sconv = wf ∗ S + bf (5.6)

where wf and bf represent the weights and bias, respectively. It is worth noting that

these additional parameters (i.e. T + 1) are a minimal increase to the total number

of parameters used in a deep network.

In summary, the RRF block incorporate the above three components and inherits

their individual advantages. It acts as a feature enhancement to the power of the

input vector and aims to generate a more informative output vector. Unlike other

deep fusion networks in which di�erent layers are aggregated, RRF delves into im-

proving the discrimination of one layer over recurrence. Also, RRF is a general

structure that can be potentially applied to many existing layers in a deep network.
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Figure 5.3: The overview architecture of the proposed RRF-Net for image and text
matching. This two-branch network comprises three key steps: (1) feature extractors
are used for capturing visual and textual representations. (2) Four fully-connected
layers (from FC1 to FC4) in two branches are used for learning feature embeddings.
Importantly, a RRF block is built upon the FC3 layer to improve its embedding ca-
pability. The details inside the RRF block are described in Figure 5.2. (3) After
normalizing the two output vectors and computing their inner product, we employ a
bi-rank loss to train the entire network.

𝑥𝑖
+ 

𝑥𝑖,𝑗
−  𝑦𝑖,𝑗

−  

𝑦𝑖
+ 𝑥𝑖

+ 𝑦𝑖
+ 

Figure 5.4: Illustration of
computing the bi-rank loss that
are used to train the RRF-Net.
Left: image-to-text rank loss;
Right: text-to-image rank loss.
x and y indicate the image and
text, respectively.

5.3 Matching Network

In this section, we present a new deep matching network called RRF-Net, where

the RRF blocks are introduced to improve latent embeddings between images and

texts. Figure 5.3 illustrates the architecture of the network, and we will describe its

three key steps as below.

5.3.1 Feature extractor

As a common practice, we capture visual and textual features using o�-the-shelf

feature extractors. Taking these features as input instead of the raw data can ease

the training procedure and lead to fast convergence.

Image feature extractor: we choose the powerful ResNet-152 [10] pre-trained on

ImageNet [5]. To e�ciently extract dense region representations, CNN models are

�rst recast to fully convolutional networks (FCNs) [26]. Given one input image, we
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set its smaller side to 512 and isotropically resize the other side. The last max-

pooling layer in the ResNet-152 model is averaged to generate a 2048-dimensional

visual feature vector.

Text feature extractor: we employ the Hybrid Gaussian-Laplacian mixture model

(HGLMM) [51] which is built based on word2vec model [188]. For each sentence,

HGLMM computes one 18000-dimensional vector with 30 centers (i.e. 300*30*2).

To decrease the memory cost [53], we also use PCA to reduce the dimension from

18000 to 6000. Finally, the 6000-dimensional vector acts as a powerful feature.

5.3.2 Feature embedding

To learn a discriminative embedding space, we develop four fully-connected layers

on top of the two feature extractors. Their channels are {2048, 512, 512, 512} in

both branches. Note that the parameters in each branch are unshared as they are

responsible for di�erent modalities. Speci�cally, ReLU is used for FC1, FC2 and

FC3, but not for FC4. A dropout layer with 0.5 probability is added after FC1, and

other FC layers are regularized with batch normalization (BN) [135].

The core component in each branch is the FC3 layer as it introduces the RRF

building block. RRF increases the FC3 layer to depth T + 1 while retaining the

parameters. Consequently, it facilitates deeper learning of latent embeddings and

further uni�es the visual and textual representations. Notably, the BN layer after

FC3 learns unshared parameters during recurrent steps, however, these few extra

parameters raise little cost to the entire network. Moreover, a RRF block can be

imposed on any fully-connected layer. But in the current architecture, FC3 is more

suitable than other layers. Also, we observe that using only a RRF block seems

su�cient for enhancing feature embeddings.

5.3.3 Bi-rank loss

After unifying images and texts into a joint embedding space, the next step is to

compare their similarities. Given an image x and a text y, their FC4 embedding

features are denoted as f(x) and f(y). We compute the similarity s(x, y) with the

cosine distance

s(x, y) = 1− f(x) · f(y)

||f(x)|| · ||f(y)||
. (5.7)

Smaller distances indicate larger similarities. To train the network, we de�ne a

bi-rank loss function, including image-to-text and text-to-image rank loss.
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Image-to-text rank loss

For an input image x+i , its matching text is represented by y+i . To obtain more

representative non-matching pairs, we collect the top N most dissimilar texts in

each mini-batch as a negative text set Y −i . Then, we compute the triplet rank

loss for {x+i , y+i , y−i,j}, where y−i,j ∈ Y −i and j = 1, 2, . . . , N . First, the matching

cross-modal similarity s(x+i , y
+
i ) should be larger than any of the non-matching

cross-modal similarities s(x+i , y
−
i,j). Second, we further constrain the intra-modal

similarity s(y+i , y
−
i,j) from exceeding s(x+i , y

+
i ). This loss can ensure both the cross-

modal (i.e. image-text) and the intra-modal (i.e. text-text) relations. An example

is shown in the left of Figure 5.4. Finally, this loss function is expressed with

li2t =
N∑
j=1

(
α1 max[0, s(x+i , y

+
i )− s(x+i , y−i,j) +m]

+ α2 max[0, s(x+i , y
+
i )− s(y+i , y−i,j) +m]

)
,

(5.8)

where α1 and α2 measure the importance of the two terms. m is a parameter to

adjust the margin between the two distances.

Text-to-image rank loss

Given one text y+i , we collect its top N most dissimilar images in each mini-batch as

a negative image set X−i . Similarly, we compare the similarities within each triplet

{y+i , x+i , x−i,j}, where x−i,j ∈ X−i . Their relations can be seen in the right of Figure 5.4.
The text-to-image rank loss is as follows

lt2i =
N∑
j=1

(
α1 max[0, s(y+i , x

+
i )− s(y+i , x−i,j) +m]

+ α2 max[0, s(y+i , x
+
i )− s(x+i , x−i,j) +m]

)
,

(5.9)

Full objective

The objective is to minimize the total loss by adding the two rank loss functions

l(x+i , y
+
i , X

−
i , Y

−
i ) =

β1li2t + β2lt2i
N

, (5.10)

where the weights β1 and β2 control the importance of the two terms of one-

directional rank loss. Compared with [53] which searches for extra positive intra-

modal pairs, our bi-rank loss directly uses the negative intra-modal pairs and needs

a minimal amount of additional computations.
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Table 5.1: Evaluation results on the proposed RRF-Net on the Flickr30K test set.
Higher R@K is better. All of the four RRF-Net models outperform the baseline. When
T = 3, it obtains better performance (in bold).

Method
Image to Text Text to Image
R@1 R@5 R@1 R@5

Baseline 45.0 75.5 33.6 66.5
RRF-Net, T=1 46.4 76.1 34.3 67.3
RRF-Net, T=2 46.9 76.8 34.8 67.7
RRF-Net, T=3 47.6 77.4 35.4 68.3
RRF-Net, T=4 46.2 76.6 35.1 67.6

5.4 Experiments

In this section, we evaluate our approach and report its results on two widely-used

multi-modal datasets for bi-directional image-text retrieval.

Datasets. (1) Flickr30K [189]: following the dataset splits in [190], we use 29,783

training images, 1,000 validation images and 1,000 test images. Each image is an-

notated by �ve sentence-level texts. It has 29, 783 ∗ 5 = 148, 915 training pairs. (2)

MSCOCO [117]: it consists of 82,783 training images and 40,504 validation images.

1,000 test images are selected from the validation set [190]. We choose �ve sentences

for each image and generate 82, 783 ∗ 5 = 413, 915 training pairs.

Implementation details. The hyper-parameters are evaluated on the validation

set of each dataset. To be more speci�c, the parameters {α1, α2, β1, β2} are set with
{1, 0.5, 2, 1}, and m = 0.1. Following [53], the number of non-matching pairs is

N = 50. We trained the model with a weight decay of 0.0005, a momentum of

0.9, and a mini-batch size of 1500. The learning rate was initialized with 0.1 and

is divided by 10 when the decrease in loss stabilizes. It is necessary to shu�e the

training samples randomly.

Baseline method. It uses the same 4-layer plain network in Figure 5.3 but excludes

the RRF block from the FC3 layer. We employed the same hyper-parameters for

training the RRF-Net model and the baseline model.

5.4.1 Results and discussion

To measure the performance of image-text retrieval, we adopt the evaluation met-

ric R@K which is the recall rate of a correctly retrieved ground-truth at top K

candidates (e.g. K = 1, 5, 10) [55].
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Figure 5.5: Qualitative results on Flickr30K and MSCOCO. First column: the base-
line model; Second column: RRF-Net model with T = 3; Third column: the ensemble
model with M = {1, 2, 3, 4}. For image-to-text retrieval, the ground-truth matching
texts are in green. For text-to-image retrieval, the red number in the upper left corner
of one image is the ranking order, and the green frame corresponds to the ground-truth
matching image.

Evaluation for the RRF-Net

In Table 5.1, we show the results of four RRF-Net models with T = 1, 2, 3, 4 (here

we use the convolutional fusion). Compared with the baseline model, all four RRF-

Net models achieved considerable improvements. This veri�es the e�ectiveness of

imposing RRF blocks in a deep matching network. We can observe that, the results

when T = 3 are superior to other time steps. The drop of performance from T=3

and T=4 may be due to the potential over�tting in the model. It shows a trade-o�

between the number of recurrent steps and the test performance. The following

experiments are performed with T = 3. We believe that evaluating more recurrent

steps is still promising in future research. The �rst and second columns in Figure 5.5

compare the examples between the baseline and the RRF-Net.

Evaluation for fusion modules

Recall that we de�ne two types of fusion modules. Table 5.2 compares their quanti-

tative results. First, we trained a RRF-Net model without using any fusion module,

which is actually a recurrent residual model in Figure 5.1c. By comparison, we can
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Table 5.2: Evaluation for fusion modules on the Flickr30K test set. The convolutional
fusion shows better results by learning adaptive weights.

Method
Image to Text Text to Image
R@1 R@5 R@1 R@5

RRF-Net w/o fusion module 45.8 75.9 34.2 67.1
RRF-Net with sum fusion 47.1 76.8 35.0 67.6
RRF-Net with conv fusion 47.6 77.4 35.4 68.3

Table 5.3: Compared results (R@K) between the bi-rank loss and the original bi-
directional loss on the Flickr30K test set.

Method
Image to Text Text to Image
R@1 R@5 R@1 R@5

Baseline, bi-directional 43.4 73.8 32.5 65.4
Baseline, bi-rank 45.0 75.5 33.6 66.5

RRF-Net, bi-directional 46.4 76.5 34.1 67.4
RRF-Net, bi-rank 47.6 77.4 35.4 68.3

see that using fusion modules can achieve remarkable improvements. This evalua-

tion reveals the bene�t of integrating the intermediate recurrent layers. Moreover,

the advantage of the sum-pooling fusion is that it is parameter-free, however, the

convolution fusion yields better results than the sum-pooling fusion due to learning

adaptive weights. In the following, we implemented the RRF-Net model with the

convolutional fusion.

Evaluation for the bi-rank loss

Table 5.3 presents the quantitative comparison between the bi-rank loss and the

original bi-directional loss. Actually, the original bi-directional loss is a speci�c case

of the bi-rank loss. We implemented the bi-directional loss by setting {α1, α2, β1, β2}
with {1, 0, 2, 0}. The baseline and RRF-Net models are both evaluated in this

test. In summary, it can be seen that the bi-rank loss brings ∼1% performance

improvements compared with the bi-directional loss.

5.4.2 Comparison with other approaches

We compared our results with the state-of-the-art approaches in Table 5.4. Overall,

RRF-Net achieves competitive (and often better) performance on both Flickr30K

and MSCOCO datasets. On the FLICKR30K dataset, DSPE [53] and 2WayNet [76]

lead recent state-of-the-art results. Although 2WayNet has the best R@1 results on

Flickr30K, the proposed RRF-Net outperforms it on the R@5 accuracy. Addition-

ally, our approach on MSCOCO outperforms the top state-of-the-art approaches.
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Table 5.4: Comparison with the state-of-the-art approaches on Flickr30K and
MSCOCO for cross-modal retrieval. Our RRF-Net can compete with 2WayNet [76]
on the Flickr30K dataset and achieve superior results on the MSCOCO dataset.

Method
Flickr30K dataset MSCOCO dataset

Image to Text| Text to Image Image to Text| Text to Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

DVSA [55] 22.2 48.2 61.4 15.2 37.7 50.5 38.4 69.9 80.5 27.4 60.2 74.8
UVSE [66] 23.0 50.7 62.9 16.8 42.0 56.5 - - - - - -

Mean vector [51] 24.8 52.5 64.3 20.5 46.3 59.3 33.2 61.8 75.1 24.2 56.4 72.4
Deep CCA [49] 27.9 56.9 68.2 26.8 52.9 66.9 - - - - - -
VQA-aware [191] 33.9 62.5 74.5 24.9 52.6 64.8 50.5 80.1 89.7 37.0 70.9 82.9

GMM+HGLMM [51] 35.0 62.0 73.8 25.0 52.7 66.0 39.4 67.9 80.9 25.1 59.8 76.6
m-RNN [190] 35.4 63.8 73.7 22.8 50.7 63.1 41.0 73.0 83.5 29.0 42.2 77.0
RNN-FV [185] 35.6 62.5 74.2 27.4 55.9 70.0 41.5 72.0 82.9 29.2 64.7 80.4

mCNN(ensemble) [52] 33.6 64.1 74.9 26.2 56.3 69.6 42.8 73.1 84.1 32.6 68.6 82.8
HM-LSTM [65] 38.1 - 76.5 27.7 - 68.8 43.9 - 87.8 36.1 - 86.7
DSPE [53] 40.3 68.9 79.9 29.7 60.1 72.1 50.1 79.7 89.2 39.6 75.2 86.9

sm-LSTM [68] 42.5 71.9 81.5 30.2 60.4 72.3 53.2 83.1 91.5 40.7 75.8 87.4
2WayNet [76] 49.8 67.5 - 36.0 55.6 - 55.8 75.2 - 39.7 63.3 -
RRF-Net 47.6 77.4 87.1 35.4 68.3 79.9 56.4 85.3 91.5 43.9 78.1 88.6

Table 5.5: Model ensemble results (R@K, K = 1, 5) on the Flickr30K test set.
Merging more models is signi�cant to obtain better results.

Method
Image to Text Text to Image
R@1 R@5 R@1 R@5

RRF-Net, M = {3} 47.6 77.4 35.4 68.3
RRF-Net, M = {1, 3} 49.1 78.4 36.8 69.8
RRF-Net, M = {1, 2, 3} 50.3 79.2 37.4 70.4
RRF-Net, M = {1, 2, 3, 4} 50.8 79.5 37.6 70.9

Recall that we used the ResNet-152 model to extract visual features. To provide

more comparison, we were also curious about the performance when using another

well-known CNN: VGG-19 [7]. For Flickr30K, RRF-Net yields R@1=42.1 and 31.2

for image-to-text and text-to-image retrieval, respectively. This was not as high

as the proposed RRF-Net performance, but still higher than DSPE [53]. There-

fore, RRF-Net presents consistently high performance for diverse feature extractors.

5.4.3 Model ensemble

Although the performance of di�erent RRF-Net models varies, it is bene�cial to in-

tegrate the retrieved results from multiple models at the test stage. To integrate the

strengths of individual RRF-Net models, we employ a simple yet e�cient ensemble

approach by computing the averaged similarity s
′
(x, y) given a test pair (x, y):

s
′
(x, y) =

∑
m∈M sm(x, y)

|M |
, (5.11)
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where M is the index set, and sm(x, y) is the similarity computed by the RRF-Net

model with T = m. For example when M = {1, 3}, the model ensemble merges the

RRF-Net models with T = 1 and T = 3. As reported in Table 5.5, merging the four

models (i.e. M = {1, 2, 3, 4}) together can signi�cantly improve the performance

compared with the single RRF-Net model (i.e. M = {3}). This ensemble approach
can re�ne the retrieved candidates without increasing the training complexity. In

Figure 5.5, the third column shows its retrieval results.

5.5 Chapter Conclusions

In this chapter, we have exploited the RRF block and RRF-Net which can bridge

the gap between image and text features in a deep matching network. RRF can be

viewed as a feature enhancement component to gather visual and textual represen-

tations into a more discriminative embedding space. In addition, we have presented

a bi-rank loss function to enhancing the matching constraints in the embedding

space. Experiments showed that RRF-Net can achieve competitive performance on

the datasets, Flickr30K and MSCOCO.

Future work. This work can provide promising insights towards how to e�ciently

narrowing the semantic gap between vision and language. Image-text matching

is a fundamental technique for many multi-modal research tasks. Therefore, it is

promising that the RRF building block could be seamlessly integrated into other

multi-modal systems like image captioning and visual question answering.
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Chapter 6

Cycle-consistent Embeddings for

Cross-modal Retrieval

In the previous chapter, we have exploited an image-text matching network to corre-

late visual-textual features in a latent embedding space. In this chapter, we further

address how we can preserve inter-modal correlations and intra-modal consistency

while matching visual and textual representations (RQ5).

To narrow the modality gap between vision and language, prior approaches attempt

to discover their correlated semantics in a common feature space. However, these ap-

proaches omit the intra-modal semantic consistency when learning the inter-modal

correlations. To address this problem, we propose cycle-consistent embeddings in a

deep neural network for matching visual and textual representations. Our approach

named as CycleMatch can maintain both inter-modal correlations and intra-modal

consistency by cascading dual mappings and reconstructed mappings in a cyclic

fashion. Moreover, in order to achieve a robust inference, we propose to employ

two late-fusion approaches: average fusion and adaptive fusion. Both of them can

e�ectively integrate the matching scores of di�erent embedding features, without

increasing the network complexity and training time. In the experiments on cross-

modal retrieval, we demonstrate comprehensive results to verify the e�ectiveness of

the proposed approach. Our approach achieves state-of-the-art performance on two

well-known multi-modal datasets, Flickr30K and MSCOCO.

Keywords
Cross-modal retrieval, Embedding, Deep neural networks, Late fusion
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6.1 Introduction

Nowadays, the explosive growth of multimedia data in social networks (e.g. image,

video, text and audio) have triggered a massive amount of research activities in

multi-modal understanding and reasoning. In this chapter, we focus on the task of

image-text matching, which aims to incorporate heterogeneous representations from

visual and textual modalities. In practice, this task plays an essential role in a wide

variety of vision-and-language applications, for examples, cross-modal retrieval [192,

193], visual question answering [58, 194], zero-shot recognition [195, 196] and visual

grounding [197, 198].

The core issue with image-text matching is searching for an appropriate embed-

ding space where related images and texts can be matched correctly. Driven by the

great strides made by deep learning [4, 7, 10], recent research has been dedicated to

exploring deep neural networks for learning powerful embedding features, in order

to narrow the modality gap between visual and textual domains. These networks

are typically composed of two branches for generating visual and textual embed-

ding features in a common latent space, respectively [53, 64, 65, 67, 68]. Then,

a similarity-based ranking loss is used to measure the latent embedding features.

Latent embeddings can distill common semantic information about both the visual

content and textual description. To directly match the similarities between vision

and language, researchers further exploit dual embeddings by translating an input

feature in the source space to be the feature in the target space [71, 72, 76, 77].

Both the latent and dual embeddings can capture inter-modal semantic correlations,

however, they are limited in preserving intra-modal semantic consistency. Our mo-

tivation for this work is that: A robust embedding method should be able to learn

representations of both the source and target modalities. Inspired by this motivation,

in this chapter we focus on solving the �fth research question RQ 5: How can we

preserve both inter-modal correlations and intra-modal consistency for

learning robust visual and textual embeddings?

Inspired by the idea of cycle-consistent learning [94, 199], we propose cycle-consistent

embeddings in an image-text matching network, which can incorporate both inter-

modal correlations and intra-modal consistency for learning robust visual and textual

embeddings. Figure 6.1 illustrates our embedding method by integrating three fea-

ture embeddings, including dual, reconstructed and latent embeddings. Speci�cally,

it has two cycle branches, one starting from an image feature in the visual space

and the other from a text feature in the textual space. For each branch, it �rst

accomplishes a dual mapping by translating an input feature in the source space

to be a dual embedding in the target space. Inverse to the dual mapping, we then

exploit a reconstructed mapping, with the aim of translating the dual embedding

back to the source space. Moreover, we learn a latent space during the dual and

reconstructed mappings and correlate the latent embeddings. In the three feature
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Figure 6.1: Schematic pipeline of our proposed cycle-consistent embedding method.
It is composed of two cycle branches starting from (Left) visual space and (Right)
textual space, respectively. We �rst perform a dual mapping by transforming the input
feature into the target feature space. Then the dual embedding is used to generate
a reconstructed embedding in a reconstructed mapping. In addition, we construct a
latent space to correlate latent embeddings of the two mappings. The two branches
share the mapping functions for transformations between three feature spaces, and can
be trained jointly by optimizing the matching losses in the three feature spaces.

spaces, we compute their ranking losses to jointly optimize the whole embedding

learning. Consequently, our visual-textual embedding method can learn not only

inter-modal mappings (i.e. image-to-text and text-to-image), but also intra-modal

mappings (i.e. image-to-image and text-to-text).

The contributions of this work are as follows:

� We propose a novel deep cycle-consistent embedding network for image-text

matching. Our approach called CycleMatch can cascade dual and recon-

structed mappings together to maintain inter-modal correlations and intra-

modal consistency. To our best knowledge, this is the �rst work to explore the

usage of cycle consistency for solving the task of image-text matching.

� To improve the inference at the test stage, we present two late-fusion ap-

proaches to e�ciently integrate the matching scores of multiple embedding

features without increasing the training complexity.

� In the experiments, our cycle-consistency embedding outperforms traditional

embeddings with considerable improvements for cross-modal retrieval on two

multi-modal datasets, i.e. Flickr30K and MSCOCO. In addition, our results

are competitive with the state-of-the-art approaches.

The rest of this chapter is structured as follows. Related works are introduced in

Section 6.2. Section 6.3 details the proposed CycleMatch. The experimental results

are reported in Section 6.4. Finally, Section 6.5 summarizes the conclusions.

89



6. CYCLE-CONSISTENT EMBEDDINGS FOR CROSS-MODAL RETRIEVAL

6.2 Related Work

Our work is related to the image-text matching methods based on deep neural

networks, and other works about cycle-consistent learning.

Deep visual-textual embeddings

With the increasing progress of deep learning, research e�orts have been made to

CCA into deep neural networks [49, 50, 51, 62]. However, most deep CCA mod-

els rely on expensive decorrelation computations, which limit their generalization

abilities at large-scale data. Alternatively, a number of recent approaches [52, 55,

64, 65, 66] address the task by designing two-branch networks to embed visual and

textual features into a common latent space, and then learn latent embeddings by

optimizing a ranking loss between matched and unmatched image-text pairs. For in-

stance, Wang et al. [53] built a simple and e�cient matching network to preserve the

structure relations between images and texts in the latent space. To associate im-

age regions with words, the attention mechanism was integrated into visual-textual

embedding models [67, 68]. In addition to the pairwise ranking loss, recent ap-

proaches [69, 70] leveraged extra loss functions to enhance the discrimination of the

learned embedding features.

Another line of research [71, 72, 73, 74, 75] focuses on learning dual embeddings

between two modalities, e.g. projecting visual features into the textual feature

space and vice versa. Essentially, the dual embedding models are motivated by

autoencoders. For instance, Feng et al. [71] proposed a correspondence cross-modal

autoencoder model. 2WayNet [76] built the projections between two modalities and

regularized them with Euclidean loss. Recently, the work of Gu et al. [77] utilized

two generative models to synthesize grounded visual and textual representations.

Also, Huang et al. [200] jointly modeled image-sentence matching and sentence

generation. Note that, latent embeddings can be additionally used in the dual

embedding models to enhance cross-modal relations.

In contrast to the above studies, our approach builds a reconstructed mapping upon

the dual mapping, and generates cycle-consistent embeddings that are bene�cial to

the process of matching visual-textual representations. In Figure 6.2, we show the

di�erences of our model from previous works.

Cycle-consistent learning

There are a few papers exploring cycle consistency for diverse applications [94, 199,

201, 202, 203]. They are mainly motivated by the fact that, cycle-consistent learning

is encouraged to produce additional feedback signals to improve the bi-directional

translations. Speci�cally, He et al. [199] proposed a dual-learning mechanism based
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Figure 6.2: Conceptual illustration of variants of image-text matching models. (a)
Latent embedding model. (b) Dual embedding model with inter-modal reconstruction.
(c) Dual embedding model with inter-modal and intra-modal reconstruction. (d) Our
cycle-consistent embedding model. Notice that the models in (b)(c)(d) also impose
latent embeddings on hidden layers. Our model cascades the two embedding networks
in a cyclic fashion, which can enhance interactions between two embedding networks.

on deep reinforcement learning, where one agent was used to learn the primal task,

e.g. English-to-French translation, and the other agent for the dual task, e.g. French-

to-English translation. More recently, Zhu et al. [94] exploited cycle-consistent

adversarial networks (CycleGAN), which combined a cycle-consistency loss with an

adversarial loss [79] to perform unpaired image-to-image translations between two

di�erent visual domains. A similar idea was also presented in [204, 205].

Although prior works have shown the e�ectiveness of using cycle-consistent con-

straints for intra-modal domain mappings, yet in the context of cross-modal repre-

sentation learning, its e�ectiveness has not been well investigated. In contrast to

prior approaches that utilize cycle-consistent constraints within one modality (e.g.

neural machine translation and image-to-image translation), our work is the �rst to

extend the usage of cycle consistency for learning visual-textual embeddings. The

work of Chen and Zitnick [206] is relevant to ours, as their model can both generate

textual captions and reconstruct visual features given an image representation. How-

ever, their model lacks the inverse cycle mapping, i.e. text-to-image-to-text, which

can be jointly learned in our model. Last but not least, these existing works did not

consider matching latent embeddings during the cycle-consistent scheme.

6.3 Cycle-consistent Embeddings

In this section, we present the proposed network (CycleMatch) with cycle-consistent

embeddings for matching visual and textual representations. For a robust inference,

we exploit two late-fusion approaches by taking advantage of multiple embedding

features learned in the network.
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Figure 6.3: The proposed CycleMatch exploits two cycle branches for image-text
matching. For each branch, it is divided into two sub-branches from the fourth FC

layer (i.e. FC
(4)
IT and FC

(4)
TI ). One sub-branch continues accomplishing the dual map-

ping to the target feature space, while the other sub-branch is used to perform the
reconstructed mapping back to the source feature space. Consequently, the cycle
branches allow to jointly learn dual, reconstructed and latent embedding features. We
can train the network end-to-end by optimizing several loss functions simultaneously.

6.3.1 System architecture

Figure 6.3 depicts an overview of the CycleMatch architecture. The entire net-

work consists of three components: feature encoder, feature embedding and feature

matching. First of all, given an input image Ii and text Ti, we employ individ-

ual feature encoders to extract the visual feature vi = Enimg(Ii) and textual feature

ti = Entext(Ti). Then, we develop several fully-connected (FC) layers (i.e. FC
(j)
I2T) to

perform the Image-to-Text (I2T) mapping and several other FC layers (i.e. FC
(j)
T2I)

for the Text-to-Image (T2I) mapping. Let fI2T(·) and fT2I(·) represent the mapping

functions for I2T and T2I, respectively. In addition, connecting FCI2T and FCT2I

can form two cycle mappings between the visual and textual feature spaces. Specif-

ically, given vi, we �rst transform it to be fI2T(vi) in the textual feature space and

then learn its reconstructed feature fT2I(fI2T(vi)) in the visual feature space. More-

over, we also correlate intermediate features derived from FC
(3)
I2T and FC

(3)
T2I, so as to

learn a latent feature space. Similarly, ti is used to start another cycle mapping. In

a nutshell, each cycle mapping can learn dual, reconstructed and latent embeddings

in a cyclic fashion.

92



6.3 Cycle-consistent Embeddings

6.3.2 Formulation

Next, we will detail the above three embeddings and formulate their loss functions

separately. The entire network contains two cycle-consistent embedding branches:

one for image-to-text-to-image (I2T2I) mapping and the other for text-to-image-to-

text (T2I2T) mapping. Here, we take the I2T2I mapping for an example.

Dual embedding

In a dataset collection with N image-text pairs, we take as input vi into FC
(j)
I2T,

where i = 1, . . . , N and j = 1, . . . , 4, and generate the dual embedding fI2T(vi)

in the textual space, which should have the same dimension as the ground-truth

textual feature ti. Then, we need to normalize the two features and compute their

similarity using the cosine distance

s(fI2T(vi), ti) =
fI2T(vi) · ti

||fI2T(vi)|| · ||ti||
. (6.1)

During training, it is important to construct a number of negative pairs, in addition

to the positive pair. Thereby, we search for the top K negative samples in a mini-

batch for both fI2T(vi) and ti, which are denoted with fI2T(v−i,k) and t−i,k, respectively,

where k = 1, . . . , K. To learn dual mappings, we need to employ a pairwise ranking

loss function with respect to positive and negative pairs:

Ldual
I2T2I =

N∑
i=1

K∑
k=1

{
max

[
0,m− s(fI2T(vi), ti) + s(fI2T(vi), t

−
i,k)
]

+ αmax
[
0,m− s(fI2T(vi), ti) + s(fI2T(v−i,k), ti)

]}
,

(6.2)

where m is a margin parameter and α adjusts the weights of the two loss terms.

Ideally, the matched distance s(fI2T(vi), ti) should be smaller than any of the un-

matched distances s(fI2T(vi), t
−
i,k) and s(fI2T(v−i,k), ti).

Reconstructed embedding

In addition to learning inter-modal correlations from dual mappings, we further

explore reconstructed mappings to maintain the intra-modal semantic consistency.

We cascade the dual and reconstructed mappings to form an intra-modal autoen-

coder and minimize the reconstruction error based on the ranking loss instead of

the traditional Euclidean loss. Speci�cally, we feed fI2T(vi) into FC
(j)
T2I, to produce
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a reconstructed embedding feature ṽi in the visual feature space with

ṽi = fT2I(fI2T(vi)) = fT2I ◦ fI2T(vi). (6.3)

The ranking loss for making the reconstructed embedding feature ṽi match with the

original visual feature vi can be written as follows

Lrec
I2T2I =

N∑
i=1

K∑
k=1

{
max

[
0,m− s(ṽi,vi) + s(ṽi,v

−
i,k)
]

+ αmax
[
0,m− s(ṽi,vi) + s(ṽ−i,k,vi)

]}
.

(6.4)

Since Lrec
I2T2I also has an e�ect on the parameters of FC

(j)
I2T, the reconstructed map-

pings can help to improve the learning of dual mappings as well.

Latent embedding

Furthermore, we exploit a latent feature space to enhance the correlations between

the dual and reconstructed mappings. Latent embeddings are able to distill com-

mon semantic information from visual and textual representations. Speci�cally, we

make use of the intermediate representations from the third FC layers, i.e. FC
(3)
I2T

and FC
(3)
T2I. When vi passes through FC

(3)
I2T, we can extract an intermediate fea-

ture f
(3)
I2T(vi). Also, the dual embedding fI2T(vi) passes through FC

(3)
T2I to generate

another intermediate feature f
(3)
T2I(fI2T(vi)). The ranking loss for matching latent

embeddings thereby becomes

Llat
I2T2I =

N∑
i=1

K∑
k=1

{
max

[
0,m− s

(
f
(3)
I2T(vi), f

(3)
T2I(fI2T(vi))

)
+ s
(
f
(3)
I2T(vi), f

(3)
T2I(fI2T(v−i,k))

)]
+ αmax

[
0,m− s

(
f
(3)
I2T(vi), f

(3)
T2I(fI2T(vi))

)
+ s
(
f
(3)
I2T(v−i,k), f

(3)
T2I(fI2T(vi))

)]}
.

(6.5)

6.3.3 Full objective

Similar to the above I2T2I branch, it is straightforward to express the matching

losses in the T2I2T branch, including Ldual
T2I2T, Lrec

T2I2T and Llat
T2I2T. During training,

we need to incorporate all the loss functions jointly. Finally, the full objective is to
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minimize the total loss:

arg min
WI2T,WT2I

Ltotal =

Ldual
I2T2I + Lrec

I2T2I + Llat
I2T2I + Ldual

T2I2T + Lrec
T2I2T + Llat

T2I2T,
(6.6)

where WI2T and WT2I indicate the parameters in FC
(j)
I2T and FC

(j)
T2I, respectively.

They are unshared due to the specialization of two di�erent modalities. To demon-

strate the e�ectiveness of our CycleMatch, we utilize the t-SNE [207] algorithm to

visualize the embedding features learned in the visual, textual and latent feature

spaces, separately. As shown in Figure 6.4, we randomly select 100 image-text pairs

from the Flickr30K dataset [189]. From all the feature maps, we can visibly observe

high similarities between two matched samples.

6.3.4 Late-fusion inference

By performing cycle-consistent embeddings, we can represent one sample with a set

of three di�erent features, for instance, {vi, fI2T(vi), f
(3)
I2T(vi)} for an image. Since

the reconstructed embedding ṽi and the other latent embedding f
(3)
T2I(fI2T(vi)) are

related to vi and f
(3)
I2T(vi), we do not consider them for simplicity. Each of the three

features can be used to measure an image-text matching score. Instead of using only

one score, it is encouraged to leverage di�erent scores together to achieve a more

robust inference. This is driven by the late-fusion technique [208] in multimedia

retrieval, which is a simple and e�cient approach to combine the prediction scores

of individual features. In this work, we present two e�ective late-fusion approaches,

namely average fusion and adaptive fusion.

Average fusion

Given a query image Iq, we extract three features {vq, fI2T(vq), f
(3)
I2T(vq)}. Similarly,

an arbitrary text Ti in the dataset can be described with {ti, fT2I(ti), f
(3)
T2I(ti)}. We

can compute three similarity scores between Iq and Ti:
visual score : s(1)(vq, ti) = s(vq, fT2I(ti)),

textual score : s(2)(vq, ti) = s(fI2T(vq), ti),

latent score : s(3)(vq, ti) = s(f
(3)
I2T(vq), f

(3)
T2I(ti)).

(6.7)

Then we combine the three scores to obtain an average fusion score as follows

savg(vq, ti) =

∑3
j=1 s

(j)(vq, ti)

3
. (6.8)
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(a) •fI2T(vi) | ∗ ti (b) •ṽi | ∗ vi

(c) •f(3)
I2T(vi)| ∗ f

(3)
T2I(fI2T(vi)) (d) •fT2I(ti) | ∗ vi

(e) •t̃i | ∗ ti (f) •f(3)
T2I(ti)| ∗ f

(3)
I2T(fT2I(ti))

Figure 6.4: Visualization of our embedding features by using 100 image-text pairs in
Flickr30K [189]. The �rst and second rows represent the embedding features learned
in the I2T2I and T2I2T branches respectively. In each feature map, matched samples
are shown with the same color. In (a)(d), the dual embedding features (`•') can match
with the corresponding target features (`∗'); In (b)(e), the reconstructed embedding
features (`•') look closely similar to the source features (`∗'). In (c)(f), the two latent
embedding features (`•' and `∗') can learn to correlate with each other as well.

96



6.3 Cycle-consistent Embeddings

A smiling child is 

swinging on a swing.

Two men in business clothing have 

a conversation in front of a large 

sculpture of a red cube.

Text

query
Image

Query
A brown-

haired man 

in a black , 

yellow , and 

blue wetsuit 

is surfing.

Figure 6.5: Illustration of the sorted score curves based on three di�erent features.
For the query image in left, the �rst curve (in red) forms the smallest area above
the X axis, so the corresponding feature (i.e. visual embedding feature) can have the
largest weight (0.428). We show a matched text at the beginning of the curves and
an unmatched text at the end of the curves. Similarly, we demonstrate a text query
example in right.

It is similar to compute the fusion score savg(tq,vi) in terms of a query text Tq.

Adaptive fusion

To study the importance of di�erent features, we further learn adaptive weights

when combining the three scores. As suggested in [209], the score curve by using a

superior feature can be sorted in an �L� shape, while the curve by using an inferior

feature tends to gradually descend. In addition, the area under the curve can be

used as an indicator to measure the weight of the corresponding feature. Driven by

this observation, we can use the sorted score curves of the above three features to

decide their weights. Speci�cally, we utilize each of the three features to compute

the score curve of a query image Iq to all the text samples. Then, we sort the score

curves and compute their areas with respect to the horizonal axis. In Figure 6.5,

we show three sorted score curves for either a query image (Left) or text (Right).

In contrast to [209] where the scores are in [0, 1], our scores are based on the cosine

distance, ranging from -1 to 1. Accordingly, we can obtain both a positive area and

a negative area, locating on the two sides of the X = 0 axis. To alleviate the e�ects

of long tails in the curves, we utilize only the positive area to compute the weight

and omit the negative one. The positive area associated with the j-th feature can

be approximated by

area
(j)
+ (vq) =

N∑
i=1

max
[
0, s(j)(vq, ti)

]
. (6.9)

Smaller positive area means that the corresponding feature should have greater

weights. Hence, the adaptive weights of Iq w.r.t. the three features can be expressed
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with

w(j)(vq) =
1

area
(j)
+ (vq)

. (6.10)

In addition, we normalize the three weights to make sure
∑3

j=1w
(j)(vq) = 1. Finally,

the adaptive fusion score for matching Iq and Ti becomes

sadt(vq, ti) =
∑
j

w(j)(vq) · s(j)(vq, ti). (6.11)

Likewise, we demonstrate a text query Tq in the right of Figure 6.5, and show its

adaptive weights, w(j)(tq). Notice that our adaptive fusion approach can achieve

speci�c weights for di�erent query samples. It is an unsupervised and e�cient

manner without adding extra parameters and manual tuning. In the experiments,

we analyze the e�ects of these two late-fusion approaches on the inference of cross-

modal retrieval.

6.4 Experiments

First, we compare CycleMatch with various baseline models to verify its e�ective-

ness. In addition, we present in-depth analysis on the two late-fusion approaches.

Moreover, our results can be competitive with the state-of-the-art performance for

cross-modal retrieval on two well-known datasets. Finally, we present additional

ablation study on the e�ect of feature encoders and variance of test splits.

6.4.1 Experimental setup

We present the Dataset protocols, evaluation metrics, Network details, training

details and training time, used in our experimental setup.

Dataset protocols

The experiments are performed on two well-known datasets: Flickr30K [189] and

MSCOCO [117]. 1) Flickr30K [189] consists of 31,783 images and each image is asso-

ciated with �ve di�erent sentences. We use the dataset split of [190], namely 29,783

training images, 1,000 validation images and 1,000 test images. 2) MSCOCO [117]

is one of the largest multi-modal datasets, which includes 82,783 training images

and 40,504 validation images. We pick �ve ground-truth sentences for each im-

age. 1,000 test images are selected from the validation set [190]. Notice that some

works [53, 69, 77] merge the remaining validation images into the training set, to

further increase the performance. However, we keep only using the original training

set for fairness.
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Evaluation metrics

For evaluating the performance of cross-modal retrieval, we adopt the common met-

ric R@K, which measures the recall rate of a correctly retrieved ground-truth at top

K retrieved candidates. Generally, K is set to 1, 5 and 10 for both image-to-text

and text-to-image retrieval.

Network details

In terms of the image encoder, we employed the powerful ResNet-152 [10] pre-

trained on the ImageNet dataset [5]. Besides, we recast the CNN model to its fully

convolutional network (FCN) counterpart, which can capture rich region represen-

tations. The last layer of the FCN model is spatially averaged to generate a 2,048

dimensional visual representation. To extract the textual representation, we uti-

lized the pre-trained RNN encoder proposed in [210]. It can represent one sentence

with a 4,096 dimensional feature vector. Currently, we did not �ne-tune the feature

encoders during the training.

As for the two groups of four FC layers in CycleMatch (i.e. FC
(j)
I2T and FC

(j)
T2I),

the channels of the �rst three layers are �xed as [2048,512,512]. Note that, FC
(4)
I2T

should have the same dimension as the textual feature and FC
(4)
T2I should be equal

to the size of the visual feature.

Training details

We implemented the proposed approach based on the Ca�e library [130]. It is

important to shu�e the training samples randomly during the data preparation

stage. The hyper-parameters are evaluated on the validation set of each dataset.

We trained the model using SGD with a mini-batch size of 500, a weight decay of

0.0005, a momentum of 0.9 and an initialized learning rate of 0.1. The learning rate

is divided by 10 when the decrease in loss stabilizes. We set α = 2 and m = 0.1 in

all the experiments. The number of negative samples in each min-batch is 50. The

whole training procedure terminates after 60 epochs for both datasets.

Time complexity

We use the total loss in Eq. (6.6) to perform the training procedure. Each loss term

is a simple and e�cient ranking loss that is widely used in retrieval tasks. We used

a Titan X card with 12 GB to train all models in the experiments. For the full

CycleMatch model, training required about 19 hours on the Flickr30K dataset and

47 hours on the MSCOCO dataset, respectively.
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Table 6.1: Summary of various embedding methods for image-text matching.

Embedding methods Main description

LatentMatch It is a latent embedding model by matching f
(3)
I2T(vi) and f

(3)
T2I(ti).

DualMatch It is a dual embedding model with two dual mappings: I→T and T→I.

CycleMatch(w/o latent) It is an ablation model without latent embeddings.

CycleMatch(I2T2I) It consists of an I2T2I cycle branch and an I→T dual mapping.

CycleMatch(T2I2T) It is composed of a T2I2T cycle branch and a T→I dual mapping.

CycleMatch It is the fully implemented model by integrating two cycle branches.

Table 6.2: Comparison of the cross-modal retrieval results on Flickr30k and
MSCOCO. Higher R@K numbers are better, where K = 1, 5, 10. The full CycleMatch
model outperforms other baseline models on both datasets.

Flickr30K dataset MSCOCO dataset
Method Image to Text Text to Image Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

LatentMatch 49.7 77.4 85.0 37.8 69.8 80.6 53.9 82.9 90.8 43.0 75.8 85.9
DualMatch 53.4 80.5 87.1 40.1 70.9 81.0 56.3 83.5 91.5 45.5 76.7 87.5

CycleMatch(w/o latent) 56.8 81.7 90.3 41.1 72.5 81.3 58.5 84.0 92.4 46.9 78.3 88.7
CycleMatch(I2T2I) 57.0 82.4 91.0 42.4 73.6 82.0 61.1 85.5 93.1 46.3 79.3 89.0
CycleMatch(T2I2T) 56.4 81.9 90.6 43.2 74.3 82.6 59.7 84.7 92.6 47.6 79.7 89.6

CycleMatch 57.8 83.3 90.9 43.2 74.8 83.8 60.5 86.3 93.7 47.2 80.3 90.4

6.4.2 Comparisons with baseline methods

To demonstrate the superiority of our approach, we implemented several other

embedding approaches based on the same network settings and training hyper-

parameters as CycleMatch. Table 6.1 describes the details regarding these methods.

In terms of inference, LatentMatch is evaluated with only the latent score. How-

ever, all the other models have both visual and textual scores, therefore we utilize

the average fusion approach to accomplish their inference for a fair comparison. Ta-

ble 6.2 reports results of these models on both Flickr30K and MSCOCO for both

image-to-text retrieval and text-to-image retrieval. It can be seen that, CycleMatch

surpasses LatentMatch and DualMatch with signi�cant improvements, and achieves

overall superior performance over other variants of CycleMatch. Furthermore, we

can observe the following �ndings:

Impact of reconstructed embeddings. The main di�erence between DualMatch

and CycleMatch(w/o latent) is that the latter model uses a reconstructed map-

ping upon the traditional dual mapping. The performance improvement from Cy-

cleMatch(w/o latent) shows the bene�t of learning reconstructed embeddings in a

cyclic fashion.

Impact of latent embeddings. By comparing the results of CycleMatch and

CycleMatch(w/o latent), we �nd that integrating the latent embeddings into Cy-

cleMatch brings further improvements over all R@K measurements. For example,

R@5 shows about 2% gains for both I→T and T→I. Although using only latent
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embeddings (i.e. LatentMatch) is inferior to other models, it is bene�cial to adopt

them to improve other embedding methods like CycleMatch.

Impact of cycle branches. Both CycleMatch(I2T2I) and CycleMatch(T2I2T) can

outperform LatentMatch and DualMatch, even though only one cycle-consistent

embedding branch is used. By comparing these two models, CycleMatch(I2T2I)

performs better for I→T retrieval, while CycleMatch(T2I2T) yields better results

for T→I retrieval. When we incorporate the two cycle branches jointly to construct

a full CycleMatch, it achieves overall superior performance over any single cycle

branch on both datasets. It is consistent with our motivation that it is bene�cial to

model image-text co-translation simultaneously.

In addition to the R@K performance, we further analyze the matching scores by

using our embedding features. To be speci�c, we randomly select 100 image-text

pairs from the test set, and compute the similarity between an image and a text. As

shown in Figure 6.6, matched image-text pairs (with the same index) have greater

similarity scores than unmatched ones. This means that our embedding features are

able to learn the correlations between visual and textual representations.

6.4.3 Analysis of late-fusion inference

Recall that CycleMatch contains visual, textual and latent scores for inference (Sec-

tion 6.3.4). In this experiment, we compare three strategies to study the e�ect of two

late-fusion inference approaches on the retrieval performance of CycleMatch. Specif-

ically, the one-score strategy uses only a single visual score; the two-score strategy

integrates visual and textual scores together; the three-score strategy combines all

three scores by further adding the latent score. Table 6.3 reports the results of the

three strategies. For the two-score and three-score strategies, we present the results

of using the average and adaptive fusion, respectively. From the results, we can

make the following observations:

1) The two-score strategy improves the one-score counterpart with 1%-3% gains.

As the visual and textual scores match the samples in two di�erent feature spaces,

their complementary scores are able to improve the inference quality.

2) The adaptive fusion outperforms the average one in terms of both two-score and

three-score strategies. Although their performance gap over the R@K measurements

is not signi�cant, the adaptive fusion is an e�cient method without imposing extra

parameters and manual tuning. In addition, the inference time of the adaptive fusion

is close to that of the average fusion.

3) The three-score strategy fails to achieve further improvements over the two-score

one. We attribute this to the fact that, the latent score measures the similarity

between f
(3)
I2T(vi) and f

(3)
T2I(ti). However, we do not use a direct matching loss be-

tween them during training CycleMatch. Although adding this latent score for
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Figure 6.6: Similarity matrix of 100 image-text pairs from the test set. The related
images and texts have the same index numbers. The diagonal line demonstrates high
inter-modal correlations for matched image-text pairs. The original cosine scores are
re-scaled to be [0,1].
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Figure 6.7: Visualization of adaptive weights for 1000 image queries and 5000 text
queries on Flickr30K(a, b) and MSCOCO (c, d). Each dot in the maps is a query
sample, having two weights for the adaptive fusion. Note that w(0) + w(1) = 1. The
weights of query samples are mostly gathered between 0.4 and 0.6. It suggests that
both visual and textual scores play an important role in the inference results.

inference will not bring further performance gains, learning the latent embeddings

in CycleMatch is still important for improving the entire embedding procedure. As

we discussed earlier, CycleMatch performs better than the variant without latent

embeddings, namely CycleMatch(w/o latent).

As we can see, the two-score adaptive fusion achieves the best results. In Figure 6.7,

we further present and analyze the two adaptive weights (i.e. w(1)(·) and w(2)(·)),
which are learned in the two-score adaptive fusion for visual and textual scores. Fig-

ure 6.7(a,b) and (c,d) shows the weights for Flickr30K and MSCOCO, respectively.

For I2T retrieval, we illustrate the adaptive weights of 1000 image queries, namely

w(1)(vq) and w
(2)(vq); for T2I retrieval, we show all the weights of 5000 text queries,

denoted as w(1)(tq) and w(2)(tq). Notice that, each dot in Figure 6.7 represents a

query sample that learns individual weights based on its score curves. It can be seen

that most samples have weights ranging from 0.4 to 0.6, which suggests that both

visual and textual scores have an important impact on the inference results.
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Table 6.3: Evaluation on the e�ect of di�erent inference strategies on the R@K
measurements. The two-score strategy based on the adaptive fusion achieves the best
results (in bold face).

Flickr30K dataset MSCOCO dataset
Inference method Image to Text Text to Image Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

One-score, without fusion 54.8 82.6 90.1 40.1 70.9 81.0 58.6 85.5 92.6 45.5 78.3 88.7
Two-score, average fusion 57.8 83.3 90.9 43.2 74.8 83.8 60.5 86.3 93.7 47.2 80.3 90.4
Two-score, adaptive fusion 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9
Three-score, average fusion 57.4 83.5 91.0 43.2 74.7 83.9 59.7 86.0 94.0 46.9 80.6 89.8
Three-score, adaptive fusion 57.8 83.8 91.2 43.5 74.7 84.0 61.0 86.4 94.5 47.8 81.0 90.7

6.4.4 Comparisons with state-of-the-art approaches

In Table 6.4 and Table 6.5, we present a comprehensive comparison with previ-

ous papers where they reported the cross-modal retrieval performance on Flickr30K

and MSCOCO. It can be seen that our CycleMatch (the two-score adaptive fusion)

outperforms recent state-of-the-art approaches [64, 67, 211] with promising improve-

ments on both datasets. It is worth noting that these approaches employ di�erent

feature encoders that have a signi�cant in�uence on the performance. For a clear

comparison, we further list the image and text encoders used in these approaches.

In the following experiments, we will study the e�ect of di�erent feature encoders

on the performance of CycleMatch.

To boost the performance, recent several approaches [69, 77, 200, 211] further �ne-

tune the image encoders during training their models. Their results with �ne-tuning

the image encoders achieve better performance on MSCOCO than Flickr30K. We

should know that it is feasible to �ne-tune the image encoders while training our

CycleMatch, which can help to further improve our results. In addition, the �ne-

tuning process will maintain the �ndings we mentioned as above. More importantly,

our results on the Flickr30K dataset can even compete with the �ne-tuned results

in [69, 77, 200, 211]. On the MSCOCO dataset, the �ne-tuned approaches [69, 77,

200, 211] further merge the validation images into the training set, in order to largely

increase the performance. However, we still use the original training set for a fair

comparison with other prior approaches.

In addition to the quantitative evaluation, we present our image-to-text and text-to-

image retrieval examples in Figure 6.8, which includes both success and failure cases.

For each query sample, the top-5 candidates are retrieved, of which the ground-

truth samples are highlighted in green. We notice that, the retrieved candidates are

semantically related to the query sample in some extent, even for the failure cases.
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6. CYCLE-CONSISTENT EMBEDDINGS FOR CROSS-MODAL RETRIEVAL

Table 6.4: Comparison with the state-of-the-art approaches on Flickr30K for image-
text retrieval. For the approaches without �ne-tuning, we show the best results in blue
color; For the ones with �ne-tuning, the best results are highlighted with red color.
Overall, our results with ResNet show state-of-the-art performance on this dataset.

Method
Image
encoder

Text
encoder

Image to Text Text to Image
R@1 R@5 R@10 R@1 R@5 R@10

Without �ne-tuning image encoders
DCCA [49] AlexNet TF-IDF 16.7 39.3 52.9 12.6 31.0 43
DVSA [55] AlexNet RNN 22.2 48.2 61.4 15.2 37.7 50.5
UVSE [66] VGG-19 RNN 23.0 50.7 62.9 16.8 42.0 56.5
mCNN [52] VGG-19 CNN 33.6 64.1 74.9 26.2 56.3 69.6

VQA-aware [191] VGG-19 RNN 33.9 62.5 74.5 24.9 52.6 64.8
GMM-FV [51] VGG-16 GMM+HGLMM 35.0 62.0 73.8 25.0 52.7 66.0
m-RNN [190] VGG-16 RNN 35.4 63.8 73.7 22.8 50.7 63.1
RNN-FV [185] VGG-19 RNN 35.6 62.5 74.2 27.4 55.9 70.0
HM-LSTM [65] AlexNet RNN 38.1 - 76.5 27.7 - 68.8
DSPE [53] VGG-19 HGLMM 40.3 68.9 79.9 29.7 60.1 72.1

sm-LSTM [68] VGG-19 RNN 42.5 71.9 81.5 30.2 60.4 72.3
VSE++ [211] ResNet-152 RNN 43.7 - 82.1 32.2 - 72.1
DualCNN [69] ResNet-152 ResNet-152 44.2 70.2 79.7 30.7 59.2 70.8
RRF-Net [64] ResNet-152 HGLMM 47.6 77.4 87.1 35.4 68.3 79.9
2WayNet [76] VGG-16 GMM+HGLMM 49.8 67.5 - 36.0 55.6 -
DAN [67] ResNet-152 RNN 55.0 81.8 89.0 39.4 69.2 79.1

CycleMatch (Ours) VGG-19 RNN 51.4 80.6 88.1 38.5 71.0 81.3
CycleMatch (Ours) ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2

With �ne-tuning image encoders
DualCNN [69] ft ResNet-152 ResNet-152 55.6 81.9 89.5 39.1 69.2 80.9
VSE++ [211] ft ResNet-152 RNN 52.9 - 87.2 39.6 - 79.5

cnp + ctx + gen [200] ResNet-152, ft VGG-19 RNN 55.5 82.0 89.3 41.1 70.5 80.1
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Figure 6.8: Qualitative results of our CycleMatch on Flickr30K and MSCOCO.
Given one query, the top-5 candidates are retrieved. In the success cases, the correct
matches are highlighted with green. In the failure cases, our method can still retrieve
some reasonable false candidates related to the query.
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6.4 Experiments

Table 6.5: Comparison with the state-of-the-art approaches on MSCOCO for image-
text retrieval. For the approaches without �ne-tuning, the best results are highlighted
with blue color; For the ones with �ne-tuning, we show the best results in red color.
Among the approaches without �ne-tuning the image encoders, our approach with
ResNet can achieve the state-of-the-art performance.

Method
Image
encoder

Text
encoder

Image to Text Text to Image
R@1 R@5 R@10 R@1 R@5 R@10

Without �ne-tuning image encoders
STV [212] VGG-19 RNN 33.8 67.7 82.1 25.9 60.0 74.6
DVSA [55] AlexNet RNN 38.4 69.9 80.5 27.4 60.2 74.8

GMM-FV [51] VGG-16 GMM+HGLMM 39.4 67.9 80.9 25.1 59.8 76.6
m-RNN [190] VGG-16 RNN 41.0 73.0 83.5 29.0 42.2 77.0
RNN-FV [185] VGG-19 RNN 41.5 72.0 82.9 29.2 64.7 80.4

BiLSTM-Max [210] ResNet-101 RNN 42.6 75.3 87.3 33.9 69.7 83.8
mCNN [52] VGG-19 CNN 42.8 73.1 84.1 32.6 68.6 82.8
UVSE [66] VGG-19 RNN 43.4 75.7 85.8 31.0 66.7 79.9

HM-LSTM [65] AlexNet RNN 43.9 - 87.8 36.1 - 86.7
order-embeddings [213] VGG-19 RNN 46.7 - 88.9 37.9 - 85.9

DSPE [53] VGG-19 HGLMM 50.1 79.7 89.2 39.6 75.2 86.9
VQA-aware [191] VGG-19 RNN 50.5 80.1 89.7 37.0 70.9 82.9
DualCNN [69] ResNet-50 ResNet-50 52.2 80.4 88.7 37.2 69.5 80.6
sm-LSTM [68] VGG-19 RNN 53.2 83.1 91.5 40.7 75.8 87.4
2WayNet [76] VGG-16 GMM+HGLMM 55.8 75.2 - 39.7 63.3 -
RRF-Net [64] ResNet-152 HGLMM 56.4 85.3 91.5 43.9 78.1 88.6
VSE++ [211] ResNet-152 RNN 58.3 - 93.3 43.6 - 87.8

CycleMatch (Ours) VGG-19 RNN 55.1 83.5 91.3 43.7 76.7 88.4
CycleMatch (Ours) ResNet-152 RNN 61.1 86.8 94.2 47.9 80.9 90.9

With �ne-tuning image encoders
DualCNN [69] ft ResNet-50 ResNet-50 65.6 89.8 95.5 47.1 79.9 90.0
VSE++ [211] ft ResNet-152 RNN 64.6 - 95.7 52.0 - 92.0
Gen-XRN [77] ft ResNet-152 RNN 68.5 - 97.9 56.6 - 94.5

cnp + ctx + gen [200] ResNet-152, ft VGG-19 RNN 69.9 92.9 97.5 56.7 87.5 94.8

6.4.5 E�ect of feature encoders

As shown in Figure 6.3, we extract visual and textual features from o�-the-shelf

feature encoders. The proposed CycleMatch can be compatible with diverse feature

encoders, but it is still encouraged to study the e�ect of di�erent feature encoders

on the performance. We report the results in Table 6.6.

Considering the image encoders, we use the VGG-19 and ResNet-152 models to

extract the visual features and compare their results. We can see that, ResNet-152

has a considerable improvements over VGG-19 on all measurements, especially for

R@1 accuracies. This shows the bene�t of using more powerful CNN models for

improving the visual embeddings. In addition, the feature dimension with ResNet-

152 (i.e. 2,048) is lower than that with VGG-19 (i.e. 4,096). Therefore, in this work

we take the ResNet-152 model as the preferable image encoder.

In terms of the text encoders, we test another two encoders apart from the RNN

encoder. The �rst one is word2vec [188], which describes each word in the sentence

with a 300-dimensional feature vector. We then compute the average of all the word

features to represent the sentence feature. The second one is an expensive repre-

sentation based on the Hybrid Gaussian-Laplacian mixture model (HGLMM) [51].
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Table 6.6: Evaluation on the e�ect of di�erent feature encoders on the performance
of CycleMatch. By comparison, ResNet-152 is a superior image encoder and RNN is
a more powerful text encoder.

Flickr30K MSCOCO
Image encoder Text encoder Image to Text Text to Image Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

E�ect of image encoders
VGG-19 RNN 51.4 80.6 88.1 38.5 71.0 81.3 55.1 83.5 91.3 43.7 76.7 88.4

ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9
E�ect of text encoders
ResNet-152 word2vec 48.1 78.7 87.4 37.7 70.8 81.1 55.9 83.8 91.8 44.7 79.1 87.7
ResNet-152 HGLMM 54.5 81.6 90.9 41.3 73.1 82.8 58.4 85.5 93.4 46.2 80.3 89.4
ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9

Speci�cally, HGLMM computes a 18,000-dimension feature vector with 30 centers

(i.e. 300*30*2). Similar to [53], we further reduce it to a 6,000-dimension feature

vector in order to decrease the training complexity. As shown in Table 6.6, the

RNN encoder is more powerful than both word2vec and HGLMM. In addition, the

feature dimension based RNN (i.e. 4,096) is feasible and practical during training

CycleMatch.

6.5 Chapter Conclusions

In this chapter, we have developed a novel embedding method for the multi-modal

task of matching visual and textual representations. We proposed cycle-consistent

embeddings to learn both intra-modal correlations and intra-modal consistency. Our

approach taking advantage of multiple embedding techniques is able to outperform

any single embedding method. The experimental results have demonstrated the

superiority of our method over other embedding methods. In addition, we have

presented two simple and e�cient late-fusion approaches to increase the inference

quality. The late-fusion inference can integrate di�erent matching scores together

without increasing the training complexity. Finally, our approach has shown state-

of-the-art performance for cross-modal retrieval on Flickr30K and MSCOCO.

Future work. we will take into account local relations when matching images and

sentences, for example, semantic correlations between visual regions and phases.

One potential solution is to exploit the attention mechanism to localize the objects

corresponding to the phase description.
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Chapter 7

Joint Matching and Classi�cation

In Chapters 2-6, we have proposed several methods to solve the classi�cation and

retrieval themes, separately. Unlike many existing approaches which focus only on

either multi-modal matching or classi�cation, we aim to study how we can integrate

the two tasks together to help promote each other (RQ6).

In this chapter, we propose a uni�edNetwork to jointly learnMulti-modalMatching

and Classi�cation (MMC-Net) between images and texts. The proposed MMC-Net

model can seamlessly integrate the matching and classi�cation components. It �rst

learns visual and textual embedding features in the matching component, and then

generates discriminative multi-modal representations in the classi�cation compo-

nent. Combining the two components in a uni�ed model can help in improving their

performance simultaneously. Moreover, we present a multi-stage training algorithm

by minimizing both of the matching and classi�cation loss functions. Experimental

results on four well-known multi-modal benchmarks demonstrate the e�ectiveness

and e�ciency of the proposed approach, which achieves competitive performance

for multi-modal matching and classi�cation compared to the state-of-the-art ap-

proaches.

Keywords
Multi-modal matching, Multi-modal classi�cation, Deep neural networks, Multi-

stage training
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7.1 Introduction

The problem of multi-modal analytic has attracted increasing attention due to a

drastic growth of multimedia data such as image, video and text. Particularly, multi-

modal matching has been studied for decades, with the aim of searching for a latent

space, where visual and textual features can be uni�ed to be latent embeddings.

The hypothesis is that di�erent modalities have semantically related properties that

can be distilled into a common latent space. Early approaches to learning latent

embeddings are based on the Canonical Correlation Analysis (CCA) [61], which is

e�ective at maximizing the high correlation between visual and textual features in

the latent space. Driven by the increasing progress of deep learning, many works [52,

55, 66, 181] have been dedicated to developing deep matching networks to learn

discriminative latent embeddings and train the networks by using a bi-directional

rank loss function. They have achieved state-of-the-art performance on many well-

known multi-modal benchmarks [53, 64, 67, 76].

However, learning latent embeddings is in�uenced by the notable variance in images

or texts. For example, in Figure 7.1, �ve sentences annotated by humans are pro-

vided to describe the same image. The input image and �ve sentences are projected

into a latent space. One can observe that these sentences have signi�cant variance on

representing the visual content. Although they can consistently describe the main

objects in the scene including `girl' (or `child') and `bicycle' (or `bike'), they still

present great variance in terms of other objects, e.g. `bench', `table' and `leaves'.

This issue makes it di�cult to perform image-text matching.

To address this issue, in this work we aim to introduce a classi�cation component

to learn more robust latent embeddings. Our motivation is that object labels can

typically provide more consistent and less biased information than sentences. As

can be seen in Figure 7.1, object labels contain the most important concepts in the

image, such as `Person' and `Bicycle' which are commonly mentioned in all of the

�ve sentences. On the other hand, some visual concepts, which are subjectively

described in some of the sentences (e.g. `leaves' and `sweater') will not appear in the

ground-truth labels. Hence, using the object labels as additional supervisory signals

is bene�cial to correct the biased descriptions and improve the matching between

images and texts. Motivated by the mutual complements between matching and

classi�cation, we raise the research question RQ 6: How can we design a uni�ed

network for joint multi-modal matching and classi�cation?

To tackle the question, we propose a uni�edNetwork for jointMulti-modalMatching

and Classi�cation (MMC-Net in Figure 7.2). First, the matching component trans-

forms the input visual and textual features, respectively, via a couple of fully-

connected layers and a fusion module. The matching loss is imposed on the outputs

of the two fusion modules to maximize their correlation. Then, the classi�cation
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Multimodal Input Matching

Latent space

Person, 

Bicycle, 

Bench, 

Dining 

table

Classification

Label space

little girl looking down at leaves with her bicycle

with training wheels parked next to her.

small child next to a picnic table and tricycle.

a little girl in a red jumpsuit and sweater is near a 

red bike and red table.

a young child in a park next to a red bench and 

red bicycle that as training wheels.

a little girl standing next to a red bike near leaves.

Figure 7.1: Example of joint multi-modal matching and classi�cation. Given one
image and its descriptive sentences, they are �rst co-embedded into a latent space
for matching (in red and blue). Then, the visual and textual embedding features are
integrated to be a multi-modal representation for classi�cation. In the input sentences,
the words related to the ground-truth object labels are in green.

component is built upon the visual and textual embedding features. A compact bi-

linear pooling module is used to generate a multi-modal representation vector, based

on which the classi�cation loss is computed to predict object labels. In this way, the

proposed MMC-Net can jointly learn the latent embeddings and the multi-modal

representation in a uni�ed model. On the one hand, the classi�cation component is

bene�cial to alleviate the biased input, so that the model can learn better robust

latent embeddings. On the other hand, the matching component is able to bridge

the modality gap between vision and language, and therefore combining visual and

textual embedding features can produce a discriminative multi-modal representation

for classi�cation.

The contributions of this work are as follows:

� We propose a novel deep multi-modal network (i.e. MMC-Net), where the

matching and classi�cation components can be seamlessly integrated and help

promote each other jointly. MMC-Net is a general architecture that is poten-

tially applicable to diverse multi-modal tasks related to matching and classi-

�cation.

� We present a multi-stage training algorithm by incorporating the matching

and classi�cation loss. It can make the matching and classi�cation components

more compatible in a uni�ed model.

� Results on four well-known multi-modal benchmarks demonstrate that MMC-

Net outperforms the baseline models that are built for either matching or
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Figure 7.2: The overview architecture of our proposed MMC-Net for joint multi-
modal matching and classi�cation. It comprises three key components. (1) The multi-
modal input aims to capture visual and textual representations from o�-the-shelf en-
coders (e.g. CNN and word2vec). (2) In the matching component, four fully-connected
layers in both of the image and text branches are developed to learn the latent em-
beddings. (3) Based on the visual and textual embedding features, the classi�cation
component utilizes a compact bilinear pooling module which can generate a high-
order multi-modal representation to perform the prediction. The entire network can
be trained with a matching loss and a classi�cation loss.

classi�cation (i.e. MM-Net and MC-Net). In addition, our approach achieves

competitive performance compared to current state-of-the-art approaches.

The rest of this paper is organized as follows. Section 7.2 introduces the proposed

MMC-Net model, and Section 7.3 details its training and inference procedures. Com-

prehensive experiments in Section 7.4 are used to evaluate the approach. Finally,

Section 7.5 concludes the paper and discusses the future work.

7.2 Joint Matching and Classi�cation Network

Overall architecture. Figure 7.2 illustrates the overview architecture of MMC-

Net, which mainly consists of three components: multi-modal input, multi-modal

matching and multi-modal classi�cation. Given an image and its corresponding text,

MMC-Net �rst utilizes o�-the-shelf feature encoders to extract the visual and textual

features, respectively. Next, in the multi-modal component, two groups of four fully-

connected layers are used in both image and text branches to learn a latent space,

where its objective is to minimize the matching loss between the related images and

texts. Moreover, the multi-modal classi�cation component is built upon the visual

and textual embedding features. We employ a compact bilinear pooling module to

generate a high-order and e�cient multi-modal representation. The classi�cation

loss is computed with respect to the pre-de�ned ground-truth labels. Next, we will

detail each of the three components.
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7.2 Joint Matching and Classi�cation Network

7.2.1 Multi-modal input

In a data collection with N matching image-text pairs, (xi,yi) represent the encoded

visual and textual features, i = 1, . . . , N . Taking these features as input instead

of the raw data enables to train the entire network e�ectively. Also, any common

feature encoders are potentially applicable for this network.

Image encoder: we use the powerful CNN model, ResNet-152 [10], which is pre-

trained on ImageNet [5]. First, the CNN model is recast to its fully convolutional

network (FCN) counterpart, to extract richer region representations. Then we set

the smaller side of the image to 512 and isotropically resize the other side. The

last max-pooling layer in ResNet-152 is averaged to generate a 2048-dimensional

feature vector. Compared with the widely-used VGG feature [7] (i.e. 4096-dim),

ResNet-152 can provide more discriminative visual representation, while decreasing

the feature dimensions (2048 v.s. 4096). The extracted image feature is then fed

into the image branch of the matching component.

Text encoder. we employ the simple yet e�cient word2vec [188] to represent

sentence-level texts. It provides a 300-dimensional feature vector, which is often

called Mean vector. Notably, more informative text encoders can be developed

based on word2vec, for example the Hybrid Gaussian-Laplacian mixture model

(HGLMM) [51] that computes a 18000-dimensional feature vector with 30 centers

(i.e. 300*30*2). However, we still use the standard Mean vector due to its high

e�ciency and low dimensionality. Nevertheless, we clarify that any common text

encoders can be potentially adopted to the MMC-Net model.

7.2.2 Multi-modal matching

The multi-modal matching component contains three aspects: latent embedding,

fusion module and matching loss.

Latent embedding

As shown in Figure 7.2, the matching component develops two branches of four

fully-connected layers to simultaneously project visual and textual features into a

discriminative latent space. Note that the parameters of the two branches (drawn

in blue and green) are unshared due to the modality specialization. The channels

from FC1 to FC4 are set to {2048, 512, 512, 512} in both of the two branches. First,

the input visual and textual features are normalized with the batch normalization

(BN) [135]. Then FC1 is regularized by a dropout layer with 0.5 probability, and

instead other fully-connected layers are regularized with the BN layer. ReLU is used

after the fully-connected layers.
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7. JOINT MATCHING AND CLASSIFICATION

Fusion module

Exploiting multi-layer features has been well-studied in many deep neural net-

works [18, 26, 31, 107], as it allows to take advantage of di�erent levels of hidden

representations in the networks. Driven by this, we introduce a fusion module to

generate a multi-layer embedding feature. Since the FC2, FC3 and FC4 layers have

the same number of channels, it is feasible to stack their feature vectors together.

Then we employ a convolutional operation to learn adaptive weights while fusing

the three layers.

We denote the stack layer in the two branches as S(xi) and S(yi), respectively. The

stack layer, a 512×3 matrix, is convolved by the convolutional �lter, which has a size

of 1×1×3. Note that, the three weights are shared over the spatial dimensions of

the stack layer. We can compute the fused visual feature f(xi) and textual feature

g(yi) by

f(xi) = W fuse
I � S(xi) + bfuseI , (7.1)

g(yi) = W fuse
T � S(yi) + bfuseT , (7.2)

where W fuse
I and W fuse

T are the fusion weights to be learned (i.e. 3 elements) bfuseI

and bfuseT are the bias vectors (i.e. 512 elements). The operator � represents the

convolutional operation.

Although the common element-wise operators such as sum-pooling and inner prod-

uct are simple to compute, they do not adapt the importance of di�erent layers. An-

other fusion approach is concatenating the three 512-Dim vectors into one 3*512-Dim

vector. However, the concatenation output will increase the feature dimensionality

and make it more expensive to compute the matching loss. To summarize, the con-

volutional fusion module can provide marked performance improvements, while it

has a minimal increase to the total parameters used in the network.

Matching loss

As a common practice, the matching distance between f(xi) and g(yi) is computed

with the cosine distance [52, 53, 76]

d(f(xi), g(yi)) = 1− f(xi) · g(yi)

||f(xi)|| · ||g(yi)||
. (7.3)

Smaller distances indicate more similar image-text pairs. Both f(xi) and g(yi) are

L2-normalized before computing their cosine distance. To preserve the similarity

constraints in the latent space, we de�ne the matching loss based on an e�cient

bi-directional rank loss function, similar to [53, 181, 214]. The loss function needs to

handle the two triplets, (xi, yi, y
−
i,k) and (yi, xi, x

−
i,k), where x

−
i,k ∈ X

−
i and y−i,k ∈ Y

−
i
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7.2 Joint Matching and Classi�cation Network

are the negative images and texts, k = 1, · · · , K. To exploit more representative non-

matching pairs, we pick the top K most dissimilar candidates in each mini-batch.

Intuitively, this loss function is designed to decrease the distances of matching pairs

(e.g. xi and yi) and increase the distances of non-matching pairs (e.g. xi and y
−
i,k,

yi and x
−
i,k). Formally, the matching loss based on the fused features is:

Lfuse
mat =

N∑
i=1

K∑
k=1

max
[
0, d(f(xi), g(yi))− d(f(xi), g(y−i,k)) +m

]
+ αmax

[
0, d(f(xi), g(yi))− d(f(x−i,k), g(yi)) +m

]
,

(7.4)

where m is a margin parameter, and α is used to balance the importance of the two

triplets. Minimizing this loss cost will lead to a desirable latent space, where the

matching distance d(f(xi), g(yi)) should be smaller than any of the non-matching

ones d(f(xi), g(y−i,k)) and d(f(x−i,k), g(yi)), ∀x−i,k ∈ X
−
i , ∀y−i,k ∈ Y

−
i .

In Figure 7.3, we make use of the t-SNE algorithm [207] to visualize our embedding

features (i.e. f(xi) and g(yi)). We use the 1,000 images and 5,000 texts from the

MSCOCO test set. It can be seen that in the distribution map an image feature

(in red) is properly surrounded by several related text features (in green), as each

image is annotated by �ve ground-truth matching texts in the dataset. Therefore,

this visualization shows that our embedding model can align the images and texts

due to learning their semantic correlation. In addition, some images and texts corre-

sponding to the points are shown in the windows. We can see that the embeddings

can cluster related images and texts together.

7.2.3 Multi-modal classi�cation

The classi�cation component aims to incorporate the visual and textual embedding

features and then generates a multi-modal representation for predicting object labels.

In the following, we detail the classi�cation component including a bilinear pooling

module and classi�cation loss.

Bilinear pooling

We take advantage of a bilinear pooling module to incorporate visual and textual

embedding features learned in the matching component. The bilinear pooling [215]

aims to model the pair-wise multiplicative intersection between all elements of two

vectors. It can generate more expressive features than other basic operators such as

element-wise sum or product. The standard bilinear pooling is formulated with

B(xi, yi) = f(xi)
Tg(yi), (7.5)
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Figure 7.3: Visualization of the visual and textual embedding features learned in the
matching component. Each image (in red) is related to several corresponding texts
(in green). We present some images and texts corresponding to the points in the
distribution map. Some semantic words are highlighted in red.
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Algorithm 2: CBP with latent embedding features

1: Input: f(xi) ∈ RM , g(yi) ∈ RM

2: Output: B(xi, yi) ∈ RD

3: Initialize hash functions: h1, s1, h2, s2
For j ← 1 · · ·M
sample h1[j], h2[j] from {1, · · · , D}
sample s1[j], s2[j] from {−1, 1}

End for
4: Compute count sketches:

f̂(xi) = [0, · · · , 0], ĝ(yi) = [0, · · · , 0]
For j ← 1 · · ·D
f̂(xi)[h1[j]] = f̂(xi)[h1[j]] + s1[j] · f(xi)[j]
ĝ(yi)[h2[j]] = ĝ(yi)[h2[j]] + s2[j] · g(yi)[j]

End for
5: Convolution of Count Sketches:

B(xi, yi) = FFT−1(FFT(f̂(xi)) ◦ FFT(ĝ(yi))),
where the ◦ denotes element-wise multiplication.

Since f(xi) and g(yi) are 1×M vectors (i.e. M = 512), B(xi, yi) becomes anM×M
matrix that is then reshaped to be a 1×M2 vector. Due to the high dimensionality

of the bilinear vector (i.e. M2), we instead use the compact bilinear pooling (CBP)

variant [216], which can decrease the dimensionality to D (where D � M2) while

retaining the strong discrimination. In contrast to [216, 217] in which they simply

perform the CBP module with the input visual or textual features, we build the

CBP module based on the latent embeddings to generate a multi-modal feature

vector (Figure 7.2).

The computational procedure of the CBP module is detailed in Algorithm 2. At

�rst, we initialize several hashing functions from the pre-de�ned sets. Then, it

computes the count sketches [218] to maintain linear projections of a vector with

several random vectors. Finally, we make use of the Fast Fourier Transformation

(FFT) to compute the convolution of the count sketches, and produce a bilinear

vector B(xi, yi) by an inverse FFT. The count sketches have the properties:

E[〈f̂(xi), ĝ(yi)〉] = 〈f(xi), g(yi)〉, (7.6)

V ar[〈f̂(xi), ĝ(yi)〉] ≤
1

D
(〈f(xi), g(yi)〉2 + ‖f(xi)‖2 + ‖g(yi)‖2). (7.7)

Next, the bilinear vector B(xi, yi) is processed by a signed square-root layer and an

L2 normalization layer. Then, we employ a fully-connected layer to estimate the

prediction. Assume that there are C object labels pre-de�ned in the dataset, the

115



7. JOINT MATCHING AND CLASSIFICATION

European Goldfinch Indigo Bunting Laysan Albatross
Person PersonPerson Horse

Potted plant

Umbrella

Handbag Chair

Cat Dog

Tie Cup TV Book

Figure 7.4: Left: Examples of single-label images from CUB-Bird [139]. Right:
Examples of multi-label images from MSCOCO [117]. The ground-truth labels are
shown under the images.

j-th class probability is predicted with

ai,j =
D∑

k=1

Wj,kB(xi, yi)k, j = 1, · · · , C. (7.8)

where Wj,k is the parameter matrix with the size of D × C. For simplicity, we do

not show the signed square-root and the L2 normalization in this formulation.

Classi�cation loss

The objective of the classi�cation component is to minimize the loss cost of the

prediction with respect to the given ground-truth labels. Figure 7.4 shows some

images that are annotated by single label or multiple labels. We need to utilize

di�erent loss functions for single-label and multi-label classi�cation, respectively.

1) Single-label classi�cation. For example, the �ne-grained classi�cation in the left of

Figure 7.4, each image is labelled with a �ne bird category. To train the classi�cation

component, we use the softmax loss function

Lcls = − 1

N

N∑
i=1

C∑
j=1

δ(gi = j) log pi,j, (7.9)

pi,j =
exp(ai,j)∑C
k=1 exp(ai,k)

, (7.10)

where gi is the ground-truth label corresponding to xi. δ(gi = j) is 1 when gi = j,

otherwise is 0.

2) Multi-label classi�cation. As shown in the right of Figure 7.4, images anno-

tated with multiple labels can provide richer information about the visual content.

Although many of these labels may appear in the input text, they can still o�er
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complementary labels which are ignored in the text due to less visual attention. We

employ the sigmoid cross-entropy loss function to supervise the multi-label classi�-

cation. The total cost sums up K of element-wise loss terms

Lcls = − 1

N

N∑
i=1

C∑
j=1

g
′

i,j log p
′

i,j + (1− g′i,j) log(1− p′i,j), (7.11)

p
′

i,j =
1

1 + exp(−ai,j)
, (7.12)

where g
′
i,j ∈ {0, 1} is the ground-truth label indicating the absence or presence of

the j-th class.

7.3 Training and Inference

This section describes the training procedure of the MMC-Net model. Also, we

present the inference manner for multi-modal matching and classi�cation.

Multi-stage training procedure

The optimization objective in the model is to minimize the total training loss which

merges the matching and classi�cation loss together

min
W
Ltotal = Lmat + βLcls, (7.13)

where the parameter β is used to regulate the two loss terms. The parameters W

in the network mainly contains WI and WT in the image and text branches, and

WCBP in the compact bilinear pooling module.

We propose a multi-stage training algorithm to better model the matching and

classi�cation components. As summarized in Algorithm 3, the training procedure

consists of three stages. During the �rst stage, we train the matching component

with the loss Lmat. For the second stage, we use the loss Lcls to train the parameters

in the classi�cation component. In this stage, only the parameters in the classi�ca-

tion component are updated while the parameters in the matching component are

all frozen. In the third stage, the model is initialized by the parameters learned in

the �rst and second stages. It aims to jointly �ne-tune the whole network based on

the total loss Ltotal. Due to using this multi-stage fashion, it is feasible to promote

the training of the entire network and maintain the high performance.

Inference procedure

We present the inference procedure for multi-modal matching and classi�cation.
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7. JOINT MATCHING AND CLASSIFICATION

Algorithm 3: Multi-stage Training Algorithm for MMC-Net.

1: The �rst stage: train the matching component.
initialize: learning rate λ1, training iterations T1, t = 0.
while t < T1 do
t← t+ 1
compute the matching loss Lmat in Eq.(7.4);
update the parameters in the image and text branches:
W

(t)
I = W

(t−1)
I − λ(t)1

∂Lmat

∂W
(t−1)
I

;

W
(t)
T = W

(t−1)
T − λ(t)1

∂Lmat

∂W
(t−1)
T

;

end while
2: The second stage: train the classi�cation component.

initialize: learning rate λ2 (< λ1), training iterations T2, t = 0.
while t < T2 do
t← t+ 1
compute the classi�cation loss Lcls in Eq.(7.9) or Eq.(7.11);
update the parameters in the compact bilinear pooling module:
W

(t)
CBP = W

(t−1)
CBP − λ

(t)
2

∂Lcls
∂W

(t−1)
CBP

;

end while
3: The third stage: jointly �ne-tune the whole network.

initialize: learning rate λ3 (< λ2), training iterations T3, t = 0.
while t < T3 do
t← t+ 1
compute the total loss in Eq.(7.13);
update all the parameters in the network:
W

(t)
I = W

(t−1)
I − λ(t)1

∂Ltotal
∂W

(t−1)
I

;

W
(t)
T = W

(t−1)
T − λ(t)1

∂Ltotal
∂W

(t−1)
T

;

W
(t)
CBP = W

(t−1)
CBP − λ

(t)
2

∂Ltotal
∂W

(t−1)
CBP

;

end while

(1) Multi-modal matching: For the image-to-text matching, given a query image xq,

its purpose is to search for relevant texts w.r.t. xq from a text database Y . Likewise,

the text-to-image matching aims to retrieve related images from an image database

X, given a query text yq. In the MMC-Net model, the fused visual and textual

features learned in the fusion module are used to compare the matching distance,

denoted as d(f(xq), g(yi)) or d(f(xi), g(yq)), where yi ∈ Y, xi ∈ X. The k-nearest

neighbor (k-NN) search is used to �nd the top-k most similar candidates.

(2) Multi-modal classi�cation: Its inference is based on the probabilities predicted

by the last fully-connected layer in the classi�cation component. For the single-label

case, the element that has the maximum probability corresponds to the predicted

class. As for the multi-label case, the items whose probabilities in the prediction are

more than 0.5 are estimated to contain the corresponding object classes.

118



7.4 Experiments

Table 7.1: Summary of four multi-modal datasets used in the experiments. TPI
indicates the number of matching Texts Per Image.

Dataset #Total #Category #Training #Test #TPI

Pascal Sentence 1,000 20 800 100 5
MSCOCO ∼120K 80 82,783 1,000 5
Flowers 8,189 102 2,040 6,149 10

CUB-Bird 11,788 200 5,994 5,794 10

7.4 Experiments

In this section, we evaluate the performance of the proposed MMC-Net on four well-

known multi-modal benchmarks. We �rst introduce the con�guration in the exper-

iments, including the datasets, evaluation metrics, parameter settings and baseline

models. Then we assess the performance of MMC-Net for tasks of multi-modal

matching and classi�cation and compare its results with those of the baseline mod-

els. Furthermore, we conduct the ablation study to fully analyze MMC-Net. Lastly,

we compare our results with the state-of-the-art approaches.

7.4.1 Experimental setup

Dataset protocols

We perform the experiments on four well-known multi-modal datasets. Some image

and text examples are shown in Figure 7.5.

Pascal Sentence [219]. It contains 1,000 images from 20 categories (50 images

per category), and one image is described by �ve di�erent sentences. We pick 800

images for training (40 images per category), 100 images for validation (5 images

per category), and 100 images for test (5 images per category). In total, there are

40 ∗ 20 ∗ 5 = 4, 000 image-text training pairs, 5 ∗ 20 ∗ 5 = 500 validation pairs, and

5 ∗ 20 ∗ 5 = 500 test pairs.

MSCOCO [117]. It includes 82,783 training images and 40,504 validation images

in total. We pick �ve descriptive sentences for one image and generate 82, 783 ∗ 5 =

413, 915 training pairs. For a fair comparison, we use the same 1,000 test images

used in recent works [52, 53, 76].

Flowers [138]. This dataset [138] contains 102 classes with a total of 8,189 images.

2,040 images (train+val) are used in the training stage and the rest 6,149 images

are for testing. Reed et al. [195] collected �ne-grained visual descriptions for these

images by using the Amazon Mechanical Turk (AMT) platform. One image is

described by ten sentence-level descriptions. Therefore, we can obtain 2040 ∗ 10 =

20, 400 training pairs and 6149 ∗ 10 = 61, 490 testing pairs.
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1. Two men on a yellow 

tandem bicycle rest at the 

curb.

2. Two people riding a 

tandem bicycle while 

wearing lira racing outfits.

3. Two prop-leg ride a 

yellow tandem bike while 

someone helps.

…

1. a woman standing on a 

field of grass holding a 

tennis racquet.

2. two children play 

badminton with a windmill 

in the background.

3. it is always more fun to 

play badminton in front of a 

windmill.

…

1. the bird has a blue 

wingbar and a long billl that 

is black.

2. the bird has a brown head 

and chest and wings that are 

blue in color.

3. this bird has a very large 

pointed bill, with a blue 

back.

…

Pascal Sentence MSCOCO CUB-BirdFlowers

1. this flower has long white 

petals and a white pistil.

2. this flower is purple and 

yellow in color, with petals 

that are oval shaped.

3. the petals of the flower are 

purple with a yellow center 

and have thin filaments 

coming from the petals..

…

Figure 7.5: Example of four multi-modal datasets. Several textual descriptions are
listed for each image.
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(a) MM-Net (b) MC-Net (c) MMC-Net 

Figure 7.6: Conceptual illustration of three multi-modal networks. (a) Multi-modal
Matching Network. (b) Multi-modal Classi�cation Network. (c) Multi-modal Match-
ing and Classi�cation Network. Note that, the parameters in the image and text
branches are unshared, as drawn in blue and green.

CUB-Bird [139]. It contains 11,788 bird images from 200 categories. 5,994 images

are for training, and 5,794 images are for testing. Similarly, ten sentences are pro-

vided to describe one image [195]. As a result, it has 5994 ∗ 10 = 59, 940 pairs for

training, and 5794 ∗ 10 = 57, 940 pairs for testing.

Evaluation Metrics

We evaluate the performance of multi-modal matching and multi-modal classi�ca-

tion, separately. (1) For multi-modal matching, We employ the widely-used retrieval

metric R@K, which is the recall rate of a correctly retrieved ground-truth at top K

candidates (e.g. K = 1, 5, 10) [55, 190]. It includes results of both image-to-text

(I→T) and text-to-image retrieval (T→I). (2) Considering multi-modal classi�ca-

tion, We compute the Top-1 classi�cation accuracy for Pascal Sentence, Flowers and
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CUB-Bird. Since MSCOCO is a multi-label classi�cation dataset, we evaluate the

performance on it using the average precision with the average precision (AP) across

multiple classes.

Implementation details

We implemented the proposed approach based on the publicly available Ca�e li-

brary [130]. It is important to shu�e the training samples randomly during the

data preparation stage. The hyper-parameters were evaluated on the validation

set of each dataset. For instance, we set α = 2 and m = 0.1 while computing the

matching loss function on all the datasets. The number of non-matching pairs in the

negative sets was K = 20 for Pascal Sentence, Flowers and CUB-Bird, and K = 50

for MSCOCO. We used a mini-batch size of 128 for Pascal Sentence, Flowers and

CUB-Bird, and 1500 for MSCOCO. Note that, we use a larger K and mini-batch

size for MSCOCO, because it has enormously more training samples, compared to

the other three datasets. We trained the model using SGD with a weight decay

of 0.0005, a momentum of 0.9. The learning rate was initialized with 0.1 and was

divided by 10 when the loss stoped decreasing.

Baseline Models.

To verify the e�ectiveness of the proposed MMC-Net, we implemented two baseline

models. (1) MM-Net: a baseline model for multi-modal matching as illustrated

in Figure 7.6(a). It only contains the matching component of the MMC-Net (Fig-

ure 7.2), which is trained with the matching loss. (2) MC-Net: a baseline model

for multi-modal classi�cation as illustrated in Figure 7.6(b). It has the similar archi-

tecture as the MMC-Net, however, it does not compute the matching loss between

visual and textual features. MC-Net is only trained with the classi�cation loss.

7.4.2 Results on multi-modal retrieval

We conduct the cross-modal retrieval experiments on the four datasets. To verify the

e�ectiveness of adding a classi�cation component in MMC-Net, we use the baseline

MM-Net for comparison. Table 7.2 and Table 7.3 report the results of image-to-text

and text-to-image retrieval, respectively. Overall, MMC-Net can achieve consider-

able improvements over MM-Net for both I→T and T→I retrieval. These results

reveal that the classi�cation component in MMC-Net can help in improving the

learning of embedding features in the matching component. Moreover, we can ob-

serve more insights from these results as follows:
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7. JOINT MATCHING AND CLASSIFICATION

Table 7.2: Image-to-text retrieval results compared between MMC-Net and MM-Net.
The proposed MMC-Net can outperform the baseline MM-Net with considerable gains
across all the four datasets.

Method
Pascal Sentence MSCOCO Flowers CUB-Bird

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MM-Net 47.0 85.0 92.0 55.5 84.2 91.4 58.1 82.5 88.5 32.5 61.4 72.5
MMC-Net 52.0 87.0 93.0 57.0 85.8 92.7 78.7 93.9 96.0 39.2 66.9 76.4

Table 7.3: Text-to-image retrieval results compared between MMC-Net and MM-Net.
Compared to MM-Net, MMC-Net can achieve better retrieval results.

Method
Pascal Sentence MSCOCO Flowers CUB-Bird

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MM-Net 38.4 80.6 88.6 44.7 79.5 89.5 32.7 46.4 52.9 18.3 25.6 28.8
MMC-Net 41.0 81.2 92.5 46.2 80.8 90.5 43.6 54.8 58.6 25.8 31.4 34.5

� By comparison with MM-Net, MMC-Net yields more performance gains on

Flowers and CUB-Bird than Pascal Sentence and MSCOCO. For example,

the performance gap between MMC-Net and MM-Net is below 5% on Pascal

Sentence and MSCOCO, but above 5% on Flowers and CUB-Bird across all the

measurements. One reason is that both Flowers and CUB-Bird are �ne-grained

datasets, and the textual descriptions cannot fully represent the discrimination

among di�erent samples. Hence, the results of MM-Net are limited on these

two datasets. Instead, MMC-Net can make use of �ne-grained class labels to

enhance the discriminative abilities when matching images and texts.

� The results of T→I retrieval are lower than those of the I→T retrieval on

the four datasets. This is because each image can retrieve several related

textual descriptions, but one text is corresponded to only one matched image.

We believe that re�ning the datasets is a favorable solution to narrow the

performance gap between the I→T and T→I retrieval.

� For Flowers and CUB-Bird, their results are still not satisfactory, especially

for the T→I retrieval. Currently, the �ne-grained multi-modal matching still

remains challenging, but it is a promising research direction in the �eld.

In addition, we present the qualitative retrieval results as shown in Figure 7.7.

We can observe that MMC-Net obtains better retrieved candidates than MM-Net,

for both I→T and T→I retrieval. Furthermore, we visualize the visual and textual

embedding features learned in the matching component of MMC-Net. As mentioned

earlier in 7.3, it has shown the embedding map with the MSCOCO test set.

7.4.3 Results on multi-modal classi�cation

Next, we conduct the multi-modal classi�cation experiments on the datasets. To

demonstrate the bene�t of using a matching component for classi�cation, we com-

pare the MMC-Net model with the baseline MC-Net model. Table 7.4 reports the
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Query Image

Pascal 

Sentence

MM-Net: Retrieved texts

MSCOCO

MMC-Net: Retrieved texts

1. People riding tandem bicycle.

2. Two prop-leg ride a yellow tandem bike while someone helps.

3. Young man wearing jeans and helmet rides his motorcycle

in front of a small crowd.

4. A man wearing a helmet does a wheelie on a motorcycle as 

a crowd watches.

1. Two prop-leg ride a yellow tandem bike while someone helps.

2. People riding tandem bicycle.

3. Two people riding a tandem bicycle while wearing lira racing 

outfits.

4. Young man wearing jeans and helmet rides his motorcycle in front 

of a small crowd.

1. a man putting together a kite on the floor of a room.

2. man folding banner while holding stick in unfinished carpet.

3. a man folding a giant paper airplane on the floor.

4. a tiny toddler carries a giant bookbag and bag.

1. a man putting together a kite on the floor of a room.

2. man folding banner while holding stick in unfinished carpet.

3. a man folding a giant paper airplane on the floor.

4. a man inside a room putting together a white kite.

Flowers

CUB-Bird

1.this flower is pink and white in color, with petals that have 

pink veins.

2. this pink flower has several filaments sticking out of the 

receptacle.

3. this flower has pale pink petals with veins and a white center.

4. this flower has petals that are pink with long stamen.

1. a dark brown beak with a long beak and large wingspan.

2. this bird has a dark grey color, with a large bill and long 

wingspan.

3. this dull colored bird is brown all over, has large wings and a 

long large bill.

4. a bird with a large, hooked bill, white superciliary and cheek 

patch, brown crown, and brown body.

1.this flower is pink and white in color, with petals that have pink 

veins.

2. this flower has pale pink petals with veins and a white center.

3. this flower has very light pink petals that have darker pink veins, a 

yellow ovary, and white stamen.

4. this pink flower has several filaments sticking out of the receptacle.

1. a dark brown beak with a long beak and large wingspan.

2. large bird that is complete brown, with white stripes littering it's 

wings and a long blunted bill.

3. a bird with a large, hooked bill, white superciliary and cheek patch, 

brown crown, and brown body.

4. this dull colored bird is brown all over, has large wings and a long 

large bill.

(a) Image-to-text retrieval

Query Text

Pascal 

Sentence

MM-Net: Retrieved images

MSCOCO

MMC-Net: Retrieved images

An Swiss-Air flight 

has just taken off 

from a runway.

1 2 3 4 1 2 3 4

a woman in white 

shirt holding 

bananas next to door.

1 2 3 4 1 2 3 4

Flowers

CUB-Bird

the bright orange petals 

are highlighted by brown 

spots and the prominent 

stamen are topped with 

dark brown anthers.

1 2 3 4 1 2 3 4

this bird is light 

brown, has a long 

hooked bill, and 

looks dumb.

1 2 3 4 1 2 3 4

(b) Text-to-image retrieval

Figure 7.7: Image-text retrieval examples on the datasets. For (a) image-to-text
retrieval, the ground-truth matching texts are in green. For (b) text-to-image retrieval,
the red number in the upper left corner of one image is the ranking order, and the
green frame corresponds to the ground-truth matching image. For the I→T and T→I
retrieval, MMC-Net can retrieve more accurate candidates than MM-Net.

classi�cation results, where MMC-Net achieves consistent improvements over MC-

Net across all the four datasets. It shows that the matching component is able to

promote the classi�cation component due to combining the embedding features to

generate more discriminative multi-modal representations. Also, MMC-Net has a

generalization ability for di�erent types of classi�cation datasets, including either

natural images or �ne-grained images.
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A striped 

sofa and 

office 

chairs are 

near a ping 

pong 

table.

MC-Net

MMC-Net

1. sofa

2. chair

3. Diningtable

4. tv/monitor

5. potted plant

1. chair

2. tv/monitor

3. sofa

4. diningtable

5. bottle

a tennis 

player 

wiping 

his face 

off with 

a towel.

1. person

2. chair

3. sports ball

4. tennis racket

5. dining table

1. person

2. tennis racket

3. chair

4. bench

5. sports ball

Pascal Sentence MSCOCO

the petals of 

the flower 

are purple in 

color and 

have green 

stems with 

green sepals.

1. canterbury bells

2. bolero deep blue

3. foxglove

4. stemless gentian

5. garden phlox

1. bolero deep blue 

2. garden phlox

3. canterbury bells

4. bougainvillea

5. snapdragon

a bird with a 

medium 

yellow bill, 

white body 

webbed feet 

and gray 

wings.

1. Glaucous winged Gull

2. Ring billed Gull

3. California Gull

4. Herring Gull

5. Heermann Gull

1. Herring_Gull

2. California_Gull

3. Western_Gull

4. Ring_billed_Gull

5. Slaty_backed_Gull

Flowers CUB-Bird

Figure 7.8: Multi-modal classi�cation examples on the datasets. Given an input
image-text pair, the Top-5 predictions are estimated based on MC-Net and MMC-
Net. The ground-truth classes are in green. By comparison, MMC-Net obtains more
accurate predictions than MC-Net.
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Figure 7.9: E�ect of the parameter β on the performance of MMC-Net. The retrieval
results on Pascal Sentence are reported. We select β = 0.5 by comparing these results.

7.4.4 Parameter analysis

Next, we aim to analyze the e�ects of three key parameters in MMC-Net.
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Table 7.4: Comparison of the multi-modal classi�cation accuracy between MMC-Net
and MC-Net. For the four datasets, MMC-Net can outperform MC-Net with consistent
performance gains.

Method Pascal Sentence MSCOCO Flowers CUB-Bird

MC-Net 71.0 77.6 94.0 80.7
MMC-Net 74.0 79.3 95.2 82.4

Table 7.5: E�ect of the mini-batch size on the performance of MMC-Net. We train the
model with di�erent mini-batch sizes and compare their retrieval results on MSCOCO.

Method
Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10

batch size=100 42.5 74.6 87.4 36.6 73.8 86.8
batch size=250 52.6 83.3 91.7 43.0 79.5 89.4
batch size=500 56.6 85.3 92.7 46.0 80.5 90.1
batch size=1000 56.2 85.8 93.0 46.5 80.5 90.1
batch size=1500 57.0 85.8 92.7 46.2 80.8 90.5
batch size=2000 56.7 85.5 92.8 46.7 80.6 90.4

E�ect of the mini-batch size.

Since the loss function for multi-modal matching aims to search for hard negative

samples, it is essential to de�ne a large mini-batch to increase the search space. For

example, we selected a mini-batch size of 1500 for MSCOCO due to its large-scale

data. To study the e�ect of varying di�erent batch sizes, we used di�erent batch

sizes to train MMC-Net and tested their performance. Considering the number of

negative pairs in each mini-batch is K = 50 for MSCOCO, we varied the batch size

with 100, 250, 500, 1000, 1500 and 2000. Table 7.5 compares the retrieval results on

MSCOCO with di�erent batch sizes. We can observe that the performance is low

when the batch size is 100. By increasing the size to 500, it can achieve signi�cant

gains across all the measurements. We further raise the size to 2000, however there

is no important in�uence on the results. Finally, we select batch size=1500 due to

its slightly superior results.

E�ect of the parameter β.

Recall that MMC-Net is trained by integrating the matching and classi�cation loss,

we use the parameter β to balance the weights of the two loss functions as de�ned

in Eq. 7.13. This experiment aims to analyze the e�ect of β on the performance.

Figure 7.9 shows the cross-modal retrieval results on Pascal Sentence. The R@1,

R@5 and R@10 results are shown separately, when β varies from 0.1 to 1. We pick

β = 0.5 by fully comparing these results.
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Figure 7.10: E�ect of the parameter D on the performance of MMC-Net. We present
the retrieval results on Pascal Sentence by using di�erent sizes of D. We select D =
2048 that can bring better results.
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Figure 7.11: E�ect of the parameters on the performance of MMC-Net. We report
the Top-1 classi�cation results on Flowers. (a) Analysis of the parameter β. (b) Anal-
ysis of the parameter D. (c) Confusion matrix of 102 Flowers classes. The diagonal
line demonstrates the high accuracy per �ower class.

E�ect of the parameter D.

In the classi�cation component, a CBP module can integrate visual and textual

embedding features into a D-dimension multi-modal vector. In this experiment, we

analyze D with {512, 1024, 2048, 4096, 8192, 20000}, which are all signi�cantly lower

than the original bilinear pooling vector (i.e. 512× 512 = 262, 144). In Figure 7.10,

we present the compared results on Pascal Sentence. When D = 2048, MMC-Net

can achieve better results compared to others.
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Since MSCOCO is also composed of scene images like Pascal Sentence, it is straight-

forward and general to employ the same parameters β and D. In contrast, Flowers

and CUB-Bird are commonly used for �ne-grained recognition. It is needed to eval-

uate their parameters separately for Pascal Sentence and MSCOCO. To this end,

we estimated the e�ects of the parameters on the classi�cation accuracy of Flowers,

and then applied the same parameters to CUB-Bird for generalization. Figure 7.11

presents the analysis of parameters on Flowers. As for the parameter β shown in Fig-

ure 7.11a, the best precision accuracy is achieved with 95.1% for β = 1.2. As shown

in Figure 7.11b, the accuracy is maximized (i.e. 95.2%) when D = 4096. In the

experiments, we set β = 1.2 and D = 4096 for Flowers and CUB-Bird. Additionally,

we show the confusion matrix of 102 Flowers categories in Figure 7.11c.

7.4.5 Component analysis

Furthermore, we show ablation study to provide in-depth analysis.

Analysis of the fusion module

This test aims to verify the e�ectiveness of using the fusion module in the matching

component. We build a convolutional fusion module in MMC-Net, which can also be

applied on the baseline MM-Net. In Table 7.6, we report the results for both MMC-

Net and MM-Net on the Pascal Sentence test set. We can see that using a fusion

module can bring considerable performance improvements on all R@Kmeasurements

by considerable improvements, compared to the counterparts without using any

fusion module. For an additional comparison, we further implement two simple

fusion modules: element-wise sum and multiplication. Their results are inferior

to those of the convolutional fusion, because they do not consider the weights of

di�erent layers. Instead, the convolutional fusion can learn adaptive weights to

produce a superior fused feature while spending only three parameters. All the

weights can be learned dynamically and adaptively with other network parameters

without any manual tuning.

Analysis of the CBP module

We conduct this experiment to test the use of the CBP module in MMC-Net. For

comparison, we present two other methods to integrate the visual and textual fea-

tures. The �rst method starts by the concatenation of the two features to consturct

a multi-modal representation and then feed it into a fully-connected (FC) layer to

perform the classi�cation. The second one is using the traditional bilinear pool-

ing (BP) to produce a high-order multi-modal representation. Table 7.7 reports

the compared results of di�erent classi�cation modules. The model with CBP can
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7. JOINT MATCHING AND CLASSIFICATION

Table 7.6: Analysis of the fusion module used in MM-Net and MMC-Net. The R@K
results on Pascal Sentence are reported. By comparison, the convolutional fusion
module can achieve better results than others.

Method
Fusion Image to Text Text to Image
module R@1 R@5 R@10 R@1 R@5 R@10

MM-Net No 45.0 82.0 91.0 35.6 75.8 87.0
MM-Net Sum 46.0 83.0 91.0 36.8 77.6 87.6
MM-Net Multiplication 46.0 84.0 91.0 37.2 78.4 87.6
MM-Net Convolution 47.0 85.0 92.0 38.4 80.6 88.6
MMC-Net No 51.0 85.0 92.0 37.6 80.6 92.0
MMC-Net Sum 51.0 86.0 92.0 38.4 81.0 92.0
MMC-Net Multiplication 51.0 86.0 92.0 39.0 81.0 92.0
MMC-Net Convolution 52.0 87.0 93.0 41.0 81.2 92.5

Table 7.7: Analysis of the CBP module in MMC-Net. The R@K results on Pascal
Sentence are reported, which demonstrate the e�ectiveness and e�ciency of using the
CBP module.

Method Dimension
Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10
MMC-Net with FC 1024 50.0 86.0 92.0 39.6 80.4 90.0
MMC-Net with BP 262144 53.0 88.0 93.0 41.5 81.5 92.5
MMC-Net with CBP 2048 52.0 87.0 93.0 41.0 81.2 92.5

obtain considerable improvements over the one with FC. The MMC-Net with BP

achieves better results than other methods, while its multi-modal representation

has higher dimensionality. Instead, CBP can maintain both accuracy and e�ciency.

Analysis of combining vision and language

This experiment is used to verify the advantage of incorporating visual and textual

representations. As reported in Table 7.8, we compare the results between com-

bining visual and textual features (i.e. MMC-Net) and using only visual features.

We can observe that combining vision and language can achieve signi�cantly su-

perior accuracies on Flowers and CUB-Bird. Although visual features can enable

the models to achieve promising performance, the informative textual features can

further help improve the classi�cation accuries. This shows the e�ectiveness of cap-

turing multi-modal representations from both vision and language. Furthermore,

Figure 7.12 analyzes the test rates during the training iterations. It can be seen

that the vision and language model can consistently outperform the vision model in

the entire training stage.

128
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Table 7.8: Analysis of combining vision and language. We report the Top-1 classi-
�cation rates on Flowers and CUB-Bird. The model with both vision and language
outperforms the model with only vision.

Method Flowers CUB-Bird

Only Vision 92.2 78.8
Vision and Language 95.2 82.4
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Figure 7.12: Illustration of the test classi�cation rates during the training iterations.
Incorporating language and vision is signi�cant to improve the performance, compared
to only using visual information.

Analysis of image encoders

As aforementioned in Section 7.2, we employ the ResNet-152 model to encode the

input image. In this experiment, we aim to study the e�ect of di�erent image

encoders. For a fair comparison with DSPE [53], we provide the results of MMC-

Net with VGG-19. Also, we implement the DSPE with ResNet-152. Table 7.9

reports the compared results on MSCOCO. For both VGG-19 and ResNet-152, our

MMC-Net can outperform DSPE across all the measurements. We should realize

that the improvements of MMC-Net come from two aspects. First, the matching

component in MMC-Net has more layers than that of DSPE, i.e. four layers v.s.

two layers. Second, MMC-Net utilizes a classi�cation component to help improve

the matching performance. This is the main motivation in this work. Note that,

both MMC-Net and DSPE in Table 7.9 use the Mean vector to encode the input

text. In [53], they also present another expensive textual representation using the

Hybrid Gaussian-Laplacian mixture model (HGLMM) [51], i.e. a 18000-dimension

vector. Currently, we do not introduce HGLMM to MMC-Net, even though it can

help increase the performance.
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7. JOINT MATCHING AND CLASSIFICATION

Table 7.9: Analysis of image encoders. The image feature dimensions are also pre-
sented. MMC-Net has better matching results on MSCOCO than DSPE [53].

Method
Image

Dimension
Image to Text Text to Image

encoder R@1 R@5 R@10 R@1 R@5 R@10
DSPE VGG-19 4096 40.7 74.2 85.3 33.5 68.7 83.2

MMC-Net VGG-19 4096 46.0 79.7 89.2 38.9 73.5 87.5
DSPE ResNet-152 2048 53.1 82.7 90.2 43.5 78.2 88.9

MMC-Net ResNet-152 2048 57.0 85.8 92.7 46.2 80.8 90.5

Table 7.10: Comparison with other state-of-the-art approaches on the Pascal Sen-
tence dataset for image-text retrieval. Best results are in bold face.

Method
Image Text Image to Text Text to Image
encoder encoder R@1 R@5 R@1 R@5

SDT-RNN [220] AlexNet DT-RNN 23.0 45.0 16.4 46.6
kCCA [220] AlexNet word2vec 21.0 47.0 16.4 41.4
DeViSE [214] AlexNet skip-gram 17.0 57.0 21.6 54.6

SDT-RNN [220] RCNN DT-RNN 25.0 56.0 25.4 65.2
DFE [181] RCNN word2vec 39.0 68.0 23.6 65.2

Mean Vector [51] VGG-16 word2vec 52.5 83.2 44.9 84.9
GMM+HGLMM [51] VGG-16 HGLMM 55.9 86.2 44.0 85.6
Proposed MMC-Net ResNet-152 word2vec 52.0 87.0 41.0 81.2

7.4.6 Comparison with other approaches

For Pascal Sentence and MSCOCO, we compare our matching results with other

state-of-the-art approaches. As reported in Table 7.10 and 7.11, MMC-Net can

achieve competitive performance with the state-of-the-art. To be more speci�c, the

method in [51] is e�ective on small-scale datasets, so it can obtain state-of-the-art

results on Pascal Sentence. However, it does not have a strong generalization on

large-scale datasets, for example their results on MSCOCO are not quite competi-

tive. In contrast, the proposed MMC-Net maintains the high performance on both of

small-scale and large-scale datasets. Moreover, we show the image and text encoders

used in di�erent approaches. Both of DSPE [53] and 2WayNet [76] extracted the

visual features based on the VGG-19 model, while they rely on a more complicated

HGLMM textual representation [51] than the Mean vector used in MMC-Net. As

discussed earlier (Section 7.2), we did not use the HGLMM representation in order

to maintain the training e�ciency. For a fair comparison, MMC-Net with VGG-19

and Mean vector (see Table 7.9) can outperform DSPE with signi�cant improve-

ments, and can compete with 2WayNet while it uses the HGLMM representation.

Lastly, we clarify that any common feature encoders for images and texts can be

potentially adopted to MMC-Net. Exploring more e�cient feature encoders is a

fundamental and promising work.

For Flowers and CUB-Bird, we compare the �ne-grained classi�cation results with

the state-of-the-art. Table 7.12 reports the comparison details. Since the compared

methods do not utilize textual representations, we instead show the CNN model
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Table 7.11: Comparison with other state-of-the-art approaches on the MSCOCO
dataset for image-text retrieval. Best results are in bold face.

Method
Image Text Image to Text Text to Image
encoder encoder R@1 R@5 R@10 R@1 R@5 R@10

DVSA [55] RCNN RNN 38.4 69.9 80.5 27.4 60.2 74.8
Mean vector [51] VGG-16 word2vec 33.2 61.8 75.1 24.2 56.4 72.4

GMM+HGLMM [51] VGG-16 HGLMM 39.4 67.9 80.9 25.1 59.8 76.6
m-RNN [190] VGG-16 RNN 41.0 73.0 83.5 29.0 42.2 77.0
RNN-FV [185] VGG-19 RNN 41.5 72.0 82.9 29.2 64.7 80.4

mCNN(ensemble) [52] VGG-19 CNN 42.8 73.1 84.1 32.6 68.6 82.8
DSPE [53] VGG-19 word2vec 40.7 74.2 85.3 33.5 68.7 83.2
DSPE [53] VGG-19 HGLMM 50.1 79.7 89.2 39.6 75.2 86.9

2WayNet [76] VGG-16 HGLMM 55.8 75.2 - 39.7 63.3 -
Proposed MMC-Net ResNet-152 word2vec 57.0 85.8 92.7 46.2 80.8 90.5

Table 7.12: Comparison with other approaches on the Flowers and CUB-Bird
datasets. Best results are in bold face. The methods in the upper part �ne-tune
the original CNN models, however, the ones in the lower part do not perform the �ne-
tuning process. We do not use the bounding box annotations in the datasets. Note
that, we use the numbers to describe the depth of the image encoders. The dimension
of MMC-Net indicates the multi-modal representation extracted from CBP.

Method Image encoder Finetune Dimension Flowers CUB-Bird
Deep Optimized [224] CNN-16 Yes 4096 91.3 67.1
Part R-CNN [225] DeCAF-8 Yes 4096 - 76.5

Two-level attention [226] AlexNet-8 Yes 4096 - 77.9
Deep LAC [227] AlexNet-8 Yes 12288 - 80.3
NAC-const [221] AlexNet-8 Yes 4096 91.7 68.5
NAC-const [221] VGG-19 Yes 4096 95.3 81.0

Bilinear CNN [222] VGG-16 Yes 250k - 84.0
PD+FC+SWFV-CNN [223] VGG-16 Yes 70k - 84.5

MsML+ [228] DeCAF-8 No 134016 89.5 67.9
BoSP [229] VGG-16 No 5120 94.0 -

RI-Deep [230] VGG-19 No 4096 94.0 72.6
ProCRC [231] VGG-19 No 5120 94.8 78.3
MG-CNN [232] VGG-19 No 12288 - 81.7

Proposed MMC-Net ResNet-152 No 4096 95.2 82.4

used in the image encoder and the network depth. Note that, these approaches are

divided into two groups based on whether the CNN model is �ne-tuned on the target

dataset. First, it can be seen that, MMC-Net achieves better results than other

approaches without performing the �ne-tuning step. Second, MMC-Net can even

compete with the approaches with the �ne-tuning step. For example, our results on

Flowers is competitive with NAC-const [221]. Also, our approach is superior over

most approaches on CUB-Bird, except Bilinear CNN [222] and PD+FC+SWFV-

CNN [223]. However, we can see that both [222] and [223] produce a signi�cantly

more expensive feature vector than MMC-Net. We should realize that additional

�ne-tuning techniques have potential to improve performance, but are not the focus

of this work. Our competitive results are partly due to the use of the ResNet-152

model, while we believe this should not decrease the e�ectiveness of our approach.
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Table 7.13: Summary of the parameters used in the MMC-Net for matching and
classi�cation, and the time for running the multi-stage training algorithm.

Dataset #Params for matching #Params for classi�cation Time (hours)
Pascal Sentence ∼8 millions ∼41,000 ∼0.3

MSCOCO ∼8 millions ∼164,000 ∼7.0
Flowers ∼8 millions ∼418,000 ∼0.5

CUB-Bird ∼8 millions ∼820,000 ∼1.3

7.4.7 Computational cost

We conducted the experiments on a NVIDIA TITAN X card with 12 GB memory.

In practice, we �rst extracted visual and textual features for all training samples

using the o�-the-shelf feature encoders. Then, we take as input these input features

for the matching and classi�cation components. Since the network parameters in

MMC-Net are not expensive, it is feasible and rewarding to use a large mini-batch

size to improve the training. In Table 7.13, we show the training parameters in the

matching and classi�cation component, and the multi-stage training time cost on

the four datasets. The MSCOCO dataset consumes more training time due to its

large-scale data. In summary, MMC-Net is an e�cient network with a decent model

complexity.

7.5 Chapter Conclusions

In this work, we proposed a uni�ed network for joint multi-modal matching and clas-

si�cation. The proposed MMC-Net could simultaneously learn latent embeddings in

the matching component, and generate a multi-modal representation vector in the

classi�cation component. Consequently, the two components could help promote

each other by combining their loss functions together. We evaluated our approach

on four well-known multi-modal datasets. The experimental results demonstrated

the robustness and e�ectiveness of the MMC-Net model, compared to the baseline

models. In addition, our approach achieved competitive results with the state-

of-the-art approaches. The results showed its promising generalization for diverse

multi-modal tasks related to matching or classi�cation.

Future work. Currently, we use the class labels to train the classi�cation compo-

nent in MMC-Net. One potential improvement is to use more detailed information

to guide the classi�cation, like attributes. Compared to the class labels, attributes

can discover more clues (e.g. sit, run, blue and small) about the visual content and

text description. Hence, using attributes is bene�cial for narrowing the gap between

visual features and language words.
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Chapter 8

Applications of Image Synthesis

After classi�cation and retrieval, in this chapter we turn to address the third research

theme: synthesis. In particular, we focus on two practical applications: image-to-

image translation and fashion style transfer.

Image-to-image translation between di�erent domains aim to arbitrarily manipulate

the source image content given a target one. For RQ7, we need to study what fac-

tors in�uence the performance of cycle-consistent generative networks (CycleGAN),

which have become a fundamental approach for general-purpose image-to-image

translation, while few work investigate the important factors within it. To this

end, we present an extensive and empirical study on cycle-consistent generative net-

works. We exploit two extended models which can promote the generation quality.

Then, we conduct comprehensive experiments to evaluate these models for several

translation tasks.

As for fashion style transfer, we aim towards developing a novel approach to per-

form the problem of person-to-person clothing swapping (RQ8). It is challenging

due to varying pose deformations between di�erent person images. We address this

challenge by proposing a novel multi-stage generative network (SwapGAN) that in-

tegrates three generators based on di�erent synthesis conditions. The SwapGAN

model is end-to-end trainable with adversarial loss and mask-consistency loss. We

demonstrate the e�ectiveness of our approach through both quantitative and quali-

tative evaluations on the DeepFashion dataset. This work can serve as a benchmark

for future research on this task.

Keywords
Image synthesis, Image-to-image translation, Fashion style transfer, Generative ad-

versarial networks
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8.1 Image-to-Image Translation

Image-to-image translation has achieved increasing attention in recent research.

This task learns to synthesize the translated image in the target domain, given one

image in the source domain. With the emergence of generative adversarial networks

(GANs) [79] in recent years, some e�orts have been made to employ unpaired image

samples to model mapping functions between two di�erent domains [89, 90, 91].

The translation task therefore becomes an unsupervised problem as the correspond-

ing ground-truth images in the target domain are unknown. In addition, these

approaches make use of the adversarial mechanism involved in GANs, to make the

generated images undistinguished from real ones in the target domain. One chal-

lenging problem is that the domain mappings in these unsupervised approaches are

under-constrained due to lack of ground-truth labels. To tackle the challenge, Cycle-

GAN [94] introduces a cycle-consistency loss by reconstructing the generated image

back to the source domain. In conjunction with the original adversarial loss, the

cycle-consistency loss is bene�cial to aid the unsupervised domain mappings. More-

over, this additional loss can help the model in avoiding mode collapse, from which

the original GANs often su�er. Figure 8.1(a) illustrates the conceptual architecture

of CycleGAN. Due to its high e�ectiveness and generalization ability, CycleGAN

has been a fundamental model to address the task of unsupervised image transla-

tion, while few works have examined what factors may in�uence its performance.

This fact motivates our research question RQ 7: What factors will a�ect the

performance of generative models on the translation tasks?

Driven by this, in this work we extend the vanilla CycleGAN with new improve-

ments, which can present more insights into what factors promote its performance on

unsupervised image-to-image translation. Speci�cally, our improved models focus

on studying the e�ects of two key factors in CycleGAN: one is the number of gener-

ators and another is the number of cycles. For the �rst factor, we build an extended

model called Long CycleGAN, which can cascade more generators to perform the

translation within a long cycle. For example, in Figure 8.1(b), we can incorporate

M and N of di�erent generators for A-to-B and B-to-A translation, respectively.

Advantageously, the long cycle can leverage more generators to further increase the

generation abilities of the model and improve the quality of the synthesized images.

In terms of the second factor, another extended model with additional nested cycles

is developed, namely Nest CycleGAN. As illustrated in Figure 8.1(c), this model

attempts to exploit many inner cycles nested within the outer cycle. In this way,

the inner cycles are able to directly connect the intermediate generators and provide

more cycle-consistency losses to guide the domain mappings. Nest CycleGAN is

used to demonstrate the bene�t of adding more cycles among generators.

The contributions of this work are as follows:
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Figure 8.1: Illustration of three cycle-consistent generative adversarial networks.
Based on the (a) Vanilla CycleGAN [94], we build two extended models: (b) Long Cy-
cleGAN and (c) Nest CycleGAN. Long CycleGAN can promote the generative abilities
by cascading more generators, and Nest CycleGAN is able to add extra inner cycles
to enhance the mapping constraints.

� We propose two extended models to explore the important factors in Cycle-

GAN. In addition, we present the initialization networks for the extended

models. We conduct qualitative and quantitative evaluation to assess these

models, for translation tasks including photo↔label and photo↔sketch.

� Our results witness the superiority of the extended models over the vanilla

one. The results can act as an indication that CycleGAN equipped with more

generators and cycles would achieve better generation quality.

The rest is structured as follows. Section 8.1.1 describes the vanilla CycleGAN and

two extended models. The initialization networks are introduced in Section 8.1.2.

The experiments are shown from Section 8.1.3 to Section 8.1.5.

8.1.1 Methodology

Problem Formulation

Assume that there are two unpaired image sets: {ai}Ni=1 in domain A and {bj}Mj=1

in domain B. The task aims to learn bi-directional mapping functions to map

any ai ∈ A to bj ∈ B, and vice versa. We omit the subscript i and j for notational

simplicity. Notably, the images in the two sets are unaligned with each other, and the

input images lack of ground-truth images to provide correct correspondences.

To tackle this problem, GANs [79] are used to generate realistic-looking target sam-

ples by incorporating a generator G and a discriminator D. Taking the A-to-B

mapping for example, GAB learns to simulate real images in domain B given the im-

ages in domain A. Then DB need to distinguish real images b from synthetic images

GAB(a). The original GANs compute the adversarial loss based on the negative log

likelihood. Instead, we employ the least square loss designed in LSGAN [233], due

to its proper stability of training and quality of generated images. The adversarial
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loss for translating a to b is expressed with

LGAN(GAB, DB) = Eb∼pdata(b)[(DB(b)− 1)2] + Ea∼pdata(a)[DB(GAB(a))2]. (8.1)

Here, pdata is the empirical distribution of training images. The generator and dis-

criminator are trained for a minimax objective: minGAB
maxDB

L(GAB, DB). Simi-

larly, we can employ another generator and discriminator for the B-to-A mapping,

and compute its corresponding adversarial loss: LGAN(GBA, DA).

Vanilla Cycle-consistent GAN

Unsupervised image translation relies on adversarial loss to ensure the synthesized

images in accordance with the target domain. However, it is important to add

extra losses to enhance the constraints of unsupervised mapping functions. Cycle-

GAN [94] develops a cycle-consistent loss by coupling two generators GAB and GBA

in a reconstruction-based cycle. To be speci�c, the generated image GAB(a) is fur-

ther fed into GBA to obtain the reconstructed image â = GBA(GAB(a)). Similarly,

we can have b̂ = GAB(GBA(b)). Then, the di�erence between the input images and

their reconstructed ones is computed with the L1 norm :

LRec(GAB, GBA) =Ea∼pdata(a)[||GBA(GAB(a))− a||1]
+Eb∼pdata(b)[||GAB(GBA(b))− b||1].

(8.2)

Finally, the full objective in CycleGAN considers minimizing both the adversarial

loss and the cycle-consistent loss:

LCycle(GAB, GBA, DA, DB) =LGAN(GAB, DB) + LGAN(GBA, DA)

+λLRec(GAB, GBA),
(8.3)

where λ adjusts the weight of the reconstruction loss. As suggested in Cycle-

GAN [94], the cycle-consistent constraint can help avoid the mode collapse problem,

that is, the generated samples may only come from several modes of the real data

distribution, but discard many other modes.

Long Cycle-consistent GAN

A key purpose of generative models is improving the quality of synthesized image

samples. One favorable solution is introducing more generators to promote the

generative abilities of the whole model. Driven by this, we extend CycleGAN by

stacking a few generators, and investigate its e�ects on the generation quality. In

Figure 8.1(b), we illustrate the �rst extended model called Long CycleGAN. Assume

that there are M generators translating image samples from domain A to B, and at

the same time N generators to map image samples from B to A. The whole mapping

procedure can be performed in a chained fashion: the output of the current generator
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is taken as input of the next generator. Formally, we can compute the output of

each generator with

Gm
AB(a) = F (Gm−1

AB (a),Wm
AB),m = 1, . . . ,M, (8.4)

Gn
BA(b) = H(Gn−1

BA (b),W n
BA), n = 1, . . . , N. (8.5)

We de�ne F and H as the mapping functions for A-to-B and B-to-A.Wm
AB andW n

BA

correspond to their mapping weights. Finally, we can rewrite the full objective for

Long CycleGAN

LLong(
M∑

m=1

Gm
AB,

N∑
n=1

Gn
BA, DA, DB) =LGAN(GM

AB, DB) + LGAN(GN
BA, DA)

+λLRec(G
M
AB, G

N
BA).

(8.6)

We note that, when M = N = 1, G0
AB(a) = a and G0

BA(b) = b. In this case,

Long CycleGAN is the same as the vanilla one and therefore can be viewed as a

generalized model.

Nest Cycle-consistent GAN

Furthermore, we present another extended model by nesting more inner cycles apart

from a single outer cycle used in Long CycleGAN. T additional cycle-consistency

losses based on new inner cycles can help constrain the mapping space between two

domains. The extended model named by Nest CycleGAN is shown in Figure 8.1(c).

On the one hand, the outer cycle in Nest CycleGAN (in solid line) performs the

complete mappings between two domains by using all generators. On the other

hand, the inner cycles (in dashed line) aim to build additional connections to bridge

intermediate generators in the two chains. Notably, each inner cycle can be viewed

as an auto-encoder model that can reconstruct the input image based on latent

representations learned from intermediate generators. For instance, the m-th inner

cycle for domain A is associated with two sets of generators, i.e. {G1
AB, . . . , G

m
AB} and

{GN−m+1
BA , . . . , GN

BA}. In addition, we task the output of Gm
AB as input of GN−m+1

BA ,

which can be denoted as

GN−m+1
BA (Gm

AB(a)) = H(Gm
AB(a),WN−m+1

BA ). (8.7)

After that, the image sample further passes from GN−m+1
BA to GN

BA, and the recon-

structed image based on the m inner cycle can be formulated as

âm = GN
BA(Gm

AB(a)). (8.8)

137



8. APPLICATIONS OF IMAGE SYNTHESIS

Real or Fake

𝐷𝐴

Domain A Domain H Domain B

𝑎

𝑏
Real or Fake

𝐷𝐵

 𝐺𝐴𝐵
1 (𝑎

 𝐺𝐵𝐴
1 (𝑏

 𝐺𝐴𝐵
2 (𝑎

 𝐺𝐴𝐵
2 (𝑎

𝑏

𝑎

 𝐺𝐵𝐴
2 (𝑏

 𝐺𝐵𝐴
2 (𝑏

 𝑎

 𝑎1

 𝑏

 𝑏1

Real or Fake

𝐷𝐴

𝐺𝐴𝐵
1

Domain A Domain B

𝑎

𝑏
Real or Fake

𝐷𝐵

 𝐺𝐴𝐵
1 (𝑎

 𝐺𝐵𝐴
1 (𝑏𝐺𝐵𝐴

2

 𝐺𝐴𝐵
2 (𝑎

 𝐺𝐴𝐵
2 (𝑎

𝑏

𝑎

 𝐺𝐵𝐴
2 (𝑏

 𝐺𝐵𝐴
2 (𝑏

 𝑎

 𝑏 𝐺𝐴𝐵
2

𝐺𝐵𝐴
1

𝐺𝐴𝐵
2

𝐺𝐵𝐴
1 𝐺𝐵𝐴

2

𝐺𝐴𝐵
1

Figure 8.2: Instantiation Networks. Left: Long CycleGAN; Right: Nest CycleGAN.
Details can be seen in Section 8.1.2.

Similarly, we can obtain b̂n = GM
AB(Gn

BA(b)) for the n-th inner cycle with respect to

domain B. Finally, the reconstruction loss with additional inner cycles is

LInner(
M∑

m=1

Gm
AB,

N∑
n=1

Gn
BA) =

M∑
m=1

Ea∼pdata(a)[||âm − a||1]

+
N∑

n=1

Eb∼pdata(b)[||b̂n − b||1].

(8.9)

Particularly, when m = M and n = N , the inner cycle turns to be the outer cycle,

which can be included in the formulation. The objective of Nest CycleGAN is

LNest(G
M
AB, G

N
BA, DA, DB) =LGAN(GM

AB, DB) + LGAN(GN
BA, DA)

+λLInner(
M∑

m=1

Gm
AB,

N∑
n=1

Gn
BA).

(8.10)

8.1.2 Instantiation network

To assess the e�ectiveness of the three CycleGAN variants, we build their instanti-

ation networks as follows.

Vanilla CycleGAN. We reproduce the standard CycleGAN with the generator

and discriminator in [94]. (1) Generator : it consists of an encoder, several residual

blocks and a decoder. The encoder module contains three convolutional layers; each

residual block adds a skip connection on two 3×3 convolutional layers; the decoder

module has two deconvolutional layers using stride-1
2
convolutions to upsample, and

one stride-1 convolutional layer to output the synthesized image. The convolutional

layers are followed by instance normalization [83] and ReLU [4]. (2) Discriminator :

it is based on the Markovian network from PatchGANs [82, 88], which can run

convolutationally across an image to classify if overlapping patches are real or fake.

It contains four convolutional layers and the last layer produces a 1-dimensional

feature map as the predicted output.
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Input GAN Long Cycle Nest Cycle Ground-truth

(a)

(b)

Vanilla Cycle

Figure 8.3: Generated samples of (a) the label→photo translation and (b) the
photo→label translation evaluated on the CMP-Facade dataset.

Input GAN Long Cycle Nest Cycle Ground-truth

(a)

(b)

Vanilla Cycle

Figure 8.4: Qualitative results of (a) the label→photo translation and (b) the
photo→label translation on the Cityscapes dataset.

Long CycleGAN. On top of the vanilla CycleGAN, we instantiate a Long Cycle-

GAN by cascading two generators (i.e. M = N = 2), but the extension with more

generators is straightforward. For fairness, all the generators and discriminators in
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Long CycleGAN use the same networks with the vanilla CycleGAN. As illustrated

in Figure 8.2 (Left), the model consists of two cycles which can be trained jointly.

The red cycle starts with the input a in domain A and translates it to be G2
AB(a)

in domain B. DB learns to distinguish the fake image G2
AB(a) from the real image

b. Then, G2
AB(a) is translated back to be the reconstructed image â in domain A.

Likewise, the green cycle beginning from b performs an inverse translation.

Nest CycleGAN. Next, we build a Nest CycleGAN upon the above Long Cycle-

GAN. In Figure 8.2 (Right), we exploit two additional inner cycles within the outer

cycles. The inner cycles can also reconstruct the input images a and b, which are

denoted by â1 and b̂1. We can see that, the �rst generated images, i.e. G1
AB(a) and

G1
BA(b), act as intermediate states between A and B, then they should have implicit

semantic similarities in some extend. Hence, we consider adding an extra loss to

correlate them with

LSim(GAB, GBA) = Ea∼pdata(a)[||G
1
AB(a)−G1

BA(b)||1]. (8.11)

During training, LSim(GAB, GBA) is added with LNest(G
M
AB, G

N
BA, DA, DB). Conse-

quently, G1
AB and G1

BA can tend to gather in a common domain H between A and

B, even though the inputs a and b are unpaired.

8.1.3 Experiment setup

To assess the three CycleGAN variants, we perform three image translation tasks, in-

cluding photo↔label and photo↔sketch. The input and output images were scaled

to 256×256. For fairness, some training parameters were consistent with Cycle-

GAN [94], including mini-batch size of 1, learning rate of 0.0002, and weight decay

of 0.0005. All the models were trained with 200 epoches and we �xed λ = 10 in the

experiments, and optimized with the Adam optimizer [234]. Notice that, we ran-

domly shu�ed two domain-speci�c datasets to make sure they are totally unpaired.

We implemented the models with TensorFlow [235] on a Titan X GPU card.

8.1.4 Results on photo↔label

For this translation task, we employed two semantic segmentation datasets: CMP-

Facade [236] and Cityscapes [237]. CMP-Facade contains 606 images in total. We

randomly select 400 images for training, and the remaining 206 images for testing.

In Cityscapes, there are 2975 images for training and 500 images for testing. There

are 12 and 19 semantic labels in CMP-Facade and Cityscapes, respectively.

Qualitative results. In Figure 8.3 and Figure 8.4, we compare the quality of gener-

ated images. For the label→photo task, three cycle-consistent GANs can synthesize

more realistic images than the original GAN. It can be seen that, GAN su�ers from
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Table 8.1: Quantitative results of the label→photo translation evaluated on the
CMP-Facade dataset. Higher numbers are better.

Method
CMP-Facade dataset Cityscapes dataset

Per-pixel acc. Per-class acc. Class IOU Per-pixel acc. Per-class acc. Class IOU

GAN 0.32 0.12 0.07 0.50 0.11 0.07
Vanilla CycleGAN 0.35 0.15 0.10 0.51 0.17 0.12
Long CycleGAN 0.43 0.19 0.13 0.54 0.18 0.13
Nest CycleGAN 0.49 0.22 0.15 0.57 0.20 0.14

Oracle 0.66 0.51 0.39 0.86 0.45 0.37

mode collapse, where the generated labels look almost identical for di�erent input

photos. However, the other three models can avoid this problem due to using cycle-

consistency constraints. In addition, the two extended models can produce superior

images over the vanilla one.

Quantitative results. In addition to the above qualitative evaluation, we further

conduct quantitative experiments for this translation task. Considering the fact

that the two datasets are not large scale, it is inappropriate to use the inception

score (IS) to measure the generation quality. Instead, we used the FCN-score, i.e.

a quantitative measurement as suggested in [88], to assess the label→photo task.

First, a fully convolutional network (FCN) [26] for semantic segmentation was pre-

trained using the real training photos and ground-truth labels. Then, each generated

photo was fed into the FCN model to produce the predicted labels. The comparison

with the ground labels can assess the generation photos. Commonly, FCN-score

includes three standard metrics: per-pixel accuracy, per-class accuracy, and mean

class intersection-over-union (IOU).

Table 8.1 reports quantitative results on CMP-Facade and Cityscapes. Comparably,

all the three cycle-consistency models outperform the original GAN model. However,

we can observe that the performance gap between Vanilla CycleGAN and GAN

is not signi�cant, while Long CycleGAN can improve the performance with more

considerable gains. This demonstrates the bene�t of employing more generators for

raising the generative ability. Moreover, Nest CycleGAN can achieve better accuracy

than Long CycleGAN due to adding new inner cycles. For a full comparison, we also

provide the Oracle results by testing real photos, which can be seen as the upper-

bound performance. Our results on CMP-Facade narrow the gap with Oracle.

8.1.5 Results on photo↔sketch

We conducted this task with the SBIR dataset [238] which includes two subsets:

one for shoes and the other for chairs. In the shoe dataset, we used 304 samples for

training and 115 ones for testing. The chair dataset consists of 200 training samples

and 97 testing ones. Figure 8.5 and Figure 8.6 present the generated image samples

on the two datasets. We can see that the two extended models are advantageous to

the original GAN and Vanilla CycleGAN. It is worth noting that, the sketch→photo
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Input GAN Long Cycle Nest Cycle Ground-truth

(a)

(b)

Vanilla Cycle

Figure 8.5: Qualitative results of (a) the photo→sketch translation and (b) the
sketch→photo translation on the SBIR chairs dataset.

Input GAN Long Cycle Nest Cycle Ground-truth

(a)

(b)

Vanilla Cycle

Figure 8.6: Qualitative results of (a) the photo→sketch translation and (b) the
sketch→photo translation on the SBIR shoes dataset.

translation is more challenging than the photo→sketch translation. The main reason

is that the sketch→photo mapping functions are more under-constrained, and one

sketch image therefore may be synthesized with a variety of colors.
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8.2 Fashion Style Transfer

8.2 Fashion Style Transfer

Nowadays, online shopping has become an indispensable experience in our daily

lives. Consequently, the huge market brought by fashion clothing shopping mo-

tivates an increasing variety of fashion relevant research, such as fashion clothing

retrieval [95, 239], fashion recommendation [96, 240], fashion parsing [97, 241] and

fashion aesthetics [242, 243]. In this work, we deal with the problem of fashion

clothing swapping, which aims to visualize what the person would look like with

the target clothes. From the practicality perspective, fashion clothing swapping is a

useful experience for online consumers who need to virtually try on di�erent clothes

instead of wearing them physically. From the research perspective, fashion clothing

swapping can be viewed as a speci�c task belonging to fashion style transfer. The

challenge in this task is how to transform the target clothes �tting for the wearers

while preserving their pose and body shape.

Traditionally, non-parametric methods [98, 101, 103, 244] are exploited to address

this problem. They need to segment the target clothes from the condition image

and then employ 2D image warping algorithms or 3D graphics methods to model

the deformations between the clothes and the reference person body. However, these

traditional methods rely on extra information (e.g. 3D measurements and geometric

constraints) and complicated optimization algorithms (e.g. dynamic programming

and dynamic time warping). In addition, non-parametric methods are not gen-

eral, which means they need to estimate individual deformations for di�erent image

pairs. Also, it is non-tractable to match humans' key points due to non-rigid pose

deformations.

In contrast to non-parametric methods, recent research [105, 106] turns to recast

the clothing swapping as a 2D image synthesis problem. It is mainly driven by the

rapid developments of deep generative networks, which have succeeded in many tasks

involving synthesizing plausible images [84, 88, 245, 246]. Deep generative networks

are able to synthesize the target images without requiring matching key points.

Recently, FashionGAN [85] employs a textual description as condition to perform

the clothing swapping (Figure8.7(a)). The methods in [105, 106] uses a stand-alone

and �at clothing image to re-dress the reference person (Figure 8.7(b)). However,

the target clothe is always worn on another person in practical scenarios, rather than

is shown in a separate image. In this work, we aim to perform the person-to-person

clothing swapping by transferring the clothes on the condition person images to

the reference ones (Figure8.7(c)). It becomes more challenging due to the varying

deformations among di�erent human poses. Considering the challenge, we need

to tackle the last research question RQ 8: How can we exploit a generative

model to directly transfer the fashion style between two person images?
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Figure 8.7: Three tasks of fashion clothing swapping conditioned on (a) textual
description [85], (b) clothing image [106] and (c) person image, respectively. All the
three cases aim to re-dress up the woman in the reference image with a long-sleeved
sweather, while preserving her original pose and body shape. (c) shows the synthesized
image based on our proposed SwapGAN.

To this end, we propose a multi-stage generative framework (SwapGAN), consisting

of three generation stages conditioned on di�erent priors. In the �rst stage, we in-

terpret this problem as a pose-based person image synthesis process. We therefore

exploit a pose-conditioned generative network (i.e. Generator I), which can manip-

ulate the person in the condition image to have the same pose and body shape as

the person in the reference image. Consequently, the new synthesized image can

be viewed as the desired target image where the reference person wears the target

clothes while preserving the original pose and body shape. Second, we further ex-

ploit a segmentation-conditioned generative network (i.e. Generator II) built on top

of Generator I. The pose map in Generator I may mistake the clothing style (e.g.

changing long sleeves to short sleeves), however, the segmentation in Generator II is

used to retain the style due to its rich semantic information. To be speci�c, we take

the segmentation map of the condition image into Generator II, to make sure that

the synthesized image is consistent with the original condition image. Our hypoth-

esis is that, if a person image can be well transformed based on an arbitrary pose,

then it should be feasible to reconstruct it based on its original segmentation map.

Moreover, we perform the third generation stage by using a mask generative network

(i.e. Generator III). Generator III is used to explicitly constrain the body shape of

the synthesized person images from both Generator I and Generator II. During the

training procedure, we can train the entire SwapGAN end-to-end by integrating the

adversarial loss from Generator I and Generator II and the mask-consistency loss

from Generator III.

The contributions of this work are as follows:
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� We prose a multi-stage generative framework for addressing a task of fash-

ion style transfer, i.e. person-to-person clothing swapping. This is the �rst

attempt to study it with a deep generative approach, to the best of our knowl-

edge.

� In addition, our approach present the bene�t of integrating multiple condi-

tional GANs based on di�erent priors. It can motivate tackling other research

problems involved in deep generative networks.

� Furthermore, the experiments on the DeepFashion dataset verify the e�ective-

ness of SwapGAN in terms of qualitative and quantitative evaluations. Our

work can be a benchmark study to drive future research on this task. Also, it

can enrich the application of deep generative approaches for solving practical

problems.

The rest is structured as follows. Section 8.2.1 describes the proposed multi-stage

generative model for person-to-person clothing swapping. The network architec-

ture is detailed in Section 8.2.2. We report and discuss experimental results from

Section 8.2.3 and Section 8.2.6.

8.2.1 Methodology

Problem De�nition

We de�ne the problem of person-to-person clothing swapping to be a conditional

person image generation process. Its goal is to manipulate the person in the con-

dition image to have the same pose and body shape as the person in the reference

image. Additionally, we paste the head of the reference person onto the new syn-

thesized image, in order to preserve the person identity. In this way, the reference

person in the synthesized image can wear the target clothes in the condition image,

while retaining the original pose and body shape.

Given a condition person image and a reference one, it may be infeasible to �nd

the ground-truth target image in the dataset to supervise the synthesized image.

Instead, we consider training the synthesis process using two images of the same

person. To be speci�c, we have a training dataset of N image pairs, each of which

is composed of two images of the same person with the same clothes, but with

di�erent poses (Figure 8.8). We randomly select one of the two images as a

reference image, and the other one as a condition image. The reference and condition

images are denoted with X
(i)
r and X

(i)
c , i = 1, . . . , N . Taking X

(i)
c and the pose map

of X
(i)
r as input, our generator learns to create a fake X

(i)
r during the training

procedure. The discriminator needs to distinguish the fake X
(i)
r from the real one.

Ideally, when the discriminator cannot tell the di�erences between the real and fake

images, the generators should be able to generate high-quality images.
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Figure 8.8: Representations for a pair of person images that have the same clothes
but show di�erent poses.
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Figure 8.9: Overview architecture of the multi-stage generative framework in the
proposed SwapGAN. Generator I can synthesize a new image XGI

by manipulating
the condition person image Xc based on the reference pose Pr. Then, Generator II
takes as input XGI

to produce a reconstructed Xc based on the segmentation map Sc.
Moreover, Generator III is used to explicitly constrain the body shape during the
synthesis process.

Person Representation

To specify the synthesis process, we need to extract a couple of person representa-

tions based on the person images. As shown in Figure 8.8, we utilize four feature

maps described as follows:

1) Pose map: We employ one of the state-of-the-art pose estimators, OpenPose [247],

to capture person pose information. For each person image, the pose estimator can

localize 18 key-points in a pose map. In addition, the key-points are connected

by color lines that can present the orientation of limbs. The pose map is used in

Generator I.

2) Segmentation map: An o�-the-shelf human semantic parser [248] is adopted to

extract a person segmentation map. The original map can predict 20 �ne classes for

semantic segmentation. We further re-group the �ne classes into �ve coarse classes,

including head, arms, legs, upper-body clothes and lower-body clothes. We employ
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this segmentation map in Generator II.

3) Mask map: Based on the above segmentation map, it is straightforward to obtain

the binary mask of the person by merging all segmented regions. In contrast to

the segmentation map, this mask map is used to retain the body shape without

involving the semantic clues about the person. The mask maps of both the reference

and condition person images are used for Generator III.

4) Head map: During the synthesis process, the details of the human face are hard

to preserve due to its small size. However, it is needed to restore the identity

of the reference person after swapping the clothes. To this end, we capture the

head region (face and hair) based on the segmentation map, and paste it onto the

new synthesized person image. This similar post-processing step is also used in

FashionGAN [85].

For X
(i)
r and X

(i)
c , we denote their four feature maps as {P (i)

r , S
(i)
r ,M

(i)
r , H

(i)
r } and

{P (i)
c , S

(i)
c ,M

(i)
c , H

(i)
c }, respectively. Subsequently, we will omit the superscript i

for notational simplicity. We should mention that, these person representations

are simple and e�cient to extract without extra manual tuning. Note that, our

representations are semantically richer than previous works [85, 105, 106].

Overview architecture

To render clothes from a person image on to another one, we propose an image syn-

thesis framework (SwapGAN) based on conditional generative adversarial networks.

Figure 8.9 illustrates the overview of SwapGAN, which has three di�erent genera-

tors for pose-conditioned generation, segmentation-conditioned generation and mask

generation, respectively.

Pose-conditioned generation

We begin to introduce the �rst generative stage conditioned on the pose map. As

illustrated in Figure 8.9, we concatenate the condition image Xc and the reference

pose map Pr together, and take them as input into the pose-based generative net-

work, i.e. Generator I. We can express the synthesized image with

XGI
= GI(Xc, Pr). (8.12)

We should mention that, the pose map can not only localize the human key-points,

but also constrain the body shape of the synthesized person image to be the same

as the reference person.

Next, XGI
and Xc are integrated together to fake the discriminator D. Compared

with the real pair of Xr and Xc, GI learns to produce more realistic-looking images
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similar to Xr. Following the original GANs [79], we use the negative log likelihood

to compute the adversarial loss w.r.t. GI

LGI
= EXc∼pdata(Xc),Pr∼pdata(Pr)[log(D(XGI

, Xc))], (8.13)

where pdata(·) indicates the empirical distributions of training data. As suggested

in LSGAN [233], the least square loss is e�cient to improve both the stability of

training and the quality of generated images. Driven by this, we turn to use the

least-square adversarial loss to represent LGI
:

LGI
= EXc∼pdata(Xc),Pr∼pdata(Pr)[(D(XGI

, Xc)− 1)2], (8.14)

The objective for Generator I is to minimize LGI
.

Segmentation-conditioned generation

Given two arbitrary person images, Generator I can synthesize new images by ex-

changing the clothes and its results therefore can meet the goal of this task. However,

the key-points in the pose map are mainly used to measure the localization infor-

mation of body parts, but pay little attention to the style of the target clothes in

the condition image. To address this limitation, we propose to leverage the person

segmentation map, which can take into consideration semantic information about

the clothes.

Empirically, if XGI
has derived the target clothes from Xc, it should be possible

to return the clothes back to the condition person again. In this way, the fashion

style of the clothes can be reconstructed well during the synthesis process. This idea

motivates the second generative stage that aims towards synthesizing another new

image as similar as the condition image Xc. Speci�cally, we build a segmentation-

based generative network (i.e. Generator II in Figure 8.9), on top of the output of

Generator I. Generator II takes as input the concatenation of the synthesized image

XGI
and the condition segmentation map Sc. As a result, we can obtain a new

synthesized image from the output of Generator II:

XGII
= GII(XGI

, Sc) = GII(GI(Xc, Pr), Sc). (8.15)

Ideally, XGII
should be as similar as the original input Xc. From Xc to XGII

, the

integration of the �rst and second generative stages actually construct an auto-

encoder paradigm. It can help improve the quality and semantics of the generated

image XGI
. For instance, Generator I may mistake the fashion style by transferring

long sleeves to be short sleeves. However, Generator II is capable of correcting

the mistake, because the segmentation map includes the lost information about the

long sleeves. Next, we incorporate Xr and XGII
into the same discriminator D, and
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compute the generative loss function of GII

LGII
= EXr∼pdata(Xr),Sc∼pdata(Sc)[(D(Xr, XGII

)− 1)2]. (8.16)

Minimizing this loss can jointly optimize Generator II and Generator I.

Mask generation

Although the pose map and segmentation map have provided some information

about the body shape, it is encouraged to learn another generative network to ex-

plicitly constrain the synthesized images. As shown in Figure 8.9, we employ a

shared Generator III to perform the mask generation for both XGI
and XGII

. Di�er-

ent from Generator I and Generator II, Generator III takes only one image as input

without specifying other conditions. The two generated masks, denoted asMGIII(XGI
)

and MGIII(XGII
), should consistently match the reference mask Mr and the condition

mask Mc, respectively. We de�ne their mask-consistency loss as follows:

LGIII
=EMr∼pdata(Mr)[||MGIII(XGI

) −Mr||1]

+EMc∼pdata(Mc)[||MGIII(XGII
) −Mc||1]. (8.17)

Both GI and GII can bene�t from the loss LGIII
to update the synthesis process.

Note that, LGIII
will not update the parameters of the discriminator D, because the

generated masks are unnecessary to feed into the discriminator. In Figure 8.9, it

can be seen that, after training, the generated masks end up similar to the reference

and condition mask maps.

Full Objective

The SwapGAN model including three generators and one discriminator can be

trained end-to-end. The total generation loss combines the adversarial loss (i.e.

LGI
and LGII

) and the mask-consistency loss (i.e. LGIII
)

LG = LGI
+ LGII

+ λLGIII
, (8.18)

where λ adjusts the weight of LGIII
, which we set to 5 in the experiments.

Figure 8.10 shows the structure of the discriminatorD. Compared to prior work [246]

comparing one real pair and one fake one, our discriminator is able to distinguish

one real pair from two fake pairs. Formally, the discrimination loss in D can be

149



8. APPLICATIONS OF IMAGE SYNTHESIS

de�ned with

LD =EXr∼pdata(Xr),Xc∼pdata(Xc)[(D(Xr, Xc)− 1)2]

+EXc∼pdata(Xc),Pr∼pdata(Pr)[D(XGI
, Xc)

2]

+EXr∼pdata(Xr),Sc∼pdata(Sc)[D(Xr, XGII
)2]. (8.19)

During the training procedure, it is a common practice to iteratively update the

parameters of the generators and the discriminator. The full objective in the model

is to minimize both LG and LD. The generators attempt to generate more realistic-

looking fake images to fool the discriminator. Once the discriminator cannot tell

fake images from real ones, then the generators are supposed to properly accomplish

the synthesis process. In the testing phase, taking a condition image and the pose

map of a reference image as input, the synthesized image from Generator I, i.e. XGI
,

can be used as the desired target image. Additionally, we need to paste the reference

head map Hr onto XGI
to make sure the person's identity is preserved.

8.2.2 Network architecture

This section introduces the details about the network architecture of the generators

and the discriminator in the SwapGAN.

Generator I and II

By integrating several existing techniques, we design a new generative network for

GI and GII. As shown in Figure 8.11, it consists of an encoder, several residual

blocks and a decoder. (1) In the encoder, we use four consecutive convolutional

layers to represent the input data. (2) There are totally six residual blocks, each

of which has two 3×3 convolutional layers and a residual connection on them [10,

80]. (3) As for the decoder, we employ a nearest neighbor interpolation manner

to upsample the feature maps, and then transfer the resized feature maps with

a 1×1 convolutional layer. Compared with the deconvolution manner based on

stride-1
2
convolutions, the interpolation manner is simple and e�cient to alleviate

the checkerboard artifacts, which often occur in generated images [249]. Figure 8.12

visibly compares the generated images by using the two upsampling manners.

In addition, we add skip connections to link the feature maps in the encoder and

decoder. As suggested in U-Net [28], the skip connections allow to bridge the down-

sampled feature maps directly with the up-sampled ones. They can help retain the

spatial correspondences between the input pose/segmentation map and the synthe-

sized image.
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Generator III

Since the mask generation is less complicated than the pose-conditioned generation

and the segmentation-condition generation, we can make use of a simple U-Net [28]

to build GIII. Speci�cally, Generator III learns eight convolutional layers in the en-

coder and eight deconvolutional layers in the decoder. Similarly, the symmetric skip

connections are added between the encoder and the decoder. The residual blocks

are not used in GIII. Notably, GIII can be built as well with the same generative

network as GI and GII, however, we �nd that it cannot bring further improvements

for the generated masks.

Discriminator

We build the discriminatorD based on the Markovian network from PatchGANs [88],

which is encouraged to preserve local high-frequency features. As shown in Fig-

ure 8.10, D uses four consecutive layers to convolve the concatenated real or fake

image pairs. Lastly, an additional convolutional layer can output a 1-dimensional

feature map to classify the patches on the input images are real or fake.
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Figure 8.10: Overview of the discriminator D in SwapGAN. It aims to distinguish
two fake image pairs from the real pair.
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Figure 8.11: Network architecture of both Generator I and II. It is composed of
three parts: encoder, residual blocks and decoder. We use additional skip connections
to couple the feature maps in the encoder and decoder. In the decoder, we perform
the upsampling with an interpolation manner instead of the traditional deconvolution
manner.
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(a) Deconvolution upsampling (b) Interpolation upsampling

𝑋𝐺Ι 𝑋𝐺Ι

Figure 8.12: Comparison of using two di�erent upsampling manners in the generator.
The deconvolution manner results in more checkerboard artifacts that will decrease the
generation quality. To alleviate this issue, we use the interpolation manner to generate
smooth images. See more details when zoomed-in.

(a) inappropriate person images 

(b) appropriate person images 

Figure 8.13: Examples of (a) inappropriate and (b) appropriate person images.
Considering the goal of person-to-person clothing swapping, we collect the front-view
images with both upper-body and lower-body clothes visible.

8.2.3 Experiment setup

Dataset protocol

Currently, DeepFashion [241] is one of the largest datasets for fashion oriented re-

search. We used its In-shop Clothes Retrieval Benchmark, which has a number of

in-shop person images with various poses and scales. However, many of the images

are inappropriate to the clothing swapping task, due to some issues like missing

human faces, back-view images and only upper-body clothes visible. To avoid these

issues, we selected front-view person images where the clothing items are shown

clearly. In Figure 8.13, we show some examples of inappropriate and appropriate

person images. In the training set, we collected 6,000 person images corresponding to

3,000 image pairs, each of which has two images of the same person wearing the same

clothes but showing di�erent poses. The testing set contains 1,372 images.
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Reference

image

Condition

image

Figure 8.14: Qualitative results of our SwapGAN on the test set. We show four
reference images in the �rst row and four condition images in the �rst column. The
reference person can wear the desired clothes in the condition image while preserving
the original pose and body shape.

Implementation Details

We employed the Adam algorithm [234] to optimize the entire SwapGAN with β1 =

0.5 and β2 = 0.999. The initial learning rate for the generators and discriminator

was 0.0002, and was linearly decayed after 50 epoches. The entire training procedure

was terminated after 100 epochs. All the images were re-scaled to 128×128 pixels.

We used a mini-batch size of 8. We implemented the method on the TensorFlow

library [235] with a NVIDIA TITAN X GPU card.

Compared methods

We compare our SwapGAN with other three methods described as follows.
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Poisson image blending [85]: it is the 2D non-parametric method that uses the

Poisson image blending algorithm to apply the target clothes in the condition person

image on the person of the reference image. This method is used as a baseline in

FashionGAN [85].

TPS warping [106]: this is another non-parametric method. It �rst estimates a

thin plate spline (TPS) transformation and then pastes the warped clothes on the

reference image. This is a baseline method in VITON [106].

VITON [106]: in contrast to non-parametric methods, it proposes an encoder-

decoder network to generate a new reference person image wearing the target clothes.

We note that, all the three compared methods require segmenting the target clothes

from the condition person images. By this way, they can learn the transformations

between two di�erent images.

8.2.4 Results and discussion

First, we compare our SwapGAN with other compared methods in terms of both

qualitative and quantitative evaluations. Then, we perform ablation study to provide

deep insights into SwapGAN.

Qualitative evaluation

This experiment aims to qualitatively show the e�ectiveness of our method for

person-to-person clothing swapping. Figure 8.14 shows our new synthesized im-

ages. As for each row, the clothes in the condition image are worn on di�erent

reference persons. Also, each column indicates that the same reference person is

re-dressed with di�erent clothes. It can be seen that all the reference persons can

properly wear the target clothes in the condition images and retain their original

poses and body shapes as well. Since we paste the reference head map to ensure the

person's identity, some generated images therefore seems a little unnatural.

Next, we compare our results with those of the compared methods. In Figure 8.15,

we present a reference image and three condition images. To assess the robustness

for di�erent pose deformations, the persons in the three condition images have small,

moderate and large pose deformations, respectively, compared to the person in the

reference image. From the results, we can see that the Poisson image blending

method fails to perform this task. The similar observation is also presented in [85].

Instead of generating a new image, the TPS warping method learns to transform

the target clothes and simply pastes it on the reference person. Although the color

information can be well preserved in its results, we can notice obvious inconsistency

between the warped target clothes and the body of the reference person. The results
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Reference

image

Condition

image

Poisson image 

blending

The proposed 

SwapGAN

TPS 

warping
VITON

Large pose 

deformation

Moderate pose 

deformation

Small pose 

deformation

Figure 8.15: Qualitative comparison of di�erent methods. When comparing with the
person in the reference image, the persons in the three condition images have small,
moderate and large pose deformations, respectively. Compared to other methods, our
SwapGAN can visibly provide superior images. Our method is robust to di�erent pose
deformations, even the large case in the last row.

of VITON are not satisfactory, because their model is trained with simple stand-

alone and �at clothes images, rather than various warped clothes on the condition

persons. Compared to the above methods, SwapGAN can generate superior new

images for all the condition images. In addition, our method is robust to di�erent

pose deformations, however, the three compared methods are weak in the robustness.

Quantitative evaluation

In addition to qualitative results, we adopt a common quantitative metric, Inception

Score (IS) [250], to assess the methods. IS is based on the Google's inception CNN

model [11], which predicts a distribution p(y|x), measuring the probability assigned

to image x to belong to class y. Formally, the computation of IS is expressed by

IS = exp
(
Ex∼pg [KL (p(y|x)‖p(y))]

)
, (8.20)

where pg indicates the distribution of a generative model. KL(p(y|x)‖p(y)) measures

The Kullback-Leibler divergence [251] between p(y|x) and p(y):

KL (p(y|x)‖p(y)) =
K∑
k=1

pk(y|x) log
pk(y|x)

pk(y)
. (8.21)
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Table 8.2: Quantitative comparison of di�erent approaches with inception scores
(higher is better). Our SwapGAN can outperform the other three compared methods
with considerable gains.

Method Inception score

Poisson image blending 2.10 ± 0.14
TPS warping 2.45 ± 0.12

VITON 2.40 ± 0.05
SwapGAN 2.65 ± 0.09

For the 1,372 images in the test set, we iteratively make each image as the reference

image, and then randomly select another 25 images to be its corresponding condition

images. As a result, we can collect about 34,000 reference-condition pairs, each of

which can produce an image to evaluate. Table 8.2 reports the inception scores

towards the 34,000 images. Interestingly, the TPS warping method has a greater

score than VITON, because it simply pastes the warped clothes on the reference

image, which can help preserve the color information. However, it cannot generate

a new image like VITON and SwapGAN. In [106], they also discuss the limitation

of the TPS warping method. Overall, SwapGAN achieves a higher score than the

other three methods.

8.2.5 Ablation study

We demonstrate ablation results about SwapGAN and analyze the e�ects of its

generators on the performance. To be more speci�c, we implement two ablation

models, which are variants of the full SwapGAN model. The �rst ablation model is

named by Generator I&III, which excludes the segmentation-conditioned generation.

The second one, called Generator I&II, keeps the �rst and second generations but

excludes the mask generation. Figure 8.16 shows two generated image samples, from

which we have the following observations:

(1) E�ect of Generator II. As can be seen in the �rst row, Generator I&III mistakes

the fashion style of the target clothes, because it changes the short sleeves in the

condition image to be long sleeves in the new generated image. However, both

the Generator I&II model and the full SwapGAN model can avoid this semantic

inconsistency due to using the segmentation map in Generator II. It veri�es the

e�ectiveness of Generator II for maintaining the style.

(2) E�ect of Generator III. Considering the generated images from the Genera-

tor I&II model, some parts of the human body are not preserved well, for example,

the right arms. By running the mask generation, the full SwapGAN model can

produce a more complete body shape similar with the reference image. This demon-

strates the bene�t of Generator III for our method.
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Condition Reference Generator I&IIGenerator I&III Full Model

Figure 8.16: Ablation study on di�erent variants of our method. Comparably, the
full model can outperform the other two baseline models in terms of generation quality
and semantics.

Condition

image

Reference

image

SSIM

IS-reference IS-condition

Figure 8.17: Pipeline of our testing procedure with computing two inception scores
and a SSIM accuracy.

Figure 8.18: Failure cases of our method for synthesizing complicated color and
texture on the clothes.

In terms of quantitative results, we exploit a new test procedure as shown in Fig-

ure 8.17. Since SwapGAN can synthesize two new images from GI and GII, we

can compute their inception scores respectively, denoted as IS-reference and IS-

condition. In addition, the synthesized image from GII is a reconstructed image

of the original condition image. Hence, we can adopt another quantitative metric,

Structural Similarity (SSIM) [252], to measure the reconstructed similarity.

In Table 8.3, we compare the quantitative results between two ablation models

and the full SwapGAN model. Notably, the Generator I&III model has no IS-
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Table 8.3: Quantitative results of our di�erent models.

Method IS-reference IS-condition SSIM

Generator I&III 2.47 ± 0.11 � �
Generator I&II 2.36 ± 0.14 2.66 ± 0.12 0.708
Full Model 2.65 ± 0.09 2.85 ± 0.12 0.717

condition and SSIM accuracy, because it excludes GII. We can see that the full

model consistently outperforms the other two ablation models by a considerable

margin, in terms of both IS-reference and IS-condition metrics. Moreover, the full

model achieves a higher SSIM accuracy than Generator I&II. These quantitative

results are consistent with our observation achieved from the qualitative evaluation.

8.2.6 Limitations and discussion

Our method has achieved promising results in many cases, but still has some limita-

tions. First, human faces become blurred in the synthesis process, because it is hard

for the generator to restore the detailed face of the reference person. To alleviate

this limitation, we employ a post-processing step by pasting the reference head map

onto the synthesized image. Second, our method may fail to capture rich color and

texture information of the clothes, for example, the failure cases in Figure 8.18. This

problem is caused by the limited capability of the adversarial loss. One approach

for solving it is to impose additional losses like the perception loss [80], but it will

increase the memory cost and training time.

8.3 Chapter Conclusions

First, this work provided an extensive and empirical study on the cycle-consistent

generative networks for unsupervised image translation. The comprehensive results

demonstrated the e�ectiveness of our designed models. Besides, the insights ob-

served in this work could help in designing other new cycle-consistency models. In

the future, it is straightforward and promising to develop Long and Nest CycleGAN

with more generators and cycles. Also, it is interesting to employ a weight-sharing

mechanism to avoid increasing memory.

Second, we proposed a novel multi-stage generative adversarial framework to address

the problem of person-to-person clothing swapping. Advantageously, it could render

the clothing style and preserve the pose and body shape within a multi-stage model.

In addition, our model was able to train end-to-end. Qualitative and quantitative

results in the experiments demonstrated the e�ectiveness of our approach. In the

future, we plan on developing our approach for images in the wild.
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In this thesis, we have devoted previous seven research chapters to address the eight

research questions regarding three themes: classi�cation, retrieval and synthesis. In

this chapter, we derive main �ndings from our approaches and results. In addition,

we discuss limitations of our approaches and possible solutions to address them.

Lastly, we point out several directions for future work.

9.1 Main Findings

In each research chapter, we have proposed a new approach to answer the corre-

sponding research question. In the next, we will conclude these approaches and

present main �ndings inspired by experimental results and empirical analysis.

(1) We began the research part in Chapter 2 by focusing on exploiting deep fusion

networks for classi�cation. We built a novel deep fusion architecture (i.e. CFN) on

top of plain CNNs, and witnessed its e�ectiveness for diverse tasks ranging from

image-level to pixel-level classi�cation. In addition, it is promising to apply CFN to

more applications such as object detection and visual tracking.

(2) In Chapter 3 we further exploited CNNs to improve its robustness for edge de-

tection. In contrast to using a general supervision, we proposed to develop relaxed

deep supervision (RDS) to guide di�erent intermediate layers. We observed that hi-

erarchical supervisory signals with additional relaxed labels could be consistent with

the diversities in di�erent layers. We believe that it is feasible to adapt RDS to other

pixel-level predictions, such as image segmentation and saliency detection.

(3) After investigating the classi�cation theme, we then turned to address the ques-

tions about the retrieval theme in Chapters 4-7. In Chapter 4, we provided a

good attempt to incorporate deep features into the inverted index scheme and ex-

ploited a novel DeepIndex framework for accurate and e�cient image retrieval. In

addition, we extended DeepIndex by integrating di�erent deep features and built

a 2-D DeepIndex structure that consists of two kinds of variants: intra-CNN and

inter-CNN. We found that, Intra-CNN was simpler to build than Inter-CNN, but

Inter-CNN could be viewed as a solution to bridge the gap between mid-level and

high-level deep feature representations.

(4) Driven by the increasing popularity of large-scale multi-media data, we began

to study the cross-modal retrieval task in Chapter 5. Speci�cally, we developed a

deep matching network using recurrent residual fusion (RRF) as building blocks for

improving visual-textual embeddings. Our work showed that RRF could recurrently

improve feature embeddings while retaining the number of network parameters. In

addition, the fusion module was e�cient to integrate intermediate outputs during

the recurrent stage. Potentially, RRF-Net would be seamlessly integrated into other

multi-modal applications like image captioning and visual question answering.
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(5) InChapter 6, we proposed cycle-consistent embeddings in an image-text match-

ing network, which could incorporate both inter-modal correlations and intra-modal

consistency for learning robust visual and textual embeddings. During training, we

integrated several ranking losses jointly to optimize the whole embedding learning.

For a robust inference, we further leveraged two late-fusion approaches to integrate

the matching scores of multiple embedding features. From the experimental re-

sults, we showed that cycle-consistency embeddings could e�ectively promote the

cross-modal retrieval performance, compared to a single embedding.

(6) In an e�ort to accomplish both classi�cation and retrieval, in Chapter 7 we

exploited a uni�ed network for joint multi-modal matching and classi�cation (MMC-

Net). The experimental results demonstrated the robustness and e�ectiveness of the

MMC-Net model, compared to the baseline models. On the one hand, the classi-

�cation component was bene�cial to alleviate the biased annotations, so that the

model could learn more robust embedding features. On the other hand, the match-

ing component was able to bridge the modality gap between vision and language,

and thus combining visual and textual embedding features could produce a more

discriminative multi-modal representation.

(7) After focusing on the classi�cation and retrieval themes, our attention moved

to the synthesis theme. In Chapter 8, we focused on addressing two research

questions. The �rst one was what factors would a�ect the performance of generative

models on the translation tasks. To answer this question, we extended the vanilla

CycleGAN with new improvements and showed two extended models. First, we

found that the long cycle could leverage more generators to further increase the

generation abilities of the model and improve the quality of synthesized images. In

addition, the additional inner cycles were able to directly connect the intermediate

generators and provided more cycle-consistency losses to constrain the translation.

The �ndings in this work could help in designing other cycle-consistent generative

networks for solving image-to-image translation tasks.

(8) The second question we considered in Chapter 8 was how we can exploit a

generative model to transfer the fashion style between two person images. To this

end, we interpreted the clothing swapping as a problem of pose-based person image

generation and proposed a novel multi-stage generative framework (SwapGAN) to

ful�ll the clothing swapping from the condition person image to the reference one.

The whole SwapGAN framework could be end-to-end trained with both adversarial

loss and mask-consistency loss. Our work could be a benchmark study and help to

drive future research on this task.
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9.2 Limitations and Possible Solutions

Our methods in this thesis have addressed the eight research questions and achieved

promising results in terms of the three research themes. However, they still have

some limitations which can be discussed from the following three perspectives.

Algorithmic perspective

In Chapter 2, the proposed CFN uses a 1×1 kernel �lter in the locally-connected

fusion module. It can independently consider each spatial location over the feature

maps, while may omit the relationships between di�erent spatial locations. To solve

it, a potential solution is to utilize larger kernel sizes such as 1×2 and 1×3, which
can incorporate the contextual information in the feature maps. In addition, the

adaptive weights learned in the fusion module are the same for all the images. An

alternative is to learn dynamical weights conditioned on di�erent input images. For

example, Brabandere et al. [146] propose a Dynamic Filter Network (DFN), where

�lters are dynamically generated conditioned on an input image.

In Chapter 4, DeepIndex is designed for accurate and e�cient retrieval, however,

we can �nd its performance gap with recent state-of-the-art approaches [48]. It is

straightforward to improve our results by using more powerful CNNs like ResNet-

152. Besides, it is suggestive to extend multiple DeepIndex with three or more deep

features, compared to the 2-D case.

In Chapter 8, the extended CycleGAN models, i.e. Long CycleGAN and Nest Cy-

cleGAN, can improve the generated quality, however, they will increase the training

cost due to using more generators. One promising solution is to introduce a weight-

sharing mechanism to avoid increasing the cost. In terms of the proposed SwapGAN

for person-to-person clothing swapping, it is hard to preserve rich color and texture

information in the clothes. This problem may be caused by the limited capability

of the original adversarial loss. To overcome it, we can make use of additional losses

(e.g. perception loss [80]) to help enhance the synthesis process. However, they will

increase the memory cost and training time.

Theoretical perspective

In Chapter 3, we have discussed our motivation for exploiting relaxed deep supervi-

sion for robust edge detection. Nevertheless, we should still realize that it still lacks

of theoretical insights into interpreting the bene�t of diverse supervision for training

deep neural networks. Recent works [253, 254] propose theoretical approaches to

interpreting deep visual representations learned in CNNs. It is encouraged to use

these approaches to achieve deeper insights regarding the utility of diverse supervi-

sion.

162



9.3 Future Research Directions

In Chapter 5, we develop a building block based on recurrent residual fusion (RRF)

to advance the visual-textual embedding features. We notice that, using more recur-

rent steps may decrease the performance. One reason is attributed to the potential

over-�tting issue while training the model, however, it is hard to prove it in theory.

This issue limits further performance improvements. One alternative is to impose

the RRF block on more layers, since RRF is a general structure that can potentially

be applied to many existing layers in a deep network.

Practical perspective

In Chapter 6, we apply the proposed CycleMatch to solve the task of cross-modal

retrieval between images and texts. Although we witness its promising performance

for this task, it is encouraged to transfer our method to other challenging tasks, like

visual grounding, visual relationship detection and visual reasoning. In addition

to the global image-text matching, we should take into account local similarities

between visual regions and phases.

In Chapter 7, the proposed MMC-Net, which can jointly accomplish multi-modal

matching and classi�cation, requires ground-truth class labels in addition to the

paired information. However, some multi-modal datasets (i.e. Flickr30K) do not

provide the class labels. Therefore, it is infeasible to train the full MMC-Net model.

One potential alternative is to automatically construct a dictionary by parsing all

the textual descriptions. Then we can label each image with its key words derived

from the dictionary. In this way, it is still feasible to accomplish the classi�cation

task based on the word-level labels instead of unavailable class labels.

9.3 Future Research Directions

In the previous seven chapters, we have presented many methods to address the

research questions regarding the three research themes. A wide variety of future

research is also encouraged to advance these themes. In this section, we brie�y

discuss future research directions regarding each theme.

Zero-shot classi�cation

Zero-shot classi�cation (ZSC) [255] aims to solve the task where not all the classes

are represented in the training set. In ZSC, the training and test class sets are

disjoint. It needs to learn a visual classi�er based on the seen images and their

semantic categories, and then transfers the classify to recognize images of unseen

classes. Existing approaches can be summarized in three groups. (1) Direct map-

ping: learning a mapping function from visual features to semantic representations.
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(2) Common space learning: constructing a common embedding space where visual

features and semantic representations can be correlated. (3) Model parameter trans-

fer: exploiting the inter-class relationship between seen and unseen classes and then

transferring the model parameters of seen classes to the unseen ones.

In recent years, deep neural networks have been widely used for solving the ZSC

task due to their powerful representation capabilities [60, 75, 256]. Nevertheless,

this task remains challenging in discovering the relations between visual features

and semantic knowledge, as well as generalizing the relations to unseen classes.

Since ZSC relies on discovering the sematic relations between visual and textual

features, it is encouraged to incorporate a visual-textual matching component into

a ZSC system. Our research on classi�cation and retrieval is related to this future

direction.

Generation for cross-modal retrieval

Recall that cross-modal retrieval needs to overcome the semantic gap between two

di�erent modalities like vision and language. To achieve it, one common approach is

to project visual and textual features into the same embedding space where we need

to compare their correlations. However, in most existing datasets, each matched

image-text pair has limited samples, for example one image is labeled with one or

�ve descriptions. This issue will hinder the learning capabilities of deep neural net-

works. Recently, Zheng et al. [257] propose to use generation networks to produce

more image samples to extend the datasets. Driven by this idea, it is feasible to use

GANs to alleviate the lack of image-text samples for cross-modal retrieval. For ex-

ample, we can generate more realistic-looking images based on the text description,

and also create additional descriptions for each image. In addition to cross-modal

relations, we can add intra-modal constraints between the real and generated sam-

ples. Integrating both cross-modal and intra-modal matching could be bene�cial

to learn better embedding features. Our research on retrieval and synthesis can be

adopted to this future direction.

Uni�ed image synthesis

Recent studies on image-to-image translation have achieved encouraging results for a

range of di�erent domain-speci�c image sets. However, most of existing approaches

are ine�cient for jointly modeling multi-domain image translation tasks, because

they need to train individual generative networks for every two domains, i.e. , in

order to learn all mappings among N domains, N × (N − 1) generators need to

be learned. To address this problem, StarGAN [258] recently proposes a uni�ed

generative adversarial network, which allows to translate a range of image domains

by using a single generative network. The key point in StarGAN is that it uses

164



9.3 Future Research Directions

a label (e.g. binary or one-hot vector) to represent the domain information. In

addition, StarGAN can incorporate di�erent labels from multiple datasets using a

simple mask vector to indicate the dataset information. However, one potential issue

may make StarGAN fail when di�erent datasets have some overlapped labels. One

potential solution is that, we can extend the mask vector to be consistent with the

number of domains, rather than with the number of datasets. In this way, StarGAN

can discard overlapped domain labels in di�erent datasets. We believe that exploring

a uni�ed image generative network is still a promising future work.
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English Summary

A core mission of computer vision research is endowing machines with the ability to

understand visual data. Driven by it, in this thesis we present research on exploring

and analyzing images from three themes: classi�cation, retrieval and synthesis.

Our �rst theme focuses on image-level and pixel-level classi�cation. Firstly, we

propose an e�cient convolutional fusion network that can learn adaptive weights by

fusing di�erent intermediate layers with adding only a few parameters. In addition,

our proposed neural network can be extended for pixel-level classi�cation such as

semantic segmentation and edge detection. Our work suggests the superiority of

deep fusion networks over plain convolutional neural networks. Secondly, we further

study the pixel-level classi�cation task for edge detection. In contrast to prior works

that use a �xed supervision for all intermediate layers, we develop diverse supervision

that can adapt to the diversities of di�erent layers. Our method can incorporate the

diversities into the supervisory signals.

The second theme of this thesis includes image retrieval and cross-modal retrieval.

We build a DeepIndex framework by incorporating deep visual features into the in-

verted index scheme. Subsequently, we can leverage a multiple DeepIndex framework

to integrate di�erent deep features at an indexing level. Furthermore, we develop

a deep matching network to unify visual and textual features for cross-modal re-

trieval. The building block in our network integrates the recurrent mechanism, the

residual learning and a fusion module. This integration can help promote feature

embeddings while retaining the shared parameters. We propose cycle-consistent em-

beddings which can preserve both inter-modal correlations and intra-modal consis-

tency while matching visual and textual representations. For a robust inference, we

leverage two late-fusion approaches to integrate the matching scores of di�erent em-

bedding features. Lastly, in contrast to either multi-modal matching or multi-modal

classi�cation, we exploit a uni�ed network for joint matching and classi�cation. The

matching component can bridge the modality gap between vision and language, and

simultaneously the classi�cation component is used to combine visual and textual

embedding features to be a multi-modal representation.

Our third theme studies two applications about image synthesis. Firstly, we ex-

tend cycle-consistent generative adversarial networks for image-to-image translation.

Our extended models make use of more generators and inner cycles to enhance the
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constrains while performing the unsupervised translation between di�erent image

domains. Secondly, we propose a novel generative framework for addressing the

problem of person-to-person fashion style transfer. It includes three generative net-

works that are cascaded in a multi-stage paradigm. Our framework can be trained

end-to-end to swap the clothes of person images while preserving their pose and

body shape.

We have conducted numerous experiments to verify the e�ectiveness of our pro-

posed methods for the three research themes. Our results demonstrate promising

improvements over various baseline methods, and are comparable with the state-of-

the-art results from the research community. By performing a wide range of tasks

and applications in the �eld, this thesis provides novel contributions, insights and

�ndings.
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Een van de belangrijkste doelen van het onderzoek op het gebied van Computer

Vision is om machines toe te rusten met het vermogen om visuele data te begrijpen.

Gedreven door dit doel presenteren we in dit proefschrift onderzoek op het gebied van

de exploratie en analyse van beelden binnen de drie thema's: classi�catie, retrieval

en synthese.

Ons eerste thema concentreert zich op classi�catie op beeld- en pixel-niveau. Ten

eerste introduceren we een e�ciënt convolutioneel fusie netwerk dat in staat is om

adaptieve gewichten aan te leren door middel van de fusie van verschillende tussen-

liggende lagen van het netwerk waarbij slechts een klein aantal nieuwe parameters

benodigd zijn. Daarenboven kan ons neurale netwerk eenvoudig uitgebreid worden

om classi�caties op pixel-niveau, zoals semantische segmentatie en edge-detectie,

uit te voeren. Ons werk is een sterke aanwijzing dat diepe fusie netwerken su-

perieur zijn aan gewone convolutionele netwerken. Ten tweede bestuderen we de

classi�catie-taak op pixel-niveau voor edge-detectie. In tegenstelling tot eerdere

studies welke een supervisie gebruikten die constant blijft voor alle tussenliggende

lagen, ontwikkelen wij een diverse supervisie welke zich kan aanpassen aan de diver-

siteit van de verschillende lagen van het netwerk. Onze methode is daarbij in staat

om de diversiteiten in het supervisie-signaal in te lijven.

Het tweede thema van dit proefschrift omvat image retrieval en cross-modal re-

trieval. We construeren een DeepIndex-framework door het opnemen van deep vi-

sual features in het geïnverteerde index-schema. We kunnen dan een meervoudig

DeepIndex-framework gebruiken om verschillende deep features op het index niveau

te integreren. Verder ontwikkelen we een deep matching netwerk voor de uni�catie

van visuele en tekstuele features ten behoeve van cross-modal retrieval. De bouw-

steen van ons netwerk integreert het recurrente mechanisme, het residuale leren

en een fusie-module. Deze integratie kan helpen bij de ontwikkeling van feature

embeddings terwijl gedeelde parameters behouden blijven. We introduceren cycle-

consistent embeddings welke bij het matchen van visuele en tekstuele representaties

zowel intermodale correlaties als intra-modale consistentie kan behouden. Voor robu-

uste a�eidingen gebruiken we twee late-fusion benaderingen om matching scores van

verschillende embedding features te integreren. Ten slotte exploiteren we een uni�ed

netwerk voor zowel matching als classi�catie, dit in tegenstelling tot netwerken voor
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ofwel multimodale matching of multimodale classi�catie. De matching component is

in staat om het modaliteits-gat tussen beeld en taal te overbruggen terwijl tegelijk-

ertijd de classi�catie component visuele en tekstuele embedding features combineert

tot een multimodale representatie.

In ons derde thema bestuderen we twee beeldsynthese applicaties. Ten eerste brei-

den we cycle-consistente generatieve adversarial netwerken uit voor beeld-naar-beeld

vertalingen. Onze uitgebreide modellen maken gebruik van meer generatoren en

inwendige cycli om de constraints te versterken terwijl de unsupervised vertaling

tussen verschillende beelddomeinen wordt uitgevoerd. Ten tweede introduceren we

een nieuw generatief kader om het probleem van persoon-persoon fashion style trans-

fer aan te pakken. Het omvat drie generatieve netwerken welke in een cascade een

multi-stage paradigma vormen. Ons kader kan end-to-end getraind worden om de

kleren van een persoon te verwisselen met behoud van pose en lichaamsvorm.

We hebben talloze experimenten uitgevoerd om de e�ectiviteit van onze voorgestelde

methoden binnen de drie onderzoeksthema's te veri�ëren. Onze resultaten laten

veelbelovende verbeteringen zien in vergelijking met verschillende baseline methoden

en zijn vergelijkbaar met de beste resultaten uit de research community. Door het

uitvoeren van een wijd scala aan taken en applicaties uit het onderzoeksveld geeft

dit proefschrift nieuwe contributies, inzichten en bevindingen.
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