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Chapter 2

Evidence for mixed
rationalities in preference
formation

Understanding the mechanisms underlying the formation of cultural traits is an
open challenge. This is intimately connected to cultural dynamics, which has been
the focus of a variety of quantitative models. Recent studies have emphasized the
importance of connecting those models to empirically accessible snapshots of cul-
tural dynamics. In particular, it has been suggested that empirical cultural states,
which differ systematically from randomized counterparts, exhibit properties that
are universally present. Hence, a question about the mechanism responsible for
the observed patterns naturally arises. This study proposes a stochastic structural
model for generating cultural states that retain those robust empirical properties.
One ingredient of the model assumes that every individual’s set of traits is partly
dictated by one of several universal “rationalities,” informally postulated by sev-
eral social science theories. The second, new ingredient assumes that, apart from
a dominant rationality, each individual also has a certain exposure to the other
rationalities. It is shown that both ingredients are required for reproducing the
empirical regularities. This suggests that the effects of cultural dynamics in the
real world can be described as an interplay of multiple, mixing rationalities, pro-
viding indirect evidence for the class of social science theories postulating such
a mixing. The model should be seen as a static, effective description of culture,
while a dynamical, more fundamental description is left for future research.

This chapter is based on the following scientific article:
A. I. Băbeanu and D. Garlaschelli, Complexity, Article ID 3615474 (2018).
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2.1 Introduction

2.1 Introduction

A solid theoretical understanding of how preferences form is currently lacking.
There is little doubt that preferences, opinions, values and beliefs, which are
generically referred to as “cultural traits”, are dynamical entities, and that inter-
personal social influence plays an important role in driving their dynamics, among
other factors. Moreover, a complete theoretical understanding should account for
the fact that the dynamics of traits takes place in parallel along multiple dimen-
sions, namely that opinions and preferences can develop in relation to multiple
topics or aspects of life. Along these lines, various dynamical models been devel-
oped and studied [1], such as the Axelrod model [2], which is very representative
for studies of multidimensional dynamics, commonly referred to as “cultural dy-
namics”, in contrast to studies of unidimensional dynamics, commonly referred
to as “opinion dynamics”. Various studies of cultural dynamics extending the
Axelrod model can be found in the literature [3, 4, 5, 6, 7, 8, 9, 10, 11]. Re-
cent studies [12, 13, 14] (Chap. 1) have shown that models of cultural dynamics
are sensitive to the initial conditions, namely to how the initial vectors of agents’
traits are chosen: initial cultural states constructed from empirical data show sys-
tematic deviations from their shuffled and random counterparts. In fact, Ref. [14]
(Chap. 1) argues that such deviations point towards universal structural proper-
ties inherent in empirical cultural states. More insights about the formation of
cultural traits should be achievable by studying these states, since they can be
regarded as partial snapshots of cultural dynamics in the real world.

The universal properties mentioned above are expressed in terms of the effects
the empirical cultural state has on social influence models whose initial condi-
tions are specified by this state – here, a “cultural state” is a set of cultural
vectors (SCV), where each cultural vector encodes the sequence of cultural traits
associated to one agent in the model. On one hand, an Axelrod-type model [2]
of (multi-dimensional) cultural dynamics is used to evaluate the propensity of
the cultural state to long-term cultural diversity (LTCD). On the other hand, a
Count-Bouchaud-type model [15] of (one-dimensional) opinion dynamics is used
to evaluate the propensity of the cultural state to short-term collective behavior
(STCB). Both measures are functions of a common parameter ω, controlling for
the range of social influence in cultural space, which allows for an LTCD-STCB
correspondence to be drawn for a given cultural state. It turns out that an em-
pirical cultural state generally induces an LTCD-STCB curve that is close to the
second diagonal (LTCD(ω) ≈ 1 − STCB(ω),∀ω), while exhibiting, for a given
STCB value, higher LTCD values than a trait-shuffled cultural state, which in
turn exhibits higher LTCD values than a randomly generated counterpart [12, 14]
(also see Chap 1). These results seem universal [14] (Chap. 1), namely inde-
pendent of the data set used for constructing the cultural vectors composing the
empirical cultural state, suggesting that real-world cultural dynamics is governed
by universal laws. Moreover, as argued in Ref. [14] (Chap. 1), this type of anal-
ysis suggests that inter-agent social influence, the essential ingredient of cultural
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Evidence for mixed rationalities in preference formation

dynamics models, is insufficient for explaining the observed structure. Although
it is meaningful to incorporate additional ingredients into social influence models,
while attempting to give rise to empirical-like structure in a dynamical setting,
this study does not aim for that. Instead, it aims at providing an effective, phe-
nomenological, static description of the observed structure, which should provide
additional insights before developing a more fundamental, dynamical description.

The purpose of this study is to develop a structural stochastic model that
would generate realistic cultural states, while incorporating plausible ingredients
from social science. Specifically, these states should retain the universal properties
inherent to empirical cultural states that are observed in Ref. [14] (Chap. 1). In
fact, Ref. [13] has already investigated various ways of generating sets of cultural
vectors in random, but non-uniform ways. A method that appeared particularly
promising relied on the notion of “cultural prototypes”: a few underlying, abstract
sequences of logically compatible, self-enforcing cultural traits, which govern the
way the generated vectors are distributed in cultural space. According to the
method, each cultural vector is partly a copy of one of the prototypes and partly
random. The implicit claim is that each cultural prototype is induced by one of a
few (3 to 5) fundamental and universal “principles of social life”, or “rationalities”,
that would strongly affect any process of trait formation in any social system. Such
entities are postulated, under different names and in slightly different numbers,
by several theoretical frameworks in social science [16, 17, 18, 19, 20]. The exact
number of such entities depends on the exact theory that is considered, as different
theories are built on somewhat different arguments and pieces of evidence. It is
important that the number is larger than 1 but not too large, while independent
of system size. From a natural science perspective, such ideas are attractive,
since they exhibit a certain reductionist tendency of trying to understand the
observed socio-cultural variability in terms of combinations of a few, elementary
and universal building blocks. Various parallels and similarities between these
theories are discussed in the literature [21, 22, 23]. For the purpose of the current
study, all these theories are equivalent. Still, for creating an instructive and
compact context, the discussion is restricted to one of them, namely to Plural
Rationality Theory, chosen for reasons discussed in Sec. 2.5.

Plural Rationality Theory (PRT), also referred to as “(Grid-Group) Cultural
Theory” [16], is a qualitative description of socio-cultural structure and dynamics
as an interplay between a small number of irreducible “ways of life”, or “rationali-
ties”. These ways of life are understood as abstract, “elementary building blocks”
of societies and are supposedly recognizable regardless of the geographical context,
of the historical context or of the scale of the system that is studied. It is believed
that the ways of life go along with different perceptions of risk [24, 25] and, inter-
estingly, that they always coexist, although either of them is often dominant for
a given period of time, for a given (part of) the system that one studies1. Such

1It may be useful to think of the ways of life as being the elements of a complete, orthogonal
basis of some abstract vector space. One may then associate a vector in this space to a certain
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2.1 Introduction

ideas appear compatible with recent empirical findings concerning the existence
of a small number of behavioural phenotypes in dyadic games [26]. In PRT, each
way of life is understood as a self-enforcing combination of a “pattern of (social)
relations” and a “cultural bias”. On one hand, a pattern of relations is often
understood as a tendency of organizing the social ties between people in a certain
way, thus a connectivity pattern in the social graph. On the other hand, a cultural
bias is a combination of preferences, opinions, values and beliefs that are compat-
ible with each other and with the associated pattern of relations. By comparison
to the definitions in Ref. [14] (Chap. 1), one can easily realize that a cultural bias
can be thought of as a point or a region in “cultural space” that is representative
for the respective “way of life”. A cultural bias is formally represented here by
the notion of “cultural prototype”, previously used in Ref. [13].

This notion is at the core of two stochastic, structural models of culture that
are defined and studied here. The first model, called “Prototype Generation”
(PG), postulates that each cultural vector is partly a copy of one of the k proto-
types and partly random. This generation method is similar to the “Prototype
Evolution” method of Ref. [13], although with small technical differences. The
second model, called “Mixed Prototype Generation” (MPG), postulates that each
cultural vector is an asymmetric mixture (or combination) of all the prototypes.
From the perspective of PRT, this “mixing” is a formal realization of the idea that
every person combines the ways of life in a unique way, such that preferences and
opinions related to different aspects of life – cultural traits of different cultural
features (or variables) – are due to the “influence” of different cultural biases,
though at any given moment in time one cultural bias is usually dominating. In
the literature concerned with PRT and the other, similar, theories, this mixing as-
pect often goes under the name of “the multiple self”, and was not implemented
in Ref. [13]. The importance of mixing for correctly interpreting (and testing)
PRT has been already stressed on [25], while the general importance of multiple
selves for social science has also been extensively discussed [27]. Moreover, re-
search on preferences in economic contexts also suggests that the multiple self is
important [28, 29, 30]. On the other hand, research in cross-cultural psychology
appears to be divided: some studies seem to ignore the multiple self [31], while
others seem to acknowledge it [32, 33]. This study provides further insights on
this matter, by directly comparing the PG and MPG models with each other and
with empirical data,

Sec. 2.2 explains the models in detail, while Sec. 2.3 describes how the free pa-
rameters are tuned, as to reproduce some lower-order properties of one empirical
cultural state. Cultural states generated with the two models are then evaluated,
in Sec. 2.4, by means of the LTCD-STCB analysis of Refs. [12, 14] (Chap. 1).
It is shown that cultural states generated by PG are structurally dissimilar to

part of a certain socio-cultural system, at a given moment in time. It is not clear to what
extent such vectors would be related to the cultural vectors used in this study. This is only
a semi-formal analogy that is not exploited further here, nor in any other study so far, to the
extent that the authors are aware of.
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Evidence for mixed rationalities in preference formation

the empirical ones, as they do not exhibit the universal LTCD-STCB behavior,
after tuning the free parameters to empirical data in terms of simpler, but mean-
ingful quantities. On the other hand, cultural states generated with MPG are
structurally similar to the empirical ones, as they reproduce the universal LTCD-
STCB behavior, after applying an analogous tuning procedure. This suggests that
the mixing, multiple self ingredient is crucial for describing the effects of prefer-
ence formation in terms of cultural prototypes, and that MPG should be regarded
as the successful model. Sec. 2.5 further discusses the results, their limitations,
as well as extensions of this work and questions that are worth investigating in
the future. The manuscript is concluded in Sec. 2.6.

2.2 Model description

This section describes the two stochastic models of culture: the Prototype Gener-
ation (PG) model and the Mixed Prototype Generation (MPG) model, which are
used below for generating sets of cultural vectors (SCVs) that can be quantita-
tively studied with the LTCD-STCB tool, previously applied to empirical SCVs
in Refs. [12, 14] (Chap. 1). Both models rely on the concept of cultural prototype
introduced above.

An SCV can be visualized as a table of cultural traits, where the columns
correspond to cultural vectors (or sequences) and the rows correspond to cul-
tural features (or variables). If the SCV is constructed from empirical data, the
columns correspond to real people that are sampled by a social survey, while the
rows correspond to questions that are asked in the social survey. This is illus-
trated by Fig. 2.1, which is explained in detail below. Consistently with Ref. [14]
(Chap. 1), a “cultural space” is the set of all possible cultural vectors (or combi-
nations of traits) allowed by the given set of cultural features: one combination of
traits is one point in this discrete space. For the purpose of this work, the general
set-up is restricted to cultural spaces defined in terms of features that are exclu-
sively nominal. In this setting, distances between points in the cultural space are
given by Eq. (2.5) of Sec. 2.3. Disregarding ordinal features makes the modeling
paradigm compatible with the (arguably strong) assumption that one prototype
corresponds to one point in cultural space, meaning that a prototype picks up one
and only one trait of any given feature. Other limitations of this assumptions are
extensively discussed in Sec. 2.5, together with possible ways of relaxing it, for
the purpose of generalizing the current modeling paradigm in future work.

The two models are schematically illustrated in Fig. 2.1. The figure first shows
a sketch of an empirical SCV, where the rows correspond to cultural features, the
columns correspond to cultural vectors and the letters correspond to cultural traits
– the n’th row shows the traits of the N agents that are expressed (or formulated)
with respect to the n’th feature. Then, it shows a set of 3 cultural prototypes
(their number could have been different), in 3 different colors, all of them spanning
over all features (or questions) relevant for the empirical set of vectors. Finally,
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2.2 Model description

Figure 2.1: Schematic illustration of the two stochastic models, showing (from left
to right): an empirical SCV with N vectors (x1 to xN ) and F nominal variables
(Q1 to QF ); a set of k = 3 cultural prototypes for the same F variables; a SCV
with N vectors generated, from the prototypes, using the PG model; a SCV with
N vectors generated, from the same prototypes, using the MPG model. For the
PG and MPG sketches, red, green and blue denote the copies of cultural traits
from one of the first, second and third prototype respectively, while black denotes
the explicitly random generation of traits.

it illustrates a typical set of vectors generated using the PG method, followed
by one generated using the MPG method. The colors distinguish between the
prototypes, while indicating how the traits are copied from the prototypes to the
cultural vectors, while black denotes traits that generated in an explicitly random
way (uniform distribution, independently of the prototypes).

There are several things worth noting in relation to Fig. 2.1. First, the pos-
sibility that two or more prototypes pick the same trait for a certain feature is
allowed by the current modeling paradigm (note that any of the traits that can be
copied from one of the prototypes can also be generated via explicit randomness).
This is essential for controlling the average prototype-prototype distance, as will
become apparent below. Second, a PG vector is partly copied from one prototype
and partly generated in an explicitly random way, while a MPG vector is a mix-
ture of copies from all the prototypes, with one dominating prototype and with
few traits generated in an explicitly random way. Third, both models make use of
another type of randomness, in addition to the explicitly random trait generation
and to the randomness involved in generating the prototypes. This randomness
has to do with assigning every trait of every vector to a “prototype of origin”, once
the random generation fraction and the influence fractions of the prototypes are
specified. In the case of MPG, it is mainly this trait-assignment randomness that
allows for the generation of a multitude of distinct cultural vectors from a small
set of fixed prototypes, in the presence of little explicitly random trait generation.

The procedure for generating the cultural prototypes is the same for both the
PG and the MPG models. One needs to specify the number of prototypes k, as
well as the value of another parameter α ∈ (0, 1), which controls for the expected
cultural distance between the prototypes. This parameter governs the expected
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number of overlaps (or coincidences) between prototypes in terms of how they are
distributed over the traits of a specific feature. In the extreme case of α → 1,
all prototypes pick the same trait for every feature, yielding the smallest possible
separation between the prototypes in cultural space (which coincides with the
minimum of 0 allowed by the cultural distance definition in Eq. (2.5)). In the
other extreme case of α → 0, the prototypes are distributed as uniformly as
possible over the traits of every feature, yielding the largest possible separation
between the prototypes in cultural space (which only coincides with the maximum
of 1 allowed by Eq. (2.5) if the number of traits q is larger or equal to the number
of prototypes k for every feature). This is achieved by a formulation in terms of
the set of integer partitions Iqk describing the possible ways of distributing the
k prototypes over the q traits of a certain feature. The α parameter actually
controls the probability distribution over the set Iqk , via the “compactness” of the
integer partitions in this set. Sec. 2.A.2 precisely describes how these probabilities
are assigned and how the set Iqk is computationally generated in the first place,
for any combination of k and q. Once the prototypes are chosen, everything else
is conditional on them, for both models.

According to the Prototype Generation (PG) model, each cultural vector
is a partial realization of one of the prototypes. Each of the N cultural vectors is
generated by copying a random sequence of traits from one of the k prototypes,
while generating the other traits in a uniformly random way – choosing the pro-
totype is done randomly for every vector. Then, a subset of the F features of
length round(β · F ) is randomly and independently selected for each vector and
the traits of these features are copied from the prototype to the vector. Here,
“round” returns the integer that is closest to its argument, while β ∈ [0, 1] is a
third model parameter, in addition to k and α (which are already needed for the
purpose of specifying the prototypes, in the manner described above). The β pa-
rameter specifies the fraction of traits that are directly copied from the prototype,
thus controlling for the expected distance between a vector and its prototype. The
traits for the remaining features are generated randomly and independently, ac-
cording to uniform feature-level probability distributions – the explicit random
generation mentioned above. Thus, β also controls for the amount of explicitly
random generation of traits. The PG method effectively specifies that there are k
“classes” of cultural vectors and those of a certain class are located at a certain,
β-controlled average distance from the associated cultural prototype. This is sim-
ilar to the “Prototype Evolution” method of Ref. [13], although there are small
differences in how exactly the vectors are generated in the two cases. Moreover,
the method of Ref. [13] did not allow for controlling the expected cultural distance
between the prototypes.

According to the Mixed Prototype Generation (MPG) model, each cul-
tural vector is a combination of all prototypes, although an unbalanced combina-
tion, meaning that the numbers of traits copied from the different prototypes are
deliberately unequal. The extent of this discrepancy is explicitly controlled via
the third model parameter, which, like for PG, is called β. Although the exact

43
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definition and usage of the β ∈ (0, 1) parameter is different in MPG than in PG, its
role is quite similar. Specifically, also in the context of MPG, β (indirectly) con-
trols for the fraction of traits copied from the dominating prototype to the vector:
more traits are copied from the dominating prototype if the discrepancy between
the prototypes is higher. In addition to traits copied from the prototypes, there
are traits that are generated in an explicitly random way, but in a small number.
For each generated vector, this number is by construction not higher than the
number of traits copied from the lowest-contributing prototype. Consequently, if
there are k prototypes, the number of traits generated via explicit randomness
does not exceed F/(k+ 1). Thus, 1/(k+ 1) is an upper bound for the fraction of
explicit randomness in an entire set of cultural vectors generated with MPG. It is
also important to note that, like for PG, this fraction is controlled by β and that
the upper bound is reached when β is in the limit of minimal imbalance. The
limited usage of explicitly random trait generation by MPG means that cultural
vectors are more strongly constrained by the prototypes, compared to PG. Still,
MPG allows for generating a large variety of possible cultural vectors, since the
k prototypes can mix in many different ways.

The MPG model needs a procedure of specifying, for each generated vector,
the k values of the numbers of traits that are to be copied from the k proto-
types, along with the number associated to explicitly random generation. These
k + 1 positive, integer numbers should add up to F and have their discrepancy
controlled by the β parameter. Moreover, there is no reason to believe that the
sequence of numbers associated to one β value should be the same across all
generated vectors, so randomness should be involved in choosing these numbers.
Therefore, the model needs a probabilistic way of drawing k+ 1 random, positive
integers {t1(β), .., tk+1(β)} satisfying

∑k+1
l=1 tl(β) = F , such that their expected

discrepancy is controlled via a single parameter β. The procedure chosen for this
purpose is described below.

This procedure heavily relies on isometrically mapping the discrete {0, 1, .., F}
set of integers to the [0, 1] interval of the real axis. For each generated vector, the
latter interval is split into k+1 parts, by performing “cuts” in k randomly chosen
points. In this manner, a sequence of k + 1 preliminary weights {W1, ...,Wk+1},
subject to

∑k+1
l=1 Wl = 1 is numerically obtained. These weights are obviously

independent of β and have a fixed expected discrepancy. A β-dependent transfor-
mation (explained below) is applied on the preliminary weights {W1, ...,Wk+1},
thus providing a sequence of β-dependent weights {w1(β), ..., wk+1(β)} satis-

fying
∑k+1
l=1 wl(β) = 1, with expected discrepancy controlled by β. Finally,

the sequence of β-dependent weights is converted back to the desired sequence
{t1(β), .., tk+1(β)}. This final operation is non-trivial, requiring a self-consistent,
joint rounding procedure, which is generally difficult to choose, since one cannot
generally ensure that wl = round(tl/F ),∀l – a non-trivial problem of weight dis-
cretization. Here, a simple, pragmatic choice is made: converting the lowest k
weights to the closest, lower integer, while converting the highest weight to the
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integer needed for satisfying the summation constraint – this ensures that the
highest weight, which should correspond to the dominating prototype, is con-
verted to the highest integer.

The only aspect of MPG remaining to be explained is how the β-dependent
weights {w1(β), ..., wk+1(β)} are obtained from the preliminary weights. This is
done by raising the latter to a common power p(β) and then normalizing:

wl(β) =
(Wl)

p(β)∑k+1
l′=1(Wl′)p(β)

, (2.1)

where the common power p(β) ∈ (0,+∞) controls for the average discrepancy
between these weights and maps to β ∈ (0, 1) via:

p(β) = tan
(
β
π

2

)
, (2.2)

where the tangent is a convenient choice of a smooth, continuous function, with
the appropriate domain and range. Thus, a value β > 0.5 implies a value p > 1
and a higher discrepancy of {wp1 , ..., w

p
k+1} than that of {W1, ...,Wk+1}, while a

value β < 0.5 implies a value p < 1 and a lower discrepancy of {wp1 , ..., w
p
k+1}

than that of {W1, ...,Wk+1}.
Before describing the fitting and the outcomes of the PG and MPG models, it

is worth summarizing a few important aspects. Both models rely on the notion of
cultural prototypes, which is currently formalized in a simplistic manner, which is
only sensible for cultural spaces defined exclusively in terms of nominal features.
The procedure for generating the prototypes is the same for both models and
relies on two parameters, k and α, which specify, respectively, the number of
prototypes and the expected distance between them. The differences between PG
and MPG consist in how the cultural vectors are generated conditionally on the
prototypes: for PG, every vector is in part a copy from one of the prototypes
and in part explicitly random; for MPG, every vector is an imbalanced mixture
of all prototypes and explicitly random to a much lower extent, which is how
the “multiple-self” ingredient is implemented. Nonetheless, in both cases, there
is a third model parameter, β, which governs, in different ways, the lengths of
the randomly selected subsets of features whose traits that are copied from the
prototypes. In both cases, β effectively controls for the expected distance between
a vector and its (dominating) prototype, as well as for the fraction of explicit
randomness.

2.3 Model fitting

Before applying the LTCD-STCB analysis on SCVs generated with either the
PG or MPG models, it is useful to somehow constrain some of the free model
parameters. This is done in terms of statistical quantities simpler than the LTCD
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and the STCB measures, that can be evaluated on both empirical SCVs and on
the model SCVs. On the empirical side, the quantities are averaged over several,
empirical SCVs constructed by randomly selecting N = 500 cultural vectors from
the 13000 available ones in Eurobarometer data set [34], while restricting to the
nominal features – let “(EBMn)” stand for the nominal part of the Eurobarometer
data set. The empirical data is formatted according to the procedure explained in
Ref. [14] (Chap. 1). On the model side, these quantities are averaged over many
SCVs, of the same size N , that are realizable in the cultural space of (EBMn), for
the given combination of parameters – the prototypes are independently generated
upon creating every model SCV.

The two simple quantities in terms of which the models are tuned to empirical
data are the average and the standard deviation of the inter-vector distances in
the SCV, which are here denoted by “AIVD” and “SIVD” respectively:

AIVD =
2

N(N − 1)

∑
i<j

dij , (2.3)

SIVD =

√
2

N(N − 1)

∑
i<j

(dij −AIVD)2, (2.4)

where N is the number of cultural vectors and dij is the cultural distance, as
defined and used in Refs. [14, 13, 12] (and Chap. 1). The notation i < j denotes
that the respective summation is carried out over all distinct pairs (i, j). In the
case of a fully-nominal cultural space, with which this study is dealing, dij reduces
to the Hamming distance between the two sequences of symbols encoding cultural
vectors i and j:

dij = 1− 1

F

F∑
l=1

δ(xli, x
l
j) =

1

F

F∑
l=1

dlij , (2.5)

with, dij taking values within the [0, 1] interval. Here, l iterates over the F nom-
inal features, xli, x

l
j are the traits of vectors i and j with respect to feature l and

δ stands for the Kroneker-Delta function. The second equality shows that the
cultural distance can be expressed as an average over feature-level contributions,
which becomes useful below. Previous work has shown that an empirical SCV is
characterized by a lower AIVD than its random counterpart and a higher SIVD
than both its random and shuffled counterparts [12, 13]. The AIVD and SIVD
quantities, which incorporate pairwise distance information, are conceptually dif-
ferent than what is often used in the context of cultural dynamics and of the
Axelrod model, namely the size of the largest connected component, which can
be regarded as an overall measure of similarity. Instead, the latter is somewhat
similar to the STCB quantity explained and used in Sec. 2.4.

It is instructive to see that the expressions of AIVD and SIVD can be rewritten
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in the following way:

AIVD =
1

F

F∑
l=1

2

N(N − 1)

∑
i<j

dlij , (2.6)

SIVD =

√√√√√ 1

F 2

F∑
l,l′=1

 2

N(N − 1)

∑
i<j

dlijd
l′
ij −

4

N2(N − 1)2

∑
i<j

dlij
∑
i′<j′

dl
′
i′j′

, (2.7)

by using a feature-level cultural distance dlij introduced via Eq. (2.5) – the tran-
sition from (2.4) to (2.7) was suggested by the SI of Ref [12].

Note that the AIVD can be understood as an average over feature-level AIVD
contributions, which are represented by the expression within the l-summation of
Eq. (2.6). It can be checked that the (nominal) feature-level AIVD contribution
is a measure of how uniformly the N vectors are distributed over the possible
traits of that feature. This is more obvious when expressing the expected value
of the AIVD contribution in terms of probabilities associated to the traits, which
is shown in Eq. (2.8) below. Thus, for an empirical SCV containing only nominal
features, the AIVD is a measure of average uniformity of the empirical frequency
distributions associated to the features. Consequently, the AIVD is also a measure
of how subjective the questions/topics associated to the features are on average
– when the frequencies of possible answers are more similar to each other, there
is less justification to talk about a “better”, a “more correct” or a “more agreed
upon” answer, so the question is inherently more subjective.

Also note that, in Eq. (2.7), the quantity inside the average over pairs of
features (k, l) is the covariance between features k and l, defined in terms of
the feature-level cultural distances. Given that this quantity is averaged over
all possible pairs of features and that the square-root is a monotonous function,
the SIVD encodes information about the pairwise correlations between features,
although in a somewhat indirect way.

For both models, the choice made here is that of:

• tuning the α parameter in terms of the AIVD quantity (Eqs. (2.3), (2.6)),
for any combination of values of the β and k parameters;

• tuning the β parameter in terms of the SIVD quantity (Eqs. (2.4), (2.7)),
for any value of the k parameter, based on the previous fitting of α in terms
of AIVD;

• simply repeating the tuning (and the LTCD-STCB analysis in Sec. 2.4) for
several values of k.

This implies that, for every value of k, the tuning (or fitting) is done at two
levels: the α-AIVD level and the β-SIVD level, the former being nested into the
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Figure 2.2: Dependence on model AIVD on the α parameter, for several values
of the β parameter (legend), for k = 2 (top), k = 4 (center) and k = 6 (bottom)
prototypes, for the PG (left) and MPG (right) models. The horizontal lines show
the empirical AIVD uncertainty range (one standard error on each side of the
mean).
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latter. In practice, the fitting is carried out automatically, using a nested, 2-levels
algorithm that relies on a modified bisection-type method for each level. The
algorithm is precisely described in Sec. 2.C. In order to work, this approach relies
on the assumption that there is one, unique solution for the fitting problem, for
every value of k. This uniqueness is demonstrated via Figs. 2.2 and 2.3, which
are also used for providing a general intuition of how the fitting works and of how
the AIVD and SIVD quantities depend on α, β and k, for the two models.

Before entering this description, it is worth mentioning that the computer
time for the fitting algorithm is greatly reduced by being able to evaluate the
average (model) AIVD quantity analytically, in a manner that properly accounts
for all SCVs that can be generated for any combination of k, α and β. While
the calculation is described in detail in Sec. 2.B, a schematic understanding can
already be provided here. The essential ingredient of the calculation is a simple,
exact formula for the expected AIVD contribution of one feature of range q:

〈AIVD ({p1, ..., pq})〉 = 1−
q∑
i=1

p2
i , (2.8)

which assumes that the probabilities of its traits {p1, ..., pq} are all known – see
Sec. 2.B for the proof. For a discrete probability distribution, Eq. (2.8) is a
measure of uniformity very similar to the Shannon entropy. Conditional on a
specific choice of the prototypes, this set of probabilities (thus the feature-level
probability distribution) is fully determined by the integer partition describing
how the prototypes are distributed over the traits and by the fraction of traits
that are randomly generated, the latter being controlled by β. In this context,
Eq. (2.8) already assumes that an averaging is performed over SCVs generated
from the same set of prototypes. One still needs to perform an average of this
expression over integer partitions (Eq. (2.20) of Appendix Sec. 2.B), according to
the probability distribution controlled by α (Eqs. (2.12) and (2.13) of Appendix
Sec. 2.A.1), followed by another average over all features (Eq. (2.19) of Appendix
Sec. 2.B), since different features will in general have different ranges q. At a
superficial inspection, using a similar approach for analytically computing the
SIVD quantity appears very complicated, if at all possible. Numerical calculations
are instead employed for computing the (model) SIVD.

Fig. 2.2 deals with the first-level fitting. It shows the dependence of the
analytically computed AIVD quantity (see above) on the α parameter, for several
β values, for several k values and for both the PG and MPG models. Moreover,
it shows the empirical AIVD uncertainty range2 via the horizontal bands in the
six panels. Thus, a solution of the first-level fitting is indicated by an intersection
between a model curve of a given combination of k and β and the horizontal
band. Note that, for either of the two models and for any combination of k and
β, if a solution exists, this solution is actually unique. In order to understand

2An uncertainty range, as defined in Sec. 2.C, is the interval spanned by one standard mean
error on each side of the mean.
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Figure 2.3: Dependence of model SIVD on the β parameter, for several values of
the number of prototypes k (legend), for the PG (left) and MPG (right) models,
where the α parameter is tuned such that the empirical AIVD is reproduced.
The error bars of the points show the numerical uncertainty ranges, while the
horizontal lines show the empirical SIVD uncertainty range (one standard error
on each side of the mean).

the behavior implicit in Fig. 2.2, which is explained below, one should keep in
mind that AIVD measures the average uniformity of the feature-level probability
distributions.

First, it is worth focusing on the AIVD dependence on the α and β parameters.
Note, on one hand, that for a given combination of k and β, the AIVD generally
decreases with α, or at least remains constant. This is due to the fact that the
AIVD decreases with decreasing distance between prototypes, thus with increasing
α. For PG, this decrease is stronger for higher β values, since for low β value the
uniformity is anyway high, because of the large fraction of randomly generated
traits. For MPG, this β-dependence of the decrease is not that strong, since the
fraction of randomly generated traits cannot exceed 1/(k+1). On the other hand,
for a given combination of k and α, the AIVD generally decreases with increasing
β. This is due to the fact that the AIVD decreases with decreasing fraction of
randomly generated traits, thus with increasing β.

Second, it is worth focusing on the AIVD dependence on the number of proto-
types k. For PG, for a given α, a larger number of prototypes k implies a higher
AIVD, since traits copied from prototypes are more uniformly distributed, but
this has a significant effect only for large β values, again due to the uniformity
being anyway in place for small β values. For MPG, the corresponding behavior
is more subtle. While for large, β → 1 values, the AIVD still increases with
increasing k at a given α (for the same reason as for PG), the AIVD(α) curves
corresponding to small β approach the AIVD(α) curve corresponding to large
β → 1 with increasing k, rather than remaining in place (which is the case for
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PG). This is related to the fact that the upper bound on the fraction of ran-
domly generated traits 1/(k+ 1) decreases with increasing k, thus decreasing the
role of β in controlling the AIVD via the uniform component of the feature-level
probability distributions.

Fig. 2.3 deals with the second-level fitting. Everything shown in this figure
relies on α already being tuned (at the first level) such that the empirical AIVD
is matched – as apparent from Fig. 2.2, the tuned α value depends on β and on k.
Fig. 2.3 shows the dependence of the numerically computed SIVD quantity (with
uncertainty ranges) on the β parameter, for several k values and for both the
PG and MPG models. Moreover, it shows the empirical SIVD uncertainty range
via the horizontal bands in the two panels. Thus, a solution of the second-level
fitting is indicated by an intersection between a model curve of a given k and the
horizontal band. Note, again, that for either of the models and either of the k
values, if a solution exists, this solution is actually unique. The exact technical
procedure employed for producing any of the model points in Fig. 2.3 is described
at the end of Sec. 2.C, followed by the explanation of the final choice of values for
the α and β parameters, for use in the analysis of Sec. 2.4.

Note that the SIVD increases with β for both models and for all k values,
suggesting that the extent of feature-feature correlation increases with decreasing
distance between vectors dominated by the same prototype. For PG, all SIVD(β)
curves meet for some β ≈ 0.45, at which point they also end. No points are
plotted for lower β because α cannot be tuned in terms of AIVD, which can be
understood from Fig. 2.2 when noticing the AIVD(α) curves of low β that do not
cross the empirical line. For MPG, the SIVD(β) curve of k = 2 ends at a value of
β ≈ 0.5, before crossing the empirical line, meaning that the MPG model cannot
be entirely tuned when only 2 prototypes are used. No points are plotted for
higher β because α cannot be tuned in terms of AIVD, which can be understood
from Fig. 2.2, by noticing the AIVD(α) curves of k = 2 and high β that do not
cross the empirical line. This is due to certain limitations of the current modeling
paradigm, which are further discussed in Sec. 2.5.

2.4 Model Outcomes

Here, the most important results of this work are presented. The focus is on
the LTCD-STCB analysis, applied to sets of cultural vectors generated with the
PG and MPG models. The aim is to assess how well the two models reproduce
the universal empirical patterns described in Ref. [14] (Chap. 1). Fig. 2.4 illus-
trates the results obtained with the two models, whereas Fig. 2.5 summarizes, for
comparison purposes, the empirical results, focusing on the nominal part of the
Eurobarometer dataset (EBMn) – formatted according to the procedure explained
in Ref. [14] (Chap. 1).

Before describing the results, it is worth recalling the main ingredients of
the LTCD-STCB analysis. This is essentially a two-dimensional plot showing
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Figure 2.4: The correspondence between Long-term cultural diversity (LTCD)
and short-term collective behavior (STCB) for a model-generated (red), a shuffled
(blue) and a random (black) SCV obtained via the PG model (left) and MPG
model (right), for k = 3 (top), k = 4 (centre) and k = 5 (bottom) prototypes.
Error bars denote standard deviations over multiple trait dynamics runs. There
are N = 500 elements in each set of cultural vectors.
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the correspondence between the LTCD quantity vs the STCB quantity, both of
them being evaluated on empirical, on shuffled and on random SCVs. Drawing
the LTCD-STCB correspondence is made possible by the fact that, for each of
the three scenarios, both quantities depend on the bounded-confidence threshold
ω, which controls the maximal cultural distance over which social influence can
act. On one hand, the LTCD quantity is a measure of cultural diversity after
a long-term process of cultural dynamics driven by ω-bounded social influence,
starting from an initial cultural state specified by the respective SCV. Essentially,
it counts the number of distinct points in cultural space (commonly referred to
as “cultural domains”) towards which the agents converge in the final state of
a minimalisitic, bounded-confidence Axelrod model. The STCB quantity is a
measure of collective behavior (or social coordination) after a short-term process
of opinion dynamics driven by ω-bounded social influence. Essentially, it is the
standard deviation of the aggregate opinion distribution of the agent population,
resulting from a minimalistic Cont-Bouchaud-type model applied to the (cultural)
graph obtained by drawing a link for each pair of agents separated by a cultural
distance smaller than ω. Mathematically, the two quantities, as functions of the
bounded-confidence threshold ω, are captured by the following two expressions:

LTCD(ω) =
〈ND〉ω
N

, STCB(ω) =

√√√√∑
A

(
SA
N

)2

ω

, (2.9)

where ND is the number of cultural domains in the final state of the Axelrod-type
model, N is the number of agents (and cultural vectors) and SA is the size of the
A’th of connected components in the ω-determined cultural graph. The average in
the LTCD formula is taken over multiple simulations of the Axelrod-type model.
The STCB quantity is calculated analytically, once the cultural connected com-
ponents are found, based on the assumption of independent opinion-agreement
within each connected component. An essential difference between the two quan-
tities, reflected in the long-term/short-term distinction, consists of an idealized
separation between two time-scales, in terms of the role that the SCV specified
as input plays: cultural vectors, together with the distances between them, are
assumed to be dynamical by the LTCD definition and static by the STCB defini-
tion, such that one deals with dynamics of vectors and with dynamics on vectors
in the two cases respectively. The interested reader is referred to Refs. [14, 12]
(and Chap. 1) for more details and remarks about the LTCD-STCB analysis.

For both the PG and the MPG models, the α and β parameters are tuned
in the manner described in Sec. 2.3 for every value of the number of prototypes
k, while the latter is simply iterated over. In Fig. 2.4, the LTCD-STCB plot is
shown for the values k = 3, k = 4 and k = 5, for the PG (left) and the MPG
(right) models. The value k = 2 is omitted since the α and β parameters could
not be both tuned for MPG with two prototypes. All SCVs are generated using
the cultural space of EBMn, whose empirical SCVs also served for providing the
AIVD and SIVD values in terms of which the tuning was conducted (Sec. 2.3).
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Figure 2.5: The correspondence between long-term cultural diversity (LTCD) and
short-term collective behavior (STCB) for the empirical (red), shuffled (blue) and
random (black) sets of cultural vectors, for the nominal part of the Eurobarometer
data set (EBMn). Error bars denote standard deviations over multiple cultural
dynamics runs. There are N = 500 elements in each set of cultural vectors

When looking at Fig. 2.4, one should ask whether the universal, empirical pat-
terns are reproduced by any of the six illustrated model scenarios. Qualitatively,
the patterns are defined first in terms of a higher compatibility between LTCD
and STCB in the model-generated SCV than in the shuffled SCV and a higher
compatibility in the shuffled SCV than in the random one, second in terms of the
model-generated LTCD-STCB curve being close to the second diagonal. These
empirical features are visible in Fig. 2.5. It is clear that PG does not satisfy these
criteria for any value of k. Indeed, the model-generated curve is far below the sec-
ond diagonal for most of the relevant interval and often below the shuffled curve.
MPG, however, appears to satisfy all these criteria for all k values, although for
k = 3 it is not obvious that the shuffled curve is indeed above the random one,
due to the lack of points in the lower-left corner. This has to do with the effective
discreteness of the bounded-confidence threshold ω spectrum, due to the finite
number of nominal features available – in other words, it is meaningless to split
the ω axis into intervals that are smaller than the nearest-neighbor spacing of the
cultural space lattice. For a direct comparison with analogous empirical curves,
one should use Fig. 2.5, which shows the results of the LTCD-STCB analysis ap-
plied to EBMn data. However, it is only meaningful to compare the qualitative
nature of the empirical and the model curves, rather than the exact values, since,
as discussed in Sec. 2.5, neither model has a maximum-likelihood nature, due to
a certain simplicity in the way prototypes are formalized and chosen here. Still,
MPG apparently does generate SCVs that are structurally similar to the empirical
ones. Thus, the notion of cultural prototypes, even if implemented in a simplistic
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way, can be used to reproduce the important, universal properties of empirical
cultural states, as long as mixing of prototypes is in place.

2.5 Discussion

The purpose of this study was to develop a way of generating cultural states
that reproduce the apparently universal properties of the empirical ones, namely
those described by Ref. [14] (Chap. 1). This naturally calls for input from social
science, in particular from social science theories that are intended to describe
universal aspects of culture and society. There is an entire “class” of social science
theories that appear relevant for this purpose, originating from either psychology
or cultural anthropology [16, 17, 18, 19, 20], some of them being explicit attempts
at unifying social science. All of them make use of cultural prototypes, although in
somewhat different ways, under different names and numbers. Moreover, they had
all been overlooked by previous studies of cultural dynamics, on which Ref. [14]
(Chap. 1) largely builds: Ref. [13] was the first study that connected quantitative
studies of cultural dynamics with these theories, via the generic, formal notion of
cultural prototypes. For creating an instructive and compact context, this work
focused on one of these theories, namely on Plural Rationality Theory (PRT).

There are several aspects justifiying the focus on Plural Rationality Theory.
First, its informal notion of cultural bias matches very well the more formal no-
tion of cultural prototype, in the manner used in Ref. [13] and here. Second,
it is more appealing from a natural science perspective than the others, in par-
ticular from a physics and complex systems perspective. This is largely due to
various concepts that are qualitatively (and sometimes just implicitly) invoked
by PRT, such as: energy landscapes, symmetry breaking, graph/network theory,
dynamical systems, crossovers (possibly phase transitions), self-organization and
fractals. Third, it explicitly claims to provide some insight into how preferences
form: preferences are formed in the process of building social relations, while
different patterns of relations (and types of institutional settings) go along with
different conglomerates of preferences (the cultural biases). Finally, this dualism
between patterns of relations on one hand and cultural biases on the other hand
comes along with distinguishing between a “social plane” and a “cultural plane”
of interacting human systems, while acknowledging the dynamical nature of both,
as well as the strong coupling and interdependency between the two. Thus, PRT
seems to resonate well, on one hand to research on social network structure and
dynamics, on the other hand to research on cultural structure and dynamics.

Up to now, little work has been done to explore either of these two connec-
tions. While Ref. [13] and the present work are the first steps in exploring the
latter connection, some steps have also been taken in exploring the former con-
nection [35, 36]. Note, however, that Ref. [13] refers to several theories similar to
PRT, without explicitly mentioning PRT, that Ref. [36] focuses on a social theory
similar to PRT, while still discussing a connection with PRT and that Ref. [35]
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works with an earlier, more rudimentary version of PRT, which gave less impor-
tance to the notions of “way of life”, “rationality” and “cultural bias”. Although
the coupling between social dynamics and cultural dynamics is recognized and
studied by quantitative complex systems research (for instance Refs. [9, 37]), this
has been carried out in isolation from PRT.

In loose terms, each rationality of PRT has, as a “projection” on the cultural
plane, one distinct cultural bias. These cultural biases correspond to the cultural
prototypes used in this study. In agreement with Ref. [13], a cultural prototype is
a combination of cultural traits, thus one point in cultural space – the limitations
of this assumptions are extensively discussed below. Relying on these notions, two
stochastic, structural models of culture are developed and studied here: Prototype
Generation (PG) and Mixed Prototype Generation (MPG). It is important that,
regardless of which model is used, once the prototypes and the remaining free
parameters (parameter β, for either PG or MPG) are specified, one implicitly
defines a cultural space distribution (CSD): a probability mass function taking
the cultural space as a support, as defined in Ref. [14] (Chap. 1). Generating
a set of N cultural vectors is then equivalent to selecting N points at random
according to this distribution. Thus, the resulting cultural states are generated in
a non-uniformly random way, with non-uniformities depending on the prototypes
and on other model specifications.

For this study, the usage of both stochastic models is restricted to cultural
spaces constructed only from sets of nominal features. This is due to the assump-
tion that every prototype picks one and only one trait in any feature, which from
a PRT perspective means that, upon answering a question under the influence of
one cultural bias, a respondent can only provide one specific answer. In reality,
even a specific cultural bias would generally point towards several answers, al-
though with different probabilities, so it would be more realistic to say that every
prototype corresponds to one probability distribution defined over that feature.
Not allowing for this freedom makes this modeling paradigm incompatible to or-
dinal features, whose associated traits are by construction sorted along an axis,
in which case it is not reasonable to assume that a prototype points to one trait
of a feature with full probability and to its nearest-neighbors with zero probabil-
ity. Nonetheless, the paradigm is reasonably compatible with nominal features, in
which case the distance between any two traits of one feature is anyway assumed
to be the same.

The current study belongs to a preliminary, simplistic paradigm which makes
use of what one may call “sharp prototypes”. A more realistic paradigm, which
would account for the probabilistic nature of the cultural biases, would make use of
what one may call “diffuse prototypes”. Using sharp prototypes comes at the cost
of not having enough flexibility to reproduce the empirical, feature-level frequency
distributions, with either of the two models, since every prototype corresponds
to a probability distribution entirely peaked on one trait. Instead, using diffuse
prototypes would allow this by enforcing, for every feature, that the empirical
distribution is a linear combination of the prototype distributions. Nonetheless,
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as shown in Sec. 2.3, both models are still able to reproduce the empirical average
uniformity of the feature-level frequency distributions, namely the AIVD quan-
tity. This is partly due to both models making some use of uniformly-random
trait generation, independently of the prototypes. This translates to a flat noise
component in the probability distribution of every feature, which in a sense com-
pensates for the rigid peaks of the sharp prototypes. When also considering the
results of Sec. 2.4, the usage of sharp prototypes restricted to nominal variables
appears to be enough as a proof of concept. This justifies further research to-
wards the more sophisticated paradigm relying on diffuse prototypes. Although
this is left for future studies, it is worth contemplating upon, in order to better
understand the purpose, greater context and limitations of the current paradigm.

Working with diffuse prototypes should go hand in hand with a method of
inferring them from data. One can imagine doing this by applying a sensible
clustering method on the empirical set of cultural vectors, followed by a sensible
method of constructing one diffuse cultural prototype from every cluster, as a
probabilistic entity that is representative of that cluster. The main advantage of
this approach is that once the prototypes are constructed and provided as input
to a sensible stochastic model, the artificial SCVs generated with this model
would be close-to-representative of the same distribution in cultural space as the
empirical SCV on which the method is applied in the first place. This means
that the model would have a maximum-likelihood flavor, and could be used for
generating synthetic data, which would also reproduce the feature-level frequency
distributions.

By contrast, the approximation of sharp prototypes used here is too strong to
be employed together with a method of inferring them from data. Instead, sharp
prototypes are being assigned to randomly chosen positions in the given cultural
space. On one hand, the fact that the prototypes are randomly chosen makes any
model symmetric up to any permutation of the traits of any feature, as long as all
features are nominal, which is the case here, a symmetry which is broken by an
empirical SCV and also by an artificial SCV generated from a specific choice of the
prototypes. On the other hand, the fact the prototypes are sharp does not allow
for the exact frequency distribution of a specific feature to be reproduced, not
even up to a permutation of the traits. Still, after parameter tuning, one should
expect from a good model to provide a cultural space distribution whose rough
“shape” is compatible with the empirical data, though the “orientation” and the
structural details implied, for instance, by the feature-level distributions would not
be compatible. This should reflect in roughly reproducing the universal LTCD-
STCB patterns emphasized in Ref. [14] (Chap. 1): one one hand, the formulation
of the LTCD and STCB observables is also symmetric up to permuting the traits
of any feature, and thus independent of the “orientation”; on the other hand,
the empirical, feature-level frequency distributions should heavily depend on the
specific data set, thus being of little relevance for the universal patterns.

There are various aspects that make the random generation of prototypes
sensible for the purpose of the present work. First, results are evaluated for
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various values of the number of prototypes k, which is considered a free parameter
for both the PG and MPG model. Second, the expected prototype-prototype
distance is controlled for via parameter α. Third, for every choice of parameters,
the prototypes are independently drawn for each realized cultural state in the set
used for computing the model AIVD and SIVD quantities for fitting purposes.
These compensate somewhat for not inferring the prototypes from empirical data.

In order to give an example of how the sharp prototypes approximation can
be pushed beyond its limits, it is worth recalling that fitting the MPG model
is not possible for k = 2 prototypes, as pointed out at the end of Sec. 2.3: the
α parameter can be successfully tuned in terms of the AIVD only for small β
values, which do not allow for the subsequent fitting of the β parameter in terms
of the SIVD. This is related to there being at least q = 3 traits associated to
every nominal feature selected from the Eurobarometer data set, while there are
only two, prototype-induced peaks in the model probability distribution of every
feature, on top of the uniform component. Since the integrated probability of the
uniform component cannot exceed 1/k by construction, all the distributions are
bound to be relatively non-uniform, such that the empirical average uniformity is
only attained for small-α (few coincidences between the prototype-induced peaks)
and small-β (large uniform component) combinations. This does not hold for the
PG model, as in this case the integrated probability of the uniform component
can attain any value between 0 and 1. Nonetheless, if k > 2, the fitting of the
MPG leads to generated cultural states that reproduce much better the universal
empirical patterns than PG. This justifies considering MPG the successful model,
while emphasizing the importance of the mixing ingredient, which validates the
multiple self assumption.

When thinking in terms of the feature-level probability distributions, it might
seem that the MPG and PG models are not that different from each other. As
mentioned above, for both models, if there are k prototypes, the probability distri-
bution of a certain feature would consist of k peaks of equal probability contents
and of a uniform component associated to the explicitly random trait generation.
Although the probability content of the uniform component of MPG is bounded
from above, that of PG is not bounded in any way, so one might think that MPG is
just a particular realization of PG. However, this reasoning is misleading, as it fo-
cuses on partial information encoded in the feature-level probability distributions,
disregarding the rest of the information encoded in the complete cultural space
distribution. With PG, a cultural vector whose trait, with respect to a certain
feature, is generated under the probability peak of a certain prototype will have
its trait generated, with respect to another feature, under the well-determined
probability peak of the same prototype or under the uniform component. By
contrast, with MPG, a cultural vector whose trait, with respect to a certain fea-
ture, is generated under the probability peak of a certain prototype, will have
its trait generated, with respect to another feature, under the probability peak
of any prototype – though with a higher likelihood under the peak of the domi-
nating prototype – or under the uniform component. Thus, for the same choice
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of the prototypes and the same extent of explicitly random generation of traits
(and consequently the same AIVD), PG implies a different level of cross-feature
correlation and a different shape of the cultural space distribution than MPG.
This conceptually explains the impact of the mixing ingredient.

Although this study does not attempt at providing a complete mathemati-
cal theory of trait dynamics and formation, one can argue that the MPG model
qualifies as a good effective, 3 static description of (generic snapshots of) trait
dynamics. This static description is inspired by Plural Rationality Theory which,
although originating in cultural anthropology, does seem to integrate notions of
both psychology and of a (complex) systems based understanding of society. Al-
though it is formulated in an a qualitative, informal way, Plural Rationality The-
ory and related research should be of use for developing a complete formal theory
of trait dynamics, at least as a source of guidance and inspiration.

2.6 Summary and conclusions

This study was dedicated to developing and testing a stochastic model for gener-
ating cultural states that would be structurally similar to the empirical ones. The
aim was to reproduce the universal, empirical properties pointed out in Ref. [14]
(Chap. 1), while relying on some social science hypothesis. Following up on pre-
vious work, the idea of cultural prototypes was used for this purpose. The study
first tested the hypothesis that each cultural vector is a partial realization of one
prototype and random for the rest, which is what was previously assumed. This
turned out to be insufficient for reproducing the empirical patterns. Instead, one
has to assume that each cultural vector is a combination, or mixture of all proto-
types, although still dominated by either of them, which is what the MPG model
encodes. This additional, mixing ingredient is actually suggested by the same
social science theories that inspired the prototypes idea in the first place. In this
specific, social science context, this aspect is often referred to as “the multiple-
self”. These results provide indirect evidence for social science theories like PRT,
that postulate, in one way or another, some notion of cultural prototypes, along
with some associated notion of mixing.

Still, there is a certain rigidity in the way prototypes are currently formalized
(Sec. 2.5), related to the assumption that every prototype corresponds to one and
only one value of every cultural variable, instead of corresponding to a probability
distribution over the variable. This makes the cultural space distribution induced
by the successful, MPG model generally incompatible with the cultural space
frequency distribution with respect to which it is fitted. As it stands, MPG is
is far from being a maximum-likelihood type of model and thus cannot be used
to generate synthetic data. Nonetheless, this is arguably achievable once diffuse

3Note that “effective description of” stands for “description of the effects of”, for “approxi-
mate description” or for “phenomenological description”, as used in the physics literature, rather
than for “successful or “efficacious”.
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prototypes are used instead of sharp ones, while being inferred from the data
rather than randomly chosen. In this sense, this work can be seen as an important
step towards a realistic, maximum-likelihood model of empirical cultural states,
and towards generating synthetic sets of cultural vectors. Moreover, MPG can
be considered an effective description of the outcome of trait dynamics, since the
generated cultural states seem to reproduce the generic structure of the empirical
ones. The LTCD-STCB analysis, used for validating this effective theory, could
also be used for validating a more fundamental, dynamical theory of culture.
It appears likely that Plural Rationality Theory has more to say for aiding the
development of such a theory.

Appendices

2.A Controlling the generation of prototypes

This section describes the calculation of probabilities attached to sets of cultural
prototypes employed by the PG and MPG models defined in Sec. 2.2. These prob-
abilities are collectively controlled via a parameter (α), which effectively dictates
the expectation value of the average prototype-prototype cultural distance for one
set of prototypes. The assignment of traits to prototypes is conducted indepen-
dently for every feature, so the discussion is reduced to assigning probabilities to
prototype-to-trait mappings at the level of a single feature. Furthermore, since
prototype generation neglects empirical occurrence frequencies of specific traits,
the problem is symmetric with respect to permutations of the traits, so the dis-
cussion is further reduced to assigning probabilities to “topologies” of prototype-
to-trait mappings at the level of a single feature. Mathematically, such a topology
is an “integer partition”. Integer partitions turn out to be the mathematical ob-
jects to which elementary probabilities are to be assigned. Sec. 2.A.1 explains the
procedure for assigning the probabilities to integer partitions, while Sec. 2.A.2
explains the procedure for generating the integer partitions.

2.A.1 Integer partition probabilities

Let Ik be the set of all integer partitions of k elements, where an integer parti-
tion of k elements is an ordered sequence of integers that add up to k, also called
“parts”. Let the ordered sequence (k1, ..., ks) ∈ Ik be one generic element of this
set, where s counts the number of non-zero parts. This notation implies that
the parts are sorted for descending values ki ≥ ki+1∀i ∈ {1, .., s − 1} and that
they add up to k =

∑s
i=1 ki. For instance, (3, 2, 2, 1) is an integer partition of 8

elements with 4 parts. For the purpose of this work, an element of the integer
partition corresponds to one prototype. For a specific choice of the prototypes
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and a specific feature, an integer partition is a representation of how the proto-
types are distributed over the traits of this feature, up to a permutation of these
traits. Thus, when the fraction of traits that are randomly generated vanishes,
the probabilities of the traits are just the normalized part sizes – in the exam-
ple above, the ordered sequence of probabilities associated to the traits would
be ( 3

8 ,
2
8 ,

2
8 ,

1
8 ). Random trait generation then simply introduces a uniform, noise

component to the feature probability distribution, whose contribution increases
with the fraction of traits that are randomly generated. Thus, the integer parti-
tion is in any case a proxy for the feature probability distribution, regardless of
which stochastic model is used.

Let c(k1, ..., ks) be the “compactness” of integer partition (k1, ..., ks), defined
by:

c(k1, ..., ks) =

s∑
i=1

ki(ki − 1)

2
, (2.10)

which counts the number of pairs of elements belonging to the same part. For
instance, the compactness of integer partition (3, 2, 2, 1) is c(3, 2, 2, 1) = 32 + 12 +
12 + 02 = 11. The compactness thus counts the prototype-prototype coincidences
for one feature. In light of the above paragraph, a small compactness implies a
high uniformity for the feature probability distribution and thus a high value of
the associated (feature-level) AIVD contribution.

Let Iqk be the set of integer partitions of k elements of at most q parts (which
implies that Iqk ⊆ Ik). This definition is needed for working with features with
range q < k. Furthermore, let cmin

k,q and cmax
k,q be the minimal and maximal

compactness values attainable by the elements of Iqk . These notions are needed
for normalizing generic compactness values. They formally read:

cmin
k,q = c(λ′).(λ′ ∈ Iqk ∧ @λ ∈ Iqk .(c(λ) < c(λ′))),

cmax
k,q = c(λ′).(λ′ ∈ Iqk ∧ @λ ∈ Iqk .(c(λ) > c(λ′))), (2.11)

where the “.” (dot) notation stands for “with the property that”.

At this point, it is possible to define an non-normalized probability mass func-
tion parametrized by α over the discrete set of integer partitions Iqk , function
whose shape would depend on α. High α values correspond to integer partitions
of high compactness values being favored over those of low compactness values,
while low α values correspond to integer partitions of low compactness values
being favored over those of high compactness values. For simplicity, the function
is chosen to be monotonous when re-expressed in terms of compactness. A simple
choice for such a function, denoted here by ραk,q, is given by:

ραk,q(λ) = exp

{
tan

[
(2α− 1)

π

2

]2c(λ)− cmax
k,q − cmin

k,q

cmax
k,q − cmin

k,q

}
, (2.12)
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where the inner fraction linearly maps the compactness c(λ) from interval [cmin
k,q , c

max
k,q ]

to interval [−1, 1], while the argument of the tan function linearly maps α from
interval (0, 1) to interval (−1, 1), from where it is further mapped to (−∞,∞) by
the tan function. In this manner, the function is increasing with c(λ) for α > 0.5
(implying a relatively low expectation value of average prototype-prototype sep-
aration), the function is decreasing with c(λ) for α < 0.5 (implying a relatively
high expectation value of average prototype-prototype separation) and the func-
tion is a constant of c(λ) for α = 0.5. The actual probability Pαk,q(λ) associated
to integer partition λ can then be obtained via the normalization:

Pαk,q(λ) =
ραk,q(λ)∑

λ∈Iqk

ραk,q(λ)
, (2.13)

with the sum in the denominator being taken over all integer partitions in Iqk .

2.A.2 Integer partition generation

Let I
d
= {0I , 1I} ∪ I1 ∪ I2 ∪ ... be the set of all integer partitions of any size,

together with a “null” element 0I and a “unity” element 1I , which are meaningful
in relation to the ⊕ operation defined below and are needed for keeping some of
the following definitions compact and self-consistent.

Let the integer partition “merging” ⊕ : I × I → I, acting on two integer
partitions of ka and kb elements, with sa and sb parts respectively, be defined in
the following way:

(ka1 , ..., k
a
sa)⊕ (kb1, ..., k

b
sb

) = (k1, ..., ks), (2.14)

producing another integer partition of k = ka+kb elements and s = sa+sb parts,
such that the sequence of parts in the resulting partition is a sorted merging of the
two original sequences of parts. For instance: (3, 2, 2, 1)⊕ (4, 2) = (4, 3, 2, 2, 2, 1).
Moreover, any integer partition λ ∈ I satisfies λ⊕ 0I = 0I and λ⊕ 1I = λ.

Let the integer partition “multi-merging” ⊗ : I × P(I) → P(I), where P(I)
is the set of all subsets of I, be defined by:

α⊗ {α1, ..., ασ} = {α⊕ α1, ..., α⊕ ασ}, (2.15)

where α, α1, ..., ασ ∈ I are all integer partitions. The ⊗ operation produces a set
of integer partitions of σ elements from an initial set of integer partitions of the
same size and another integer partition α, by merging α with each element αi in
the initial set via the ⊕ operation.

Relying on the notions above, the following recursive definition of function
sip(k,mL,mV ) : N × N∗ × N∗ → P(I) encodes the procedure for generating the
set of integer partitions of k elements, of maximally mL parts, with maximal part
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value mV :

sip(k,mL,mV ) =

=


{1I} k = 0,

{0I} k > mL ·mV ,

{(mV , ...,mV )mL entries} k = mL ·mV ,⋃
x∈1,min(k,mV )

[(x)⊗ sip(k − x,mL − 1, x)] else.

(2.16)

definition inspired by Ref. [38], where the order of the four cases matters, in the
sense that one case is considered only if none of the conditions of the above cases
is valid. The last line returns the set resulted from the reunion “∪” of all sets of
integer partitions of type (x)⊗ sip(k− x,mL− 1, x), where x spans the indicated
interval. This general formulation, which also takes the maximal part value mV

as argument, is required for a compact recursive definition. But of actual interest
for this work is the set of integer partitions of k elements and maximal part value
q, Iqk , given by:

Iqk = sip(k, q, k)− {0I , 1I}, (2.17)

where the last part of the expression takes out the null and/or the unity ele-
ment, which might be present in the set of integer partitions as leftovers from the
computation. Here we explicitly show how the sip function works when calcu-
lating the set of integer partitions of 4 elements of maximally 3 parts, given by
I3
4 = sip(4, 3, 4)− {0I , 1I}, where:

sip(4, 3, 4) =
⋃
x∈1,4

(x)⊗ sip(4− x, 2, x) =

= [(1)⊗sip(3, 2, 1)]∪[(2)⊗sip(2, 2, 2)]∪[(3)⊗sip(1, 2, 3)]∪[(4)⊗sip(0, 2, 4)] =

= [(1)⊗ {0I}] ∪ [(2)⊗
⋃
x∈1,2

(x)⊗ sip(2− x, 1, x)]∪

∪ [(3)⊗ (1)⊗ sip(0, 1, 1)] ∪ [(4)⊗ {1I}] =

= {0I}∪[(2)⊗[[(1)⊗sip(1, 1, 1)]∪[(2)⊗sip(0, 1, 2)]]]∪[(3)⊗(1)⊗{1I}]∪{(4)} =

= {0I} ∪ [(2)⊗ [[(1)⊗ {(1)}] ∪ [(2)⊗ {1I}]]] ∪ [(3)⊗ {(1)}] ∪ {(4)} =

= {0I} ∪ [(2)⊗ [{(1, 1)} ∪ {(2)}]] ∪ {(3, 1)} ∪ {(4)} =

= {0I} ∪ [(2)⊗ {(1, 1), (2)}] ∪ {(3, 1), (4)} =

= {0I} ∪ {(2, 1, 1), (2, 2)} ∪ {(3, 1), (4)} =

= {0I , (2, 1, 1), (2, 2), (3, 1), (4)}, (2.18)

yealding I3
4 = {(2, 1, 1), (2, 2), (3, 1), (4)}, which is the expected result.

63



2.B Analytic calculations of model average inter-vector distance

2.B Analytic calculations of model average inter-
vector distance

This section explains the analytic calculation for the expectation value of the
average inter-vector distance (AIVD) for sets of cultural vectors generated using
either the PG or MPG model. The first part of this section just gives the essential
formulas – Eqs. (2.19) and (2.20)) are common for the two models; the difference
between the model becomes apparent when comparing Eq. 2.21 with Eq. 2.22.
The second part gives the proof Eq. (2.8), which is the basis for Eq. (2.20).

The expectation value of the AIVD, as a function of the three model param-
eters k, α, β is given by the average over the feature-level expectation values:

〈AIVD〉kα,β =
1

F

∑
q

nq 〈AIVD〉k,qα,β , (2.19)

where the sum goes over all possible values ranges q and nq is the number of
features with range q, with

∑
q nq = F being implicitly satisfied, where F is the

number of features. Note that the feature-level contribution also depends on q.
In turn, this contribution is given by:

〈AIVD〉k,qα,β = 1−
Iqk∑

(k1,...,ks)

Pαk,q(k1, ..., ks)·

·


s∑
i=1

[
πkβ,F

ki
k

+
(
1− πkβ,F

) 1

q

]2

+ (q − s)

(
1− πkβ,F

q

)2
 , (2.20)

which is essentially a weighted averaging of Eq. (2.8) over the set of integer
partitions (k1, ..., ks) ∈ Iqk , where the weights are the integer partition probabili-
ties Pαk,q(k1, ..., ks). These are calculated in the manner described in Sec. 2.A.1,
while the integer partitions themselves are generated in the manner described in
Sec. 2.A.2. The set of pi’s of Eq. (2.8) depends on the integer partition in the
manner illustrated between the braces of Eq. (2.20), where the first term accounts
for the s traits that are covered by the (non-zero) elements of the integer partition,
namely those under the peak(s) of one (or more) prototype and under the flat
noise component, while the second term accounts for the remaining q − s traits,
namely those that are only under the flat noise component. The dependence on
whether the PG or the MPG model is used is captured by πβ,F , which is the
average fraction of traits directly copied from prototypes, given by:

πkβ,F =
round(βF )

F
, (2.21)

for PG, where the “round” function accounts for the fact that only integer numbers
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of traits can be copied, and:

πkβ,F =
1

|W β
k+1|

Wβ
k+1∑
w

w, (2.22)

for MPG, where w iterates over all values of W β
k+1, which is a large sequence

of lowest MPG discrete weights (see Sec. 2.2), which are numerically generated

during a previous step, for each used combination of (k, β) values. |W β
k+1| is

the number of elements in this sequence of discrete weights. For this study,
|W β

k+1| = 105 elements were generated for every (k, β) combination, which allows

for a very precise numerical calculation of πkβ,F in the case of MPG.
The consistency between the analytical AIVD calculation explained above and

the numerical calculation is illustrated here via Fig. 2.6. The expected AIVD value
is shown as a function of the β parameter, for 5 values of the α parameter and
3 values of the k parameter, for both the PG and MPG models. The analytical
values are shown by the lines, while the numerical ones are shown by the dots,
which have small, almost indiscernible error bars attached. For the numerical
case, 50 sets of N = 500 cultural vectors are generated for each combination of
parameters. Note that the numerical profiles follow closely the analytical ones,
with small deviations that are consistent with the expected fluctuations of the
mean.

It is now worth presenting a proof of Eq. (2.8), on which Eq. (2.20) is based.
Consider a feature with q traits and a set of a-priori probabilities {p1, ..., pq}
attached to them. Then, the entry of each cultural vector generated with respect
to this feature is an independent, random choice from the q traits, according to
the probability mass function (p1, ..., pq). Thus, the expected AIVD contribution
from N cultural vectors is given by:

〈AIVD ({p1, ..., pq})〉 = 1− 2

N(N − 1)
·

·
x1+...+xq=N∑
x1,...,xq

q∑
i=1

xi(xi − 1)

2
f
(
N , x1,...,xq

p1,...,pq

)
= 1− 2

N(N − 1)
·

·
q∑
i=1

xi≤N∑
xi

xi(xi − 1)

2

x1+...+xi−1+xi+1+...+xq=N−xi∑
x1,...,xi−1,xi+1,...,xq

f
(
N , x1,...,xq

p1,...,pq

)
=

= 1 − 2

N(N − 1)

q∑
i=1

xi≤N∑
xi

xi(xi − 1)

2
Si, (2.23)

where f
(
N ,

x1,...,xq
p1,...,pq

)
denotes the probability that the N independent, random

variables fill the q traits with the frequency distribution (x1, ..., xq), given the
associated probability distribution (p1, ..., pq), where

∑q
i−1 xi = N . This is con-

ventionally called the multinomial distribution. In the above derivation, Si stands
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Figure 2.6: Comparison between numerical (dots) and analytical (line) expected
AIVD as a function of β, for the PG (left) and MPG (right) models, with k = 2
(top), k = 4 (center) and k = 6 (bottom) prototypes, for several values of α
(legend).
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for the summation over all elements of the multinominal except that which has a
certain, xi number of entries for the ith trait, which can be further manipulated:

Si =

x1+...+xi−1+xi+1+...+xq=N−xi∑
x1,...,xi−1,xi+1,...,xq

f
(
N , x1,...,xq

p1,...,pq

)
=

x1+...+xi−1+xi+1+...+xq=N−xi∑
x1,...,xi−1,xi+1,...,xq

N !

x1!...xi−1!xi!xi+1!...xq!
px1

1 ...p
xi−1

i−1 p
xi
i p

xi+1

i+1 ...p
xq
q = pxii

N !

xi!(N − xi)!
·

·
x1+...+xi−1+xi+1+...+xq=N−xi∑

x1,...,xi−1,xi+1,...,xq

(N − xi)!
x1!...xi−1!xi+1!...xq!

px1
1 ...p

xi−1

i−1 p
xi+1

i+1 ...p
xq
q =

=
(
N
xi

)
pxii (1 − pi)N−xi . (2.24)

This shows that Si is just a term of the binomial distribution. By inserting the
final expression of Eq. (2.24) in the final expression of (2.23), one gets:

〈AIVD ({p1, ..., pq})〉 = 1− 1

N(N − 1)

q∑
i=1

xi≤N∑
xi

(x2
i−xi)

(
N
xi

)
pxii (1−pi)N−xi =

= 1− 1

N(N − 1)

q∑
i=1

[Npi(Npi − pi + 1)−Npi] = 1−
q∑
i=1

p2
i , (2.25)

which concludes the proof of Eq. (2.8), after using the well known expressions
for the first and second moments 〈xi〉 and 〈x2

i 〉 of the binomial distribution. Note
that the dependence on N cancels out during the derivation.

Another, arguably shorter proof can be formulated with the aid of indicator
functions of the type Ii(x), which gives 1 if cultural vector x is an entry of trait
i and gives 0 otherwise. One can express the feature-level AIVD of one, generic
set of cultural vectors in terms of indicator functions and write the expected,
feature-level AIVD as an average of this expression. The p2

i part of Eq. (2.8)
then appears from an averaging of the Ii(x)Ii(y) product, where x and y are two
arbitrary cultural vectors.

2.C Fitting algorithm

This section explains the procedure used for simultaneously tuning the α and β
parameters of either of the two stochastic models of culture, such that a match is
obtained between the model and the empirical data, in terms of the averages of
the AIVD and SIVD observables:

〈AIVD(α, β)〉 = AIVDemp, (2.26)

〈SIVD(α, β)〉 = SIVDemp,
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for a fixed number of prototypes k, assuming that either of the two equalities above
is satisfied when there is an overlap between the uncertainty range associated to
the quantity on the left side and that associated to the quantity on the right side.

There are multiple reasons why this problem is challenging:

• an analytical formula for the 〈SIVD(α, β)〉 quantity could not be found

• although an analytical formula for the 〈AIVD(α, β)〉 quantity was found
(Eqs. (2.19) to (2.22)) 4, it does not allow for inverting the function and for
analytically solving the system

• the 〈SIVD(α, β)〉, AIVDemp and SIVDemp quantities have non-vanishing
uncertainty ranges attached to them

Assuming that there exists a unique solution to the above system, a numerical
approach for solving it is in order. The method used here relies on a nested, 2-
level, adapted bisection method. The first (inner) level of the method takes care of
fitting, via bisection, the first quantity for a fixed β – it finds the α value for which
〈AIVD(α, β)〉 = AIVDemp is satisfied for a given β. The second (outer) level of
the method takes care of fitting, via bisection, the second quantity – it finds the β
for which 〈SIVD(α(β), β)〉 = SIVDemp is satisfied, where α(β) is provided by the
first level. This choice of assigning the AIVD and SIVD observables and the α and
β parameters to the two levels in this manner is numerically convenient for several
reasons. First, the AIVD can be much more easily computed via the analytical
formula, such that assigning it to the first level, which is repeated multiple times
(once for each value of β that the second level samples) is more effective. Second,
the model AIVD turns out to be relatively insensitive to β for relatively many
combinations of values for the k and α parameters, such that fitting AIVD in
terms of α within the first level makes more sense.

In addition to adaptations required by the 2-level scheme, other adaptations
with respect to the traditional bisection method are needed for allowing it to work
with model and empirical uncertainties, as well as to enhance the numerical preci-
sion for the 〈SIVD(α, β)〉 quantity when needed, to the extent needed. Moreover,
in addition to statistical errors originating directly in the empirical uncertainties
of the AIVDemp and SIVDemp quantities and in the numerical uncertainty of the
model SIVD quantity, the second level of the method is also affected by “system-
atic errors” on 〈SIVD(α(β), β)〉, originating in the fitting procedure at the first
level, and indirectly in the empirical uncertainty of AIVDemp – which for all prac-
tical purposes can be assumed fixed, thus motivating using the term “systematic”
for its propagation to the model SIVD at the second level.

In order to address all these challenges in a self consistent way, the method
developed here turns out to be quite sophisticated, which is why it is explained
in detail in the following four sections. Specifically, Sec. 2.C.1 focuses on the first
fitting level, Sec. 2.C.2 focuses on the second fitting level, Sec. 2.C.3 describes how

4Which implies that the specific uncertainty range of 〈AIVD(α, β)〉 has a null width.
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various sub-problems invoked by the previous two sections are addressed, while
Sec. 2.C.4 describes how the tools presented in Sections 2.C.1, 2.C.2 and 2.C.3
are used for producing some of the results presented in Sections 2.3 and 2.4.
The method is potentially of use for addressing other problems that are formally
similar to the problem presented here, although certain adaptations might be
needed.

Since the method has mostly an algorithmic nature, much of it is explained via
pseudocode, such that a few conventions that will be extensively used below and
that are not necessarily standard are worth mentioning. First, the “=” symbol
is used with double meaning: in a normal statement (such as “a = b”) it is to
be interpreted as an assignment (of the value of variable b to variable a); in the
header of an if or while statement (such as “if a = b”) it is to be interpreted as a
check (of whether the values of a and b are equal). A variable is implicitly declared
when it first appears, either on the left side of an assignment or in the header
of a function definition (in which case it is also called an argument or function
parameter); the scope of the variable is the part of the function below and to the
right of the place where it first appears. Functions are distinguished from each
other through their names, their numbers of arguments and the types of those
arguments 5 On the other hand, the arguments of a function are distinguished
from each other via their order. Some variables are actually ordered sequences of
other variables, which in turn are denoted by (x1, .., xn) notation. In the same
spirit, an assignments of the type X = (x1, .., xn) is referred to as a “variable
compression”, while one of the type (x1, .., xn) = X is referred to as a “variable
decompression”. These allow for keeping the pseudocode compact, while still
rigorous. An uncertainty range refers to an interval [x− δx, x+ δx], where x is a
mean and δx is an error relying (directly, or indirectly) on a standard mean error
calculation, the uncertainty range being formally encoded by the sorted (x, δx)
sequence. Note that the square brackets “[,]” are consistently used to denote an
interval of real numbers, while the round brackets “(,)” are used to denote an
ordered sequence of two or more elements. Finally, it is worth noting that the
pseudocode relies heavily on function calls and on recursive definitions, and that
there is a certain parallelism between the functions defined in Sec. 2.C.1 and those
defined in Sec. 2.C.2.

2.C.1 First level fitting

This section presents the algorithm part concerned with the first fitting level.
The algorithm is split in three main functions: Fit-1, Bisect-1, Displace-1, all
of them returning the same type of information. Fit-1 always calls Bisect-1,
while the latter may or may not call Displace-1 at any stage, which in turn may

5Sometimes this can be confusing, since the types of the arguments are only mentioned in
the text before the definition of the function. In these cases however, the reader is guided by the
names of the arguments, which in the function definition are kept as close as possible to those
in the function call(s).
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or may not call Bisect-1. The pseudocode also invokes two constants, which
are assumed to be known a-priori and available for use anywhere in these three
functions. The first constant is δα, which controls the desired resolution (δα is
essentially a grid-spacing) in the α parameter, which is here set to the inverse
of the number of features: δα = 1

F
6. The second constant is AIVDemp, which

stands for the AIVD uncertainty range for the empirical data.
Function Fit-1 acts as an interface for the first-level fitting, which consists of

tuning the α parameter, for given values of β and k, such that the AIVD quantity
matches the empirical value. Here, β is a real number belonging to [0, 1] while
k is a strictly positive integer number. The method returns the left (αL) and
right (αR) margins of the tightest α interval found, together with the estimated
α match within this interval assuming linearity (αfit) and an associated error
(αerr). It assumes that the empirical AIVD can actually be uniquely matched by
varying α, for the given values of β and k. The method essentially carries out
some initializations (Lines 2,3), before passing the task to Bisect-1.

1: function Fit-1(β, k)
2: (αL, αR) = Init-1(δα) . initializing the α-interval
3: AIVDL = 〈AIVD〉kαL,β ; AIVDR = 〈AIVD〉kαR,β . analytics (Eq. (2.19))
4: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k)
5: end function

Function Bisect-1 is mostly a typical, recursive implementation of the bisec-
tion method. This sequentially narrows down the [αL, αR] interval, such that at
each stage the empirical AIVD is contained, namely that min(AIVDL,AIVDR) <
AIVDemp < max(AIVDL,AIVDR) is satisfied, where the AIVDL and AIVDR

values correspond to the left and right margins of the α interval. Here, αL, αR,
AIVDL and AIVDR are real numbers belonging to [0, 1] while β and k are of the
same type as in Fit-1. It returns the same type of information as Fit-1. The
method converges, the fitting being considered complete, when the interval has
reached the δα resolution limit, in which case estimations for an “ideal” α inside
this interval αfit and its error αerr are made and returned together with the bound-
aries of the interval (lines 3-6). Moreover, the method may also call Displace-1
in case the AIVDM value corresponding to the computed midpoint αM happens
to fall within the AIVDemp uncertainty range (lines 8-10) – this is needed in order
to keep the output format consistent and the final α interval relatively narrow.
Otherwise, the method decides to zoom in (by calling itself) on either the left or
right halves of the interval, depending on the position of AIVDemp with respect
to AIVDL, AIVDM and AIVDR (lines 11-16).

1: function Bisect-1(αL, αR,AIVDL,AIVDR, β, k)
2: αM = Middle(αL, αR, δα) . computing midpoint on the α grid

6 There is no clear lower bound on δα, regardless of which stochastic model is used, but 1
F

is a lower bound on δβ when PG is used, so for simplicity the choice δα = δβ = 1
F

is made.
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3: if ¬Distinct(αM , αL, αR) then
4: (αfit, αerr) = InternFitLin-1(αL, αR,AIVDL,AIVDR,AIVDemp)
5: return (αL, αR, αfit, αerr) . fitting complete
6: end if
7: AIVDM = 〈AIVD〉kαM ,β . analytics (Eq. (2.19))
8: if Match-1(AIVDM ,AIVDemp) then
9: return Displace-1(αL, αR, αM ,AIVDL,AIVDR, β, k)

10: end if
11: if Ord-1(AIVDL,AIVDR) = Ord-1(AIVDM ,AIVDemp) then
12: αL = αM ; AIVDL = AIVDM . selecting right interval
13: else
14: αR = αM ; AIVDR = AIVDM . selecting left interval
15: end if
16: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k) . zooming in
17: end function

Function Displace-1 attempts to displace the midpoint αM previously cal-
culated at some stage in Bisect-1, in a way that its associated AIVD would
fall outside the empirical uncertainty range. This function has all the arguments
of Bisect-1 and αM as an additional one, which is a real number belonging
to [0, 1]. It returns the same type of information as Fit-1. The method first
computes a “secondary” midpoint α′M to the left of αM and its corresponding
AIVD′M value. If the resolution limit δα is not reached and AIVD′M falls outside
the AIVDemp range, Bisect-1 is applied further to the [α′M , αR] interval (lines
2-11). Otherwise, the analogous procedure is applied on the right side (12-21). If
the procedure fails to provide a convenient, secondary midpoint on either side, the
fitting is considered complete with the current [αL, αR] interval and the αfit, αerr

estimates made like in Bisect-1 (lines 22-23).

1: function Displace-1(αL, αR, αM ,AIVDL,AIVDR, β, k)
2: α′M = Middle(αL, αM , δα) . trying displacement to the left
3: if Distinct(α′M , αL, αM ) then
4: AIVD′M = 〈AIVD〉kα′M ,β . analytics (Eq. (2.19))

5: if ¬Match-1(AIVD′M ,AIVDemp) then
6: if Ord-1(AIVDL,AIVDR) = Ord-1(AIVD′M ,AIVDemp) then
7: αL = α′M ; AIVDL = AIVD′M
8: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k) . zooming in
9: end if

10: end if
11: end if
12: α′M = Middle(αM , αR, δα) . trying displacement to the right
13: if Distinct(α′M , αM , αR) then
14: AIVD′M = 〈AIVD〉kα′M ,β . analytics (Eq. (2.19))

15: if ¬Match-1(AIVD′M ,AIVDemp) then
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16: if Ord-1(AIVDL,AIVDR) 6= Ord-1(AIVD′M ,AIVDemp) then
17: αR = α′M ; AIVDR = AIVD′M
18: return Bisect-1(αL, αR,AIVDL,AIVDR, β, k) . zooming in
19: end if
20: end if
21: end if
22: (αfit, αerr) = InternFitLin-1(αL, αR,AIVDL,AIVDR,AIVDemp)
23: return (αL, αR, αfit, αerr) . fitting complete
24: end function

2.C.2 Second level fitting

This section presents the algorithm part concerned with the second fitting level.
Each of the three functions of the first fitting level (Sec. 2.C.1) has a correspondent
here: Fit-2, Bisect-2, Displace-2, all of them returning the same type of
information 7, each of them having a similar, structure, purpose and role to the
correspondent within the first fitting level. Additionally, this section presents the
pseudocode for a fourth function, NumSIVD, which carries out the numerical
SIVD calculations. In addition to the two constants introduced at the first level,
the second level pseudocode invokes two other constants, which are also assumed
to be known a-priori and available for use anywhere in these four functions. First,
δβ is the desired resolution in the β parameter, which is here set to the inverse
of the number of features: δβ = 1

F . Second, SIVDemp is the SIVD uncertainty
range for the empirical data.

In relation to the first three functions, the descriptions below attempt to
mostly emphasize the elements that come in addition with respect to their first-
level correspondents. Some of these elements have a repetitive nature and are
worth explaining before moving to the specific description of each function. First,
the (generic) β̄X notation (where “X” can stand for “L”, “R” or “M”) denotes the
(generic) “composite fitting information” β̄X = (β, αL, αR, αfit, αerr)X, which is a
5-tuple consisting of a β value together with the associated four values returned by
a (generic) call Fit-1(β, k) for that specific β and some arbitrary k. Second, when-
ever an “SIVDX” variable appears in the first three functions (where “X” is again
a generic label), except for SIVDemp, it actually denotes the (generic) “composite

SIVD information” SIVDX = ((SIVDfit
L ,SIVDerr

L ), (SIVDfit
R ,SIVDerr

R ))X, which is
a pair of pairs of real numbers, each inner pair corresponding to a model SIVD
uncertainty range associated to one margin of an α interval returned by a call to
Fit-1, while both inner pairs have the same β. This schematically reads:

(β, αL)→ (SIVDfit
L ,SIVDerr

L ),

(β, αR)→ (SIVDfit
R ,SIVDerr

R ),

7The type of information returned by the three functions at a second-level fitting is different
than that of the three functions at the first-level fitting, and actually more complex.
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Third, any (generic) call NumSIVD(β̄, k) is necessarily preceded by an associated
(generic) call Fit-1(β, k) and by an associated (generic) variable compression
β̄ = (β, αL, αR, αfit, αerr), the last two being needed for producing the composite
fitting information β̄. Fourth, whenever a piece of composite SIVD information
appears in a call to Ord-2 or Match-2, it is accompanied by an associated piece
of composite fitting information, which allows for the mean, statistical error and
systematic error of in the model SIVD to be all reconstructed within, for a given
combination of β and k.

Function Fit-2 acts as an interface for the second-level fitting, which consists
of tuning the β parameter, for a given value of k, such that the SIVD quantity
matches the empirical value, relying on an underlying tuning of the α parameter
in terms of the AIVD quantity (using Fit-1). Here, k is a strictly positive, integer
number. The method returns the composite fitting information associated to the
left (β̄L) and right (β̄R) margins of the tightest β interval found, together with
the estimated β match within this interval (βfit) and its associated error (βerr).
It assumes that the empirical SIVD can actually be uniquely matched by varying
β and α, for the given value of k. After checking that there exists a meaningful
[βL, βR] interval for which the first-level fitting is possible (lines 2,3), the method
conducts the numeric SIVD calculations on both sides of the interval (line 6),
preceded, on each side, by the first level fitting and the decompression (lines 4,5,
as explained above), in order to finally pass the task to Bisect-2.

1: function Fit-2(k)
2: (βL, βR) = Init-2(δβ, k,AIVDemp) . initializing the β-interval
3: if βL < βR then
4: (αLL, α

R
L , α

fit
L , α

err
L ) = Fit-1(βL, k); (αLR, α

R
R, α

fit
R , α

err
R ) = Fit-1(βR, k)

5: β̄L = (βL, α
L
L, α

R
L , α

fit
L , α

err
L ); β̄R = (βR, α

L
R, α

R
R, α

fit
R , α

err
R )

6: SIVDL = NumSIVD(β̄L, k); SIVDR = NumSIVD(β̄R, k) . numerics
7: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k)
8: end if
9: return FittingImpossibleError

10: end function

Function Bisect-2 is another recursive implementation of the bisection method,
which sequentially narrows down the [βL, βR] interval, such that at each stage the
empirical SIVD is contained. Here, β̄L, β̄R are 5-tuples of real numbers encoding
the left and right pieces of composite fitting information, SIVDL,SIVDR are the
pairs of pairs of real numbers encoding the left-β and right-β pieces of compos-
ite SIVD information, while k is of the same type as in Fit-2. It returns the
same type of information as Fit-2. Like Bisect-1, the function consists of a
part concerned with convergence (lines 4-7), a part concerned with the jump to
Displace-2 (lines 11-13) and a part concerned with choosing between the left
and right β subintervals and with zooming in on the chosen one (lines 14-19).
Note the additional statements concerned with decompressing the composite fit-
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ting information (line 2) and with preparing the numeric SIVD calculations at
the midpoint (lines 8-9).

1: function Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k)
2: (βL, α

L
L, α

R
L , α

fit
L , α

err
L ) = β̄L; (βR, α

L
R, α

R
R, α

fit
R , α

err
R ) = β̄R

3: βM = Middle(βL, βR, δβ)
4: if ¬Distinct(βM , βL, βR) then
5: (βfit, βerr) = InternFitLin-2(β̄L, β̄R,SIVDL,SIVDR,SIVDemp)
6: return (β̄L, β̄R, βfit, βerr)
7: end if
8: (αLM , α

R
M , α

fit
M , α

err
M ) = Fit-1(βM , k)

9: β̄M = (βM , α
L
M , α

R
M , α

fit
M , α

err
M )

10: SIVDM = NumSIVD(β̄M , k) . numerics
11: if Match-2(β̄M ,SIVDM ,SIVDemp) then
12: return Displace-2(β̄L, β̄R, β̄M ,SIVDL,SIVDR, k)
13: end if
14: if Ord-2(β̄L, β̄R,SIVDL,SIVDR) = Ord-2(β̄M ,SIVDM ,SIVDemp) then
15: β̄L = β̄M ; SIVDL = SIVDM . selecting right interval
16: else
17: β̄R = β̄M ; SIVDR = SIVDM . selecting left interval
18: end if
19: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k) . zooming in
20: end function

Function Displace-2 attempts to displace the midpoint βM previously calcu-
lated at some stage in Bisect-2, in a way that its associated SIVD uncertainty
range does not overlap with the empirical one. This function has all the arguments
of Bisect-1 and β̄M as an additional one, which is a 5-tuple of real numbers en-
coding the midpoint composite fitting information. It returns the same type of
information as Fit-2. Like Displace-1, the function consists of a part that at-
tempts a displacement to the left (lines 4-15), one that attempts a displacement
to the right (lines 16-27) and one that takes care of the convergence (lines 28-29).
Note the additional statements concerned with decompressing the composite fit-
ting information (lines 2-3) and with preparing the numeric SIVD calculations for
the left/right secondary midpoint (lines 6-7/18-19).

1: function Displace-2(β̄L, β̄R, β̄M ,SIVDL,SIVDR, k)
2: (βL, α

L
L, α

R
L , α

fit
L , α

err
L ) = β̄L; (βR, α

L
R, α

R
R, α

fit
R , α

err
R ) = β̄R;

3: (βM , α
L
M , α

R
M , α

fit
M , α

err
M ) = β̄M

4: β′M = Middle(βL, βM , δβ) . trying displacement to the left
5: if Distinct(β′M , βL, βM ) then
6: (α̇LM , α̇

R
M , α̇

fit
M , α̇

err
M ) = Fit-1(β′M , k)

7: β̄′M = (β′M , α̇
L
M , α̇

R
M , α̇

fit
M , α̇

err
M )

8: SIVD′M = NumSIVD(β̄′M , k) . numerics
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9: if ¬Match-2(β̄′M ,SIVD′M ,SIVDemp) then
10: if Ord-2(β̄L, β̄R,SIVDL,SIVDR) = Ord-2(β̄′M ,SIVD′M ,SIVDemp)

then
11: β̄L = β̄′M ; SIVDL = SIVD′M
12: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k) . zooming in
13: end if
14: end if
15: end if
16: β′M = Middle(βM , βR, δβ) . trying displacement to the right
17: if Distinct(β′M , βM , βR) then
18: (α̇LM , α̇

R
M , α̇

fit
M , α̇

err
M ) = Fit-1(β′M , k)

19: β̄′M = (β′M , α̇
L
M , α̇

R
M , α̇

fit
M , α̇

err
M )

20: SIVD′M = NumSIVD(β̄′M , k) . numerics
21: if ¬Match-2(β̄′M ,SIVD′M ,SIVDemp) then
22: if Ord-2(β̄L, β̄R,SIVDL,SIVDR) 6= Ord-2(β̄′M ,SIVD′M ,SIVDemp)

then
23: β̄R = β̄′M ; SIVDR = SIVD′M
24: return Bisect-2(β̄L, β̄R,SIVDL,SIVDR, k) . zooming in
25: end if
26: end if
27: end if
28: (βfit, βerr) = InternFitLin-2(β̄L, β̄R,SIVDL,SIVDR,SIVDemp)
29: return (β̄L, β̄R, βfit, βerr)
30: end function

Function NumSIVD numerically generates a piece of composite SIVD infor-
mation with a precision that is as high as possible. Here, β̄ is a 5-tuple of real
numbers encoding a composite fitting information, while k is a positive integer
number. One sequence of SIVD values is numerically generated (lines 4-5 and
12-13) for each of the two margins of the α interval (contained in β̄), for the
given β (also contained in β̄) and the given k. An uncertainty range is obtained
from each of the two sequences (lines 6 and 16). These two uncertainty ranges
are used together with the information in β̄ to produce estimates for an average,
a statistical error and a systematic error that are β̄-specific rather than (α, β)-
specific (lines 7,8 and 17,18). The number of SIVD values in the two sequences
is increased and the calculations are repeated as long as the condition in line 10
remains true, namely as long as: the statistical error is higher than the system-
atic error, the desired separation between the model and empirical (statistical)
uncertainty ranges is not reached and the maximal SIVD sequence length is not
reached. The desired separation and the SIVD sequence length are controlled via
variables s and n, initialized in line 2 – the initial values of these variables, as well
as the upper bound on the latter are hard-coded, as visible in the pseudocode, and
have been decided after some experimentation with NumSIVD, but they are not
essential for the actual outcome. Also note the decompression of the composite
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fitting information (line 3) and the decompression of SIVD uncertainty ranges
(lines 9 and 19).

1: function NumSIVD(β̄, k)
2: n = 20; s = 5 . initial number of realizations and desired separation
3: (β, αL, αR, αfit, αerr) = β̄
4: SIVDseq

L = GenSeqSIVD(αL, β, k, n)
5: SIVDseq

R = GenSeqSIVD(αR, β, k, n)
6: SIVDL = CompAvgErr(SIVDseq

L ); SIVDR = CompAvgErr(SIVDseq
R )

7: SIVD = Interpol(αL, αR, αfit,SIVDL,SIVDR)
8: SIVDsyst = CompSystErr(αL, αR, αerr,SIVDL,SIVDR)
9: (SIVDavg,SIVDstat) = SIVD; (SIVDavg

emp,SIVDstat
emp) = SIVDemp

10: while SIVDstat > SIVDsyst∧(SIVDstat+SIVDstat
emp > |SIVDavg

emp−SIVDavg|/s)∧
n < 350 do

11: n = 2 · n
12: SIVDtmpSeq

L = GenSeqSIVD(αL, β, k, n)

13: SIVDtmpSeq
R = GenSeqSIVD(αR, β, k, n)

14: SIVDseq
L = Merge(SIVDseq

L ,SIVDtmpSeq
L )

15: SIVDseq
R = Merge(SIVDseq

R ,SIVDtmpSeq
R )

16: SIVDL = CompAvgErr(SIVDseq
L ); SIVDR = CompAvgErr(SIVDseq

R )
17: SIVD = Interpol(αL, αR, αfit,SIVDL,SIVDR)
18: SIVDsyst = CompSystErr(αL, αR, αerr,SIVDL,SIVDR)
19: (SIVDavg,SIVDstat) = SIVD
20: end while
21: return (SIVDL,SIVDR)
22: end function

2.C.3 Used functions

This section describes functions that are used by the pseudocode in sections 2.C.1
or 2.C.2 but are not described there. The following is a list of functions for which
the pseudocode is also provided, following each text description.

Function InterfitLin-1 fine-tunes the α parameter such that AIVDemp is
matched, relying on a linear approximation of the model AIVD as a function of
α within the (αL, αR) interval, using the boundary values AIVDL and AIVDR.
Its arguments are of the same type as those of InterFitLin (described below),
except that AIVDL and AIVDR are real numbers rather than uncertainty ranges.
The output structure is entirely the same as that of InterFitLin. It is essentially
a first-level fitting interface for InternFitLin, which is called after specifying
that the errors associated to AIVDL and AIVDR are zero.

1: function InternFitLin-1(αL, αR,AIVDL,AIVDR,AIVDemp)
2: AIVD′L = (AIVDL, 0); AIVD′R = (AIVDR, 0)
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3: return InternFitLin(αL, αR,AIVD′L,AIVD′R,AIVDemp)
4: end function

Function InterfitLin-2 fine-tunes the β parameter such that SIVDemp is
matched, relying on a linear approximation of the model SIVD as a function of β
within the [βL, βR] interval, using the boundary information stored in SIVDL and
SIVDR. Its arguments are of the same type as those of InterFitLin (described
below), except that β̄L and β̄R are 5-tuples or real numbers rather than real num-
bers and SIVDL and SIVDR are pieces composite SIVD information rather than
uncertainty ranges. The output structure is entirely the same as that of Inter-
FitLin. It is essentially a second-level fitting interface for InternFitLin, which
is called after carrying out the following two operations: computing the mean,
statistical error and systematic error on each of the two margins of the β interval,
using the right combination of composite fitting information and composite SIVD
information (lines 2,3); compressing information into an SIVD uncertainty range
for each of the two margins, after choosing the highest among the two errors for
each margin.

1: function InternFitLin-2(β̄L, β̄R,SIVDL,SIVDR,SIVDemp)
2: (SIVDavg

L ,SIVDstat
L ,SIVDsyst

L ) = MeanStatSyst(β̄L,SIVDL)

3: (SIVDavg
R ,SIVDstat

R ,SIVDsyst
R ) = MeanStatSyst(β̄R,SIVDR)

4: SIVD′L = (SIVDavg
L ,max(SIVDstat

L ,SIVDsyst
L ))

5: SIVD′R = (SIVDavg
R ,max(SIVDstat

R ,SIVDsyst
R ))

6: return InternFitLin(βL, βR,SIVD′L,SIVD′R,SIVDemp)
7: end function

Function Match-1 checks whether AIVD (real value) falls within the uncer-
tainty range specified by AIVDemp. It acts as an interface for Match (described
below) within the first-level fitting scheme.

1: function Match-1(AIVD,AIVDemp)
2: AIVD′ = (AIVD, 0)
3: return Match(AIVD′,AIVDemp)
4: end function

Function Match-2 checks whether there is an overlap between the model
SIVD uncertainty range obtained from β̄ (composite fitting information) and
SIVD (composite SIVD information) and the empirical one encoded by SIVDemp.
It acts as an interface for Match (described below) within the second-level fitting
scheme.

1: function Match-2(β̄,SIVD,SIVDemp)
2: (SIVDavg,SIVDstat,SIVDsyst) = MeanStatSyst(β̄,SIVD)
3: SIVD′ = (SIVDavg,max(SIVDstat,SIVDsyst))
4: return Match(SIVD′,SIVDemp)
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5: end function

Function Ord-1 (first version) checks whether AIVDL (real value) is smaller
than AIVDR (real value), acting as an interface for Ord within the first-level
fitting scheme.

1: function Ord-1(AIVDL,AIVDR)
2: return Ord(AIVDL,AIVDR)
3: end function

Function Ord-1 (second version) checks whether AIVD (real value) is smaller
than the average stored in AIVDemp (uncertainty range), acting as an interface
for Ord within the first-level fitting scheme.

1: function Ord-1(AIVD,AIVDemp)
2: (AIVDavg

emp,AIVDerr
emp) = AIVDemp

3: return Ord(AIVD,AIVDavg
emp)

4: end function

Function Ord-2 (first version) checks whether the average stored in the SIVD
uncertainty range obtained from β̄L (composite fitting information) and SIVDL

(composite SIVD information) is smaller than the average stored in that obtained
from β̄R (composite fitting information) and SIVDR (composite SIVD informa-
tion), acting as an interface for Ord within the second-level fitting scheme.

1: function Ord-2(β̄L, β̄R,SIVDL,SIVDR)
2: (SIVDavg

L ,SIVDstat
L ,SIVDsyst

L ) = MeanStatSyst(β̄L,SIVDL)

3: (SIVDavg
R ,SIVDstat

R ,SIVDsyst
R ) = MeanStatSyst(β̄R,SIVDR)

4: return Ord(SIVDavg
L ,SIVDavg

R )
5: end function

Function Ord-2 (second version) checks whether the average stored in the
SIVD uncertainty range obtained from β̄ (composite fitting information) and
SIVD (composite SIVD information) is smaller than the average stored SIVDemp,
acting as an interface for Ord within the second-level fitting scheme.

1: function Ord-2(β̄,SIVD,SIVDemp)
2: (SIVDavg,SIVDstat,SIVDsyst) = MeanStatSyst(β̄,SIVD)
3: (AIVDavg

emp,AIVDerr
emp) = AIVDemp

4: return Ord(SIVDavg,AIVDavg
emp)

5: end function

Function MeanStatSyst estimates a mean, a statistical error and a system-
atic error from a piece of composite fitting information and an associated piece
of composite SIVD information, which are the two arguments of the function.
It returns the 3-tuple comprising of the three computed real numbers. Note the
decompression of composite fitting information (line 2) and the decompression of
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composite SIVD information (line 3).

1: function MeanStatSyst(β̄,SIVD)
2: (β, αL, αR, αfit, αerr) = β̄
3: (SIVDL,SIVDR) = SIVD
4: SIVD′ = Interpol(αL, αR, αfit,SIVDL,SIVDR)
5: SIVDsyst = CompSystErr(αL, αR, αerr,SIVDL,SIVDR)
6: (SIVDavg,SIVDstat) = SIVD′

7: return (SIVDavg,SIVDstat,SIVDsyst)
8: end function

The following is a list of functions for which only text explanations are provided
in schematic way, sometimes accompanied by figures.

• Init-1(δα):

– gives the left and right boundaries of the largest possible interval for
which the α parameter is compatible with the stochastic model in use,
given the grid spacing δα

– input: δ is a real number

– in practice it returns (δα, 1− δα) regardless of whether PG or MPG is
used

• Init-2(δβ, k,AIVDemp):

– gives the left and right boundaries of the largest possible interval, if
any, for which the β parameter allows for the (first level) fitting of
AIVD(α) to successfully take place, given the grid spacing δβ

– input: δβ is a real number, k is a positive integer and AIVDemp is an
uncertainty range

– assumes that there exists at most one β interval [βL, βR] for which
there exists an α such that 〈AIVD〉kα,β = AIVDemp is satisfied

– starts from the largest interval allowed by the model and independently
adjusts each of the two boundaries via a branching algorithm, until the
desired interval is reached

– returns two (incompatible) boundaries βL > βR if such an interval does
not exist

• Middle(l, r, δ):

– computes the value closest to the average between l and r, on a grid
of spacing δ

– input: l, r, δ are all real numbers

– assumes that the interval length l − r is equal to an integer times δ

79



2.C Fitting algorithm

• Distinct(m, l, r):

– checks whether m is different than both l and r

– input: m, l, r are all real numbers constrained constrained to a grid of
constant spacing

• InternFitLin(pL, pR, OL, OR, Oemp):

– adjusts a parameter p such that an observable O attains a value com-
patible with the empirical in Oemp interval, assuming that O is a linear
function of p within the [pL, pR] interval

– input: pL, pR are real numbers, encoding the left and right boundaries
of the interval; OL, OR are mean-error pairs of real numbers encoding
the theoretical uncertainty ranges of the observable for the left and
for the right boundaries; Oemp is a mean-error pair of real numbers
encoding the empirical uncertainty range

– returns the value and associated error of the p parameter resulting
from this fitting process (pfit, perr), computed based on geometrical
considerations, in the manner illustrated in Fig. 2.7(a)

– pfit is calculated first by intersecting the theoretical line with the em-
pirical one, disregarding all errors; then, perr is calculated by assuming
that the theoretical error is constant within the [pL, pR] interval, with
value given by interpolating the errors contained by OL and OR at pfit

– perr takes its origin both in the the empirical error as well as in the
theoretical error, but also depends on the slope resulting from the linear
approximation

• Match(r1, r2):

– checks whether there is an overlap between the uncertainty ranges en-
coded by r1 and r2

– input: r1, r2 are mean-error pairs of real numbers

• Ord(vL, vR):

– checks whether the condition vL < vR is satisfied

– input: vL, vR are real numbers

– assumes that vL 6= vR

• GenSeqSIVD(α, β, k, n)

– numerically generates a sequence of n SIVD values according to the
respective stochastic model, subject to parameter values indicated by
k, α, β

80



Evidence for mixed rationalities in preference formation

– input: α, β are real numbers, while k, n are positive integers

• Merge(SIVDseq
1 ,SIVDseq

2 )

– merges two sequences of (real) SIVD values

– input: SIVDseq
1 ,SIVDseq

2 are both sequences of (real) SIVD values

• CompAvgErr(SIVDseq)

– computes the mean and standard error of the mean from SIVDseq

– input: SIVDseq is a sequence of real SIVD values

• Interpol(αL, αR, αfit,SIVDL,SIVDR)

– estimates the mean and error in SIVD corresponding to αfit based on
the values attained for αL

– input: αL, αR, αfit are real numbers, while SIVDL,SIVDR are mean-
error pairs of real numbers

– uses on a linear interpolation within the [αL, αR] interval, separately
for the mean and for the error

• CompSystErr(αL, αR, αerr,SIVDL,SIVDR)

– estimates the systematic error SIVDsyst of the SIVD quantity induced
by the error αerr (associated to fitting the α parameter in terms of the
AIVD quantity), assuming that SIVD is a linear function of α within
the [αL, αR] interval

– input: αL, αR, αerr are real numbers while while SIVDL,SIVDR are
mean-error pairs of real numbers encoding the theoretical uncertainty
ranges on the left and right boundaries

– SIVDsyst is computed based on geometrical considerations, in the man-
ner illustrated in Fig. 2.7(b)

2.C.4 Algorithm usage

This section explain how the formalism presented throughout this document is
effectively used for producing the results shown in Sections 2.3 and 2.4.

First, the formalism is used for producing the plots showing the SIVD(β)
dependence (“Model fitting” section). For either PG or MPG, for a specific k
value and a specific β on-grid value, the drawn model SIVD uncertainty range
(Fig. 2.3) is obtained after the following computational steps:

1: (αL, αR, αfit, αerr) = Fit-1(β, k) . executing 1st-level fitting
2: β̄ = (β, αL, αR, αfit, αerr) . creating composite fitting information
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(a) (b)

Figure 2.7: Illustration of computation carried out by InterFitLin (a) and by
CompSystErr (b), with the output quantities highlighted in red.

3: SIVD = NumSIVD(β̄, k) . numeric SIVD calculations
4: (SIVDavg,SIVDstat,SIVDsyst) = MeanStatSyst(β̄,SIVD)

which provides the values of the SIVD average SIVDavg, the SIVD statistical error
SIVDstat and the SIVD systematic error SIVDsyst. One can then place a point at
coordinates (β,SIVDavg), within the respective k curve, with an error bar given
by the maximum between SIVDstat and SIVDsyst.

Second, the formalism is used for providing the best-fitting, on-grid values for
the α and β model parameters, which are used for generating sets of cultural
vectors on which the LTCD-STCB analysis is applied (Sec. 2.4). For either PG
or MPG and for a specific k value, the following procedure is followed:

1: (β̄L, β̄R, βfit, βerr) = Fit-2(k) . Executing 2nd-level fitting
2: (βL, α

L
L, α

R
L , α

fit
L , α

err
L ) = β̄L . Decompressing left-β composite fitting

information
3: (βR, α

L
R, α

R
R, α

fit
R , α

err
R ) = β̄R . Decompressing right-β composite fitting

information
4: if βfit − βL < βR − βfit then
5: β = βL . choosing βL, since it is closer to β
6: if αfit

L − αLL < αRL − αfit
L then

7: α = αLL . choosing αLL, since it is closer to αfit
L

8: else
9: α = αRL . choosing αRL , since it is closer to αfit

L

10: end if
11: else
12: β = βR . choosing βR, since it is closer to β
13: if αfit

R − αLR < αRR − αfit
R then

14: α = αLR . choosing αLR, since it is closer to αfit
R

15: else
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16: α = αRR . choosing αRR, since it is closer to αfit
R

17: end if
18: end if

which provides the best on-grid values for the (α, β) pair.
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Nonequilibrium transitions in complex networks: A model of social interac-
tion. Phys. Rev. E, 67:026120, Feb 2003.

[5] Marcelo N. Kuperman. Cultural propagation on social networks. Phys. Rev.
E, 73:046139, Apr 2006.

[6] Andreas Flache and Michael W. Macy. Local convergence and global diver-
sity: The robustness of cultural homophily. arXiv:physics/0701333, 2007.
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