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The region of instability for planar reaction fronts of cubic autocatalysis between ionic species under
constant electric field has been determined accurately. The ratio of diffusion coefficients at the onset
of instability dcr is substantially varied by the component-dependent drift and directly proportional
to the concentration of the autocatalyst behind the frontbs as dcr52.3002bs . This opens the
possibility to use electric field as a control parameter for reaction-front instabilities. The dispersion
relation calculated from the linear stability analysis of the full system is in good agreement with the
initial evolution of the Fourier modes associated with the slightly perturbed planar reaction front
obtained by the direct integration of the governing equations in two spatial dimensions. ©1999
American Institute of Physics.@S0021-9606~99!50148-7#

I. INTRODUCTION

Autocatalytic reaction-diffusion fronts with short-range
activation may lose stability and result in cellular front
structures.1 This diffusion-driven lateral instability has been
studied thoroughly in cubic autocatalysis,2–4 which is the
simplest chemical system exhibiting the phenomenon. Ex-
perimental studies have reported the existence of cellular
structures evolving from unstable planar reaction fronts un-
der isothermal conditions in the iodate–arsenous acid5 and
the chlorite–tetrathionate reactions.6 The latter system has
also been the subject of quantitative analysis7 and extension
to three spatial dimensions.8

In reactions involving ionic species, externally imposed
electric field may have a dramatic effect on the spatiotempo-
ral behavior as a result of the component-dependent migra-
tion as observed in the excitable Belousov–Zhabotinsky
reaction,9,10 one-dimensional propagating fronts of the
iodate–arsenous acid reaction,11 and mosaic patterns of the
methylene blue–sulfide–oxygen system.12 When the applied
electric field is constant, the effect is similar to that of dif-
ferential flow;13,14 a component-dependent drift arises with a
constant velocity. Rovinskyet al.15 have investigated the sta-
bility of planar autocatalytic fronts in the presence of differ-
ential flow and found that a selective drift in the direction of
front propagation either stabilizes or destabilizes the planar
front structure near the onset of instability depending on the
orientation of the flow. By applying a thin-reaction-front
approximation,16 Horváth et al.17 have furthermore presented
that destabilization is enhanced when the ionic migration
tends to separate the components. The concentration of the
autocatalyst behind the front has been shown to play an im-
portant role in the electric field induced lateral instability,

which is not restricted to the neighborhood of the onset of
instability.

In this work we carry out a linear stability analysis of the
full two-dimensional system of cubic autocatalysis between
ionic species under constant electric field in order to locate
the region of lateral instability. The factors affecting the sta-
bility are stated and the onset of instability is determined
accurately. One surprising finding, derived analytically, is
that the critical ratio of diffusion coefficientsdcr is linearly
related to the concentration of the autocatalyst behind the
front bs . The dispersion relation is also calculated and com-
pared to the temporal behavior of the Fourier modes in the
front evolved from a slightly perturbed planar reaction front.

II. GOVERNING EQUATIONS

Under a constant electric field, reaction fronts of cubic
autocatalysis are governed by
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]t
5d¹2a2zA«d

]a

]j
2ab2, ~1a!

]b

]t
5¹2b2zB«

]b

]j
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wherea andb are the dimensionless concentrations of reac-
tant A with chargezA and autocatalystB with chargezB

relative to the initial concentration ofA far ahead of the front
and¹25]2/]j21]2/]h2. The ratio of the diffusion coeffi-
cients is taken asd5DA /DB and« represents the dimension-
less electric field strength. For planar fronts, it is convenient
to introduce a new coordinatez5j2ct that travels at the
same velocityc as the front, upon which the equations in Eq.
~1! then become
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since in the new coordinate system (z,h,t), ]a/]t50,
]a/]h50 and the same holds forb. The boundary condi-
tions are given asa(1`)→1, b(1`)→0 representing the
reactant side ahead of the front anda(2`)→0, b(2`)
→bs the product side behind the front, while the concentra-
tion gradients vanish at both limits. The existence of a reac-
tion front requires that both coefficients of the concentration
gradients in Eq.~2! be positive, leading to an expression for
the final concentration of the autocatalyst behind the front18

as

bs5
c2zA«d

c2zB«
511

Dv
c2zB«

. ~3!

In this equation, which can be simply obtained by adding
Eqs. ~2a! and ~2b! and integrating between the limits,Dv
5(zB2zAd)« is the difference in the drift velocity of the
components relative to the reactant. In the case of unequal
mobilities (zBÞzAd), therefore, the drift induced by electric
field variesbs by increasing or decreasing the spatial overlap
of the components.

III. LINEAR STABILITY ANALYSIS OF PLANAR
FRONTS

For the stability analysis we first rescale the variables
and coordinates according toã5a, b̃5b/bs , z̃5zAbs, h̃
5hAbs, and t̃5tbs

2 to obtain
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whereQ05c2zA«d. A small spatial perturbation of the pla-
nar solutionã0( z̃), b̃0( z̃) is then introduced as

ã~ z̃,h̃,t̃ !5ã0~ z̃ !1 (
k>0

ã1,k~ z̃ !fk~ h̃,t̃ !, ~5a!

b̃~ z̃,h̃,t̃ !5b̃0~ z̃ !1 (
k>0

b̃1,k~ z̃ !fk~ h̃,t̃ !, ~5b!

wherek is the wave number associated with the perturbation.
After the substitution of Eq.~5! into Eq.~4! and linearization
in fk , the various spatial modes decouple. Taking then the
form of exp(vt̃1ikh̃), we obtain

S v1d8k2 0

0 bsv1k2D S ã1,k

b̃1,k
D 5L̂S ã1,k

b̃1,k
D , ~6!

where matrix operatorL̂ is given as
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with d85d/bs andQ085Q0 /bs
3/2. The planar front loses sta-

bility when v becomes positive for spatial modes in the
range of 0,k,kmax, representing a long-wavelength
instability.19 The k50 mode corresponds to the homoge-
neous translation in the direction of propagation

ã0~ z̃1dz̃ !5ã0~ z̃ !1
dã0

dz̃
dz̃, ~8a!

b̃0~ z̃1dz̃ !5b̃0~ z̃ !1
db̃0

dz̃
dz̃, ~8b!

to which the planar solution is invariant. The translation
mode (dã0 /dz̃,db̃0 /dz̃)T is a right zero mode ofL̂ as

05L̂S dã0

dz̃

db̃0

dz̃

D , ~9!

which is the scaled version of the linearized form of Eq.~2!,
and hence hasv50. By comparing Eqs.~5! and ~8!, we
realize thatã1,0 and b̃1,0 are dã0 /dz̃ and db̃0 /dz̃, respec-
tively, and that these indeed comprise the eigenvector be-
longing to the zero eigenvalue ofL̂.

The onset of lateral instability occurs whendv/d(k2) at
k50 changes its sign from negative to positive as some pa-
rameter is varied; we therefore investigate the behavior of
thev –k2 curve in the vicinity of the origin. When the wave
number is slightly increased so thatk2 is of O(e) with e
being an arbitrarily small positive number,v takes on a
value ofO(e) and the solution of Eq.~6! also changes as

ã1,k5ã1,01ã85
dã0

dz̃
1ã8, ~10a!

b̃1,k5b̃1,01b̃85
db̃0

dz̃
1b̃8, ~10b!

whereã8 and b̃8 are ofO(e) as well. Following the substi-
tution of Eq. ~10! into Eq. ~6!, the zeroth-order terms ine
return the solution fork50, while the first-order terms yield

S v1d8k2 0

0 bsv1k2D S dã0

dz̃

db̃0

dz̃

D 5L̂S ã8

b̃8
D . ~11!

Since L̂ has a zero eigenvalue, the solvability condition of
Eq. ~11! ~Ref. 20! leads to
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wherec1 andc2 are the components of the right zero eigen-
vector of the adjoint matrix operator
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22ã0b̃0

]2

]z̃2
2Q08

]

]z
12a0b0

D . ~13!

Rewriting Eq.~12! as

vE
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where the integral on the left-hand side may be set to unity
with proper normalization of the eigenvector, leads to

dv

d~k2!
U

k50

52E
2`

1`S d8c1

dã0

dz̃
1c2

db̃0

dz̃
D dz̃. ~15!

Planar fronts at various« therefore lose stability when the
integral in Eq.~15! becomes negative asd8 exceeds some
critical value which implies that in the original parameters,
the instability threshold can be written asdcr5dcr8 bs . More-
over, we see that there is a singledcr8 for the onset of insta-
bility because in Eq.~9! d8→d andQ08→c as«→0. Hence
the condition in Eq.~15! leads to that applied by Kapral and
co-workers4 for reaction-diffusion fronts in the absence of
drift ~dcr52.300 at«50!.

IV. NUMERICAL STUDY

A. Region of instability

The one-dimensional front profile governed by Eq.~2! is
represented by a heteroclinic orbit in the (a,b,db/dz) phase
space connecting the two steady states corresponding to the
boundary conditions.21 By applying a standard shooting
method using theCVODE package,22 we select velocities for
which the trajectory leaving the state atz52` along the
unstable manifold approaches the state atz51` along the
stable manifold. The upper branch of the solution contains
the minimum velocities generally selected by one-
dimensional stable fronts propagating into the unstable
state,18 and the turning point at the end of this branch repre-
sents the limit for a reaction-front solution.23 For the deter-
mination of dcr8 , the front profile is taken from the final
shooting and the eigenvector of the adjoint matrix operator
L̂* is calculated from

05L̂* S c1

c2
D , ~16!

with a relaxation technique24 as all other modes decay rap-
idly, leaving the desired eigenvector after a transient time.4

The integration is carried out using theCVODE package on
8001 points with a spacing ofDz̃50.05. The onset of insta-
bility is determined by varyingd8 iteratively with a maxi-
mum tolerance of 1026 for the integral in Eq.~15!.

B. Dispersion relation

The dispersion relation may simply be calculated by tak-
ing a new form for the perturbation @fkã1,k

5wa exp(ikh̃), fkb̃1,k5wb exp(ikh̃)# from

S ]wa

]t̃

bs

]wb

]t̃

D 5L̂S wa

wb
D1S d8k2 0

0 k2D S wa

wb
D , ~17!

a version of Eq.~6!. After a transient period, (]wa /]t̃)/wa

and (]wb /]t̃)/wb become constant, yieldingv within a set
error of 0.1%. Ask is increased, the initial condition is taken
as the mode obtained in the previous run, using the same
method as that applied for calculatingc1 andc2 . The results
are transformed into the unscaled coordinate system of Eq.
~1! as vbs

2→v and kAbs→k, and compared to those ob-
tained from the direct integration of Eq.~1! applying an
operator-splitting method with a Crank–Nicholson scheme24

on a 5013401 grid with a spacing of 0.9, a time step of 0.01,
and Neumann boundary conditions. For initial conditions,
the planar boundary separating the two steady states is per-
turbed by shifting one randomly chosen grid line by one
point in the direction of propagation. During the calculations
the grid is adjusted in order to keep the front in the center.
The coefficients of the Fourier cosine series associated with
the front position—defined as the location of maximum re-
action rate alongz—are determined at given intervals, the
initial time dependence of which yieldsv for the various
modes.

V. RESULTS AND DISCUSSION

When the drift caused by electric field tends to separate
the components, i.e.,Dv,0, a critical field strength«cr ex-
ists, beyond which reaction fronts fall apart and give rise to
two independent electrophoretic fronts spreading with in-
creasing distance between them. For the systematic study
with reactantA diffusing slightly faster than autocatalyst
B (1<d,3), we have chosen pairs of charges so that sepa-
ration occurs at negative field,25 the result of which may
readily be transfered to opposite charges by a simple change
of signs. For the onset of instabilitydcr8 52.3002 in accor-
dance with the results of Kapral and co-workers in the ab-
sence of drift, and hence the critical ratio of diffusion coef-
ficients is given asdcr52.3002bs . The planar front remains
stable for equal diffusion coefficients because the minimum
of dcr is slightly above unity as shown in Fig. 1. Since the
concentration of the autocatalyst behind the frontbs is solely
a function of the ratio of diffusion coefficientsd and the
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difference in the drift velocity of the componentsDv, the
region of stability is presented in the (d,Dv)-plane for all
charges in Fig. 2 utilizing the relationship

Dv5bs
1/2~bs21!c«50 , ~18!

obtained from the definition ofQ08 and Eq.~3! with c«50

50.590 147 for the onset of instability. Planar fronts lose
stability as the separation of components is increased, i.e.,
Dv is decreased, resulting in the formation of cellular struc-
tures. Further decrease in the difference of drift velocities
leads to the extinction of reaction fronts. Figure 2 also shows
that the critical ratio of diffusion coefficientsdcr can be sub-
stantially decreased by approaching«cr .

The dispersion relation is illustrated for an example case
above and below the onset of instability in Fig. 3. The tem-
poral eigenvalues are in good agreement with those of the
individual modes present in the initial growth or decay of a
small random perturbation obtained from the direct integra-
tion of Eq.~1!. The calculation ofv(k) at d55.0, i.e., farther
from the onset of instability, indicates that even though pla-
nar fronts become more unstable on approaching«cr , the

range ofk for growing modes in the unscaled coordinate
system shrinks because of the decrease inbs . This is in
accordance with our earlier results on integrating Eq.~1!; not
only the amplitude of cellular structure but also the indi-
vidual cell size increases towards«cr .

17

When we plot the region of stability as a function of
electric field strength for a given pair of charges, two distinct
scenarios arise; the relation of the mobilities remains un-
changed or is reversed asd is increased. The former re-
sembles the general picture in Fig. 2, while the latter reveals
a division of the region of instability as a result of the un-
conditional stability of planar fronts for all« at equal mobili-
ties, as shown in Fig. 4.

VI. CONCLUSION

We have determined the region of lateral instability ac-
curately by applying a linear stability analysis on the full

FIG. 1. Phase diagram showing the regions of stable planar reaction fronts
~SPF!; lateral instability ~LI !; electrophoretic fronts ~EF! in the
(d,bs)-plane. Curves calculated from the linear stability analysis represent
the onset of instability with solid line (dcr52.3002bs) and the extinction of
reaction-diffusion fronts with dashed line.

FIG. 2. Phase diagram showing the regions of stable planar reaction fronts
~SPF!; lateral instability ~LI !; electrophoretic fronts ~EF! in the
(d,Dv)-plane. Curves calculated from the linear stability analysis represent
the onset of instability with solid line and the extinction of reaction-
diffusion fronts with dashed line.

FIG. 3. Dispersion relation in the unscaled coordinate system for an ex-
ample case ofzA521, zB511, «520.08. Curves from the linear stability
analysis are drawn with solid line ford51.4 and dashed line ford51.3.
Symbols represent the eigenvalues of the Fourier modes associated with the
front evolved from a perturbed planar front in the full 2D problem withn

for d51.4 andh for d51.3.

FIG. 4. Typical diagram showing the regions of stable planar reaction fronts
~SPF!; lateral instability~LI !; electrophoretic fronts~EF! in the ~d,«!-plane
with the relation of mobilities unchanged~top!, and reversed atd52 ~bot-
tom!. Curves from the linear stability analysis represent the onset of insta-
bility with solid line and the extinction of reaction-diffusion fronts with
dashed line. The corresponding charges arezA521, zB511 ~top! andzA

51, zB52 ~bottom!.
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reaction-diffusion system with advective terms. An appropri-
ate scaling has elucidated that the critical ratio of the diffu-
sion coefficients for any field strength can be derived from
that in the absence of electric field. The results confirm that
the thin-reaction-front approximation17 not only reveals the
importance of the concentration of the autocatalyst behind
the front for the stability of planar fronts but also predicts the
existing proportionality betweendcr andbs . By varying the
drift of components, the critical ratio of diffusion coefficients
may be substantially varied with the region of lateral insta-
bility lying between that of the stable planar reaction fronts
and the electrophoretic fronts ford .1. The analysis has also
led to the accurate determination of the dispersion relation
which shows that the drift caused by the electric field sharply
influences the number of unstable modes initially present
beyond the onset of instability.
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5D. Horváth and K. Showalter, J. Chem. Phys.102, 2471~1995!.
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18J. H. Merkin, H. Ševčı́ková, D. Šnita, and M. Marek, IMA J. Appl. Math.

60, 1 ~1998!.
19Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence~Springer,

Berlin, 1984!.
20See, for example, P. Grindrod,Patterns and Waves~Clarendon, Oxford,

1991!, pp. 22–23.
21J. Billingham and D. J. Needham, Philos. Trans. R. Soc. London, Ser. A

334, 1 ~1991!.
22S. D. Cohen and A. C. Hindmarsh, Comput. Phys.10, 138 ~1996!.
23While this is well known in the literature of reaction-diffusion equations,

it actually holds much more generally. See, e.g., U. Ebed and W. van
Saarloos, Physica D~accepted!.

24See, for example, W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.
P. Flannery,Numerical Recipes in C~Cambridge University Press, Cam-
bridge, 1992!.

25The set of charges (zA ,zB) selected for the calculations,23,21; 22,21;
22, 0; 21,21; 21, 0; 21,11; 0,11; 0,12; 11,12.

10968 J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 Tóth, Horváth, and Saarloos


