
Empirical signatures of universality, hierarchy and clustering in culture
Babeanu, A.I.

Citation
Babeanu, A. I. (2018, October 24). Empirical signatures of universality, hierarchy and
clustering in culture. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/66479
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/66479
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/66479


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/66479 holds various files of this Leiden University 
dissertation. 
 
Author: Babeanu, A.I. 
Title: Empirical signatures of universality, hierarchy and clustering in culture   
Issue Date: 2018-10-24 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/66479
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 3

Ultrametricity increases the
predictability of cultural
dynamics

A quantitative understanding of societies requires useful combinations of empiri-
cal data and mathematical models. Models of cultural dynamics aim at explaining
the emergence of culturally homogeneous groups through social influence. Tradi-
tionally, the initial cultural traits of individuals are chosen uniformly at random,
the emphasis being on characterizing the model outcomes that are independent
of these (‘annealed’) initial conditions. Here, motivated by an increasing inter-
est in forecasting social behavior in the real world, we reverse the point of view
and focus on the effect of specific (‘quenched’) initial conditions, including those
obtained from real data, on the final cultural state. We study the predictability,
rigorously defined in an information-theoretic sense, of the social content of the
final cultural groups (i.e. who ends up in which group) from the knowledge of
the initial cultural traits. We find that, as compared to random and shuffled ini-
tial conditions, the hierarchical ultrametric-like organization of empirical cultural
states significantly increases the predictability of the final social content by largely
confining cultural convergence within the lower levels of the hierarchy. Moreover,
predictability correlates with the compatibility of short-term social coordination
and long-term cultural diversity, a property that has been recently found to be
strong and robust in empirical data. We also introduce a null model generating
initial conditions that retain the ultrametric representation of real data. Using
this ultrametric model, predictability is highly enhanced with respect to the ran-
dom and shuffled cases, confirming the usefulness of the empirical hierarchical
organization of culture for forecasting the outcome of social influence models.

This chapter is based on the following scientific article:
A. I. Băbeanu, J. van de Vis and D. Garlaschelli, arXiv:1712.05959 (2017).
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3.1 Introduction

3.1 Introduction

Understanding the self-organization and emergence of large-scale patterns in real
societies is one of the most fascinating, yet extremely challenging problems of
modern social science [1]. A prominent field of research studies the spontaneous
emergence of groups of culturally homogeneous individuals. One of the mecha-
nisms that are believed to play a key role in this process is social influence, i.e. the
gradual convergence of the cultural traits, attitudes and opinions of individuals
subject to mutual social interactions. Stylized models of cultural dynamics under
social influence have attracted the interest of an interdisciplinary community of
sociologists, computational social scientists and statistical physicists [2].

One of the prototypical models in this context is the popular Axelrod model
[3], which has been studied in many variants over the last two decades [4, 5, 6, 7,
8, 9, 10, 11, 12]. The model is multi-agent, with a cultural vector associated to
each agent. One cultural vector is a sequence of subjective cultural traits (opin-
ions, preferences, beliefs) that each agent possesses, with respect to a predefined
set of features (variables, topics, issues). The dynamics is driven by social in-
fluence, which iteratively increases the similarity of the cultural vectors of pairs
of interacting individuals. However, interactions are only allowed among pairs of
individuals whose vectors are already closer than a certain (implicit or explicit)
threshold distance, a mechanism known as bounded confidence and having its
origins in the so-called ‘assimilation-contrast theory’ [13] in social science. The
intuition behind the model, successfully confirmed via numerical simulations and
analytic calculations, is that social influence increases cultural similarity, yet full
convergence is precluded by bounded confidence. The net result is the emergence
of a certain number of cultural domains, each containing several individuals with
identical cultural vectors and mutually separated by a distance larger than the
bounded confidence threshold, thus no longer interacting with each other. The
value of the model is the identification of a viable, decentralized mechanism ac-
cording to which cultural diversity can persist at a global (inter-domain) scale,
even if it vanishes at a local (intra-domain) scale.

Given the focus on the qualitative aspect of such an emergent pattern, the
Axelrod model has been traditionally studied by specifying uniformly random
initial conditions for the cultural vectors of all individuals, i.e. by drawing each
cultural trait independently from a probability distribution that is flat over the
set of possible realizations. Consistently with this uninformative (and deliber-
ately unrealistic) choice, the focus of many studies has been the characterization
of the outcomes of the model that are robust upon averaging over multiple real-
izations of the initial randomness. Since the cultural dynamics evolving the initial
state is also stochastic, a second average over the dynamics is also required. We
may therefore say that this is the ‘annealed’ version of the model. Examples of
quantities that are stable across multiple realizations of uniformly random initial
conditions are the expected number and expected size of final cultural domains.
An obvious counter-example is the values of the vectors ending up in such do-
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Ultrametricity increases the predictability of cultural dynamics

mains: as follows from the complete symmetry in cultural space implied by the
uniformity of the initial randomness, such values are by construction maximally
unpredictable.

On the other hand, recent studies have investigated the model starting from
different classes of initial conditions, beyond the uniformly random one. In partic-
ular, emphasis has been put on using initial conditions constructed from empirical
data [14, 15, 16] (Chap. 1) and their randomized, trait-shuffled counterparts – ob-
tained by randomly shuffling, for each component of the cultural vectors, the
empirical values (traits) of all individuals in the sample. These studies have em-
phasized a strong dependence of the final outcome on the initial conditions. For
instance, certain model outcomes that have an interesting interpretation in terms
of enabling the coexistence of short-term social collective behavior and long-term
cultural diversity [14] (more details are provided later in this paper) are found
to vary significantly across the classes of empirical, trait-shuffled, and uniformly
random initial conditions, while remaining largely stable when considering differ-
ent instances belonging to the same class. This stability implies that empirical
cultural data share certain remarkably universal properties, independent of the
specific sample considered and at the same time significantly different from those
exhibited by random and randomized data [16] (Chap. 1). This has stimulated
the introduction of stochastic, structural models aimed at capturing the essential
properties of the empirical cultural data [15, 17] (Chap. 2).

Strong dependence of cultural dynamics on the initial conditions might be a
useful property to exploit in the light of the increasing interest towards forecasting
social and cultural behavior in the real world. Examples include the predictability
of certain aspects of political elections, public campaigns, spreading of (fake) news,
financial bubbles and crashes, and commercial success of new items. If interest
is shifted towards the predictability of future long-term outcomes given certain
initial conditions, then a corresponding change of perspective is implied at the
level of modeling. In particular, the aforementioned ‘annealed’ framework, where
the outcome of models of cultural dynamics is averaged over multiple realizations
of the initial randomness, becomes less relevant. On the contrary, if a specific
(e.g. empirical) initial condition is known, it becomes natural to use it as the
single initial specification of the heterogeneity of the system. Obviously, averaging
with respect to different random trajectories of the social influence dynamics, all
starting from the same initial cultural state, remains important and necessary.
We may therefore call this the ‘quenched’ version of the model.

In this work we focus for the first time on the predictability of the social
content of the cultural domains in the final state of the Axelrod model, given a
certain initial state. By social content we mean the composition of the different
domains in terms of individuals, i.e. we are interested in forecasting ‘who ends
up in which cultural domain’. It should be noted that the social content is one
of those properties that, just like the values of the final cultural vectors, is maxi-
mally unpredictable when considering the usual annealed model under uniformly
random initial conditions. By contrast, we consider the quenched scenario start-
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3.1 Introduction

ing from specific initial conditions sampled from empirical, shuffled, random, and
an additional, ‘ultrametric’ class of initial conditions.

We find that, remarkably, empirical and random initial conditions are asso-
ciated with the highest and, respectively, lowest degree of predictability, which
we rigorously define in an information-theoretic sense. This means that, as com-
pared with the usual uniform specification of the initial conditions of the model,
empirical data allow for a much more reliable forecast of the identity of the indi-
viduals forming the final cultural domains. We find that this result follows from
the fact that the hierarchical, ultrametric-like organization of empirical cultural
vectors, when coupled with bounded confidence, largely confines cultural con-
vergence within the lower levels of the hierarchy. This result is confirmed using
surrogate data that, while retaining only the ultrametric representation of real
data, are also found to be associated with a higher predictability with respect to
the shuffled and random conditions. The predictability associated to random and
randomized cultural vectors is lower because it is difficult to identify a meaningful
and robust hierarchical structure within the lower levels of which social influence
remains confined.

Even if we do not perform an explicit analysis of the cultural content of the
final domains, the finding that their social content is predictable, coupled with
the fact that the initial cultural vectors of all individuals are known, implies that
each final cultural vector will be a mixture of the traits of the initial vectors of the
individuals ending up in the same cultural domain. This means that, the higher
the predictability of the social content, the higher that of the cultural content
as well. The take-home message is that the empirical hierarchical organization
of culture and its ultrametric representation are very informative and useful for
forecasting the outcome of models of cultural dynamics.
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Ultrametricity increases the predictability of cultural dynamics

Figure 3.1: Cultural dynamics with an ultrametric initial state. At the top, a
dendrogram with three leaves is shown, with a distance (or dissimilarity) scale
on the left, with an associated similarity scale on the right and a threshold of
ω = 0.625 applied with respect to the former. The dendrogram is a subdominant
ultrametric representation of distances between three cultural vectors, which are
illustrated below its branches. These vectors are defined in terms of four binary
variables (features), corresponding to the four horizontal rows of disks, whose
possible values (traits) are denoted by the light-gray and dark-gray colors. The
boxes show the initial state partition, formed by two clusters (and connected com-
ponents) obtained by applying the ω = 0.625 cut in the dendrogram. Together,
the three vectors make up an initial cultural state on which the cultural dynamics
model can be applied. For a bounded confidence value is set to ω = 0.625, one
of the possible final states is shown at the bottom. The boxes show the final
state partition, formed by two cultural domains, within which cultural vectors
are identical. The discrepancy between the initial state and final state partitions
is measured with the normalized variation of information quantity nVI, which in
this situation would give a value of 0.0, since the two partitions are identical.
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3.2 Ultrametricity and cultural dynamics

The notion of ultrametricity refers to sets of objects that are hierarchically or-
ganized in certain abstract spaces, with applications in various fields, including
mathematics (p-adic numbers), evolutionary biology (phylogenetic trees) and sta-
tistical physics (spin glasses) [18]. In practice, an ultrametric representation can
be produced as the output of a hierarchical clustering algorithm applied to a ma-
trix of pairwise distances between objects [18]. For the purpose of this work, these
objects are the cultural vectors, whose pairwise cultural distances are computed in
the same manner as in Refs. [16, 17, 15, 14] (also Chaps. 1 and 2) – the following
explanations concerning ultrametricity are mostly restricted to cultural vectors,
although many of the concepts have a wide range of applicability. The ultrametric
representation of N cultural vectors can be visualized as a dendrogram (a binary
hierarchical tree; see the top of Fig. 3.1) with N leaves (one for each vector) and
N − 1 branching points (often referred to as “branchings”, for simplicity), sorted
by N − 1 real numbers that are attached to them. These numbers can be defined
in two, equivalent ways: on a distance scale (top-left axis) or on a similarity scale
(top-right axis) – both quantities take values between 0.0 and 1.0, while adding
up to 1.0. Each number is an approximation for distances between leaves that
are first merged at the respective branching point. These N − 1 numbers and
the the topology of the dendrogram retain part of the information inherent in
the cultural distance matrix (which is specified by N(N − 1)/2 numbers), so the
dendrogram is an approximation of this matrix. The approximation is exact and
algorithm-independent only when the original distances are perfectly ultrametric:
a stronger version of the triangle inequality is satisfied for all triplets of distinct
objects [18]. A cut can be performed at a certain height ω in the dendrogram,
providing an ω-dependent partition of the N cultural vectors (see Fig. 3.1). For a
dendrogram obtained via the single-linkage hierarchical clustering algorithm (See
Ref. [19] and references therein), the ω-dependent partition is the same as that
encoding the connected components obtained by applying an ω-threshold to the
initial matrix of distances.

Ref. [14] pointed out that a dendrogram approximating an empirical cultural
state shows a clearer hierarchical organization than those approximating its shuf-
fled or random counterparts, suggesting that the ultrametric representation is
better suited for empirical data than for shuffled or random data. In addition,
cultural dynamics applied to the empirical cultural state appeared to mostly in-
duce convergence within the clusters of the ω-dependent partition, if ω is equal to
the bounded confidence threshold used in the cultural dynamics model (see be-
low). These observations were made in a qualitative way, by visually inspecting
dendrograms obtained with the average-linkage hierarchical clustering algorithm
[20, 21]. Instead, we perform here a systematic, quantitative comparison be-
tween ω-dependent partitions of initial cultural states and associated partitions
of final states resulting from cultural dynamics, for different classes of initial cul-
tural states. In addition, one of these classes is defined by enforcing, on average,
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Figure 3.2: Relationships between the important diversity and coordination mea-
sures. One sees the dependence of the final, average diversity 〈DF 〉, first (a) on
the initial coordination CI , second (b) on the initial diversity measure DI . This
is shown for one empirical (red), one ultrametric-generated (green), one shuffled
(blue) and one random (black) set of cultural vectors. All sets of cultural vectors
have N = 500 elements and are defined with respect to the same cultural space,
from the variables of the empirical Eurobarometer (EBM) data. The errors of
〈DF 〉 are standard mean errors obtained from 10 cultural dynamics runs.

the ultrametric representation of empirical data, generalizing a method originally
proposed in Ref. [22] for biological taxonomies. Whenever an ultrametric repre-
sentation is constructed within this study, the single-linkage algorithm [19] is used
instead of the average-linkage one, since it provides the subdominant ultrametric,
which is the ‘closest from below’ to the original distances and unique [23], while
also being equivalent to the hierarchical connected-component representation, as
mentioned above. This choice is also common for the purpose of evaluating mea-
sures of ultrametricity, like the cophenetic correlation coefficient, which is done
in Ref. [15].

Cultural dynamics is modeled here by a simple, Axelrod-type model, without
any underlying geometry for a social network or a geographical-physical space: es-
sentially, all N agents are connected to each other. Instead, a bounded-confidence
threshold ω is present, controlling the maximum cultural distance for which so-
cial influence can successfully occur. This is exactly the model used in Refs.
[14, 16, 17] (also in Chaps. 1 and 2) and partly in Ref. [15]. As anticipated in Sec.
3.1, this model converges to a random final, absorbing state, one that consists of
domains of internally identical and externally non-interacting cultural vectors –
distances within such groups are zero, while distances across are larger or equal
to ω.

Fig. 3.1 captures the essence of this study. At the center, the figure shows
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3.3 Partition-specific quantities

an initial cultural state with 3 vectors, defined in terms of 4 binary features,
with possible traits (values) denoted by the two shades of gray. Each of the three
vectors is matched to a branch of the dendrogram drawn at the top, which encodes
the subdominant ultrametric representation of the initial cultural state. For this
specific case, the distance between the first two vectors is 0.5, while the distances
between any of these two and the third are 0.75, which together make up a
perfectly ultrametric discrete space, thus exactly matching the distances encoded
by the dendrogram. The horizontal line denotes a possible ω-cut that can be
applied to the dendrogram, which induces a splitting into two (in the example
shown) branches and two associated subsets of vectors, which together form a
ω-dependent partition (or clustering) of the initial set. This partition is the same
as that induced by the set of connected cultural components of the ω-thresholded
cultural graph. At the bottom, the figure shows one possible final state resulting
from the cultural dynamics process, for a bounded confidence threshold set to the
same ω value as the dendrogram cut. The groups of identical vectors constitute
another, ω-dependent partition characterizing the cultural state, which exactly
matches, in this case, the initial state partition. Other final configurations are
possible, due to the stochastic nature of cultural dynamics. It is even possible,
although unlikely, that by a succession of convenient interactions the second vector
“migrates” from the cluster on the left to the one on the right during the dynamics.
The abundance of such deviations is quantitatively studied below, for several
classes of initial conditions.

3.3 Partition-specific quantities

The initial and final partitions form the basis of all calculations performed in
this study. Each type of partition is characterized by two types of quantities,
denoted by (DI , CI) for initial partitions and by (DF , CF ) for final partitions.
These quantities are referred to as the coordination (CI and CF ) and the diversity
measures (DI and DF ). They are computed according to the following formulas:

Da(ω) =
Na
C(ω)

N
, Ca(ω) =

√√√√∑
A

(
SaA
N

)2

ω

, (3.1)

where a ∈ {I, F} distinguishes between “initial” and “final”, Na
C is the number of

clusters (connected components if a = I, groups of identical vectors if a = F), and
SaA is the size of cluster A for the given ω value. Note that Da is a measure of di-
versification, while Ca is a measure of non-homogeneity encoded by the respective
partition. Moreover, since cultural dynamics is a stochastic process, it is mean-
ingful to talk about averages over final state partitions (over multiple dynamical
runs), which is particularly useful for the final diversity measure 〈DF (ω)〉.
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Ultrametricity increases the predictability of cultural dynamics

The 〈DF (ω)〉 quantity has been interpreted as a measure of propensity to
long-term cultural diversity, while the CI(ω) has been interpreted as a measure of
propensity to short-term collective behavior [14, 16] (Chap. 1). Through their
common dependence on ω, the correspondence between the two quantities is
graphically illustrated in Fig. 3.2(a). Along each curve, different points corre-
spond to different ω values, while different curves correspond to different classes
of initial conditions. It is clear that the empirical cultural state allows for much
more compatibility between the aspects measured by the two quantities than the
shuffled and the random cultural state, as pointed out in Ref. [14]. In fact, this is
the analysis used in Ref. [14] to highlight the structure of empirical cultural data
and in Ref. [16] (Chap. 1) to emphasize the universality of this structure – except
for the “ultrametric” scenario, which is first introduced here. In this scenario,
a set of N cultural vectors is generated such that, on average, the pairwise dis-
tances reproduce those encoded in the subdominant ultrametric representation of
an empirical set of cultural vectors of the same N . This is achieved using an ex-
tension of the method developed in Ref. [22], in the context of genetic sequences.
The extension here allows the method to work with combinations of features of
different ranges and types, where the range stands for the number of traits and
the type indicates whether the feature is ordinal or nominal. This is described in
detail in Appendix 3.A. On the other hand, a shuffled set of cultural vectors is ob-
tained by randomly and independently permuting empirical cultural traits among
vectors, with respect to every feature, thus exactly enforcing the empirical trait
frequencies. Note that the ultrametric cultural state comes closer to the empirical
behavior than the shuffled cultural state, suggesting that empirical ultrametric is
better than empirical trait frequencies at explaining the generic empirical struc-
ture. Finally, a random set of cultural vectors is obtained by drawing each trait at
random, from a uniform probability distribution, while only retaining the empiri-
cal data format, and thus the cultural space – determined the number of features,
together with the range and type of each feature. Eurobarometer 38.1 [24] data
is used here, formatted according to the procedure in Ref. [16] (Chap. 1).

For the same four sets of cultural vectors used in Fig. 3.2(a), the average final
diversity 〈DF (ω)〉 is plotted against the initial diversity DI(ω) in Fig. 3.2(b). This
visualization, previously used [14, 15] without the ultrametric scenario, illustrates
the extent to which cultural dynamics preserves the number of clusters when going
from the initial to the final partition. As observed before, the number of clusters
is well preserved by cultural dynamics acting on empirical data, which happens
much less for shuffled data and even less for random data. This goes along with the
idea that the final partition can be predicted from the initial partition if empirical
data is used for specifying the latter. Note that, like in Fig. 3.2(a), ultrametric-
generated data lies in between the empirical and shuffled scenarios, confirming
that the subdominant ultrametric information, which is directly related to the
sequence of ω-dependent initial partitions, is rather robust with respect to cultural
dynamics.
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Figure 3.3: Visualization of the ultrametric predictability of cultural dynam-
ics. The dependence on the bounded-confidence threshold ω is shown for several
quantities: most importantly, the normalized variation of information between
the initial and final partitions 〈nVI〉 at the center-top; the fraction of initially
active cultural links Φ at the top; the initial diversity DI at the center-bottom;
the final, average diversity 〈DF 〉 at the bottom. This is shown for one empiri-
cal (red), one ultrametric-generated (green), one shuffled (blue) and one random
(black) set of cultural vectors. All sets of cultural vectors have N = 500 elements
and are defined with respect to the same cultural space, from the variables of the
Eurobarometer (EBM) data. The errors of 〈DF 〉 and 〈nVI〉 are standard mean
errors obtained from 10 cultural dynamics runs.
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3.4 Predictability of the final state

Although informative, the comparison between the 〈DF (ω)〉 and DI(ω) is in-
complete as a way of assessing the predictability of the final partition from the
initial partition: two partitions might have the same number of clusters, but
the sizes and/or contents of these clusters might be very different. In order to
take all this into account in a consistent way, the discrepancy between the initial
and final state partitions is evaluated using the variation of information mea-
sure VI [25], as a function of ω. This is an information-theoretic measure that
acts as a metric distance within the space of possible partitions of a set of N
elements. It is convenient to work with the normalized version of this quantity
nVI(ω) = VI(ω)/ log(N), which retains the meaning and metricity of the original
quantity, as long as N remains the same (N = 500 for all results presented here).

The dependence of 〈nVI〉 on ω is shown in the second panel of Fig. 3.3, for
the same 4 cultural states used in Fig. 3.2, where the averaging is performed
over multiple dynamical runs, like for the 〈DF 〉 quantity. The empirical state
shows the lowest maximal 〈nVI〉 value, followed by the ultrametric, the shuffled
and the random states. This figure shows, in a rigorous way, that the outcome
of cultural dynamics can be predicted relatively well based on the initial state, if
this is constructed from empirical data and comparably well if this is constructed
based on the empirical ultrametric information. On the other hand, shuffled and
random data exhibit lower predictability. Note that, for either scenario, 〈nVI〉
vanishes for the low-ω and the high-ω regions, which is where both the initial and
final partitions consist of N single-object clusters and of one, N -objects cluster
respectively. This can be understood by looking at the dependence of the DI and
〈DF 〉 quantities on ω shown in the in the third and fourth panels: the ω region
for which 〈nVI〉 is significantly larger than 0.0 is roughly the region where either
DI or 〈DF 〉 is substantially different from 1.0 and 0.0.

In parallel, the first panel of Fig. 3.3 shows the ω-dependence of the fraction
of initially active cultural links Φ: the fraction of pairs (i, j) of cultural vectors
whose distance dij < ω in the initial state. This shows that the ω interval that is
non-trivial with respect to DI , 〈DF 〉 and 〈nVI〉 seems to be largely determined
by the shape of Φ, which is nothing else than the cumulative distribution of inter-
vector distances. The properties of this distribution – average lower for empirical
data than for random data, standard deviation higher for empirical data than
for either shuffled or random data – have been studied before [14, 15] and are
recognizable in the first panel of Fig. 3.3. Note that, for the ultrametric scenario,
the interesting ω region and the Φ profile are compressed in a lower-ω region
compared to empirical data. This means that the branchings in the dendrogram
obtained from ultrametric-generated data occur at lower ω values than those in
the dendrogram obtained from the original, empirical data. In turn, this is due to
the distances between the ultrametric-generated cultural vectors reproducing, on
average, the subdominant ultrametric empirical distances, rather than the original
empirical distances, while the former are known to systematically underestimate
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3.4 Predictability of the final state

the latter, particularly for higher distance values, as long as the empirical vectors
are not perfectly ultrametric, which in practice is always the case.

There is another aspect that can be noted when comparing, for either scenario,
the shape of Φ(ω) in the first panel with the shape of DI(ω) in the third panel
of Fig. 3.3: as ω is decreased, most of the cultural links need to be eliminated in
order to reach the abrupt region of the DI(ω) transition, for which the number of
clusters in the initial partition becomes comparable to N . This is not surprising
on general grounds. For instance, the Erdős-Réniy model of random graphs [26]
exhibits a critical link density of 1/N , at which a giant connected component
is present, if N is the number of nodes in the graph, instead of the number of
cultural vectors. Still, this analogy should not be taken too far. The random
graph interpretation is closest to the random cultural state scenario used here,
since the expected pairwise distance entailed by the latter is the same for any pair
of cultural vectors, just like the connection probability entailed by the former is the
same for any pair of nodes. However, even the random scenario has an underlying
metric structure, due to how cultural spaces are defined[16] (Chap. 1), which
should introduce more triangles than expected otherwise, while the shuffled and
empirical scenarios are additionally affected by inhomogeneities in their cultural
space distributions.
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Figure 3.4: Relationship between compatibility of final diversity and initial
coordination (vertical axis) and predictability of the final partition from the initial
partition. Each point corresponds to one cultural state, belonging to one class
and to one empirical source: each color corresponds to one class of cultural states,
while marker type correspond to one dataset, as indicated in the legends. All
cultural state consist of N = 500 cultural vectors.
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The analysis presented in Figs. 3.2 and Fig. 3.3 was repeated for three other
datasets: the General Social Survey [27], Jester[28] and the Religious Landscape
[29], processed according to the formatting rules of Ref. [16] (Chap. 1). For all
four datasets, the results are presented in a joint, compact manner by means of
Fig. 3.4, while more detailed results are shown in Appendix 3.B. Each of the
points in the figure corresponds to a combination of one dataset and one scenario.
The vertical axis corresponds to a measure of compatibility between long-term
cultural diversity 〈DF 〉 and short-term collective behavior CI , namely a measure
of the overall departure of the 〈DF 〉 vs CI curve from the lower-left corner in Fig.
3.2(a). The horizontal axis corresponds to a measure of predictability of the final
state from the initial state, namely an inverse measure of the overall departure of
the 〈nVI〉 vs ω from the horizontal axis in the second panel of Fig. 3.3.

For both measures, simple definitions are employed: rather than integrating in-
formation from every ω value for which some departure is present, both definitions
conceptually rely only on one, representative ω∗ point, for which both departures
are relatively high. Specifically, ω∗ is defined by intersecting the 〈DF 〉 vs CI curve
with the main diagonal 〈DF 〉 = CI . In practice, since just a finite number of ω
values are available for any combination of dataset and scenario, one uses instead
the two ω values that are closest to the main diagonal of the 〈DF 〉 vs CI plot
from either of the two sides. These two values, labeled as ωL and ωR, “bracket”
ω∗ from the left and right respectively: ωL < ω∗ < ωR. The ω∗ itself is never
explicitly calculated, but is conceptually useful for the explanations below.

The compatibility approximates the distance between the (〈DF (ω∗)〉 vs CI(ω
∗))

point and the (〈DF 〉 = 0, CI = 0) point, normalized by the length of the main
diagonal of the 〈DF 〉 vs CI plot. In practice, this is evaluated in terms of ωL and
ωR according to:√

〈DF (ωL)〉2 + C2
I (ωL) +

√
〈DF (ωR)〉2 + C2

I (ωR)

2
√

2
,

while the associated error is evaluated as:√
〈DF (ωL)〉2 + C2

I (ωL)−
√
〈DF (ωR)〉2 + C2

I (ωR)

2
√

2
.

The predictability approximates the distance between the (ω∗, 〈nVI(ω∗)〉) point
and the 〈nVI〉 = 1 line. In practice, this is evaluated as:

1− 〈nVI(ωL)〉+ 〈nVI(ωR)〉
2

,

while the associated error is evaluated as:

|〈nVI(ωL)〉 − 〈nVI(ωR)〉|
2

.
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3.5 Conclusion

Note that compatibility increases with predictability in a roughly linear way,
at least for the cultural states considered here. Moreover, cultural states belong-
ing to the same class tend to cluster together in the compatibility-predictability
space. A notable exception is ultrametric-Jester, which is significantly outside
the ultrametric class in terms of predictability, showing higher predictability than
any of the empirical states. Still, it is clear that cultural states that are closer to
the universal 〈DF 〉 vs CI empirical behavior also allow for better estimates of the
final partition from the initial one.

The observed increase of compatibility with predictability provides some in-
sights about the nature of empirical data, or at least about the shape of an
empirical-like dendrogram characteristic for the upper-right corner of Fig. 3.4.
This can be understood by realizing that the ultrametric and empirical states
approach an ideal, limiting situation of perfect predictability, for which the initial
and final partitions are identical irrespective of ω. This implies that 〈DF (ω)〉 =
DI(ω) and consequently that the 〈DF 〉 vs CI curve is essentially the DI vs CI
curve and thus controlled by the geometry of the subdominant ultrametric den-
drogram. One can then show – see Appendix Sec. 3.C – that this geometry needs
to be highly “unbalanced” in order to explain the close-to-linear 〈DF 〉 ≈ 1 − CI
empirical behavior in Fig. 3.2(a) and the compatibility values of approximately
0.5 following from it. For a perfectly-unbalanced geometry, the kth highest den-
drogram branching separates only one leaf from the remaining N − k, for all
k ∈ {1, ..., N − 1}. By contrast, a perfectly-balanced geometry entails a splitting
into two, equal clusters for each dendrogram branching, which would induce an
inverse square 〈DF 〉 ∝ C−2

I behavior – see Appendix Sec. 3.C – closer to that of
shuffled and random cultural states, with a lower compatibility value. Thus, while
going from the random to the empirical class, by enforcing more and better empir-
ical information, the increasing level of compatibility becomes more suggestive of
an unbalanced dendrogram geometry, while the increasing level of predictability
increases the reliability of this geometric interpretation.

3.5 Conclusion

This study focused on the ultrametric representation of sets of cultural vectors
used for specifying the initial state of cultural dynamics models. On one hand, it
introduced another procedure for randomly generating initial conditions based on
the subdominant ultrametric information of empirical data. On the other hand,
it examined the extent to which the subdominant ultrametric representation can
be used for predicting the final state of cultural dynamics in a simple theoretical
setting. The bounded-confidence threshold parameterising the dynamical model
was used to extract an initial-state partition from the ultrametric representa-
tion. This was systematically compared, in terms of variation if information,
with the corresponding final state partition consisting of groups of identical cul-
tural vectors. The comparison showed that the predictive power of the ultramet-
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ric is relatively high for empirical cultural states, which are closely followed by
ultrametric-generated states, which are followed by the shuffled and then by the
random states. Moreover, higher predictability appears to go hand in hand with
higher compatibility between a propensity to long-term cultural diversity and a
propensity to short-term collective behaviour, which was previously shown to be a
hallmark of empirical structure. This means that ultrametric information is bet-
ter than trait-frequency information at explaining this structure. These results
further advance the understanding of the relationship between ultrametricity and
cultural dynamics. Moreover, it is tempting to speculate that, for the purpose of
forecasting the dynamics of culture in the real world, knowledge about the cur-
rent distribution of individuals in cultural space might be sufficient, with little or
no need for running simulations, at least if one assumes that consensus-favoring
social influence is the essential driving force of this dynamics.

Appendices

3.A Ultrametric-generation method

This section explains the method for generating sets of cultural vectors belonging
to the “ultrametric” class. The method is an extension of that developed in
Ref. [22]. The description here is somewhat similar to that in Ref. [22], but the
nomenclature specific to cultural vectors is used, instead of that specific to genetic
sequences.

The method takes as input a dendrogram, as well as a target cultural space
– the number of cultural features F , together with the range (number of traits)
q and type (nominal or ordinal) of each feature. This information is taken from
empirical data and the single-linkage hierarchical clustering alorithm is employed
for constructing the dendrogram whenever the method is used in this study. Upon
every use, the method generates, in a stochastic way, a set of N cultural vectors
associated to the N leaves of the dendrogram, such that, on average, the pair-
wise similarities between cultural vectors match the similarities encoded by the
dendrogram.

More precisely, for each cultural feature in the target space, the method en-
forces:

E[sqij ] = ραij , (3.2)

where E[...] stands for “expectation value”, αij is the lowest branching in the
dendrogram joining leaves i and j, ραij is the similarity encoded by this branching
and sqij is the partial contribution to the similarity between cultural vectors i and
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j of a feature of range q, which is computed according to the following formula:

sqij =

{
δ(xki , x

k
j ) if nominal,

1− |x
k
i−x

k
j |

qk−1
if ordinal,

(3.3)

which depends on whether the feature is nominal or ordinal, where δ stands for
the Kroneker delta function, xki and xkj are the traits of vectors i and j with

respect to feature k with range qk – for ordinal features k, the traits are marked
with integers between 1 to qk. Eq. (3.3) is consistent with the cultural distance
definition in Refs. [14, 15, 16, 17] (and Chaps. 1 and 2) – as mentined above:
similarity = 1.0− distance.

In Eq. (3.2), the expectation E[...] implies averaging over multiple runs of the
method, for the same dendrogram and the same cultural feature. Although in
practice the method is used only once (and independently) for each feature, the
fact that a large number F of features are present makes this approach sensible:
the expectation E[sij ] of the complete similarity sij will also match ραij (since
the complete similarity is the arithmetic average of the feature-level similarities),
while the fluctuations of sij around ραij will decrease with F . In other words, as
pointed out in Ref. [22], the expectation in Eq. (3.2) can be interpreted in two
idealized ways: averaging over infinitely many runs or averaging over infinitely
many features.

In order to enforce Eq. (3.2) for every pair (i, j), the method controls for the
extent to which the traits of different vectors are choosen independently of each
other. For every feature, all the N choosen cultural traits originate in independent
random draws from a uniform probability distribution, but the number of draws
is smaller or equal to N . Thus, the traits of vectors i and j either originate in the
same draw, with probability Pij , or originate in different draws, with probability
1 − Pij . In the former case the two traits are identical, with a well-determined
feature-level similarity sqij = 1. In the latter case, the two traits may be identical
or different, so that sqij fluctuates around an expectation value f(q). Taking both
cases into account, the expectation value of sqij is:

E[sqij ] = Pij + [1− Pij ]f(q), (3.4)

where the expectation for different draws f(q) reads:

f(q) =

{
1
q if nominal,
2q−1

3q if ordinal,
(3.5)

which is the expression of the expected, feature-level similarity between two traits
drawn at random from a uniform probability distribution, obtained analytically
from Eq. (3.3) for either type of features. The choices of traits and the associated
random draws are mangaged by the stochastic-algorithmic part of the method
(briefly explained at the end of this section), which is designed to ensure that:

Pij = ρIαij (3.6)
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is satisfied, where ρIαij is a corrected version of the similarity ραij implicit in the
αij branching:

ρIαij = ραij − h(ραij , q), (3.7)

where h is a correction function chosen such that Eqs. (3.2) holds, subject to
(3.4) and (3.6). Specifically, by combining Eq. (3.6) with Eq. (3.4) and then with
Eq. (3.2), one obtains:

ρIαij + [1− ρIαij ]f(q) = ραij . (3.8)

By inserting Eq. (3.7) in Eq. (3.8) and further manipulations, one obtains the
following expression for the correction function:

h(ρα, q) =
1− ρα

1− f(q)
f(q). (3.9)

Note that Eq. (3.6) identifies ρIαij with a probability, meaning that ρIα > 0 should
be satisfied for all branchings α. This implies, given Eq. (3.7) and Eq. (3.9), that
ρα > f(q) for all branchings α of the given dendrogram and for all features in
the target space. This condition needs to be satisfied in order for this method to
be valid and is actually satisfied by all four empirical dendrograms used in this
study. Also note that the method in Ref. [22] is recovered as a special case of the
above, by restricting to nominal features of constant q via Eq. (3.5).

Finally, it is worth describing the stochastic-algorithmic part of the method.
For each of the F features in the target space, the following steps are carried out:

• the dendrogram is recursively explored starting with the root branching;
for every branching α reached by this exploration, one of the following two
things happens:

– one of the q traits is randomly chosen, according to a uniform distribu-
tion and assigned to all cultural vectors corresponding to leaves under
branching α, without further exploring any branching below α;

– the exploration is continued with each of the two branches emerging
from α, if that branch leads to another branching, instead of leading
to a leaf;

with probability Qα for the former and probability 1 − Qα for the latter,
where:

Qα =
ρIα − ρIp(α)

1− ρIp(α)

, (3.10)

where p(α) is the parent branching of α, if α is not the root, while ρIp(α) = 0
if α is the root.
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• for each of the leaves whose traits are not assigned during the above step,
one of the q traits is randomly chosen, according to a uniform distribution
and assigned to the respective cultural vector.

This algorithmic procedure ensures that Eq. 3.6 holds, for reasons that are fully
explained in Ref. [22].

It is worth noting that the ultrametric-generation method described in this
section makes use of all the information inherent in the geometry of the dendro-
gram that it receives as input – both the topology and the similarities ρ encoded
by the branching points of the dendrograms are used. However, the generated
sets of cultural vectors will in general not be precisely ultrametric, in the strict
mathematical sense [18] (unless it is applied in the limit of F being much larger
than N). Still, they are generated based on the empirical ultrametric information
and are arguably as close as they can be to reproducing the ultrametric set of
pairwise distances.

3.B Detailed results

This section shows the complete results concerning the ω-dependence of relevant
quantities, for the other three data sets that are used in this study in addition to
the Eurobarometer (EBM [24]): the General Social Survey (GSS [27]) data in Fig.
3.5, the Religious Landscape (RL [29]) data in Fig. 3.6 and the Jester (JS [28])
data in Fig. 3.7. Each of these three figures follows the format of Fig. 3.3 above,
with four panels and four scenarios. Although, for each type of scenario, there is
a certain variability in the width and location of the non-trivial ω interval, the
results are qualitatively similar to those obtained for EBM data, with a notable
exception visible for the analysis of Jester data in Fig. 3.7: the second panel shows
that the discrepancy between the initial and the final partition, as measured by
〈nVI〉, is clearly smaller for the ultrametric cultural state than for the empirical
cultural state, so the overal predictability is higher. This is in agreement with the
observation made in relation to Fig. 3.4 about the relatively high predictability
value of the Jester-ultrametric point.
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Figure 3.5: Vizualisation of the ultrametric predictability of cultural dynam-
ics. The dependence on the bounded-confidence threshold ω is shown for several
quantities: most importantly, the normalized variation of information between
the initial and final partitions 〈nVI〉 at the center-top; the fraction of initially
active cultural links Φ at the top; the initial diversity DI at the center-bottom;
the final, average diversity 〈DF 〉 at the bottom. This is shown for one empiri-
cal (red), one ultrametric-generated (green), one shuffled (blue) and one random
(black) set of cultural vectors. All sets of cultural vectors have N = 500 elements
and are defined with respect to the same cultural space, from the variables of the
General Social Survey (GSS) data. The errors of 〈DF 〉 and 〈nVI〉 are standand
mean errors obtained from 10 cultural dynamics runs.
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Figure 3.6: Vizualisation of the ultrametric predictability of cultural dynam-
ics. The dependence on the bounded-confidence threshold ω is shown for several
quantities: most importantly, the normalized variation of information between
the initial and final partitions 〈nVI〉 at the center-top; the fraction of initially
active cultural links Φ at the top; the initial diversity DI at the center-bottom;
the final, average diversity 〈DF 〉 at the bottom. This is shown for one empiri-
cal (red), one ultrametric-generated (green), one shuffled (blue) and one random
(black) set of cultural vectors. All sets of cultural vectors have N = 500 elements
and are defined with respect to the same cultural space, from the variables of
the Religious Landscape (RL) data. The errors of 〈DF 〉 and 〈nVI〉 are standand
mean errors obtained from 10 cultural dynamics runs.

106



Ultrametricity increases the predictability of cultural dynamics

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Φ

JS

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.0

0.2

0.4

0.6

0.8

1.0

〈 n
V
I〉

empirical
ultrametric
shuffled
random

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.0

0.2

0.4

0.6

0.8

1.0

D
I

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

ω

0.0

0.2

0.4

0.6

0.8

1.0

〈 D
F

〉

Figure 3.7: Vizualisation of the ultrametric predictability of cultural dynam-
ics. The dependence on the bounded-confidence threshold ω is shown for several
quantities: most importantly, the normalized variation of information between
the initial and final partitions 〈nVI〉 at the center-top; the fraction of initially ac-
tive cultural links Φ at the top; the initial diversity DI at the center-bottom; the
final, average diversity 〈DF 〉 at the bottom. This is shown for one empirical (red),
one ultrametric-generated (green), one shuffled (blue) and one random (black) set
of cultural vectors. All sets of cultural vectors have N = 500 elements and are
defined with respect to the same cultural space, from the variables of the Jester
(JS) data. The errors of 〈DF 〉 and 〈nVI〉 are standand mean errors obtained from
10 cultural dynamics runs.
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3.C Dendrogram geometry

This section gives some analytical insight on how the dendrogram geometry is
related to the behaviour of the two measures of initial diversity DI and initial
coordination CI . As functions of ω, the two measures only change (in steps)
when ω crosses the distance value associated to any of the branchings of the
dendrogram. Thus, one can replace the dependence of DI and CI on ω with a
dependence on k, which counts the number of dendrogram branchings above a
given ω, in terms of their associated distance values – k increases from 0 to N − 1
as ω decreases from 1.0 to 0.0. Based on Eq. (3.1), one can thus write:

DI(k) =
N I
C(k)

N
, CI(k) =

√√√√∑
A

(
SIA
N

)2

k

. (3.11)

There are two, extreme types of dendrogram geometries that are worth con-
sidering, the ”perfectly-unbalanced geometry” and the ”perfectly-balanced geom-
etry”. These are illustrated in Fig. 3.8.

For the perfectly-unbalanced geometry, shown on the left side of Fig. 3.8, the
number of connected components is:

N I
C(k) = k + 1, (3.12)

while the sizes of the connected component are:

SIA(k) =

{
N − k, ifA = 1

1, ifA ∈ {2, 3, ..., k + 1}
. (3.13)

Figure 3.8: Sketch of a “perfectly balanced” (left) dendrogram geometry and a
“perfectly unbalanced” (right) one, for N = 4 leaves. The values of k indicate the
number of branchings above any cut that would be applied to the dendrogram
within the respective horizontal band.
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From Eqs. (3.11) and (3.12), one obtains the behaviour of the initial diversity
measure:

DI(k) =
k + 1

N
, (3.14)

while from Eqs. (3.11) and (3.13) one obtains the behaviour of the initial coordi-
nation measure:

CI(k) =

√(
N − k
N

)2

+ k

(
1

N

)2

, (3.15)

from which it follows that:

CI(k) =

√
1− 2

k

N
+
k2

N2
+

k

N2
, (3.16)

where one can neglect the k
N2 term in the limit of large N , thus obtaining:

CI(k) ≈ 1− k

N
. (3.17)

From Eqs. 3.14 and 3.17 it follows that:

CI(k) ≈ 1−DI(k)− 1

N
, (3.18)

which can be rephrased, after neglecting the 1
N term in the limit of large N , to:

DI(k) ≈ 1− CI(k), (3.19)

which describes the second-diagonal empirical behaviour of Fig. 3.2(a), under the
assumption that DF (k) = DI(k),∀k.

For a perectly-balanced geometry, shown on the right side of Fig. 3.8, the
only relevant values of k (those corresponding to non-vanishing ω intervals) are

k =
∑l−1
i=0 2i, with l ∈ {0, 1, 2, ..., log2N}. For these values of k, the number of

connected components, like in the unbalanced case, is described by Eqs. (3.12),
while the sizes of the connected components are:

SIA(k) = N/(k + 1),∀A ∈ {1, 2, ..., k + 1}, (3.20)

from which it follows that the initial coordination measure is:

CI(k) =

√
(k + 1)

(
1

k + 1

)2

=
1√
k + 1

. (3.21)

Since the k-dependence of the initial diversity measure DI , like in the unbalanced
case, is described by Eq. (3.14), it follows that:

DI(k) =
1

NC2
I (k)

, (3.22)
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which, under the assumption that DF (k) = DI(k),∀k, entails a curve more similar
to that of the shuffled or random curves of Fig. 3.2(a), than to that of the empirical
curve. Moreover, this curve comes arbitrarily close to the lower left corner as N
increases.

To sum up, the above reasoning shows that, as long as DF (ω) = DI(ω),∀ω, an
unbalanced dendrogram geometry fits the empirical DF (CI) behaviour very well,
while a balanced dendrogram geometry does not. Although the latter entails a
DF ∝ C−2

I behaviour quite similar to that observed for shuffled or random data,
one cannot say that a balanced geometry is a good description for either of these
two cases, since the assumption that DF = DI is false for both these cases, for
the interesting ω intervals.
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