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Incorporation of density-matrix wave functions in Monte Carlo simulations:
Application to the frustrated Heisenberg model

M. S. L. du Croo de Jongh, J. M. J. van Leeuwen, and W. van Saarloos
Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
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We combine the density-matrix renormalization-group~DMRG! technique with Green function Monte Carlo
~GFMC! simulations using a special representation of the DMRG wave function. As a test case we apply the
method to the two-dimensional frustrated Heisenberg antiferromagnet. By supplementing the branching in
GFMC simulations with stochastic reconfiguration we get a stable simulation with a small variance also in the
region where the fluctuations due to the minus sign problem are maximal. The sensitivity of the results to the
choice of the guiding wave function is extensively investigated. In agreement with earlier calculations it is
found from the DMRG wave function that for small ratios of the next-nearest-to-nearest neighbor coupling
strength the system orders as a Ne´el-type antiferromagnet and for large ratios as a columnar antiferromagnet.
The spin stiffness suggests an intermediate regime without magnetic long-range order. The energy curve
indicates that the columnar phase is separated from the intermediate phase by a first-order transition. The
combination of the DMRG and GFMC techniques allows us to substantiate this picture by calculating also the
spin correlations in the system. We observe a pattern of spin correlations in the intermediate regime which is
in between dimerlike and plaquette-type ordering, states that have recently been suggested. It is a state with
strong dimerization in one direction and weaker dimerization in the perpendicular direction and thus it lacks
the square symmetry of the plaquette state.
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I. INTRODUCTION

The density-matrix renormalization-group~DMRG! tech-
nique has proved to be a very efficient method to determ
the ground-state properties of low-dimensional systems.1 For
a quantum chain it produces extremely accurate values
the energy and the correlation functions. In two-dimensio
systems the calculational effort increases rapidly with
size of the system. The most favorable geometry is that
long small strip. In practice the width of the strip is limited
around eight to ten lattice sites. Greens function Monte Ca
~GFMC! simulations are not directly limited by the size
the system but by the efficiency of the importance sampli
When the system has a minus sign problem the statistic
ruined in the long run and accurate estimates are imposs
Many proposals2 have been made to alleviate or avoid t
minus sign problem with varying success, but all of the
introduce uncontrollable errors in the sampling. In t
DMRG calculation of the wave function the minus sig
problem is not manifestly present. In all proposed cures
the minus sign problem the errors decrease when the gui
wave function approaches the ground state.

The idea of this paper is that DMRG wave functions a
much better, also for larger systems, than the educ
guesses which usually feature as guiding wave functio
Moreover, the DMRG approach is a general technique
construct a wave function without knowing too much abo
the nature of the ground state, with the possibility to syste
atically increase the accuracy. Thus DMRG wave functio
would do very well when they could be used as guidi
functions in the importance sampling of GFMC simulation
There is a complicating factor which prevents a straightf
ward implementation of this idea due to the fact that int
PRB 620163-1829/2000/62~22!/14844~11!/$15.00
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esting systems are so large that it is impossible to use a w
function via a lookup table. The value of the wave functi
in a configuration has to be calculated by an in-line alg
rithm. This has limited the guiding wave functions to simp
expressions which are fast to evaluate. Consequently s
guiding wave functions are not an accurate representatio
the true ground-state wave function, in particular if the ph
ics of the ground state is not well understood. In this pa
we describe a method to read out the DMRG wave funct
in an efficient way by using a special representation of
DMRG wave function.

A second problem is that a good guiding wave functi
alleviates the minus sign problem, but cannot remove it
long as it is not exact. We resolve this dilemma by applyi
the method of stochastic reconfiguration~SR! which has re-
cently been proposed by Sorella.3 The viability of our
method is tested for the frustrated Heisenberg model.

The behavior of the two-dimensional Heisenberg antif
romagnet has been intriguing for a long time and still is
the center of research. The source of the complexity of
ground state is the large quantum fluctuations which co
teract the tendency of classical ordering. The unfrustra
two-dimensional Heisenberg antiferromagnet orders in
Néel state and by numerical methods the properties of
state can be analyzed accurately.4 The situation is worse
when the interactions are competing as in a two-dimensio
square lattice with antiferromagnetic nearest-neighborJ1 and
next-nearest-neighborJ2 coupling. This spin system with
continuous symmetry can order in two dimensions at z
temperature, but it is clear that the magnetic order is fr
trated by the opposing tendencies of the two types of in
action. The ratioJ2 /J1 is a convenient parameter for th
frustration. For small values the system orders antiferrom
netically in a Néel-type arrangement, which accommodat
14 844 ©2000 The American Physical Society
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PRB 62 14 845INCORPORATION OF DENSITY-MATRIX . . .
the nearest-neighbor interaction. For large ratios a magn
order in alternating columns of aligned spins~columnar
phase! will prevail; in this regime the roles of the two cou
plings are reversed: the nearest-neighbor interaction f
trates the order imposed by the next-nearest-neighbor in
action. In between, for ratios of the order of 0.5, t
frustration is maximal and it is not clear which sort of grou
state results. This problem has been attacked by var
methods but not yet by the DMRG technique and only v
recently by GFMC simulations.5 This paper addresses th
issue by studying the spin correlations.

A simple road to the answer is not possible since frus
tion implies a sign problem which prevents a straightforwa
use of the GFMC simulation technique. Moreover, the fr
tration substantially complicates the structure of the grou
state wave function. Generally frustration encourages the
mation of local structures such as dimers and plaque
which are at odds, but not incompatible, with long-ran
magnetic order. These correlation patterns are the mos
teresting part of the intermediate phase and the main goa
this investigation.

Many attempts have been made to clarify the situati
Often simple approximations such as mean-field or sp
wave theory give useful information about the qualitati
behavior of the phase diagram. A fairly sophistocated me
field theory using the Schwinger boson representation d
not give an intermediate phase.6 Given the complexity of the
phase diagram and the subtlety of the effects it is not c
whether such approximate methods can give in this ca
reliable clue to the qualitative behavior of the system.

Exact calculations have been performed on small syst
up to size 636 by Schulzet al.7 Although this information
is very accurate and unbiased to possible phases, the ext
lation to larger systems is a long way, the more so in view
indications that the anticipated finite-size behavior only
plies for larger systems. Another drawback of these sm
systems is that the ground state is assumed to have the
symmetry of the lattice. Therefore the symmetry breaki
associated with the formation of dimers, ladders, or p
quettes, which is typical for the intermediate state, canno
observed directly.

More convincing are the systematic series expansion
reported recently by Kotovet al.8,9 and by Singhet al.,10

which bear on an infinite system. They start with indepe
dent dimers~plaquettes! and study the series expansion in t
coupling between the dimers~plaquettes!. By the choice of
the state, around which the perturbation expansion is m
the type of spatial symmetry breaking is fixed. These stud
favor in the intermediate regime the dimer state over
plaquette state. Their dimer state has dimers organize
ladders in which the chains and the rungs have nearly e
strength. So the system breaks translational invariance
in one direction. The energy differences are, however, sm
and the series is finite, so further investigation is useful. O
simulations yield correlations in good agreement with the
but do not confirm the picture of translational invariant la
ders. Instead we find an additional weaker symmetry bre
ing along the ladders, such that we come closer to the p
quette picture.

Very recently Capriotti and Sorella5 have carried out a
GFMC simulation forJ250.5J1 and have studied the sus
tic
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ceptibilities for orientational and translational symmet
breaking. They conclude that the ground state is a plaqu
state with full symmetry between the horizontal and verti
directions.

From the purely theoretical side the problem has be
discussed by Read and Sachdev11 on the basis of a large spi
expansion. From their analysis a scenario emerges in w
the Néel phase disappears upon increasing frustration i
continuous way. Then a gapped spatial-inhomogene
phase with dimerlike correlations appears. For even hig
frustration ratios a first-order transition takes place to
columnar phase. Although this scenario is qualitative, wi
out precise location of the phase transition points, it defi
tively excludes dimer formation in the magnetically order
Néel and columnar phases. It is remarkable that two qu
different order parameters~the magnetic order and the dime
order! disappear simultaneously and continuously on op
site sides of the phase transition. In this scenario, this
taken as an indication of some kind of duality of the tw
phases.

Given all these predictions it is of utmost interest to fu
ther study the nature of the intermediate state. Due to
smallness of the differences in energy between the var
possibilities, the energy will not be an ideal test for the pha
diagram. Therefore we have decided to focus on the s
correlations as a function of the ratioJ2 /J1. In this paper we
first investigate the two–dimensional frustrated Heisenb
model by constructing the DMRG wave function of th
ground state for long strips up to a width of eight sites. T
ground-state energy and the spin stiffness which are ca
lated confirm the overal picture described above, but the
sults are not accurate enough to allow for a conclusive
trapolation to larger systems. Then we study an open
310 lattice by means of the GFMC technique using DMR
wave functions as the guiding wave function for the impo
tance sampling. The GFMC simulations are supplemented
stochastic reconfiguration as proposed by Sorella3 as an ex-
tension of the fixed node technique.12 This method avoids the
minus sign problem by replacing the walkers regularly by
new set of positive sign with the same statistical propert
The first observation is that GFMC improves the energy
the DMRG technique in a substantial and systematic way
can be tested in the unfrustrated model where sufficient
formation is available from different sources. Second,
spin correlations become more accurate and less depen
on the technique used for constructing the DMRG wa
function. The DMRG technique is focused on the energy
the system and less on the correlations. The GFMC te
nique probes mostly local correlations of the system as
moves are small and correspond to local changes of the
figurations. With these spin correlations we investigate
phase diagram for various values of the frustration ra
J2 /J1.

After giving the definition of the model we briefly de
scribe the DMRG method and its results for the energy a
the stiffness. Then we go into more detail about the way
constructed wave functions can be used as guiding w
functions in the GFMC simulation. This is a delicate pro
lem since the full construction of a DMRG wave functio
takes several hours on a workstation. Therefore we sepa
off the construction of the wave function and cast it in a fo
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14 846 PRB 62du CROO de JONGH, van LEEUWEN, AND van SAARLOOS
where the configurations can be obtained from each othe
matrix operations on a vector. So the length of the compu
tion of the wave function in a configuration scales with t
square of the number of states included in the DMRG w
function. The remaining sections concern the GFMC sim
lations and are focused on the correlation functions since
see them as most significant for the structure of the pha
We give first a global evaluation of the correlation functi
patterns for a wide set of frustration ratios and then focus
a number of points to see the dependence on the gui
wave function and to deduce the trends. The paper clo
with a discussion and a comparison with other results in
literature.

II. HAMILTONIAN

The Hamiltonian of the system refers to spins on a squ
lattice:

H5J1(
( i , j )

Si•Sj1J2(
[ i , j ]

Si•Sj . ~1!

The Si are spin-12 operators and the sum is over pairs
nearest neigbors (i , j ) and over pairs of next-nearest neig
bors @ i , j # on a quadratic lattice. Both coupling constantsJ1
andJ2 are taken as positive. So the two types of interactio
frustrate each other.

In order to prepare for the representation of the Ham
tonian we express the spin components in spin raising
lowering operators

Si•Sj5
1

2
~Si

1Sj
21Si

2Sj
1!1Si

zSj
z . ~2!

We will use thez component representation of the spins a
a complete state of the spins will be represented as

uR&5us1 ,s2 , . . . ,sN&, ~3!

where thesj are eigenvalues of theSj
z operator. The diagona

matrix elements of the Hamiltonian are in the representa
~3! given by

^RuHuR&5J1(
( i , j )

sisj1J2(
[ i , j ]

sisj . ~4!

The off-diagonal elements are between two nearby confi
rationsR8 andR. HereR8 is the same asR except at a pair of
nearest-neighbors sites (i , j ) or next-nearest-neighbor site
@ i , j #, for which the spinssi and sj are opposite. InR8 the
pair is turned over by the Hamiltonian. Then

^R8uHuR&5
1

2
J1 or ^R8uHuR&5

1

2
J2 , ~5!

depending on whether a nearest or a next-nearest pa
flipped.

III. DMRG PROCEDURE AND ITS RESULTS

The DMRG procedure approximates the ground-st
wave function by searching through various representat
in bases of a given dimensionm.1 In its standard form13 the
system is mapped on a one-dimensional chain~see Fig. 1!
by
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and separated into two parts: aleft andright hand part, con-
nected by one~or more! site~s!. The wave function is itera-
tively improved at the left hand side by using a basis for
right hand side and vice versa. By separating off a site fr
the right and including it to the left the wave function
rewritten in a new basis which is optimized by chosing t
largest eigenvalues of the density matrix. Zipping back a
forth until convergence to a steady state, a wave functio
reached which is optimal for the given basis.

In Fig. 2 we have drawn two possible ways to map t
system on a one-dimensional chain. One sees that if we
vide again the chain into a left hand part and a right ha
part and a connecting site, quite a few sites of the left ha
part are nearest or next-nearest neighbors of sites of the
hand part. So the coupling between the two parts of the ch
is not only through the connecting site but also through s
which are relatively far away from each other in the on
dimensional path. The operators for the spins on these s
are not as well represented as those of the connecting
which is fully represented by the two possible spin stat
Yet the correlations between the interacting sites coun
much for the energy of the system as those interacting w
the connecting site. One may say that the farther away
interacting sites are in the one-dimensional chain, the po
their influence is accounted for. This consideration expla
in part why open systems can be calculated more accura
than closed systems, even in one-dimensional systems.

It is an open question which map of the two-dimension
onto a one-dimensional chain gives the best representatio
the ground state of the system. We have restricted our ca
lations to the two paths shown here. The second choice,
‘‘meandering’’ path, was motivated by the fact that it has t
strongest correlated sites most nearby in the chain. Ind
for a given dimensionm of the representation, the ‘‘mean
dering’’ path gives a lower energy than the ‘‘straight’’ pat

The DMRG calculations as well as the correspond
GFMC simulations are carried out for both paths. Althou

FIG. 1. The DMRG procedure with one connecting site.

FIG. 2. Two one-dimensional paths through the syste
‘‘straight’’ ~a! and ‘‘meandering’’~b!.
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PRB 62 14 847INCORPORATION OF DENSITY-MATRIX . . .
the meandering path has to be preferred over the stra
path, we have also investigated the latter, since the path
sen leaves its imprints on the resulting correlation patt
and the paths break the symmetries in different ways. B
paths have an orientational preference. In open systems
translational symmetry is broken anyway, but the meand
ing path has in addition a staggering in the horizontal dir
tion. This together with the horizontal nearest-neighbor s
appearing in the meandering path gives a preference for h
zontal dimerlike correlations in this path. On the other ha
the straight path prefers dimers in the vertical directio
Comparing the results of the two choices allows us to dr
further conclusions on the nature of the intermediate sta

We now give a brief summary of the results of a pu
DMRG calculation. Extensive details can be found in R
14. The system consists of strips of widths up toW58 and
of various lengthsL. They are periodic in the small directio
and open in the long direction. The periodicity enables us
study the spin stiffness. We have chosen open boundarie
the long direction to avoid the errors in the DMRG wa
function due to periodic boundaries. Since we have go
control of the scaling behavior inL, we extrapolate toL
→`.14 In the small direction we are restricted toW52, 4, 6,
and 8 as odd values are not compatible with the antife
magnetic character of the system. For wider system sizes
number of states which has to be taken into account exc
the possiblities of the present workstations. Our criterion
that the value of the energy not drift anymore apprecia
upon the inclusion of more states. This does not mean
the wave function is virtually exact, since the energy is
rather insensitive probe for the wave function. For instan
correlation functions still improve from the inclusion o
more states.

In Fig. 3 we present the energy as function of the ra
J2 /J1, for strip widths 4, 6, and 8 together with the be
extrapolation to infinite-width systems. The figure strong
suggests that the infinite system undergoes a first-order p
transition around a value 0.6. This can be attributed to
transition to a columnar order~lines of opposite magnetiza
tion!. It is impossible to deduce more information from su
an energy curve as other phase transitions are likely to

FIG. 3. The energy as function of the frustration ratio.
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continuous with small differences in energy between
phases.

The spin stiffness can be calculated with the DMRG wa
function for systems which are periodic in at least o
direction.14 For the formula used we refer to the expressi
given in Ref. 7.

The result of the computation is plotted in Fig. 4. O
observes a substantial decrease ofrs in the frustrated region
indicating the appearance of a magnetically disorde
phase. In contrast to the energy the data do not allow a m
ingful extrapolation to large widths. The lack of clear finit
size scaling behavior in the regime of small values ofW
prevents us from drawing firm conclusions on the disa
pearence of the stiffness in the middle regime.

For the correlation functions following from the DMRG
wave function we refer to Ref. 14.

IV. EXTRACTING CONFIGURATIONS
FROM THE DMRG WAVE FUNCTION

In order to prepare for the use of DMRG wave functio
in a GFMC simulation we analyze the structure of t
DMRG process. The central quantities are the partial den
matrices. The configurations of the right hand part and
left hand part are denoted byRr and Rl . Then the density
matrix for the left hand part reads

^Rl uruRl8&5(
Rr

^Rl ,Rr uF&^FuRl8 ,Rr&. ~6!

White1 has shown that the best way to represent the stateuF&
is to select them eigenstatesua& with the largest eigenvalue

(
Rl8

^Rl uruRl8&^Rl8ua&5la^Rl ua&. ~7!

In practice we do not solve the eigenvalues of the den
matrix in the configuration representation, but in a project
on a smaller basis.

FIG. 4. The stiffnessrs as function of the frustration ratio
Finite-size extrapolations put the region wherers vanishes between
0.38 and 0.62~see Ref. 7!.
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The first step is the analysis of a set of representations
the wave function in terms of two parts~without a connect-
ing site in between!. Let the left hand part containl sites and
the other partN2 l sites. We denote them basis states of the
left hand part by the indexa and those of the right hand pa
by ā. The eigenstates of the two parts are closely linked
related as follows:

^Rl ua&5
1

Ala
(
Rr

^FuRl ,Rr&^Rr uā&,

^Rr uā&5
1

Ala
(
Rl

^auRl&^Rl ,Rr uF&. ~8!

It means that for every eigenvaluela there is an eigenstatea
for the left hand part and anā for the right hand density
matrix. The proof of Eqs.~8! follows from insertion in the
density matrix eigenvalue equation~7!.

The second step is an expression for the ground-s
wave function in terms of these eigenfunctions. Generally
have

^Rl ,Rr uF&5(
a,b̄

^Rl ua&^Rr ub̄&^ab̄uF&, ~9!

while due to Eqs.~8! we find

^ab̄uF&5 (
Rl ,Rr

^auRl&^b̄uRr&^Rl ,Rr uF&

5Ala(
Rr

^b̄uRr&^Rr uā&5da,bAla. ~10!

Thus we can represent the ground state as

^Rl ,Rr uF&5(
a

Ala
l ^Rl ua& l^Rr uā&N2 l . ~11!

This representation is used for calculating the wave func
in a configurationR. As in the proces of constructing th
DMRG wave function the density matrices are diagonaliz
all the time it is easy to make a table of them eigenvaluesla

l

for each divisionl. The corresponding eigenfunctions, how
ever, cannot be stored~too many configurations! and so the
next step is to find an algorithm for these functions.

As intermediary we consider a representation of the w
function with one sitesl separating the spinss1•••sl 21 on
the left hand side fromsl 11•••sN on the right hand side
Using the same basis as in Eq.~11! we have

^s1•••sl 21 ,sl ,sl 11•••sNuF&5 (
a,a8

^s1•••sl 21ua&fa,a8
l

~sl !

3^sl 11•••sNuā8&. ~12!

We compare this representation in two ways with Eq.~11!.
First we combine the middle site with the left hand part. T
leads tom states which can be expressed as linear comb
tions of the states of the enlarged segment
or

d

te
e

n

d

e

s
a-

(
a

^s1•••sl 21ua&fa,a8
l

~sl !5(
a9

^s1•••sl ua9&Ta9,a8
l .

~13!

In fact this relation is the very essence of the DMRG pro
dure. The wave function in the larger space is projected o
the eigenstates of the the density matrix of that space. S
the process of zipping back forth has converged, there
indeed a fixed relation~13!. However, when we insert Eq
~13! into Eq. ~12! and compare it with Eq.~11! we conclude
that the matrixT must be diagonal:

Ta9,a8
l

5da9,a8Ala8
l . ~14!

This leads to the recursion relation

^s1•••sl ua8&5(
a

^s1•••sl 21ua&Aa,a8
l

~sl !, ~15!

with

Aa,a8
l

~sl !5fa,a8
l

~sl !Ala8
l . ~16!

We extract and store theA matrices for all divisions from the
construction of the DMRG wave function. With the recu
sion relation~15! we can calculate the left hand part of th
wave function in any configuration.

The second combination concerns the contraction of
middle site with the right hand part. This leads to the rec
sion relation

^sl•••sNuā&5(
a8

Ba,a8
l 21

~sl !^sl 11•••sNuā8& ~17!

with

Ba,a8
l 21

~s!5fa,a8
l

~s!Ala
l 21. ~18!

This allows us to calculate recursively the right hand part
the wave function for any configuration from theB matrices.
Thus theA andB matrices are the essential ingredients of t
calculation of the wave function. From Eqs.~18! and ~16!
follows that they are related as

Ba,a8
l 21

~s!5Ala8
l /la

l 21Aa,a8
l

~s!. ~19!

The value of the wave function is obtained as the produc
matrices acting on a vector. Thus the calculational eff
scales withm2. Using relation~19! one reconfirms by direc
calculation that the wave function is indeed independen
the divisionl.

When the simulation is in the configurationR, all the

^Rl ua& l and thê Rr uā&N2 l are calculated and stored, with th
purpose of calculating the wave functions more efficien
for the configurationsR8 which are connected toR by the
Hamiltonian and which are candidates for a move. The str
ture of these nearby states isR85s1•••sl 2

•••sl 1
•••sN ( l 2

. l 1). So we have that forR8 the representation

^R8uF&5(
a

Ala
l 2^s1•••sl 2

•••sl 1
ua&^sl 211•••sNuā&

~20!
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PRB 62 14 849INCORPORATION OF DENSITY-MATRIX . . .
holds. Now we see the advantage of having the wave fu
tion stored for all the divisions. The second factor in Eq.~20!
is already tabulated; the first factor involves a number
matrix multiplications equal to the distance in the chain
the two spinsl 1 andl 2 until one reaches a tabulated functio
One can use the tables for a certain number of moves
after a while it starts to pay off to make a fresh list.

In summary we have the following three steps in the p
cedure.

~i! The ground-state wave function is constructed as in
cated in the previous section.

~ii ! From this ground-state wave function the eigenvalu
la

l and the matricesAa,a8
l (s) and Ba,a8

l (s) are derived as
described in this section. They are stored for use in the si
lation.

~iii ! For a given configurationR tables of inner products

^Rl ua& l and ^Rr uā&N2 l are constructed and stored.
The first two steps have to be carried out only once;

last one has to be performed regularly in the simulation p
cess.

V. RESULTS FOR GFMC SIMULATIONS WITH SR

We now come to the crux of this study: the simulations
the system with the GFMC method, using the DMRG wa
functions to guide the importance sampling. We use the fi
node technique introduced by Ceperley and Alder,12 adapted
to the lattice by ten Haaf van Bemmel and co-workers15,16

and augmented by stochastic reconfiguration by Sore3

The procedure is comprehensively and lucidly described
Sorella and Capriotti17 to which we refer for details. We us
a continuous ‘‘time’’e and an improved~mixed! estimator18

for the correlation functions. While the estimates for the e
ergy are ‘‘exact’’ in a correct simulation, independent of t
guiding wave function, the mixed estimator for the corre
tion functions is limited by the quality of the guiding wav
function. All the simulations have been carried out for a
310 lattice with open boundaries. Standardly we have 6
walkers and we run the simulations for about 104 measure-
ments. These measuring points are not fully independent
the variance is determined by chopping up the simulati
into 50–100 groups. Since various MC runs are independ
they could be carried out simultaneously on a cluster of co
puters.

Open boundary conditions have the disadvantage
boundary effects, which make it more difficult to distingui
between spontaneous and induced breaking of the tran
tional symmetry. On the other hand, for open boundar
dimers, plaquettes, or any other interruption of the tran
tional symmetry have a natural reference frame. The co
lations are not only influenced by the boundaries of the s
tem; also the guiding DMRG wave function leaves
imprint on the results. This is mainly due to the fact that
have only mixed estimators for the correlation function
which show a mix of the guiding wave function and the tr
wave function. The improved estimator, used in these p
tures, corrects for this effect to linear order in the deviati
The ladderlike structure in the DMRG path is reflected in
ladderlike pattern in the correlations as an inspection of
correlations in the DMRG wave functions~not shown here!
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reveals. But ladders are clearly also present in the GF
results shown in the pictures.

We first give an overall assessment of the correlat
function pattern and then analyze some values of the r
J2 /J1. In the first series we have used the guiding wa
function on the basis of the meandering path, Fig. 2~b!, be-
cause it gives a better energy than the straight option~a!. The
number of basis states ism575, which is small enough to
carry out simulations with reasonable speed and la
enough that trends begin to manifest themselves. Meas
ments of a number of correlation functions are made in c
junction with stochastic reconfiguration~see Ref. 17!. The
details of these calculations are given in Table I. Note t
the DMRG guiding wave function gives a better energy
the meandering path than for the straight path for values
J2 /J1 up to 0.6. From 0.7 on, this difference is virtual
absent. This undoubtly has to do with the change to the
lumnar state which can equally well be realized by bo
paths. The value ofe has been chosen as a compromi
independent measurements require a largee but the minus
sign problem requires one to apply often stochastic rec
figuration, i.e., a smalle. One sees that in the heavily frus
trated region thee must be taken as small. In fact mor
detailed calculations forJ250.3J1 andJ250.5J1 were car-
ried out withe50.01.

In Figs. 6 and 7 we have plotted a sequence of visual
tions of the correlations. From top to bottom~zig-zag! they
give correlations for the values ofJ2 /J1. In order to high-
light the differences a distinction is made between corre
tions which are above average~solid lines! and below aver-
age ~dashed lines!. All nearest-neighbor spin correlation
shown are negative. In all the pictures one sees the influe
of the boundaries on the spin correlations. Only 1/4 of
lattice has been pictured; the other segments follow by s
metry. The upper right corner, which corresponds to the c
ter of the lattice, is the most significant for the behavior
the bulk. The overall trend is that spatial variations in t
correlation functions occur in growing size withJ2 /J1. On
the side of lowJ1 /J2 ~Néel phase! one sees dimer patterns i
the horizontal direction; they turn over to vertical dime
~aroundJ250.7J1) and rapidly disappear in the columna

TABLE I. For each degree of frustration the imaginary tim
intervale, the energy of the guiding stateEDMRG , and the energy of
the GFMC stateEGFMC are listed.

Straight Meander
J2 e EDMRG EGFMC EDMRG EGFMC

0.0 0.3 261.30 262.33(8) 261.84 262.54(4)
0.1 0.06 257.96 258.53 259.25(2)
0.2 0.04 254.75 256.08(11) 255.48 256.22(4)
0.3 0.02 251.75 253.17(4) 252.50 253.38(3)
0.4 0.02 249.00 250.51(8) 249.92 250.60(5)
0.5 0.014 246.68 247.76(6) 247.78 248.34(4)
0.6 0.015 245.41 246.03 246.40(3)
0.7 0.015 245.67 245.60 246.00(2)
0.8 0.02 249.16 249.13 249.60(9)
0.9 0.02 253.61 253.70 254.52(2)
1.0 0.02 258.46 259.71(9) 258.64 259.80(8)
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phase. This is again support for the fact that the colum
phase is separated from the intermediate state by a first-o
phase transition.

In order to eliminate the influence of the guiding wa
function we scrutinize some of values ofJ2 /J1 in more de-
tail by inspecting how the results depend on the size of
basis in the DMRG wave function and on the choice of
DMRG path. Since we are mostly interested in the behav
of the infinite lattice, we discuss mainly the behavior of t
correlations in and around the central plaquette. So we s
a sequence of DMRG wave functions form532, 75, 100,
128, and 150~200! and carry out for each of them extensiv
GFMC simulations. First we look to the caseJ250, which is
easy because it is nonfrustrated19 and we know that it mus
be Néel ordered and therefore it serves as a check on
calculations. Then we takeJ250.3J1 which is the most dif-
ficult case since it is likely to be close to a phase transiti
Finally we inspectJ250.5J1 where we are fairly sure tha
some dimerlike phase is realized.

A. J2Ä0

For the unfrustrated Heisenberg model we have sev
checkpoints for our calculations. We can find to a high d
gree of accuracy the ground-state energy and we are sure
the Néel phase is homogeneous, i.e., that the correlati

TABLE II. Interpolation ~a! and extrapolation~b! estimates of
the energy per site of a 10310 lattice.

~a!

L e0(L3L)

4 20.5740
6 20.6031
8 20.6188
10 20.629(1)
` 20.669437(5)

~b!

No. states Trunc. error e0 ~DMRG! e0 ~GFMC!

32 21.231025 20.6084 20.6192(1)
75 12.031025 20.6184 20.6254(5)

100 10.531025 20.6201 20.625(2)
128 8.731025 20.6214 20.6269(6)
150 9.631025 20.6231 20.6277(5)
2N 0 20.631(3)
ar
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show no spatial variation other than that of the antiferrom
net. We have two ways of estimating the energy of a
310 lattice. The first method is based on finite-size interp
lation. From DMRG calculations14 we have an exact value
for a 434 lattice, an accurate value for the 636 lattice, and
a good value for the 838 lattice. There is also the ver
accurate calculation of Sandvik4 for an infinitely large lattice,
yielding the value ofe0520.669 437(5). Theleading finite-
size correction goes as 1/L. Including also a 1/L2 term we
have esimated the value for a 10310 lattice as 0.629~1! and
incorporated this value in Table II~a!. We stress that this is
an interpolation for which the value of Sandvik is the mos
important input.

The second method is less well founded and uses the
perience that DMRG energy estimates can be improved c
siderably byextrapolating to zero truncation error. When
plotted as function of this truncation error the energy is of
remarkably linear. In Table II~b! we give for a series of base
m532, 75, 100, 128, and 150, the values of the truncat
error and the corresponding DMRG energy per site toge
with the extrapolation on the basis of linear behavior.20 Note
that the two estimates are compatible. In Table II~b! we have
also listed the values of the GFMC simulations for the c
responding values ofm. They do agree quite well with thes
estimates, in particular with the one based on finite-size s
ing. We point out that one would have to go very far in t
number of states in the DMRG calculation to obtain an
curacy that is easily obtained with GFMC simulations. Th
the combination of GFMC and DMRG techniques does
ally better than the individual components. One might wo
der why there is still a drift to lower energy values in th
GFMC simulations~which is also present in the tables
come!. The reason is that the DMRG wave function
strictly zero outside a certain domain of configurations, b
cause the truncation of the basis involves also the elimina
of certain combinations of conserved quantities of the c
stituing parts. The domain of the wave function grows w
the size of the basis.

Turning now to the correlations it seems that they a
homogeneous in the center of the lattice forJ250. However,
a closer inspection reveals small differences. In Table III
list the asymmetries in the horizontal and vertical directio
of the spin correlations in and around the central plaquett
a function of the number of states. If we number the spins
the lattice asSn,m with 1<n,m<10, the central plaquette ha
the coordinates~5,5!, ~5,6!, ~6,5!, and~6,6!. We then define
the asymmetry parametersDx andDy as
e
e

1
6

2

TABLE III. Values for the asymmetry in the center forJ250. As discussed in the text the error in th
improved estimator values is of the order of 0.02, which means that form5128 and higher the values ar
statistically indistinguishable from zero.

No. states Dx Dy

m DMRG GFMC Improved DMRG GFMC Improved
32 0.14373 0.09981 0.056 20.00060 0.00078 0.00216
75 0.07291 0.05668 0.040 0.00081 0.00601 0.0112
100 0.06432 0.04255 0.031 0.00030 0.00173 0.0031
128 0.05619 0.03734 0.018 0.00091 20.00040 20.00173
150 0.05044 0.03612 0.022 0.00079 0.00261 0.0044
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TABLE IV. Energies and asymmetries for the caseJ250.3J1 as function of the number of basis statesm.
Hered is the truncation error. The asymmetriesDx andDy for the GFMC simulations are calculated with th
improved estimator. The guiding wave function is obtained from the meandering path~b! in Fig. 2. The
statistical error inDx andDy is of the order of 0.02.

No. states DMRG GFMC
m d*105 EDMRG Dx Dy EGFMC Dx Dy

32 19.0 251.609 0.27784 0.00295 252.81(43) 0.363 20.009
75 10.6 252.581 0.15462 0.00616 253.29(05) 0.207 0.011
100 9.4 252.707 0.14709 0.00943 253.32(33) 0.145 0.009
128 10.6 252.821 0.13042 0.00577 254.01(04) 0.254 0.063
150 10.4 252.888 0.12564 0.00737 254.10(12) 0.236 0.103
u
e
nd
i-
e
c

a
w
rv
e
th

r-

ic

he
n-
or
f
t

ill

x-
the

pe
ti-
s in

e
f

la-
a

ve
G
ore
the

rally
e
cate

is

we
the

s
e
ds
may
Dx5
1

4
^S4,5•S5,51S4,6•S5,61S6,5•S7,51S6,6•S7,6&

2
1

2
^S5,5•S6,51S5,6•S6,6&,

Dy5
1

4
^S5,4•S5,51S6,4•S6,51S5,6•S5,71S6,6•S6,7&

2
1

2
^S5,5•S5,61S6,5•S6,6&. ~21!

So Dx is the average value of the correlations on the fo
horizontal bonds which are connected to the central plaqu
minus the average of the values on the two horizontal bo
in the plaquette. SimilarlyDy corresponds to the vertical d
rection. The values for the asymmetry in Table III in th
vertical direction are so small that they have no significan
Note that the anticipated decrease inDx is slow in the
DMRG method and therefore also slow in the mixed estim
tor of the GFMC simulations. The improved estimator, ho
ever, is truely an improvement. So one sees that all obse
small deviations from the homogeneous state will disapp
with the increase of the number of states in the basis of
DMRG wave function.~In general the accuracy of the co
relations is determined by that of the GFMC simulations. W
get as variance a number of the order 0.01, implying tw
that value for the improved estimator.! The vanishing ofDx
and Dy also proves that finite-size effects are small in t
center of the 10310 lattice. From these data we may co
clude that the GFMC simulations can make up for the err
in the DMRG wave function for a relative low number o
basis states. We have not carried out a similar series for
r
tte
s

e.

-
-
ed
ar
e

e
e

s

he

straight path since this will certainly show no dimers as w
become clear from the following cases.

B. J2Ä0.3J1

This case is the most difficult to analyze since it is e
pected to be close to a continuous phase transition from
Néel state to a dimerlike state. As is known21 the DMRG
structure of the wave function is not very adequate to co
with the long-range correlation in the spins typical for a cri
cal point. In Table IV we have presented the same data a
Table III but now for J250.3. There is no pattern in th
energy as function of the truncation errord. The decrease o
the energy as a function of the size of the basism in the
DMRG wave functions is not saturated. The GFMC simu
tions lead to a notably lower energy and they hardly show
leveling off as a function of the basis of the guiding wa
function. All these points are indicators that the DMR
wave function is rather far from convergence and that m
accurate data would require a much larger basis. As far as
staggering in the correlations is concerned the values forDx
are significant, also because the simulation results gene
increase the values. Those forDy are not small enough to b
considered as noise. Given the fact that most authors lo
the phase transition at higher valuesJ2.0.4J1 we would
expect bothD ’s to vanish. So either the dimerlike state
realized for values as low asJ250.3J1 or dimer formation
already starts in the Ne´el state.

To get more insight into the nature of the ground state
have also carried out the same set of simulations on
straight path~a! in Fig. 2. This guiding wave function show
virtually no formation of dimers in any direction as can b
observed from Table V. In spite of the fact that the tren
indicated in the table have not come to convergence one
MRG
TABLE V. Comparison of the energies and the values for the asymmetry in the center for the D
wave function based on the first~straight! path ~a! in Fig. 2 and the associated GFMC simulation;J2

50.3J1.

No.states DMRG GFMC
m d*105 EDMRG Dx Dy EGFMC Dx Dy

32 30.0 250.672 0.00032 0.01657 252.15(11) 0.061 0.047
75 18.9 251.733 20.00295 0.00426 253.21(10) 20.030 0.036

100 19.9 252.066 0.00349 0.00492 253.84(72) 0.061 0.079
128 24.6 252.302 0.00139 0.00791 253.50(19) 0.079 0.027
150 25.7 252.455 0.00222 0.00780 253.52(10) 0.022 0.065
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TABLE VI. Energies and asymmetries forJ250.5J1 with guiding wave function based on the meande
ing path~b! in Fig. 2.

No. states DMRG GFMC
m d*105 EDMRG Dx Dy EGFMC Dx Dy

32 11.8 247.116 0.43245 0.14667 247.55(29) 0.295 0.065
75 17.4 247.771 0.38954 0.13059 248.22(04) 0.339 0.070
100 12.4 247.924 0.39364 0.07877 248.37(22) 0.310 0.110
128 8.4 248.014 0.37317 0.08246 248.32(05) 0.336 0.139
150 8.3 248.088 0.35819 0.07983 248.33(12) 0.324 0.112
200 7.6 248.153 0.34590 0.09973 248.43(05) 0.272 0.094
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draw a few conclusions from comparison of the two sets
simulations. The overal impression is that the meande
guiding wave function represents a ground state of a dif
ent symmetry as compared to the straight path guiding w
function. The meandering wave function prefers dimers
the horizontal direction and the straight wave function lea
to some dimerization in the vertical direction. The differen
also shows up in the energy; it is not only large on t
DMRG level but it also persists at the GFMC level. We s
similar trends in the next case.

C. J2Ä0.5J1

By any estimate this value of the next-nearest-neigh
coupling leads to a dimerlike state if it exists at all. No a
curate data are available on the energy of the 10310 system
to compare to our results. In Table VI we list the data fo
set of DMRG wave functions with basesm532, 75, 100,
128, 150, and 200. The DMRG values of the energy~with
the exception of the value form532) can be extrapolated t
zero truncation error with the limiting valueE05248.4(1),
which corresponds very well with the level in GFMC valu
for larger sizes of the basis. This indicates again that GF
simulations can make up for the shortcomings of the DMR
wave function. One would indeed have to enlarge the b
to m of the order of 1000 in order to achieve the value of t
energy of the simulations which use DMRG guiding wa
functions with a basis of the order of 100.

The staggering in the correlations expressed by the qu
tities Dx for the horizontal direction andDy for the vertical
direction has values that are significant. If one looks to
contributions of the DMRG wave function and the GFM
simulations separately, one observes that the overall va
do agree quite well, with the tendency that the GFMC sim
lations lower the staggerring in the horizontal direction a
slightly increase it in the vertical direction. So we may co
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clude that indeed in the ground state of theJ250.5J1 system,
the correlations of the spins are not translation invariant
show a staggering. However, these results neither con
the picture that the dimer state is the lowest~as suggested by
Kotov et al.8! nor support the scenario that the plaquette st
is the ground state~as concluded by Capriotti and Sorella5!.
We comment on these discrepancies further in the disc
sion.

Again it is worthwhile to compare these results with
simulation on the basis of the straight path~a! in Fig. 2. Here
it is manifest that the straight path prefers to have dimers
the vertical direction~Table VII!. Again the impression is
that the straight path leads to a different symmetry as co
pared to the meandering path. It is not only the differe
preference in the main direction of the dimers, also the s
ondary dimerization in the perpendicular direction, notab
in the meandering case, is not present in the straight c
The fairly large difference in energy on the DMRG lev
becomes quite small on the GFMC level.

VI. DISCUSSION

We have presented a method to employ the DMRG w
functions as guiding wave functions for a GFMC simulati
of the ground state. Generally the combination is much be
than the two individual methods. The GFMC simulatio
considerably improve the DMRG wave function. In the i
termediate regime the properties of the GFMC simulatio
depend on the guiding wave function as the results for t
different DMRG guiding wave functions show.

The method has been used to observe spin correlation
the frustrated Heisenberg model on a square lattice. In
discussion we focus on the intermediate region where
model is most frustrated and which is thepièce de résistance
of the present research. We see patterns of strongly co
lated nearest-neighbor spins, to be called dimers. To indi
TABLE VII. Same as Table VI but now for the ‘‘straight’’ path, Fig. 2~a!.

No. states DMRG GFMC
m d*105 EDMRG Dx Dy EGFMC Dx Dy

32 69.4 245.756 0.00172 0.24701 247.45(08) 0.074 0.185
75 26.2 246.718 0.00171 0.34950 247.81(25) 20.025 0.302
100 21.2 246.993 0.00063 0.33131 248.16(06) 20.003 0.350
128 24.6 247.231 20.00029 0.32994 248.31(08) 0.013 0.291
150 25.7 247.379 0.00215 0.32458 248.33(06) 20.026 0.257
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what me mean by strong and weak we give values in
around the central square of the 10310 lattice for the case
J250.5J1. In Fig. 5~c! we have given the values of the ce
tral square extrapolated to an infinite lattice.

The values are based on the improved estimator and
interesting to see the trends. The horizontal strong corr

FIG. 5. The correlation pattern for the nearest spins forJ2

50.5J1: ~a! according to Kotovet al. ~Ref. 9!, a dimer pattern in
which the strength of the correlation is indicated;~b! according to
Capriotti and Sorella~Ref. 5!, a plaquette state; and~c! according to
this paper, an intermediate pattern in which the translational inv
ance is broken in both directions but with unequal strength. T
values indicated are those based on the meandering path an
improved estimator.

FIG. 6. The relative correlation strengths on a 10310 lattice. All
other nearest neighbor correlations can be obtained by reflec
these pictures in the two dashed lines. The DMRG guiding s
follows the meandering sequence of Fig. 2~b!. More explanation is
given in the text. Reading zig zag from top left to bottom right, t
values forJ2 areJ250, . . . ,0.5 in steps of 0.1.
d

is
a-

tion of 20.42 is the result of the DMRG value20.44 and
the GFMC value20.43, while the weak bond20.15 is the
result of the DMRG value20.09 and the GFMC value
20.12. Thus the GFMC weakens the order parameterDx
associated with the staggering. For the vertical direct
there is hardly a change from the DMRG to GFMC valu
One has to go to the next decimal to see the difference.
strong bond equals20.368 and is coming from the DMRG
value 20.375 and the GFMC value20.371, while the im-
proved weak bond of20.271 is the resulting value o
20.275 for the DMRG method and20.273 for GFMC
simulations.

Before we comment on this result we discuss the infl
ence of the choice of the guiding wave function. We no
that for both pointsJ250.3J1 andJ250.5J1 the two choices
for the DMRG wave function give different results. First o
all the main staggering is for the meandering path~b! of Fig.
2 in the horizontal direction, while the straight path~a! of
Fig. 2 prefers the dimers in the vertical direction. There
not much difference in the values of the strong and we
correlations. Second, the straight path shows no appreci
staggering in the other direction, so one may wonder whe
the observed effect for the meandering path is real. In
opinion this difference has to do with the effect that t
DMRG wave function ‘‘locks in’’ on a certain symmetry
The straight path yields a ground state which is truly dim
like in the sense that it is translational invariant in the dire

i-
e
the

ng
te

FIG. 7. The continuation of Fig. 6; the relative correlatio
strengths on 10310 lattice.J250.5, . . . ,1.0 in steps of 0.1.
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tion perpendicular to the dimers. The meandering path lo
in on a different ground state which holds the middle b
tween a dimerlike and a plaquettelike state. The GFM
simulations cannot overcome this difference in symme
likely because the two lowest states with different symme
are virtually orthogonal. On the DMRG level there is a lar
difference in energy between the two states, favoring
meandering path strongly; on the GFMC level this differen
has become very small. With this observation in mind
compare our result with other findings.

The results of the series expansions8–10 are shown in Fig.
5~a!. Their correlations organize themselves in spin ladd
The correlations on the rungs of the ladder are20.4560.5
which compares well with our strongest horizontal corre
tion and this holds also for the weak horizontal correlat
(20.12 vs 20.15). The most noticeble difference is th
value of our weak correlation in the vertical directio
(20.27 vs20.36) while the strong correlation (20.37 vs
20.36) agrees. There is no real conflict between our re
and theirs since the symmetry they find is fixed by the s
around which the series expansion is made. So our claim
only that our state with different symmetry is the lower on
In fact in the paper of Singhet al.,10 it is noted that the
susceptibility to a staggering operator in the perpendicu
direction~our Dy) becomes very large in the dimer state f
J250.5J1 which we take as an indication of the near
lower state. The analytical calculations in Refs. 8 and
however, do not support the existence of the state we fin

Neither do we find support for the plaquette state found
Ref. 5, which we have sketched in Fig. 5~b!. The evidence of
this investigation is based on the boundedness of the sus
tibility for the operator which breaks the orientational sym
metry and the divergence of the susceptibility for the or
parameter breaking translational invariance~corresponding
to Dx). They have not separately investigated the values
Dx andDy since their ground state has the symmetry of
ee
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lattice and one would find automatically the same answ
They conclude that in the absence of an orientational or
parameter and with the presence of the translational o
parameter the state must be plaquettelike. A scenario
reconciles this and our findings could be that starting from
fully symmetric trial function the system first breaks symm
try in a plaquettelike state and that using the plaquette
state as the trial wave function a secondary breaking of
symmetry of the type that we find takes place.

Finally we comment on the fact that we find dimerizatio
already for values as low asJ250.3J1 at least for the mean
dering path. As we have mentioned earlier the results a
function of the number of states have not sufficiently co
verged to make a firm conclusion, the more so since ther
a large difference between the DMRG and GFMC tec
niques. Still it could be an indication that the phase transit
from the Néel state to the dimer state takes place for low
values than the estimatedJ250.38J1.7

Thus many questions are left over, among others how
order parameters behave as function of the frustation rati
the intermediate region. We feel that the combination of
DMRG and GFMC techniques is a good tool to investiga
these issues since they demonstratead oculosthe correla-
tions in the intermediate state.
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