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Convection in rotating annuli: Ginzburg-Landau equations with tunable coefficients

Martin van Hecke* and Wim van Saarloos
Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands

~Received 13 September 1996!

The coefficients of the complex Ginzburg-Landau equations that describe weakly nonlinear convection in a
large rotating annulus are calculated for a range of Prandtl numberss. For fluids withs'0.15, we show that
the rotation rate can tune the coefficients of the corresponding amplitude equations from regimes where
coherent patterns prevail to regimes of spatiotemporal chaos.@S1063-651X~97!50701-X#

PACS number~s!: 47.20.Bp, 47.20.Ky, 03.40.Gc, 47.32.2y
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The complex Ginzburg-Landau equation~CGLE!

] tA5A1~11 ic1!]x
2A2~12 ic3!uAu2A, ~1!

which describes slow modulations of an amplitude or en
lopeA near a Hopf bifurcation in spatially extended system
has been used extensively both to study nonequilibrium
tern formation@1,2# and as a model system for spatiotemp
ral chaos@3,4#. The qualitative dynamical behavior of solu
tions of the CGLE depends on the coefficientsc1 and c3,
which, for a given system, can be obtained from the und
lying equations by laborious calculations~see e.g.,@5# for
binary mixture convection!. For c1 andc3 small, as well as
close to the linec352c1, the dynamics is close to tha
found in the relaxational limitc15c350, whereas foruc1u
and uc3u large, the CGLE reduces to the nonlinear Sch¨-
dinger equation. In recent years, the complicated and o
surprising dynamics that occurs away from these limits,
been intensively studied theoretically@3,4#. In particular, it
has become clear that the CGLE shows various regime
spatiotemporal chaos whenc1c3.1; see Fig. 1. The precis
nature of the various chaotic regimes, as well as the ex
ence and nature of the transitions between them, is still un
active investigation in the field of spatiotemporal chaos.

In order to be able to investigate these chaotic regim
experimentally, one would like to have a system where t
coefficients of the corresponding CGLE can be tuned i
convenient way through the spatiotemporal chaotic regim
So far, only one experiment appears to be known where th
is indirect evidence that these regimes are accessed@6,7#.
When it was discovered that a forward Hopf bifurcation to
quasi-one-dimensional wall-mode occurs in rotati
Rayleigh-Bénard convection in bounded containers@8#, it
was realized that the rotation rate might serve to tune
coefficients of the corresponding CGLE@9#. Kuo and Cross
therefore performed the amplitude expansion for such a
tating cylinder of infinite radius ands56.4 ~corresponding
to water!, but, unfortunately, found that the coefficients r
main close to the relaxational linec152c3 for arbitrary val-
ues of the rotation rateV @10#. Our results for the annulus
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illustrated by the heavy line fors56.7 in Fig. 1, confirm this
for essentially all Prandtl numbers larger than 0.2.

In order to obtain an experimental realization of t
CGLE with coefficients that can be tuned by the rotation r
over a much wider range, we have investigated convectio
rotating annuli for a range of Prandtl numbers. We take
circumference of the annulus large enough that the curva
can be neglected. This geometry differs from a cylindric
one in that bulk-modes are quasi-one-dimensional and ca
described by the same amplitude equations as the w
modes, and that there aretwo wall-modes, localized nea
both side-walls. The infinite radius limit allows the use
Euclidean instead of cylindrical coordinates and circumve
the wavenumber discretization that occurs in a finite c

he
-

FIG. 1. Part of the phase diagram of the CGLE. Since the CG
is invariant underc1→2c1, c3→2c3, so is the phase diagram. Th
diagonal linec152c3 indicates the relaxational limit of the CGLE
while the curvec1c351 corresponds to the Newell criterion@1#;
outside of this hyperbola chaos occurs. The various spatiotemp
chaotic regimes and the linesL1, L2 , andL3 separating them@3,4#
are indicated, and the thick lines denote the results of our calc
tions. For s56.7, the coefficients stay close to the relaxation
limit, similar to @10#, but fors around 0.15 the rotation rate is ab
to tunec1 andc3 from close to the relaxational limit to deep int
the spatiotemporal chaotic regime. The variation with the dim
sionless rotation rateV is illustrated by the datapoints fo
V51000 andV52000.
R1259 © 1997 The American Physical Society
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R1260 55MARTIN van HECKE AND WIM van SAARLOOS
tainer @10,11#. In a system of finite radius, the two wal
modes will differ slightly, and as a result modes that a
stationary in the infinite radius system acquire a small f
quency@12#; we will ignore these effects. The main result
our calculations, illustrated in Fig. 1, is that fo
0.1&s&0.2 traveling waves in a rotating annulus are p
dicted to be an experimental realization of a CGLE who
coefficients scan through the spatiotemporal chaotic par
the phase diagram when the rotation rate is changed.

The relevant mode in the interesting low Prandtl num
regime is, however, not the analog of the wall-mode@8,10#.
We have found that thes dependence of the wall mode
weak, and its coefficients remain close to the relaxatio
limit. However, in an annulus of finite width, the oscillator
bulk mode identified already long ago for an infinite co
tainer @13,14#, becomes the primary bifurcation from th
nonconvective regime for a range of the rotation rates
0.1&s&0.2. It is this bulk mode whose coefficients have t
desired behavior. For even smaller values ofs, several
nearby branches compete and no simple picture eme
@15#.

Our calculations are based on standard methods to ca
late the coefficients of the amplitude equations~see, e.g.,
@5#!, but are complicated by computational difficulties a
the occurrence of several competing branches of solut
for s. Since a detailed account of the calculations and
results is given in@15#, we confine our presentation here to
description of the basic setup and a summary of the m
important predictions.

The amplitude equations describing the slow modulati
of a right-traveling mode with (x,t) dependence
ei (2kcx1vct) and amplitudeA, coupled to a left-traveling
modeei (kcx1vct) with amplitudeB, are@1,16#

t0(] t1vg]x)A5«~11 ic0!A1j0
2~11 ic1!]x

2A

2g0~12 ic3!uAu2A2g2~12 ic2!uBu2A,
~2a!

t0~] t2vg]x!B5«~11 ic0!B1j0
2~11 ic1!]x

2B

2g0~12 ic3!uBu2B2g2~12 ic2!uAu2B.
~2b!

For Rayleigh-Be´nard convection,«:5(R2Rc)/Rc , with R
the Rayleigh numbergaDTd3/kn, whereg is the gravita-
tional acceleration,a the thermal expansion coefficient,DT
the temperature difference between bottom and top platd
the height of the layer,k the thermal diffusivity, andn the
kinematic viscosity;Rc is the critical Rayleigh number
These quantities arise in the equations of motion that
scribe the fluid system in the corotating frame, which are
Navier-Stokes equation with additional centrifugal and Co
olis force, supplemented by the heat equation and the m
conservation law@13#. As usual@10,11,13,14#, we apply the
Boussinesq approximation and neglect the centrifugal for

Below we shall summarize our findings for all the coef
cients and parameters in the amplitude equations. Since
find thatg2.g0 for the bulk mode, the standing waves a
suppressed@1# and the relevant dynamical states are travel
wave states with, e.g.,AÞ0, B50. Upon rescaling time
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space and the amplitude, Eq.~2a! then reduces to the CGLE
~1! in the frame moving with the group velocityvg .

As a length scale we choosed, so the top and bottom
plates are atz50 andz51. We focus here on the case th
the width of the channel is 1; for nearby values of the wid
similar behavior occurs, as detailed in@15#. The rotating~in-
finite radius! annulus is therefore characterized by two p
rameters. The first is the Prandtl numbers:5n/k. The sec-
ond is the dimensionless rotation rateV:5VDd

2/n, where
VD is the angular velocity. In a typical experiment,s is
fixed, and the rotation rateV can be adjusted over a certa
range up to values of order 104. To be able to separate th
hydrodynamic equations, we assume slip boundary co
tions on the top and bottom plates, as in@10#. On the vertical
sidewalls we apply stick boundary conditions, which dam
the mean flow that plays a role for low Prandtl number co
vection with slip boundary conditions@17#

vx5vy5vz5]yu50 ony50,1, ~3a!

]zvx5]zvy5vz5u50 on z50,1, ~3b!

whereu is the deviation of the temperature from the condu
tive state profile. It should be noted that our version of t
stick boundary conditions is slightly simpler than those us
in @10#. We have normalized the amplitudes such thatuAu
represents the ratio of convected to conducted heat; the v
of g0 therefore determines the so-called Nusselt num
@10#.

Bifurcation structure and linear stability. From the equa-
tions of motion we have determinedRc , which is the value
of the Rayleigh number where convection sets in, and
corresponding critical wave numberkc and frequencyvc as
a function ofs andV. An important feature of our system i
that there exists, in particular for smalls ’s, a multitude of
solutions to the linearized equations, but only the mode w
the lowestcritical Rayleigh number is relevant. For a finit
cylinder, these branches are discussed in detail in@11#.

The relevant features of the bifurcation structure are ill
trated in Fig. 2 and can be summarized as follows.~a! The
linear stability analysis for the stationary modes is not d
pendent on the value ofs @15#. ~b! For all s*0.2, the wall-
mode is relevant for sufficiently large rotation rates, while
stationary~nonoscillatory! mode is relevant for smallV; see
Fig. 2~c!. For s56.7 the crossover between the stationa
and oscillatory modes occurs atV'27.5; the situation for
s56.7 is representative for the whole ranges*0.2. ~c! The
bulk-mode exists for values ofs that are comparable to
where the Hopf bifurcation in an infinite layer occu
@13,14#, and approaches this mode rapidly upon increas
the width of the annulus.~d! For 0.1&s&0.2 we find a band
of rotation ratesVmin,V,Vmax for which the bulk-mode
is relevant. See Fig. 2~c!, where Vmin5140 and
Vmax55600 are marked. The situation fors50.15 studied
below is representative, as Fig. 2~d! for s50.175 shows.~e!
Whens,0.1, the situation becomes quite convoluted sin
additional modes become relevant for some range ofV ’s.

Amplitude expansion. The amount of computer time tha
is needed for the calculation of the nonlinear coefficie
g0 , c3 , g2 , andc2 of the coupled amplitude equations~2! is
substantial; therefore, we cannot scan all system parame
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simultaneously. Instead, we have performed a ‘‘trial and e
ror’’ search in the~V,s! space. We shall not exhaust the
reader with the data thus obtained but concentrate on t
wall- and bulk-mode discussed above and to a few values
s that are representative for the various ranges of the Pran
number. The dependence of the coefficientsc1 andc3 of Eq.
~2! for these two modes is illustrated in Figs. 1 and 3.

For the wall-modes, we find that the precise value ofs is
quite irrelevant; the coefficientsc1 andc3 of the amplitude
equations are always near thec152c3 line, as the full line
in Fig. 1 shows fors56.7. WhenV is sufficiently large, the
wall-modes at the opposite sides of the boundary are deco
pled and we recover the result of Kuo and Cross@10#. Of
course, we have performed extensive searches in param
space to search for more interesting behavior of the coef
cients c1 and c3, but for all Prandtl numbers larger than
0.2, the wall-mode is relevant, and the behavior of the coe
ficients of the amplitude equations~2! is very much like that
for s56.7.

For all system parameters that we investigated,g2 re-
mains smaller thang0 for the wall-modes, and therefore the
convection occurs in two counterpropagating travelin
waves, which are localized near the oppositey boundaries
@1#. The coefficients of the amplitude equations for the wal

FIG. 2. ~a!–~c! The linear onset values of bulk-~BM! and wall-
modes~WM! as a function ofV for s56.7 and 0.15. In~c! and~d!
we have rescaled the critical Rayleigh numbers byV to facilitate
the comparison between the various modes. The stationary bifur
tion is seen to be the primary bifurcation for small rotation rate
For all s*0.2, the wall-mode constitutes the primary mode fo
sufficiently large V as illustrated for the cases56.7. For
s50.15, the bulk-mode exists for allV.Vmin'140. Its critical
Rayleigh number is smaller than the critical Rayleigh number of th
wall-mode forVmin,V,Vmax'5600. It is in this range that the
coefficients of the CGLE can be tuned over a wide range. In~a! and
~b! the corresponding critical frequencies and wave numbers a
plotted.~d! For values of the Prandtl number around 0.15, the crit
cal Rayleigh numbers of the wall-mode only show a weak depe
dence on the Prandtl number, whereas those for the bulk-mo
strongly depend ons. As a result, the range of rotation rates for
which the bulk-mode is relevant strongly depends ons; for
s50.175, the values ofVmin andVmax are approximately 200 and
2500, while fors50.125~not shown! they are 122 and 10 500.
r-
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modes that are relevant for smalls andV.Vmax, are simi-
lar to the coefficients that we find for the wall-mode fo
higher Prandtl numbers, in thatc1'2c3. In the other small-
s regime where the wall-mode is relevant, i.e.,V,Vmin ,
there appears to be a tiny regime, close toVmin , where the
coefficientsc1 andc3 might move away from the dissipative
limit; however, the numerics are not decisive here.

From the point of view of the amplitude equations, th
wall-modes do not have many interesting features, and the
fore we will focus now on the bulk-modes that are releva
for small Prandtl numbers andVmin,V,Vmax. The coef-
ficients of the amplitude equations~2! for the bulk-mode are
shown in Fig. 3 fors50.15. We find that the coefficients
c1 andc3 can be tuned over a wide range by the rotation ra
For the system parameters that we consider,g2.g0 @see Fig.
3~d!# and the left- and right-traveling modes suppress ea
other. The convection patterns thus consist of a juxtaposit
of patches of left- and right-traveling waves, and after care
adjustments one may have the convection exclusively c
sisting of either a left- or a right-traveling wave, which wa
rants a description with a single CGLE. Note that for such
single wave the value ofc2 is immaterial, since terms of the
form uAu2B or uBu2A are zero.

At other values of the Prandtl numbers in the range
0.1&s&0.2, the main effect of a change ins is through a
change inVmin andVmax; the coefficients of the amplitude
equations depend ofs, but this dependence is rather weak,
the sense thatV still makes the coefficients vary over a wid
range. This is shown in Fig. 1, where the path that the co
ficients trace in the parameter space of the CGLE is sho
for three values ofs.

Can the interesting Prandtl number range 0.1&s&0.2 be
accessed experimentally? Compressed gases haves*0.7
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-
-
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FIG. 3. The coefficients of Eq.~2! for the bulk-mode for
s50.15. The coefficientsc1 and in particularc3 have a strong
dependence of the rotation rate~c!. For V→Vmax, c1 andc3 are
close to the relaxational limit. When the rotation rate is decreas
c3 changes sign, and atV'1050, the Newell criterion is reached
(c1c351). A further decrease of the rotation rate pushes the co
ficients deep into the spatio-temporal chaotic regime, as Fig
shows.
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R1262 55MARTIN van HECKE AND WIM van SAARLOOS
and typical liquids have even largers ’s, while liquid mer-
cury and gallium haves50.025 ands50.005. However,
Rayleigh-Bénard convection in superfluid3He-4He mixtures
is known to behave to a very good approximation as a c
vecting liquid with a Prandtl number which can be tun
continuously between 0.02 and about 1@18#. Convection in
rotating cells and flow visualization have recently beco
possible for such mixtures@19#, and so this system provide
a unique route to probe the regimes of phase-chaos
defect-chaos experimentally, and to compare to theore
predictions@3,4#. Another possible realization of convectio
with s'0.15 is in certain gas mixtures, that might behave
reasonable good approximations to single component fl
@20#.

In summary, we predict that Rayleigh-Be´nard convection
in a large rotating annulus is an attractive experimental r
ization of a supercritical CGLE with tunable coefficients f
a number of reasons:~i! The onset of convection can occu
either via a stationary or a Hopf bifurcation; in the latter ca
the mode can either consist of asingle traveling bulk wave,
or two counterpropagating wall-modes. The rotation rate
be adjusted to study the competition between these state
analogy to the study of the co-dimension-2 points that oc
in binary liquid convection @5#. ~ii ! The quasi-one-
ch
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dimensional geometry of the system warrants a descrip
in terms of one-dimensional amplitude equations, for b
the intrinsic one-dimensional wall-modes and the intrin
two-dimensional bulk-mode.~iii ! The onset of convection
occurs via a forward bifurcation; for backward bifurcation
like those in binary liquids, amplitude equations can at m
give a qualitative description of the patterns.~iv! The under-
lying basic equations for this system, i.e., the Navier-Sto
equations, are considerably simpler than the basic equat
for convection in liquid crystals or binary liquids. For in
stance, in the latter system, it is hard to decide which asp
of the experimentally observed chaos@21# can be described
by the quintic CGLE, and which aspects are connected
physically relevant effects that are not captured in an am
tude description.

Note added.After submission of this paper, we becam
aware of a recent copy of unpublished work@22# in which it
is predicted that Rossby waves in a rapidly rotating annu
heated from the outside also show very similar instabiliti
both for comparable and for very small Prandtl numbers.

We have benefited from correspondence with R. E. Ec
M. C. Cross, P. Kolodner, F. H. Busse, G. Ahlers, P. G.
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