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Abstract

This paper is an introductory review of the problem of front propagation into un-
stable states. Our presentation is centered around the concept of the asymptotic
linear spreading velocity v∗, the asymptotic rate with which initially localized per-
turbations spread into an unstable state according to the linear dynamical equa-
tions obtained by linearizing the fully nonlinear equations about the unstable state.
This allows us to give a precise definition of pulled fronts, nonlinear fronts whose
asymptotic propagation speed equals v∗, and pushed fronts, nonlinear fronts whose
asymptotic speed v† is larger than v∗. In addition, this approach allows us to clarify
many aspects of the front selection problem, the question whether for a given dy-
namical equation the front is pulled or pushed. It also is the basis for the universal
expressions for the power law rate of approach of the transient velocity v(t) of a
pulled front as it converges toward its asymptotic value v∗. Almost half of the paper
is devoted to reviewing many experimental and theoretical examples of front prop-
agation into unstable states from this unified perspective. The paper also includes
short sections on the derivation of the universal power law relaxation behavior of
v(t), on the absence of a moving boundary approximation for pulled fronts, on the
relation between so-called global modes and front propagation, and on stochastic
fronts.
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1 Introduction

1.1 Scope and aim of the article

The aim of this article is to introduce, discuss and review the main aspects
of front propagation into an unstable state. By this we mean that we will
consider situations in spatio-temporally extended systems where the (tran-
sient) dynamics is dominated by a well-defined front which invades a domain
in which the system is in an unstable state. With the statement that the sys-
tem in the domain into which the front propagates is in an unstable state,
we mean that the state of the system in the region far ahead of the front
is linearly unstable. In the prototypical case in which this unstable state is
a stationary homogeneous state of the system, this simply means that if one
takes an arbitrarily large domain of the system in this state and analyzes its
linear stability in terms of Fourier modes, a continuous set of these modes is
unstable, i.e., grows in time.

At first sight, the subject of front propagation into unstable states might seem
to be an esoteric one. After all, one might think that examples of such be-
havior would hardly ever occur cleanly in nature, as they appear to require
that the system is first prepared carefully in an unstable state, either by using
special initial conditions in a numerical simulation or by preparing an experi-
mental system in a state it does not naturally stay in. In reality, however, the
subject is not at all of purely academic interest, as there are many examples
where either front propagation into an unstable state is an essential element
of the dynamics, or where it plays an important role in the transient behavior.
There are several reasons for this. First of all, there are important experimen-
tal examples where the system is essentially quenched rapidly into an unstable
state. Secondly, fronts naturally arise in convectively unstable systems, sys-
tems in which a state is unstable, but where in the relevant frame of reference
perturbations are convected away faster than they grow out — it is as if in
such systems the unstable state is actually dynamically produced since the
convective effects naturally sweep the system clean. Even if this is the case in
an infinite system, fronts do play an important role when the system is finite.
For example, noise or a perturbation or special boundary condition near a
fixed inlet can then create patterns dominated by fronts. Moreover, important
changes in the dynamics usually occur when the strength of the instability in-
creases, and the analysis of the point where the instability changes over from
convectively unstable to absolutely unstable (in which case perturbations in
the relevant frame do grow faster than they are convected away) is intimately
connected with the theory of front propagation into unstable states. Thirdly,
as we shall explain in more detail later, close to an instability threshold front
propagation always wins over the growth of bulk modes.
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The general goal of our discussion of front propagation into unstable states is
to investigate the following front propagation problem:

If initially a spatially extended system is in an unstable state everywhere
except in some spatially localized region, what will be the large-time dy-
namical properties and speed of the nonlinear front which will propagate
into the unstable state? Are there classes of initial conditions for which
the front dynamics converges to some unique asymptotic front state? If
so, what characterizes these initial conditions, and what can we say about
the asymptotic front properties and the convergence to them?

Additional questions that may arise concern the sensitivity of the fronts to
noise or a fixed perturbation modeling an experimental boundary condition
or an inlet, or the question under what conditions the fronts can be mapped
onto an effective interface model when they are weakly curved.

Our approach to introducing and reviewing front propagation into unstable
states will be based on the insight that there is a single unifying concept that
allows one to approach essentially all these questions for a large variety of
fronts. This concept is actually very simple and intuitively appealing, and
allows one to understand the majority of examples one encounters with just
a few related theoretical tools. Its essence can actually be stated in one single
sentence:

Associated with any given unstable state is a well-defined and easily cal-
culated so-called “linear” spreading velocity v∗, the velocity with which ar-
bitrarily small linear perturbations about the unstable state grow out and
spread according to the dynamical equations obtained by linearizing the
full model about the unstable state; nonlinear fronts can either have their
asymptotic speed vas equal to v

∗ (a so-called pulled front) or larger than v∗

(a pushed front).

The name pulled front stems from the fact that such a front is, as it were, being
“pulled along” by the leading edge of the front, the region where the dynamics
of the front is to good approximation governed by the equations obtained by
linearizing about the unstable state. The natural propagation speed of the
leading edge is hence the asymptotic linear spreading speed v∗. In this way of
thinking, a pushed front is being pushed from behind by the nonlinear growth
in the nonlinear front region itself [333,334,384].

The fact that the linear spreading velocity is the organizing principle for the
problem of front propagation is illustrated in Fig. 1 for all three classes of
fronts, simple uniformly translating fronts, and coherent and incoherent pattern
forming fronts. In the upper panels, we show simulations of the spreading of an
initial perturbation into the unstable state according to the linear equations,
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Fig. 1. Graphical summary of one of the major themes of this paper. From top
to bottom: linear spreading, pulled fronts and pushed fronts. From left to right:
uniformly translating fronts, coherent pattern forming fronts and incoherent pattern
forming fronts. The plots are based on numerical simulations of three different types
of dynamical equations discussed in this paper. In all cases, the initial condition was
a Gaussian of height 0.1, and the state to the right is linearly unstable. To make
the dynamics visible in these space-time plots, successive traces of the fronts have
been moved upward. Thicks along the vertical axes are placed a distance 2.5 apart.
Left column: F-KPP equation (1) with a pulled front with f(u) = u− u3 (middle)
and a pushed one for f(u) = u + 2

√
3u3 − u5 in the lower row, for times up to

42. Middle column: the Swift-Hohenberg equation of section 2.11.2 (middle) and
an extension of it as in Fig. 14((b) (bottom). Right column: Kuramoto-Sivashinsky
equation discussed in section 2.11.4 (middle) and an extension of it, as in Fig. 16 ,
but with c = 0.17 (bottom).

obtained by linearizing the model equation about the unstable state. This
illustrates the linear spreading problem associated with the linear dynamics.
The asymptotic linear spreading speed v∗ can be calculated explicitly for any
given dynamical equation. Note that since the dynamical equations have been
linearized, there is no saturation: The dynamical fields in the upper panels
continue to grow and grow (in the plots in the middle and on the right, the
field values also grow to negative values, but this is masked in such a hidden-
line plot). The middle panels show examples of pulled fronts: These are seen to
advance asymptotically with the same speed v∗ as the linear spreading problem
of the upper panel. The lower panels illustrate pushed fronts, whose asymptotic
speed is larger than the linear spreading speed v∗. The fronts in the left column
are uniformly translating, those in the middle column are coherent pattern
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forming fronts, and those in the right incoherent pattern forming fronts. We
will define these front classifications more precisely later in section 2.7 — for
now it suffices to become aware of the remarkable fact that in spite of the
difference in appearance and structure of these fronts, it is useful to divide
fronts into two classes, those which propagate with asymptotic speed v∗ and
those whose asymptotic speed v† is larger. Explaining and exploring the origin
and ramifications of this basic fact is one of the main goals of this article.

In line with our philosophy to convey the power of this simple concept, we
will first only present the essential ingredients that we think a typical non-
expert reader should know, and then discuss a large variety of experimental
and theoretical examples of front propagation that can indeed be understood
to a large extent with the amount of theoretical baggage that we equip the
reader with in chapter 2. Only then will we turn to a more detailed exposition
of some of the more technical issues underlying the presentation of chapter
2, and to a number of advanced topics. Nevertheless, throughout the paper
our philosophy will be to focus on the essential ideas and to refer for the
details to the literature — we will try not to mask the common and unifying
features with too many details and special cases, even though making some
caveats along the lines will be unavoidable. In fact, even in these later chapters,
we will see that the above simple insight is the main idea that also brings
together various important recent theoretical developments: the derivation
of an exact results for the universal power law convergence of pulled fronts
to their asymptotic speed, the realization that many of these results extend
without major modification to fronts in difference equations or fronts with
temporal or spatial kernels, the realization that curved pulled fronts in more
than one dimension can not be described by a moving boundary approximation
or effective interface description, as well as the effects of a particle cutoff on
fronts, and the effects of fluctuations.

A word about referencing: when referring to several papers in one citation, we
will do so in the numerical order imposed by the alphabetic reference list, not
in order of importance of the references. If we want to distinguish papers, we
will reference them separately.

1.2 Motivation: a personal historical perspective

My choice to present the theory this way is admittedly very personal and
unconventional, but is made deliberately. The theory of front propagation
has had a long and twisted but interesting history, with essential contribu-
tions coming from different directions. I feel it is time to take stock. The
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field started essentially some 65 years ago 1 with the work of Fisher [163] and
Kolmogoroff, Petrovsky, and Piscounoff [234] on fronts in nonlinear diffusion
type equations motivated by population dynamics issues. The subject seems
to have remained mainly in mathematics initially, culminating in the classic
work of Aronson and Weinberger [15,16] which contains a rather complete set
of results for the nonlinear diffusion equation (a diffusion equation for a single
variable with a nonlinear growth term, Eq. (1) below). The special feature of
the nonlinear diffusion equation that makes most of the rigorous work on this
equation possible is the existence of a so-called comparison theorem, which
allows one to bound the actual solution of the nonlinear diffusion equation
by suitably chosen simpler ones with known properties. Such an approach is
mathematically powerful, but is essentially limited by its nature to the non-
linear diffusion equation and its extensions: A comparison theorem basically
only holds for the nonlinear diffusion equation or variants thereof, not for the
typical types of equations that we encounter in practice and that exhibit front
propagation into an unstable state in a pattern forming system.

In the early eighties of the last century, the problem of front propagation was
brought to the attention of physicists by Langer and coworkers [38,111,248],
who noted that there are some similarities between what we will call the regime
of pulled front propagation and the (then popular) conjecture that the natural
operating point of dendritic growth was the “marginally stable” front solution
[247,248], i.e., the particular front solution for which the least stable stability
eigenmode changes from stable to unstable (for dendrites, this conjecture was
later abandoned). In addition, they re-interpreted the two modes of opera-
tion 2 of front dynamics in terms of the stability of front solutions [38]. This
point of view also brought to the foreground the idea that front propagation
into unstable states should be thought of as an example of pattern selection:
since there generally exists a continuum of front solutions, the question be-
comes which one of these is “selected” dynamically for a large class of initial
conditions. For this reason, much of the work in the physics community follow-
ing this observation was focused on understanding this apparent connection
between the stability of front profiles and the dynamical selection mechanism
[83,333,334,354,380,420,421]. Also in my own work along these lines [420,421]
I pushed various of the arguments for the connection between stability and
selection. This line of approach showed indeed that the two regimes of front
propagation that were already apparent from the work on the nonlinear dif-
fusion equation do in fact have their counterparts for pattern forming fronts,
fronts which leave a well-defined finite-wavelength pattern behind. In addition,

1 As mentioned by Murray [311] on page 277, the Fisher equation was apparently
already considered in 1906 by Luther, who obtained the same analytical form as
Fisher for the wave front.
2 Their “case I” and “case II” [38] are examples of what we refer to here as pulled
and pushed front solutions.

9



it showed that the power law convergence to the asymptotic speed known for
the nonlinear diffusion equation [54] is just a specific example of a generic prop-
erty of fronts in the “linear marginal stability” [420,421] regime — the “pulled”
regime as we will call it here. Nevertheless, although some of these arguments
have actually made it into a review [105] and into textbooks [189,320], they
remain at best a plausible set of arguments, not a real theoretical framework;
this is illustrated by the fact that the term “marginal stability conjecture” is
still often used in the literature, especially when the author seems to want to
underline its somewhat mysterious character.

Quite naturally, the starting point of the above line of research was the non-
linear evolution of fronts solutions. From this perspective it is understand-
able that many researchers were intrigued but also surprised to see that in
the pulled (or linear marginal stability) front regime almost all the essential
properties of the fronts are determined by the dispersion relation of the lin-
earized dynamics of arbitrarily small perturbations about the unstable state.
Perhaps this also explains, on hindsight, why for over 30 years there was a
virtually independent line of research that originated in plasma physics and
fluid dynamics. In these fields, it is very common that even though a system
is linearly unstable (in other words, that when linearized about a homoge-
neous state, there is a continuous range of unstable Fourier modes), it is only
convectively unstable. As mentioned before, this means that in the relevant
frame a localized perturbation is convected away faster than it is growing out.
To determine whether a system is either convectively unstable or absolutely
unstable mathematically translates into studying the long-time asymptotics
of the Green’s function of the dynamical equations, linearized about the un-
stable state. 3 The technique to do so was developed in the 1950-ies [62] and is
even treated in one of the volumes of the Landau and Lifshitz course on theo-
retical physics [264], but appears to have gone unnoticed in the mathematics
literature. It usually goes by the name of “pinch point analysis” [49,204,205].
As we will discuss, for simple systems it amounts to a saddle point analysis
of the asymptotics of the Green’s function. In 1989 I pointed out [421] that
the equations for the linear spreading velocity of perturbations, according to
this analysis, the velocity we will refer to as v∗, are actually the same as the
expressions for the speed in the “linear marginal stability” regime of nonlinear
front propagation [38,111,421]. Clearly, this can not be a coincidence, but the
general implications of this observation appear not to have been explored for
several more years. One immediate simple but powerful consequence of this

3 Some readers may be amused to note that there are traces of such arguments in
the original paper of Kolmogorov et al. [234]: although hidden, the Green’s function
of the diffusion equation plays an important role in their convergence proofs. This
makes me believe that it is likely that it will be possible to prove results concerning
front propagation into unstable states for more complicated equations like higher
order partial differential equations, by putting bounds on the Green’s function.
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connection is that it shows that the concept of the linear spreading velocity
v∗ applies equally well to difference equations in space and time — after all
in Fourier language, in which the asymptotic analysis of the Green’s func-
tion analysis is most easily done, putting a system on a lattice just means
that the Fourier integrals are restricted to a finite range (a physicist would
say: restricted to the Brillouin zone). The concept of linear spreading velocity
also allows one to connect front propagation with work in recent years on the
concept of global modes in weakly inhomogeneous unstable systems [98,99].

Most of the work summarized above was confined to fronts in one dimen-
sion. The natural approach to analyze nontrivial patterns in more dimensions
on scales much larger than the typical front width is, of course, to view the
front on the large pattern scale as a sharp moving interface — in technical
terms, this means that one would like to apply singular perturbation theory
to derive a moving boundary approximation or an effective interface approxi-
mation (much like what is often done for the so-called phase-field models that
have recently become popular [29,71,219]). When this was attempted for dis-
charge patterns whose dynamics is governed by “pulled” fronts [141,142], the
standard derivation of a moving boundary approximation was found to break
down. Mathematically, this traced back to the fact that for pulled fronts the
dynamically important region is ahead of the nonlinear transition zone which
one normally associates with the front itself. This was another important sign
that one really has to take the dynamics in the region ahead of the front seri-
ously!

My view that the linear spreading velocity is the proper starting point for
understanding the two regimes of front propagation into unstable states, and
for tying together the various theoretical developments and experiments —
and hence that an introductory review should be organized around it — is
colored by the developments sketched above and in particular the fact that
Ebert and I have recently been able to derive from it important new and
exact results for the power law convergence of the velocity and shape of a
pulled front to its asymptotic value [143,144]. The fact that starting from
this concept one can set up a fully explicit calculational scheme to study
the long time power law convergence or relaxation and that this yields new
universal terms which are exact (and which even for the nonlinear diffusion
equation [15,16] go beyond those which were previously known [54]), shows
more than anything else that we have moved from the stage of speculations and
intuitive concepts to what has essentially become a well-defined and powerful
theoretical framework. My whole presentation builds on the picture coming
out of this work [143,144,145,146,147].

As mentioned before, the subject of front propagation also has a long history
in the mathematics literature; moreover, especially in the last ten to fifteen
years a lot of work has been done on coherent structure type solutions like
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traveling fronts, pulses etc. With such a diverse field, spread throughout many
disciplines, one can not hope to do justice to all these developments. My
choice to approach the subject from the point of view of a physicist just
reflects that I only feel competent to review the developments in this part of
the field, and that I do want to open up the many advances that have been
made recently to researchers with different backgrounds who typically will
not scan the physics literature. I will try to give a fair assessment of some of
the more mathematical developments but there is absolutely no claim to be
exhaustive in that regard. Luckily, authoritative reviews of the more recent
mathematical literature are available [170,172,434,442]. The second reason for
my choice is indeed that most of the mathematics literature is focused on
equations that admit uniformly translating front solutions. For many pattern
forming systems, the relevant front solutions are not of this type, they are
either coherent or incoherent pattern forming fronts of the type we already
encountered in Fig. 1 (these concepts are defined precisely in section 2.7).
Even though not much is known rigorously about these more general pattern
forming fronts, our presentation will allow us to approach all types of fronts in
a unified way that illuminates what is and is not known. We hope this will also
stimulate the more mathematically inclined reader to take up the challenge of
entering an area where we do know most answers but lack almost any proof.
I am convinced a gold mine is waiting for those who dare.

As explained above, we will first introduce in chapter 2 the key ingredients of
front propagation into unstable states that provide the basic working knowl-
edge for the non-expert physicist. The introduction along this line also allows
us to identify most clearly the open problems. We then turn right away to a
discussion of a large number of examples of front propagation. After this, we
will give a more detailed discussion of the slow convergence of pulled fronts to
their asymptotic velocity and shape. We are then in a position to discuss what
patterns, whose dynamics is dominated by fronts propagating into an unstable
state, can be analyzed in terms of a moving boundary approximation, in the
limit that the front is thin compared to the pattern scale. This is followed by
a discussion of the relation with the existence of “global modes” and of some
of the issues related to stochastic fronts.

2 Front Propagation into Unstable States: the basics

The central theme of this paper is to study fronts in spatio-temporally ex-
tended systems which propagate into a linearly unstable state. The special
character and, to a large extent, simplicity of such fronts arises from the fact
that arbitrarily small perturbations about the unstable state already grow
and spread by themselves, and thus have a nontrivial — and, as we shall see,
rather universal — dynamics by themselves. The “linear spreading speed” v∗
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with which small perturbations spread out is then automatically an important
reference point. This is different from fronts which separate two linearly stable
states — in that case the perturbations about each individual stable state just
damp out and there is not much to be gained from studying precisely how this
happens; instead, the motion of such fronts is inherently nonlinear. 4

It will often be instructive to illustrate our analysis and arguments with a
simple explicit example; to this end we will use the famous nonlinear diffusion
equation with which the field started,

∂tu(x, t) = ∂2xu(x, t) + f(u), with
f(0) = 0, f(1) = 0,

f ′(0) = 1, f ′(1) < 0.
(1)

This is the equation studied by Fisher [163] and Kolmogorov, Petrovsky and
Piscounov [234] back in 1937, and we shall therefore follow the convention to
refer to it as the F-KPP equation. As we mentioned already in the introduc-
tion, this equation and its extensions have been the main focus of (rigorous)
mathematical studies of front propagation into unstable states, but these are
not the main focus of this review — rather, we will use the F-KPP equation
only as the simplest equation to illustrate the points which are generic to the
front propagation problem, and will not rely on comparison-type methods or
bounds which are special to this equation. 5 At this point it simply suffices to
note that the state u = 0 of the real field u is an unstable state: when u is
positive but small, f(u) ≈ f ′(0)u = u, so the second term on the right hand
side of the F-KPP equation drives u away from zero. The front propagation
problem we are interested in was already illustrated in Fig. 1: We want to
determine the long time asymptotic behavior of the front which propagates
to the right into the unstable state u = 0, given initial conditions for which
u(x → ∞, t = 0) = 0. A simple analysis based on constructing the uniformly
translating front solutions u(x− vt) does not suffice, as there is a continuous
family of such front solutions. Since the argument can be found at many places
in the literature [15,38,105,144,249,268,421,428], we will not repeat it here.

4 Technically, determining the asymptotic fronts speed then usually amounts to
a nonlinear eigenvalue problem. The spreading of the precursors of such fronts is
studied in [227].
5 A physicist’s introduction to comparison type arguments can be found in the
appendix of [38]; for recent work on bounds on the asymptotic speed of fronts in
the F-KPP equation see in particular [33,34,35,36,37]. A new look at the the global
variational structure was recently given in [310]. A recent example of a convergence
proof in coupled equations can be found in [323].
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2.1 The linear dynamics: the linear spreading speed v∗

Our approach to the problem via the introduction of the linear spreading
speed v∗ is a slight reformulation of the analysis developed over 40 years ago
in plasma physics [49,62,264]. We first formulate the essential concept having
in mind a simple partial differential equation or a set of partial differential
equations, and then briefly discuss the minor complications that more general
classes of dynamical equations entail. We postpone the discussion of fronts in
higher dimensions to section 5, so we limit the discussion here to fronts in one
dimension.

Suppose we have a dynamical problem for some field, which we will generically
denote by φ(x, t), whose dynamical equation is translation invariant and has
a homogeneous stationary state φ = 0 which is linearly unstable. With this
we mean that if we linearize the dynamical equation in φ about the unstable
state, then Fourier modes grow for some range of spatial wavenumbers k. More
concretely, if we take a spatial Fourier transform and write

φ̃(k, t) =

∞
∫

−∞
dxφ(x, t)e−ikx, (2)

substitution of the Ansatz

φ̃(k, t) = φ̄(k)e−iω(k)t (3)

yields the dispersion relation ω(k) of Fourier modes of the linearized equation.
We will discuss the situation in which the dispersion relation has more than
one branch of solutions later, and for now assume that it just has a single
branch. Then the statement that the state φ = 0 is linearly unstable simply
means that

φ = 0 linearly unstable: Imω(k) > 0 for some range of k-values. (4)

At this stage, the particular equation we are studying is simply encoded in
the dispersion relation ω(k). 6 This dispersion relation can be quite general
— we will come back to the conditions on ω(k) in section 2.4 below, and for
now will simply assume that ω(k) is an analytic function of k in the complex
k-plane.

6 The reader who may prefer to see an example of a dispersion relation is invited
to check the dispersion relation (86) for Eq. (85).
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Fig. 2. Qualitative sketch of the growth and spreading of the field φ(x, t) according
to the dynamical evolution equation linearized about the unstable state φ = 0.
The successive curves illustrate the initial condition φ(x, t0) and the field φ(x, t) at
successive times t1 < t2 < t3 < t4. Note that there is obviously no saturation of the
field in the linearized dynamics: The asymptotic spreading velocity v∗ to the right
is the asymptotic speed of the positions xC(t) where φ(x, t) reaches the level line
φ = C: φ(xC(t), t) = C. The asymptotic spreading velocity to the left is defined
analogously.

We are interested in studying the long-time dynamics emerging from some
generic initial condition which is sufficiently localized in space (we will make
the term “sufficiently localized” more precise in section 2.3 below). Because
there is a range of unstable modes which grow exponentially in time as eImω(k)t,
a typical localized initial condition will grow out and spread in time under the
linear dynamics as sketched in Fig. 2. If we now trace the level curve xC(t)
where φ(xC(t), t) = C in space-time, as indicated in the figure, the linear
spreading speed v∗ is defined as the asymptotic speed of the point xC(t):

v∗ ≡ lim
t→∞

dxC(t)

dt
. (5)

Note that v∗ is independent of the value of C because of the linearity of the
evolution equation. However, for systems whose dynamical equations are not
reflection symmetric, as happens quite often in fluid dynamics and plasmas,
one does have to distinguish between a spreading speed to the left and one
to the right. In order not to overburden our notation, we will in this paper
by convention always focus on the spreading velocity of the right flank of φ;
this velocity is counted positive if this flank spreads to the right, and negative
when it recedes to the left.

Given ω(k) and φ̄(k), which according to (3) is just the Fourier transform of
the initial condition φ(x, t = 0), one can write φ(x, t) for t > 0 simply as the
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inverse Fourier transform

φ(x, t) =
1

2π

∞
∫

−∞
dk φ̄(k) eikx−iω(k)t. (6)

The more general Green’s function formulation will be discussed later in sec-
tion 2.4. Our definition of the linear spreading speed v∗ to the right is il-
lustrated in Fig. 2. We will work under the assumption that the asymptotic
spreading speed v∗ is finite; whether this is true can always be verified self-
consistently at the end of the calculation. The existence of a finite v∗ implies
that if we look in frame

ξ = x− v∗t (7)

moving with this speed, we neither see the right flank grow nor decay expo-
nentially. To determine v∗, we therefore first write the inverse Fourier formula
(6) for φ in this frame,

φ(ξ, t) =
1

2π

∞
∫

−∞
dk φ̄(k) eik(x−v∗t)−i[ω(k)−v∗k]t,

=
1

2π

∞
∫

−∞
dk φ̄(k) eikξ−i[ω(k)−v∗k]t, (8)

and then determine v∗ self-consistently by analyzing when this expression nei-
ther leads to exponential growth nor to decay in the limit ξ finite, t→ ∞. We
can not simply evaluate the integral by closing the contour in the upper half
of the k-plane, since the large-k behavior of the exponent is normally domi-
nated by the large-k behavior of ω(k). However, the large-time limit clearly
calls for a saddle-point approximation [32] (also known as stationary phase or
steepest descent approximation): Since t becomes arbitrarily large, we deform
the k-contour to go through the point in the complex k plane where the term
between square brackets varies least with k, and the integral is then dominated
by the contribution from the region near this point. This so-called saddle point
k∗ is given by

d[ω(k) − v∗k]

dk

∣

∣

∣

∣

∣

k∗

= 0 =⇒ v∗ =
dω(k)

dk

∣

∣

∣

∣

∣

k∗

. (9)

These saddle point equations will in general have solutions in both the upper
and the lower half of the complex k-plane; the ones in the upper half corre-
spond to the asymptotic decay towards large x in the Fourier decomposition
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(8) associated with the right flank of the perturbation sketched in Fig. 2, and
those in the lower half ty to an exponentially growing solution for increasing
x and thus to the behavior on the left flank. By convention, we will focus
on the right flank, which may invade the unstable state to the right. If we
deform the k-contour into the complex plane to go through the saddle point
in the upper half plane, and assume for the moment that φ̄(k), the Fourier
transform of the initial condition, is an entire function (one that is analytic in
every finite region of the complex k-plane), the dominant term to the integral
is nothing but the exponential factor in (8) evaluated at the saddle-point, i.e.,
ei[ω(k

∗)−v∗k∗]t. The self-consistency requirement that this term neither grows
nor decays exponentially thus simply leads to

Imω(k∗) − v∗Im k∗ = 0 =⇒ v∗ =
Imω(k∗)

Im k∗
=
ωi

ki
. (10)

The notation ωi which we have introduced here for the imaginary part of ω will
be used interchangeably from now on with Imω; likewise, we will introduce the
subindex r to denote the real part of a complex quantity. Upon expanding the
factor in the exponent in (8) around the saddle point value given by Eqs. (9)
and (10), we then get from the resulting Gaussian integral

φ(ξ, t)≃ 1

2π

∞
∫

−∞
dk φ̄(k) e−iω∗

r t+i(k∗+∆k)ξ−Dt(∆k)2, (∆k = k − k∗),

≃ 1

2π
eik

∗ξ−iω∗
r t

∞
∫

−∞
dk φ̄(k) e−Dt[∆k−iξ/2Dt]2−ξ2/4Dt,

≃ 1√
4πDt

eik
∗ξ−i(ω∗

r−k∗r v
∗)t e−ξ2/4Dt φ̄(k∗), (ξ fixed, t→ ∞),(11)

where all parameters are determined by the dispersion relation through the
saddle point values,

dω(k)

dk

∣

∣

∣

∣

∣

k∗

=
ωi(k

∗)

k∗i
, v∗ =

ωi(k
∗)

k∗i
, D =

i

2

d2ω(k)

dk2

∣

∣

∣

∣

∣

k∗

. (12)

Since ω and k are in general complex, the first equation can actually be thought
of as two equations for the real and imaginary parts, which can be used to
solve for k∗. The second and third equation then give v∗ and D.

The exponential factor eik
∗ξ gives the dominant spatial behavior of φ in the

co-moving frame ξ on the right flank in Fig. 2: if we define the asymptotic

17



spatial decay rate λ∗ and the effective diffusion coefficient 7 D by

λ∗ ≡ Im k∗,
1

D
≡ Re

1

D , (13)

then we see that the modulus of φ falls off as

|φ(ξ, t)| ∼ 1√
t
e−λ∗ξ e−ξ2/4Dt, (ξ fixed, t→ ∞), (14)

i.e., essentially as e−λ∗ξ with a Gaussian correction that is reminiscent of
diffusion-like behavior.

We will prefer not to name the point k∗ after the way it arises mathematically
(e.g., saddle point or “pinch point”, following the formulation discussed in
section 2.4). Instead, we will usually refer to k∗ as the linear spreading point;
likewise, the expressions (11) and (14) for φ will be referred to as the linear
spreading profiles.

For an ordinary diffusion process to be stable, the diffusion coefficient has to be
positive. Thus we expect that in the present case D should be positive. Indeed,
the requirement that the linear spreading point corresponds to a maximum of
the exponential term in (8) translates into the condition, ReD > 0, and this
entails D > 0. We will come back to this and other conditions in section 2.4
below.

In spite of the simplicity of their derivation and form, equations (11) and
(12) express the crucial result that as we shall see permeates the field of front
propagation into unstable states:

associated with any linearly unstable state is a linear spreading speed v∗

given by (12); this is the natural asymptotic spreading speed with which
small “sufficiently localized” perturbations spread into a domain of the
unstable state according to the linearized dynamics.

Before turning to the implications for front propagation, we will in the next
sections discuss various aspects and generalizations of these concepts, includ-
ing the precise condition under which “sufficiently localized” initial conditions
do lead to an asymptotic spreading velocity v∗ (the so-called steep initial con-
ditions given in (37) below).

7 We stress that D is the effective diffusion coefficient associated with the saddle
point governing the linear spreading behavior of the deterministic equation. In sec-
tion 7 we will also encounter a front diffusion coefficient Dfront which is a measure
for the stochastic front wandering, but this is an entirely different quantity.
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✷ Example: application to the linear F-KPP equation

Let us close this section by applying the above formalism to the F-KPP equa-
tion (1). Upon linearizing the equation in u, we obtain

linearized F-KPP: ∂tu(x, t) = ∂2xu(x, t) + u. (15)

Substitution of a Fourier mode e−iωt+ikx gives the dispersion relation

F-KPP: ω(k) = i(1 − k2), (16)

and from this we immediately obtain from (12) and (13)

F-KPP: v∗FKPP = 2, λ∗ = 1, Re k∗ = 0, D = D = 1. (17)

The special simplicity of the F-KPP equation lies in the fact that ω(k) is
quadratic in k. This not only implies that the effective diffusion coefficient
D is nothing but the diffusion coefficient entering the F-KPP equation, but
also that the exponent in (8) is in fact a Gaussian form without higher order
corrections. Thus, the above evaluation of the integral is actually exact in this
case. Another instructive way to see this is to note that the transformation
u = etn transforms the linearized F-KPP equation (15) into the diffusion
equation ∂tn = ∂2xn for n. The fundamental solution corresponding to delta-
function initial condition is the well-known Gaussian; in terms of u this yields

F-KPP: u(x, t) =
1√
4πt

et−x2/4t (delta function initial cond.). (18)

2.2 The linear dynamics: characterization of exponential solutions

In the above analysis, we focused immediately on the importance of the linear
spreading point k∗ of the dispersion relation ω(k) in determining the spreading
velocity v∗. Let us now pay more attention to the precise initial conditions for
which this concept is important.

In the derivation of the linear spreading velocity v∗, we took the Fourier trans-
form of the initial conditions to be an entire function, i.e., a function which is
analytic in any finite region of the complex plane. Thus, the analysis applies to
the case in which φ(x, t = 0) is a delta function (φ̄(k) is then k-independent 8 ),

8 Most of the original literature [49,62,204,264] in which the asymptotic large-time
spreading behavior of a perturbation is obtained through a similar analysis or the
more general “pinch point” analysis, is implicitly focused on this case of delta-
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has compact support (meaning that φ(x, t = 0) = 0 outside some finite inter-
val of x), or falls off faster than any exponential for large enough x (like, e.g.,
a Gaussian).

For all practical purposes, the only really relevant case in which φ̄(k) is not an
entire function is when it has poles off the real axis in the complex plane. 9 This
corresponds to an initial condition φ(x, t = 0) which falls off exponentially for
large x. To be concrete, let us consider the case in which φ̄(k) has a pole in
the upper half plane at k = k′. If we deform the k-integral to also go around
this pole, φ(x, t) also picks up a contribution whose modulus is proportional
to 10

∣

∣

∣e−iω(k′)t+ik′x
∣

∣

∣ = e−λ(x−v(k′)t), with λ ≡ Im k′, (19)

and whose envelope velocity v(k′) is given by

v(k′) =
Imω(k′)

Im k′
. (20)

We first characterize these solutions in some detail, and then investigate their
relevance for the full dynamics.

Following [144], we will refer to the exponential decay rate λ of our dynamical
field as the steepness. For a given steepness λ, ω(k′) of course still depends on
the real part of k′. We choose to introduce a unique envelope velocity venv(λ)
by taking for Re k′ the value that maximizes Imω and hence v(k′),

venv(λ ≡ k′i) =
ωi(k)

ki

∣

∣

∣

∣

∣

k=k′

, with
∂ωi(k)

∂kr

∣

∣

∣

∣

∣

k=k′

= Im
dω

dk

∣

∣

∣

∣

∣

k=k′

= 0, (21)

where the second condition determines kr implicitly as a function of λ = k′i.
The rationale to focus on this particular velocity as a function of λ is twofold:
First of all, if we consider for the fully linear problem under investigation
here an initial condition whose modulus falls of as e−λx but in whose spectral

function initial conditions, since the analysis is based on a large-time asymptotic
analysis of the Greens function of the dynamical equations. Note in this connection
that (18) is indeed the Green’s function solution of the linearized F-KPP equation.
9 Of course, one may consider other examples of non-analytic behavior, such as
power law singularities at k = 0. This would correspond to a power law initial
conditions φ(x, t = 0) ∼ x−δ as x → ∞. Such initial conditions are so slowly
decaying that they give an infinite spreading speed, as φ(x, t) ∼ eImω(0)tx−δ. Also
the full nonlinear front solutions have a divergent speed in this case [256].
10 We are admittedly somewhat cavalier here; a more precise analysis of the crossover
between the various contributions is given in the next subsection below Eq. (31).
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Fig. 3. (a) Generic behavior of the velocity v(λ) as a function of the spatial decay
rate λ. The thick full line and the thick dashed line indicate the envelope velocity
defined in (21): for a given λ this corresponds to the largest value of ωi and hence to
the largest velocity on these branches. The minimum of venv is equal to the linear
spreading speed v∗. (b) The situation in the special case of uniformly translating
solutions which obey ω/k = v. The dotted line marks the branch of solutions with
velocity less than v∗ given in (27).

decomposition a whole range of values of kr are present, this maximal growth
value will dominate the large time dynamics. Secondly, in line with this, when
we consider nonlinear front solutions corresponding to different values of kr,
the one not corresponding to the maximum of ωi are unstable and therefore
dynamically irrelevant — see section 2.8.2. Thus, for all practical purposes the
branch of velocities venv(λ) is the real important one.

The generic behavior of venv(λ) as a function of λ is sketched in Fig. 3(a).
In this figure, the dotted lines indicate branches not corresponding to the
envelope velocity given by (21): For a given value of λ, the other branches
correspond to a smaller value of ωi and hence to a smaller value of v(λ). Fur-
thermore, since we are considering the spreading and propagation dynamics at
a linearly unstable state, the maximal growth rate ωi(λ) > 0 as λ ↓ 0. Hence
venv(λ) diverges as 1/λ for λ → 0. When we follow this branch for increasing
values of λ, at some point this branch of solutions will have a minimum. This
minimum is nothing but the value v∗: Since along this branch of solutions
∂ωi/∂kr = 0, we simply have

dvenv
dλ

=
1

λ

(

∂ωi

∂λ
+
∂ωi

∂kr

dkr
dλ

− ωi

λ

)

=
1

λ

(

∂ωi

∂λ
− ωi

λ

)

, (22)

and so at the linear spreading point k∗

dvenv
dλ

∣

∣

∣

∣

∣

k∗

=
1

λ∗

(

∂ωi

∂λ

∣

∣

∣

∣

∣

k∗

− ω∗
i

λ∗

)

= 0, (23)
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since at the point k∗ the term between brackets precisely vanishes, see Eq. (12).
By differentiating once more, we see that the curvature of venv(λ) at the min-
imum can be related to the effective diffusion coefficient 11 D introduced in
(13),

d2venv(λ)

dλ2

∣

∣

∣

∣

∣

λ∗

=
1

λ∗





∂2ωi

∂λ2

∣

∣

∣

∣

∣

k∗

+ 2
∂2ωi

∂λ∂kr

∣

∣

∣

∣

∣

k∗

dkr
dλ

∣

∣

∣

∣

∣

k∗

+
∂2ωi

∂k2r

∣

∣

∣

∣

∣

k∗

(

dkr
dλ

)2

k∗





=
2

λ∗

[

Dr + 2Di

(Di

Dr

)

−Dr

(Di

Dr

)2
]

=
2

λ∗

[

Dr +
D2

i

Dr

]

,

=
2D

λ∗
, (24)

where D was defined in (12) and where we used the fact that according to
the definition (13) of D, we can write D = Dr + D2

i /Dr. Furthermore, in
deriving these results, we have repeatedly used the Cauchy-Riemann relations
for complex analytic functions that relate the various derivatives of the real
and imaginary part, and the fact that along the branch of solutions venv, the
relation ∂ωi/∂kr = 0 implies Di −Dr(dkr/dλ) = 0.

If we investigate a dynamical equation which admits a uniformly translating
front solution of the form φ(x − vt), the previous results need to be consis-
tent which this special type of asymptotic behavior. Now, the exponential
leading edge behavior eikx−iωt we found above only corresponds to uniformly
translating behavior provided

uniformly translating solutions: v(λ) =
ω(k)

k
, (λ = ki). (25)

The real part of this equation is consistent with the earlier condition v = ωi/ki
that holds for all fronts, but for uniformly translating fronts it implies that in
addition Im (ω/k) = 0.

11 Aside for the reader familiar with amplitude equations [105,155,189]: The re-
lation between the curvature of venv(λ) at the minimum and the diffusion coeffi-
cient D bears some intriguing similarities to the relation between the curvature of
the growth rate as a function of k of the pattern forming mode near the bifurca-
tion to a finite-wavelength pattern and the parameters in the amplitude equation
[105,189,193,316,320]. That curvature is also essentially the diffusion constant that
enters the amplitude equation. Nevertheless, one should keep in mind that the min-
imum of venv(λ) is associated with the saddle point of an invasion mode which
falls off in space, not with the maximum growth rate of a Fourier mode. Moreover,
while the amplitude equations only describe pattern formation near the instability
threshold, the pulled front propagation mechanism can be operative far above an
instability threshold as well as in pattern forming problems which have no obvious
threshold.
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Hence, the above discussion is only self-consistent for uniformly translating
solutions if the branch venv(λ) where the growth rate ωi is maximal for a given
λ coincides with the condition (25). In all the cases that I know of, 12 the
branch of envelope solutions for v > v∗ coincides with uniformly translating
solutions because the dispersion relation is such that the growth rate ωi is
maximized for kr = 0:

uniformly translating solutions with v > v∗: kr = ωr = 0, Di = 0. (26)

Obviously, in this case the branch venv(λ) corresponds to the simple exponen-
tial behavior exp(−λx+ ωit) which is neither temporally nor spatially oscil-
latory. 13

We had already seen that there generally are also solutions with velocity v <
v∗, as the branches with velocity venv > v∗ shown in Fig. 3(a) are only those
corresponding to the maximum growth condition ∂ωi/∂kr = 0, see Eq. (21).
It is important to realize that if an equation admits uniformly translating
solutions, there is in general also a branch of uniformly translating solutions
with v < v∗. Indeed, by expanding the curve venv(λ) around the minimum v∗

and looking for solutions with v < v∗, one finds that these are given by 14

λ− λ∗ ≈ v′′′

3(v′′)2
(v − v∗), kr − k∗r ≈

√

2|v − v∗|/v′′ (v < v∗). (27)

The situation in the special case of uniformly translating solutions is sketched
in Fig. 3(b); in this figure, the dotted line shows the branch of solutions with
v < v∗. Since solutions for v < v∗ are always spatially oscillatory (kr 6=
0), they are sometimes disregarded in the analysis of fronts for which the
dynamical variable, e.g. a particle density, is by definition non-negative. It
is important to keep in mind, however, that they do actually have relevance
as intermediate asymptotic solutions during the transient dynamics: as we
shall see in section 2.9, the asymptotic velocity v∗ is always approached slowly
from below, and as a result the transient dynamics follows front solutions with
v < v∗ adiabatically. Secondly, this branch of solutions also pops up in the

12 As we shall see in section 2.11.1, the EFK equation illustrates that when the
linear spreading point ceases to obey (26), the pulled fronts change from uniformly
translating to coherent pattern forming solutions.
13 For uniformly translating fronts, it would be more appropriate to use in the case
of uniformly translating fronts the usual Laplace transform variables s = −iω and
λ = −ik as these then take real values. We will refrain from doing so since most
of the literature on the asymptotic analysis of the Green’s function on which the
distinction between convectively and absolutely unstable states is built, employs the
ω-k convention.
14 Note that the formula given on page 53 of [144] is slightly in error.
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analysis of fronts in the case that there is a small cutoff in the growth function
— see section 7.1.

The importance of this simple connection between the minimum of the curve
venv(λ) and the linear spreading speed v∗ can hardly be overemphasized:

For equations of F-KPP type, the special significance of the minimum of
the venv(λ) branch as the selected asymptotic velocity in the pulled regime
is well known, and it plays a crucial role in more rigorous comparison-
type arguments for front selection in such types of equations. The line of
argument that we follow here emphasizes that v∗ is the asymptotic speed
that naturally arises from the linearized dynamical problem, and that this
is the proper starting point both to understand the selection problem, and
to analyze the rate of convergence to v∗ quantitatively.

✷ Example: application to the linear F-KPP equation

We already gave the dispersion relation of the F-KPP equation in (16); using
this in Eq. (21) immediately gives for the upper branches with venv ≥ v∗ = 2

F-KPP: λ =
venv ±

√

v2env − 4

2
⇐⇒ venv = λ+ λ−1, (28)

and for the branches below v∗

F-KPP: λ = v/2, kr = ±1

2

√
4 − v2 (v < v∗ = 2), (29)

in agreement with the above discussion and with (27).

2.3 The linear dynamics: importance of initial conditions and transients

We now study the dependence on initial conditions and the transient behav-
ior. This question is obviously relevant: The discussion in the previous section
shows that simple exponentially decaying solutions can propagate faster than
v∗ — at first sight, one might wonder how a profile spreading with velocity v∗

can ever emerge from the dynamics if solutions exist which tend to propagate
faster. Moreover, as we shall see, initial conditions which fall with an expo-
nential decay rate λ < λ∗ do give rise to a propagation speed venv(λ) which is
larger than v∗.

If the initial condition is a delta function, or, more generally, if the initial
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condition has compact support (i.e. vanishes identically outside some finite
range of x), then the Fourier transform φ̄(k) is an entire function. This means
that φ̄(k) is analytic everywhere in the complex k-plane. The earlier analysis
shows that whatever the precise initial conditions, the asymptotic spreading
speed is always simply v∗, determined by the saddle point of the exponential
term.

The only relevant initial conditions which can give rise to spreading with a
constant finite speed are the exponential initial conditions already discussed
in some detail in the previous subsection. Let us assume that φ̄(k) has a pole
in the complex k-plane at k′, with spatial decay rate k′i = λ. In our first round
of the discussion, we analyzed the limit ξ fixed, t → ∞, but it is important
to keep in mind that the limits ξ fixed, t → ∞ and t fixed, ξ → ∞ do not
commute. Indeed, it follows directly from the inverse Fourier formula that
the spatial asymptotic behavior as x → ∞ is the same as that of the initial
conditions, 15

φ(x→ ∞, t = 0) ∼ e−λx =⇒ φ(x→ ∞, t) ∼ e−λx. (30)

In order to understand the competition and crossover between such exponen-
tial parts and the contribution from the saddle point, let us return to the
intermediate expression (11) that arises in analyzing the large-time asymp-
totics,

φ(ξ, t) ≃ 1

2π
eik

∗ξ−iω∗
r t

∞
∫

−∞
dk φ̄(k) e−Dt[∆k−iξ/2Dt]2−ξ2/4Dt, (31)

and analyze this integral more carefully in a case in which φ̄(k) has a pole
whose strength is small. The term −iξ/2Dt in the above expression gives a shift
in the value of the k where the quadratic term vanishes. For fixed ξ, this shift
is very small for large t, and the Gaussian integration yields the asymptotic
result (11). However, when ξ is large enough that the point where the growth
rate is maximal moves close to the pole, the saddle point approximation to the
integral breaks down. This clearly happens when the term between brackets
in the exponential in (31) is small at the pole, i.e., at the crossover point ξco
for which

ξco Re
(

1

2Dt

)

∼ (λ− λ∗) =⇒ ξco ∼ 2D(λ− λ∗)t, (32)

where we used the effective diffusion coefficient D defined in (13). This rough

15 For the F-KPP equation, this is discussed in more detail in section 2.5 of [144],
where this property is referred to as “conservation of steepness”.
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argument relates the velocity and direction of motion of the crossover point
to the difference in steepness λ of the initial condition and the steepness λ∗,
and gives insight into how the contributions from the initial condition and the
saddle point dominate in different regions. Before we will discuss this, it is
instructive to give a more direct derivation of a formula for the velocity of the
crossover region by matching the expressions for the field φ in the two regions.
Indeed, the expression for φ in the region dominated by the saddle point is
the one given in (14),

|φ(ξ, t)| ≃ 1√
4πDt

e−λ∗ξ e−ξ2/4Dt |φ̄(k∗)|, (33)

while in the large ξ region the profile is simply exponential: in the frame ξ
moving with the linear spreading speed v∗ the profile is according to (19)

|φ(ξ, t)| ≃ Ae−λ[ξ−(venv(λ)−v∗)t], (34)

where A is the pole strength of the initial condition. The crossover point is
simply the point where the two above expression match; by equating the two
exponential factors and writing ξco = vcot, we obtain from the dominant terms
linear in t

− λ∗vco − v2co/4D = −λvco + λ[venv(λ) − v∗], (35)

and hence

vco = 2D(λ− λ∗) ± 2D
√

(λ− λ∗)2 − λ[venv(λ) − v∗]/D. (36)

It is easy to check that for for equations where ω(k) is quadratic in k, the
F-KPP equation as well as the Complex Ginzburg Landau equation discussed
in section 2.11.5, the square root vanishes in view of the relation (24) between
D and the curvature of venv(λ) at the minimum. Hence, (36) then reduces to
(32). This is simply because when ω(k) is quadratic, the Gaussian integral
in the first argument is actually exact. Since the square root term in (36) is
always smaller than the first term in the expression, we see that the sign of
vco, the velocity of the crossover point, is the same as the sign of λ−λ∗. Thus,
the upshot of the analysis is that the crossover point to a tail with steepness
λ larger than λ∗ moves to the right, and the crossover point to a tail which is
less steep, to the left. 16

16 Note that when the velocity is expanded in the term under the square root sign,
the terms of order (λ− λ∗)2 always cancel in view of Eq. (24). Thus the argument
of the the square root term generally grows as (λ−λ∗)3, and depending on v′′′env(λ∗)
the roots of Eq. (36) are complex either for λ > λ∗ or for λ < λ∗. This indicates
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Fig. 4. Illustration of the crossover in the case of an initial condition which falls of
exponentially with steepness λ > λ∗, viewed in the frame ξ = x−v∗tmoving with the
asymptotic spreading speed. Along the vertical axis we plot the logarithm of the
amplitude of the transient profile. The dashed region marks the crossover region
between the region where the linear spreading point contribution dominates and
which spreads asymptotically with speed v∗ in the lab frame, and the exponential
tail which moves with a speed venv > v∗. As indicated, the crossover region moves
to the right, so the steep fast-moving exponential tail disappears from the scene.
The speed of the crossover region is obtained by matching the two regions, and is
given by (36).

The picture that emerges from this analysis is illustrated in Figs. 4 and 5.
When λ > λ∗, i.e. for initial conditions which are steeper than the asymptotic
linear spreading profile, to the right for large enough ξ the profile always falls
of fast, with the steepness of the initial conditions. However, as illustrated
in Fig. 4 the crossover region between this exponential tail and the region
spreading with velocity v∗ moves to the right in the frame moving with v∗, i.e.
moves out of sight! Thus, as time increases larger and larger portions of the
profile spread with v∗. 17

Just the opposite happens when the steepness λ of the initial conditions is less
than λ∗. In this case vco < 0, so as Fig. 5 shows, in this case the exponential
tail expands into the region spreading with velocity v∗. In this case, therefore,
as time goes on, larger and larger portions of the profile are given by the
exponential profile (34) which moves with a velocity larger than v∗.

that the detailed matching in the regime where the roots of (36) are complex is
more complicated than we have assumed in the analysis, but the general conclusion
that the direction of the motion of the crossover point is determined by the sign of
λ− λ∗ is unaffected.
17 There is an amusing analogy with crystal growth: the shape of a growing faceted
crystal is dominated by the slowing growing facets, as the fast ones eliminate them-
selves [420].
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Fig. 5. As Fig. 4 but now for the case of an initial condition which falls of expo-
nentially with steepness λ < λ∗. In this case, the dashed crossover region moves
to the left, so the slowly decaying exponential tail gradually overtakes the region
spreading with velocity v∗ in the lab frame. In other words, the asymptotic rate of
propagation for initial conditions which decay slower than exp(−λ∗x) is venv > v∗.

Because of the importance of initial conditions whose steepness λ is larger
than λ∗, we will henceforth refer to these as steep initial conditions:

steep initial conditions: lim
x→∞φ(x, 0)eλ

∗x = 0, (37)

We will specify the term “localized initial conditions” more precisely when we
will discuss the nonlinear front problem in section 2.7.6.

In conclusion, in this section we have seen that

According to the linear dynamics, initial conditions whose exponential de-
cay rate (“steepness”) λ is larger than λ∗ lead to profiles which asymptot-
ically spread with the linear spreading velocity v∗. Initial conditions which
are less steep than λ∗ evolve into profiles that advance with a velocity
venv > v∗.

As we shall see, these simple observations also have strong implications for
the nonlinear behavior: according to the linear dynamics, the fast-moving
exponential tail moves out of sight. Thus, with steep initial conditions we
can only get fronts which move faster than v∗ if this exponential tail matches
up with a nonlinear front, i.e. if there are nonlinear front solutions whose
asymptotic spatial decay rate λ > λ∗. These will turn out to be the pushed
front solutions.
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✷ Example: crossover in the linear F-KPP equation

The above general analysis can be nicely illustrated by the initial value prob-
lem u(x, 0) = θ(x)e−λx for the linearized F-KPP equation (15), taken from
section 2.5.1 of [144]. Here θ is the unit step function. The solution of the
linear problem is

u(x, t) = exp[−λx− venv(λ)t]
1 + erf[(x− 2λt)/

√
4t]

2
, (38)

where erf(x) = 2π−1/2
∫ x
0 e

−t2 is the error function and where venv(λ) is given in
(28). The position of the crossover region is clearly x ≈ 2λt, which corresponds
to a speed 2(λ−λ∗) in the ξ = x−2t frame, in accord with (32) and (36) with
D = 1, λ∗ = 1 and v∗ = 2 [Cf. (17)]. Moreover, this crossover region separates
the two regions where the asymptotic behavior is given by

u(x, t)≈ exp[−λ[x− venv(λ)t]],

= exp[−λ[ξ − (venv(λ) − v∗)t]], for ξ ≫ 2(venv − 2)t, (39)

and

u(x, t)≈ 1√
4πt λ(1 − x/(2λt)

exp[−(x− 2t) − (x− 2t)2/4t],

≈ 1√
4πt λ

exp[−ξ − ξ2/4t], for ξ ≪ 2(venv − 2)t, (40)

in full agreement with the general expressions (34) and (33). Finally, note that
according to (38) the width of the crossover region grows diffusively, as

√
t.

We expect this width ∼
√
t behavior of the crossover region to hold more

generally.

2.4 The linear dynamics: generalization to more complicated types of equa-
tions

So far, we have had in the back of our minds the simple case of a partial
differential equation whose dispersion relation ω(k) is a unique function of k.
We now briefly discuss the generalization of our results to more general classes
of dynamical equations, following [144].

First, consider difference equations. The only difference with the previous
analysis is that in this case the k -space that we introduce in writing a Fourier
transform, is periodic — in the language of a physicist, the k space can be
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limited to a finite Brillouin zone. Within this zone, k is a continuous variable
and ω(k) has the same meaning as before. So, if ω(k) has a saddle point in
the first Brillouin zone, this saddle point is given by the same saddle point
equations (12) as before, and the asymptotic expression (14) for the dynamical
field φ is then valid as well! 18

In passing, we note that although the above conclusion is simple but com-
pelling, one may at first sight be surprised by it. For, many coherent solutions
like fronts and kinks are susceptible to “locking” to the underlying lattice
when one passes from a partial differential equation to a difference equation
[154,222]. Mathematically this is because perturbations to solutions which on
both sides approach a stable state are usually governed by a a solvability con-
dition. The linear spreading dynamics into an unstable state, on the other
hand, is simply governed by the balance of spreading and growth, and this is
virtually independent of the details of the underlying dynamics.

The concept of linear spreading into an unstable state can be generalized to
sets of equations whose linear dynamics about the unstable state can, after
spatial Fourier transformation and temporal Laplace transform, be written in
the form

N
∑

m=1

Ŝnm(k, ω)φ̂m(k, ω) =
N
∑

m=1

Ĥnm(k, ω)φ̃m(k, t = 0), n = 1, · · · , N. (41)

Here n is an index which labels the fields. The above formulation is the one
appropriate when we use a temporal Laplace transform,

φ̂n(k, ω) =

∞
∫

0

dt

∞
∫

−∞
dxφn(x, t)e−ikx+iωt. (42)

In the Laplace transform language, terms on the right hand side arise from
the partial integration of temporal derivative terms ∂kt φm(x, t) in the dynam-
ical equation; the coefficients Hnm therefore have no poles in the complex ω
plane but poles in the k plane can arise from exponentially decaying initial
conditions.

It is important to realize that the class of equations where the linearized
dynamics about the unstable state can be brought to the form (41) is extremely

18 When ω(k) is periodic in k space, there will generally also be saddle points at the
boundary of the Brillouin zone. These will usually not correspond to the unstable
modes — they correspond to a an oscillatory dependence of the dynamical field
(like in antiferromagnetism) — but there is no problem in principle with the linear
spreading being determined by a saddle point associated with the edges of the
Brillouin zone.
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wide: in includes sets of partial differential equations, difference equations,
equations with a spatial and temporal kernels of the form

∫

dx′
∫ t dt′K(x −

x′, t − t′)φ(x′, t′), as well as equations with a mixture of such terms. 19 In
addition, we conjecture that much of the analysis in this section can quite
straightforwardly be extended to front propagation into periodic media (see
section 3.18). We will give a few simple examples based on extensions of he
F-KPP equation below.

The Green’s function Ĝ associated with the equations is the inverse of the

matrix Ŝ,

Ĝ(k, ω) ≡ Ŝ
−1

(k, ω). (43)

and the formal solution of (41) can be written simply in terms of Ĝ as

φ̂(k, ω) = Ĝ(k, ω) · Ĥ(k, ω) · φ̄(k, t = 0). (44)

When we invert the Fourier-Laplace transform, the term on the right hand
side has, in view of (43), poles at the points where the determinant |Ŝ| of Ŝ
vanishes. There may generally be various branches of solutions of the equation
|Ŝ| = 0. In discussing the large-time behavior, one first assumes that the initial
conditions have compact support, so that their spatial Fourier transform is
again an entire function of k. The analysis then amounts to extracting the
long-time behavior of the Green’s function G.

The poles given by the zeroes of |Ŝ| determine the dispersion relations ωα(k) of
the various branches α. The branches on which all modes are damped do not
play any significant role for the long-time asymptotics. For each of the branches
on which some of the modes are unstable, the analysis of the previous sections
applies, and for the linear problem the linear spreading velocity v∗ is simply
the largest of the linear spreading speeds v∗α of these branches.

19 I have have the impression that population dynamicists [124,295] realized most
clearly first that the front speed of what we refer to as pulled fronts can be calculated
explicitly also for equations with a memory kernel. Within the physics community,
this was realized of course from the start by the plasma physicists when they devel-
oped the “pinch point formulation” discussed below. Quite surprisingly, it appears
that many of these early developments have never become standard knowledge in
the mathematics literature. The “new method” proposed in [164] is essentially a
reinvention of parts of the work half a century before in plasma physics and fluid
dynamics referenced below, and this paper contains no references to these earlier
developments. Even in this paper, the analysis is presented as a method that applies
to partial differential equations only.
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In fact, the long time asymptotics of φn(x, t) can be extracted in two ways
from (44), depending on whether one first evaluates the ω-integral or the
k-integral. The first method essentially reproduces the formulation of the pre-
vious sections, the second one leads to the so-called pinch-point formulation
[49,62,204,264] developed in plasma physics in the 1950-ies. We discuss their
differences, as well as their advantages and disadvantages in appendix A, and
proceed here keeping in mind that the two methods invariably give the same
expressions for the linear spreading velocity v∗ and associated parameters.

In order to keep our notation simple, we will from now on drop the branch
index α, assuming that the right linear spreading point has been selected if
there is more than one, and we will usually also drop the index n or the vector
notation for the dynamical field φ.

✷ Example: finite difference version of the F-KPP equation

As a simple example of the implications of the above discussion, imagine we
integrate the F-KPP equation with a cubic nonlinearity with a simple Euler
scheme. 20 This amounts to replacing the F-KPP equation by the following
finite difference approximation:

uj(t+ ∆t) − uj(t)

∆t
=
uj+1(t) − 2uj(t) + uj−1(t)

(∆x)2
+ uj(t) − u3j(t). (45)

If we linearize the equation by ignoring the last term and substitute a linear
mode uj ∼ exp(st − λj∆x) (this amounts to writing ω = is with s real) we
obtain the dispersion relation

exp[s∆t] − 1

∆t
= 1 +

(

sinh 1
2
λ∆x

1
2
∆x

)2

. (46)

The saddle point equations or, what amounts to the same, the minimum of
the curve venv(λ) = s/λ is easy to determine numerically. For small ∆t and
∆x one can also solve the equation analytically by expanding about the values
for the continuum case given in (17), and one finds [144]

Euler approximation to F-KPP



























v∗ = 2 − 2∆t+ 1
12

(∆x)2 + · · · ,
λ∗ = 1 + ∆t− 1

8
(∆x)2 + · · · ,

D = 1 − 4∆t + 1
2
(∆x)2 + · · · ,

(47)

20 The equivalent expressions for the second-order implicit (“Crank-Nicholson”) in-
tegration scheme are given in section 5.6.4 of [144].

32



Although these expressions look simply like error estimates for the finite dif-
ference approximation of the F-KPP partial differential equation, they are
actually more than that: they give the exact parameters v∗, λ∗ and D of the
finite difference approximation. So when the precise values of these parameters
are not so important, e.g., if one want to study the emergence of patterns or
the power law relaxation discussed below in section 2.9, one can take advan-
tage of this by doing numerical simulations with relatively large values of ∆t
and ∆x using the above properties as the reference values, rather than those
obtained in the continuum limit ∆t,∆x → 0.

✷ Example: F-KPP equation with a memory kernel

The extension of the F-KPP equation in which the linear growth term is
replaced by a term with a memory kernel,

∂tu(x, t) = ∂2xu+

t
∫

0

dt′K(t− t′) u(x, t′) − uk(x, t), (k > 1), (48)

is an example of a dynamical equation which can still be treated along the
lines laid out above, as its Fourier transform is of the form (41). If we take for
instance [144]

K(t− t′) =
1√
π τ

exp

[

−(t− t′)2

4τ 2

]

, (49)

the implicit equation for s(λ) = ωi(λ) becomes

λ2 − s+ exp[τ 2s2] erfc(τs), (50)

where erfc is the complementary error function. The result for v∗, λ∗ and D
obtained by solving numerically for the minimum of venv = s(λ)/λ, are shown
in Fig. 6.

Note that when τ ≪ 1 we can to a good approximation expand u(x, t′) in the
memory term in (48) around u(x, t) to second order. In this approximation,
we then arrive at a second order version of the F-KPP equation. Such exten-
sions have often been used as a simple way to model delay effects, as will be
discussed briefly in section 3.19. From the point of view of determining the
linear spreading speed, however, there is no real advantage in using a second
order equation rather than an equation with a kernel.
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Fig. 6. Plot of v∗, λ∗ and D as a function of τ for the extension (48) of the F-KPP
equation with memory kernel (49). From [144].

2.5 The linear dynamics: convective versus absolute instability

The case that we will typically have in mind is the one in which the growth
rate of the unstable modes is so strong that the amplitude of a generic lo-
calized perturbation grows for long times at any fixed position, as sketched
in Fig. 7(a). It thus spreads into the unstable state on both flanks of the
perturbation.

However, even when a state is linearly unstable, so that according to (4) a
range of modes has a positive growth rate ωi, if there are symmetry breaking
convective terms in the dispersion relation a localized perturbation may be
convected away faster than it grows out. Figure 7(b) illustrates how in this
case the amplitude of the perturbation for any fixed position on the right
actually decreases in time, even though the overall amplitude grows. Even for
any position on the left of the figure, if we wait sufficiently long the amplitude
of the perturbation eventually decays. This regime is usually referred to as
the convectively unstable regime, while the other regime is referred to as the
absolutely unstable regime [49,62,204,205,264].

Clearly, these concepts are intimately connected with the linear spreading
speed discussed above. Indeed, given our convention to focus on the right flank
of a perturbation, the two regimes are distinguished according to whether v∗

is positive or negative:

v∗ > 0 : linearly absolutely unstable regime,

v∗ < 0 : linearly convectively unstable regime.
(51)
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Fig. 7. Illustration of the distinction between an absolute instability and a convective
instability, according to the linearized dynamics. In the first case, sketched on the
left in (a), the perturbation about the unstable state grows for sufficiently long
times at any position x. In the convectively unstable case sketched on the right in
(b), the perturbation grows but is at the same time advected away so fast that it
eventually dies at any fixed position x. Note that as a result of it, the point on the
right where φ reaches the level line φ = C retracts to the left. The transition from
convective to absolute instability occurs when this point does not move for long
times, i.e. when the left spreading velocity v∗L equals zero [49,62,204,205,264]. Note
that the distinction between absolutely and convectively unstable depends on the
frame of reference. The case sketched on the left which is absolutely unstable in the
x frame is convectively unstable in a frame moving with a sufficiently large speed
to the right, while the case sketched on the right in the x-frame becomes absolutely
unstable in a frame moving with speed larger than v∗ to the left.

It is important to keep in mind that the two regimes are defined in relation to
a particular frame of reference: if v∗ > 0 in the lab frame, so that the insta-
bility is absolute in that frame, the instability becomes convectively unstable
for an observer moving to the right with velocity larger than v∗. Furthermore,
a convectively unstable system ideally remains in or will return to the unsta-
ble state according to the linear deterministic dynamics. Nevertheless, small
perturbations or fluctuations are amplified while they are advected away. This
makes convectively unstable systems particularly sensitive to fluctuations and
to small but fixed perturbations at a particular point. The latter could arise
in real experiments due to imperfections in experimental setup or due to local
perturbations at an inlet in systems with a throughflow. We will encounter a
nice experimental illustration of the sensitivity to noise near the convective to
absolute transition in section 3.11.

We finally note that we have followed here the standard practice to distinguish
the two regimes according to the fully linear dynamics. The generalization of
these concepts to the nonlinear regime will be given later in section 2.10.

✷ Example: the F-KPP equation with a convective term

Consider the F-KPP equation with a convective term,

∂tu(x, t) + s∂xu(x, t) = ∂2xu(x, t) + f(u), (52)
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where, as in the standard form (1), f(0) = 0 and f ′(0) = 1. Since this equation
simply becomes the standard F-KPP equation (1) upon transforming to the
moving frame x′ = x − st, the linear spreading velocity associated with (52)
is v∗ = s + v∗FKPP = s + 2. Thus the linear instability changes from absolute
to convective at s = −2. Whether nonlinearly the transition also happens at
this point depends on the function f(u): when f is such that fronts are pulled,
the nonlinear transition remains at s = −2, but when the fronts become
pushed, the transition shifts to more negative values of s — see section 2.10.
In the Taylor-Couette experiments reviewed in section 3.11 the velocity s in
the closely related amplitude equation is controlled with a flow through the
cell.

2.6 The two-fold way of front propagation into linearly unstable states: pulled
and pushed fronts

In the previous sections, we have analyzed the linear spreading dynamics into
a linearly unstable state. We concluded that starting from sufficiently localized
initial conditions — the precise condition being given in (37) — the perturba-
tions spread into the unstable state with asymptotic speed v∗. This asymptotic
spreading speed and associated parameters are determined through the dis-
persion relation ω(k) via Eqs. (12).

We now turn to the genuine nonlinear front propagation problem already stated
in the introduction, questions like: If initially a spatially extended system is in
a linearly unstable state everywhere except in some spatially localized region,
what will be the large-time dynamical properties and speed of the nonlinear
front which will propagate into the unstable state? Are there classes of initial
conditions for which the front dynamics converges to some unique asymptotic
front state? If so, what characterizes these initial conditions, and what can we
say about the asymptotic front properties and the convergence to them?

As before, our discussion is aimed to be as general as is possible. The only
restriction we will make, barring pathological cases, is that the nonlinear dy-
namical equations of the system under investigation have a sufficient degree of
“locality”: they can involve partial derivative terms and nonlocal terms with
a kernel whose range is essentially finite, but the dynamics of the dynamical
variables at a given position should not depend crucially on the nonlinear state
of the system infinitely far away. 21 22

21 This requirement is comparable to the fact that in statistical physics the standard
universality classes of equilibrium phase transitions only apply to Hamiltonians in
which the interactions are sufficiently short-ranged. This does include Hamiltonians
where the interactions decay as a power r−σ provided σ is large enough.
22 A simple example that illustrates this is the following extension of the F-KPP
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A characteristic feature of front propagation into unstable states which carries
over from the linear dynamics that we discussed above, is that initial condi-
tions which decay very slowly spatially lead to a large front speed whose value
depends on the spatial decay rate. We will come back to this later. Hence, in
order to make precise statements we need to limit the class of initial condi-
tions we consider. Now, for any given set of deterministic dynamical evolution
equations with an unstable state, the linear spreading speed v∗ and associated
steepness λ∗ are explicitly and uniquely calculable according to the discussion
of the previous sections. This motivates us to distinguish the front propaga-
tion properties of dynamical equations according to the long-time evolution
starting from steep initial conditions:

Whenever we associate a particular front propagation mechanism with a
given dynamical equation, this is a statement about the dynamical evolu-
tion of fronts that evolve from localized initial conditions. These include
all initial conditions which are “steep”, i.e., which as defined in (37) fall
off faster than exp[−λ∗x]. 23

Let vfront(t) be some suitably defined instantaneous front velocity. The cru-
cial insight on which our presentation will be based is the following simple
insight: For front propagation into a linearly unstable state, there are only two
possibilities if we start from steep initial conditions,

I. vas ≡ limt→∞ vfront(t) = v∗ ⇐⇒ “pulled” front,

II. vas ≡ limt→∞ vfront(t) = v† > v∗ ⇐⇒ “pushed” front.

This statement amounts to the claim that nonlinear fronts propagating into
a linearly unstable state can asymptotically not propagate with speed slower
than v∗ for equations of the type we consider, in which the dynamics is “local”
in the sense that the linear dynamics is not suppressed by nonlinear behavior
arbitrarily far away. To see this, suppose we start with a front solution which
propagates with speed less than v∗. Any sufficiently small perturbation ahead
of it will then grow out and spread, asymptotically with the linear spreading
speed v∗. Eventually these perturbations will grow large enough that nonlinear
behavior kicks in, but the crossover region where this happens must asymptoti-
cally advance at least with the speed v∗. In other words, since the nonlinearities
can not suppress the linear growth arbitrarily far ahead of the front, they can

equation: ∂tu = ∂2xu + u(1 − m tanh[
∫∞
−∞ dxu2]) − u3. For m < 1 fronts in this

equation are still pulled, albeit with a spreading speed renormalized down from the
value obtained by linearizing the equation in u about u = 0. For m > 1 there is no
finite asymptotic front speed. This example illustrates that although it is difficult to
specify the general conditions under which our analysis applies precisely, in practice
common sense gets one quite far for any given problem.
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not prevent the linear spreading to asymptotically move ahead with asymp-
totic speed v∗ and thus create a front with at least this speed. Consequently,
nonlinearities can only drive front speeds up, i.e., to v† > v∗.

Admittedly, while the above conclusion that fronts can asymptotically not
move slower than v∗ may be dynamically “obvious”, I know of no general
mathematical proof of it. For some of the fourth order equations reviewed in
section 2.11, this conclusion is either implicit or explicit in a formulation in
which one proves that in any frame moving with velocity less than v∗ one sees
perturbations grow [93,144].

At this point, the names “pulled” and “pushed” front fall fully into place. 24

With a pulled front we literally mean one which is pulled along by the linear
spreading of small perturbations into the linearly unstable state. Any front
which asymptotically moves with speed v† faster than v∗ is somehow “pushed”
into the unstable state by the nonlinear behavior in the front region itself or
the region behind it — if there were no nonlinear behavior, one would find
spreading with velocity v∗. We will thus refer to v† as the pushed front speed.

The present line of argument, where one takes the classical linear spread-
ing of perturbations into an unstable state as the starting point, has several
important advantages and ramifications. First of all, it allows one to make
statements irrespective of the nature of the nonlinear state behind the front:
Quite literally the picture that underlies it and that both the analytical and
numerical results presented later confirm, is that a pulled front spreads in the
way the linear spreading point conditions (12) force it to do. In other words,
the nonlinear dynamics in the region behind the leading edge just has to adapt
to whatever is forced by the linear spreading. Depending on the existence, sta-
bility and nature of nonlinear front solutions, this behavior can be coherent or
incoherent, but this by itself does not really feed back onto the linear spread-
ing. 25 This simple idea can be made explicit and quantitative: it lies at the
basis of the exact results for the universal relaxation behavior of pulled fronts
discussed in sections 2.9 and 4.

24 The names pulled and pushed were introduced back in 1976 by Stokes [384] and
revived in the physics literature in the mid nineties by Paquette et al. [333,334].
Ben-Jacob et al. [38] referred to them as Case I and Case II marginal stability and
I initially used the words linear and nonlinear marginal stability [421]. The great
advantage of the nomenclature of Stokes is that the notions of “pulled” and “pushed”
tie in nicely with the general concept of linear spreading velocity, and hence that
they can be defined independently of whether or not a uniformly translating or
coherent front solution exists.
25 Actually, we can make this quite precise: As we shall see, the first consequence of
the feedback of the nonlinear behavior onto front propagation is the change of the
prefactor of the 1/t relaxation term by a factor 3. See section 2.9.
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The second advantage is that the present line of argument focuses on the
fact that the most clear and relevant issue is to understand the mechanism
through which we can get fronts to propagate at speeds larger than v∗, i.e., to
be pushed.

We finally note that the concept of a pulled front is only well-defined for
propagation into a linearly unstable state: A small perturbation around a
linearly stable state dies out and does not spread. As a result, the propagation
of a front into a linearly stable state is always driven by the nonlinearities and
the nonlinear or dynamical competition between this state and a different
one. From this perspective, especially near subcritical bifurcation points, it is
sometimes useful to think of a front which propagates into a stable state as
being “pushed”.

2.7 Front selection for uniformly translating fronts and coherent and inco-
herent pattern forming fronts

In order to discuss the selection of a particular type of front and its propagation
mechanism, it is useful to distinguish three different classes of nonlinear front
dynamics: 26

• Uniformly translating fronts are nonlinear front solutions for the dynamical
variable φ of the form

φ(x, t) = Φv(ζ), (53)

where ζ is the co-moving coordinate

ζ ≡ x− vt, (54)

which we will use for general velocity v, to distinguish it from the coordinate
ξ = x−v∗t moving with velocity v∗. We remind the reader that, unless noted

26 With our classification we have in mind fronts which propagate in a homogeneous
background medium. If the medium itself is periodic, fronts which are uniformly
translating in a homogeneous medium become automatically periodic; likewise if
the parameters of the dynamical equation are randomly varying the fronts will
always be incoherent. Strictly speaking, fronts in a periodic medium, which are
sometimes referred to as “periodically pulsating fronts”, are of the type (55) below
but as stated, we will always have in mind that the medium itself is homogeneous,
and when considering periodic front solutions concentrate on fronts which then
generate a nontrivial pattern. For the linear dynamics of small perturbations about
the unstable state of a homogeneous system, the dispersion relation can be obtained
from a simple Fourier transformation. As we shall discuss below in section 3.18, the
analysis of pulled fronts can be extended to the case of periodic media by recognizing
that one simply has to do a Floquet analysis to determine ω(k).
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otherwise, we do not distinguish notationally between a single dynamical
variable or a set (vector) of them. Equation (53) expresses that in a frame
moving with velocity v, the front solution is stationary, i.e., invariant in time.
Uniformly translating solutions are normally only appropriate solutions for
problems in which the front leaves behind a homogeneous state, i.e., does
not generate a pattern. The overwhelming majority of asymptotic front
solutions which have been analyzed in the mathematics literature are of
this type. An example of a pushed front in the F-KPP equation is shown in
the lower left panel of Fig. 1.

• Coherent pattern forming fronts are the generalization of uniformly trans-
lating solutions to systems where the front leaves behind a pattern with a
well-defined wavenumber. As the middle panel of Fig. 1 and the examples
discussed in section 2.11 and chapter 3 illustrate, usually the pattern be-
hind the front is stationary or moves with a velocity different from the front
speed. In other words, when viewed in the frame moving with the front, the
pattern behind the front is not stationary. Hence the front solution can not
be of the form (53). However, we may generalize the concept by introduc-
ing a coherent pattern forming front solution as a front solution which is
periodic in the frame ζ = x− vt moving with speed v, i.e.,

φ(x, t) = Φ(ζ, t), with Φ(ζ, t+ T ) = Φ(ζ, t). (55)

We can equivalently write this as

φ(x, t) =
∑

n=0,±1,···
e−inΩt Φn

v (ζ), (Ω = 2π/T ), (56)

where for real dynamical fields φ the complex functions Φn
v obey the sym-

metry

Φ−n
v (ζ) = Φn

v (ζ). (57)

Clearly, Eq. (55) expresses that in the co-moving frame the front solution
is periodic. 27 Hence, in the representation (56) the functions Φn

v (ζ) can
at every position be viewed as the Fourier coefficients of the time-periodic
function Φ(ζ, t).

These time-periodic coherent front solutions of the form (55) or (56) are
relevant for e.g. the Swift-Hohenberg equation discussed in section 2.11.2
and were to my knowledge for the first time introduced for the analysis

27 We prefer to use the general name “coherent pattern forming front solution”
instead of periodic front solutions for two reasons. First of all, this name is consistent
with the name “coherent structure solutions” for special type of solutions of the
CGL equation (see Eq. (101) in section 2.11.6). Secondly, we wish to stress the fact
that we aim at pattern forming solutions and so want to distinguish them from
the simpler periodic or “pulsating” types of fronts that arise in equations like the
F-KPP equation when the medium itself is periodic — see section 3.18.
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of fronts in this equation by Collet and Eckmann [92]. Moreover, they can
also be viewed as an extension of the “coherent structure solutions” [424]
introduced in the context of the Complex Ginzburg Landau equations of
sections 2.11.5 and 2.11.6 — because of the fact that the Complex Ginzburg
Landau equation arises as the lowest order amplitude equation for traveling
wave patterns, only one term in the sum (56) is nonzero in this case. As
we shall see, both pulled and pushed coherent fronts solutions are found in
certain parameter ranges.

• Incoherent pattern forming fronts is the name we will use for all the inco-
herent fronts like those of the right column of Fig. 1 which do not fit into
one of the two previous classes. We will encounter other pulled and pushed
examples of them later, but they are the least understood of all.

We now proceed to discuss the dynamical mechanism that distinguishes pushed
and pulled fronts for these various classes of equations. The essential ingredient
will be to maximally exploit the constraints imposed by the linear dynamics
about the unstable state.

2.7.1 Uniformly translating front solutions

When a dynamical equation also admits a homogeneous stable stationary state
φss = const. in addition to the unstable state φ = 0, then usually this dynam-
ical equation also admits uniformly translating front solutions of the form
(53), φ(x, t) = Φv(ζ) with ζ = x− vt. To investigate whether it does, one sub-
stitutes this Ansatz into the dynamical equation and analyzes its behavior.
The simplicity of uniformly translating fronts lies in the fact that the function
Φv(ζ) depend on the single variable ζ only, so that the function Φv then obeys
an ordinary differential equation rather than a partial differential equation.
The existence of front solutions can from there on be analyzed using standard
methods [13,14,191]: the homogeneous stationary states φ = 0 and φ = φss are
fixed points of this ordinary differential equation. By linearizing about these
fixed points and studying the dimensions of the stable and unstable manifolds
(i.e. the dimensions of the manifolds flowing into and out of each fixed point),
one can then study the multiplicity of front solutions (see e.g. [424] for an
extensive use of such “counting arguments” in the context of CGL equations).
For the F-KPP equation the analysis, which is summarized below, is relatively
trivial; one finds that there is a one-parameter family of front solutions that
connect the stable homogeneous state with the unstable state φ = 0. For the
F-KPP equation, one can easily go beyond a simple counting argument based
on the analysis near the fixed points to prove more rigorously when there is
such a family of solutions. These front solutions can be parametrized by their
velocity v. We stress that for an arbitrary dynamical equation that admits
a stable homogeneous state and a homogeneous unstable state, there is not
necessarily always a one-parameter family of front solutions connecting the
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two. However, this is what is typically found and what is intuitively most rea-
sonable based on the fact that a special feature of the linear dynamics about
an unstable state is that any exponential tail with steepness λ less than λ∗

can propagate into the unstable state with speed venv(λ) — see section 2.2. 28

Let us first proceed by assuming the equations do admit a one-parameter
family of front solutions, parametrized by their velocity. Then this family
generically will include a uniformly translating front solution Φv∗(ξ) moving
with velocity v∗, to which the front will asymptotically converge in the pulled
regime, i.e., starting from steep initial conditions.

The behavior near the fixed points of the ordinary differential equation for
Φv(ζ), obtained by linearizing the flow equations around the fixed point, cor-
responds to an exponential ζ-dependence. Thus, for an arbitrary velocity v,
the solutions Φv(ζ) will decay to zero exponentially for large ζ ,

Φv(ζ) ≈ a1e
−λ1ζ + a2e

−λ2ζ + · · · (ζ → ∞), (58)

where all roots λi are positive and where the real coefficients a1, a2, etcetera
can only be determined by solving the equations for the fully nonlinear front
solution. 29 We take these roots ordered, 0 < λ1 < λ2 · · ·. The relation between
the velocity v and the two smallest roots in the generic case 30 is shown in

28 An explicit counting argument for partial differential equations that are symmet-
ric under spatial reflection confirms that for such equations one typically expects
a one-parameter family of front solutions (see appendix A of [420]). There are two
intimately related ways to understand why this is so often the case: (i) Suppose
we first change the dynamical equation so as to make the unstable state stable.
One then expects there to be at least one front solution (or maybe a discrete set
of them) connecting the two stable states. Now when we change the equation back
to its original form, at the moment when the φ = 0 state becomes unstable again,
the dimension of the stable manifold flowing into the φ = 0 fixed point increases by
one, because a new root appears which is related to the left branch in Fig. 3; (ii)
According to the linear dynamics discussed in section 2.2, any any exponential tail
with λ < λ∗ can propagate into the unstable state with envelope velocity venv(λ).
When the dynamical equation admits a stable homogeneous state as well, it is not
unreasonable that every exponential tail propagating with some velocity v in the
leading edge can match up smoothly with a saturating behavior behind the front.
29 In (58) we want to bring out that there are contributions from the various roots,
or, in more technical language, from the various directions that span the stable
many-fold of the fixed point corresponding to φ =. If λ1 < λ2/2 then of course
terms exp[−2λ1ζ] dominate over terms exp[−λ2ζ], but this is all hidden in the dots.
30 We assume here for simplicity that there are no other branches at even smaller λ;
this is usually the case, as the branch which in Fig. 3 diverges as λ ↓ 0 is associated
with the instability, the fact that ωi(λ = 0) > 0. We will briefly come back to the
case where other branches intervene in section 2.7.7.
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Fig. 3: For v > v∗ the root λ1 < λ∗ while λ2 > λ∗. In passing we note that at
v = v∗ two roots coincide; general results [13,14,191] for the flow behavior in
the presence of degenerate eigenvalues then imply

Φv∗(ξ) ≈ (a1ξ + a2)e
−λ∗ξ + a3e

−λ3ξ + · · · . (59)

When do we expect the equation to be pushed, i.e., when do we expect that
a pushed front solutions with velocity v† > v∗ will emerge starting from steep
initial conditions? The answer lies hidden in Fig. 4: according to the fully linear
dynamics an exponential tail which is steeper than λ∗ and which corresponds
to the dashed branch λ2 in Fig. 3, does run faster than v∗ but disappears from
the scene because the crossover point to the linear spreading profile moves to
the right. According to our “locality” assumption for the dynamics, the same
holds arbitrarily far into the leading edge of a front, unless the nonlinearities
in the dynamical equation allow the fast exponential tail to match up perfectly
with a nonlinear front solution! This is illustrated in Fig. 8: if a uniformly
translating front solution with v = v† > v∗ exists for which a1 = 0 so that its
asymptotic behavior is given by the root λ2,

Φv†(ζ) ≈ a2e
−λ2ζ + a3e

−λ3ζ + · · · (λ2 > λ∗, ζ = x− v†t→ ∞), (60)

then this front solution can and will overtake any transient dynamical tail in
the leading edge. In other words, such a solution is the asymptotic pushed
front solution sought for, and if it exists it is the dynamically relevant front
solution emerging from steep initial conditions.

As we noted before, front solutions Φv(ζ) obey an ordinary differential equa-
tion or a set thereof; such a differential equations can be formulated as a flow
in phase space [13,14,191]. In such an interpretation, a front solution corre-
sponds to a so-called heteroclinic orbit, an orbit which goes from one point
(the asymptotic state behind the front) to another (the state φ = 0). For gen-
eral v, the orbit approaches the fixed point corresponding to the state φ = 0
asymptotically along the eigendirection whose rate of attraction, given by λ1,
is slowest. The pushed front solution Φv†(ζ), however, approaches it along the
slowest but one eigendirection , the one with eigenvalue λ2. For this reason,
a uniformly translating pushed front solution is sometimes referred to as a
strongly heteroclinic orbit [354].

Let us illustrate the above considerations briefly for two equations, the F-KPP
equation and an extension of it, the EFK equation. Uniformly translating
solutions U(x − vt) = U(ζ) of the F-KPP equation (1) obey the ordinary
differential equation

− v
dU

dζ
=
d2U

dζ2
+ f(U). (61)
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Fig. 8. Illustration of the fact that when a nonlinear front solution Φv† exists,
whose asymptotic steepness is according to (60) larger than λ∗, then this front
will generically emerge: it is the selected pushed front solution. Figure (a) should be
compared to Fig. 4: If the equation would be fully linear, the steep tail on the right,
which moves at velocity larger than v∗, would cross over in the dashed region to the
dashed profile moving with asymptotic speed v∗. However, this does not happen.
When the steep profile matches up arbitrarily well with a fully nonlinear front profile
Φv† this steep region does not disappear from the scene: Instead a fully nonlinear
profile with speed v† emerges. While (a) shows how only the pushed front solution
Φv† can asymptotically emerge, (b) illustrates how a pushed front solution invades
a region where the profile is close to that given by the linear spreading analysis. The
dashed line indicates the continuation of the profile as given by the linear spreading
analysis of previous sections, but in the dashed region the profile crosses over to the
steep tail of the nonlinear pushed profile. The fact that the crossover region moves
to the right with the speed vco determined earlier, confirms that the pushed front
solution invades the leading edge.

It is convenient to use the standard trick of writing this second order equation
as a set of first order equation: by introducing the variable U ′ = dU/dζ we
can write (61) as

dU

dζ
=U ′, (62)

dU ′

dζ
=−v U ′ − f(U). (63)

These equations describe the flow in the two-dimensional phase space (U, U ′),
with ζ playing the role of time. Because f(0) = f(1) = 0 according to (1),
the points (0, 0) and (1, 0) are fixed points of these flow equations; the first
one corresponds to the stable state and the second one to the unstable state.
With our convention that fronts move into the unstable state on the right, a
uniformly translating front solution corresponds to a trajectory flowing from
the (1, 0) fixed point to the (0, 0) fixed point. Such a “heteroclinic orbit” is
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Fig. 9. Sketch of the flow in the phase space (U,U ′) of the flow equations (62) and
(63) that govern the uniformly translating solutions of the F-KPP equation. The
solid lines at the two fixed points indicate the shape of the stable and unstable
manifolds near each fixed point, obtained by linearizing the flow around each fixed
point. The arrows indicate the direction of the flow, and the double arrow at the
(0, 0) fixed point indicates that the contraction along this eigendirection is stronger
than along the other one (λ2 > λ1). The dashed trajectory is the heteroclinic orbit
connecting the two fixed points; it corresponds to the front solution connecting the
stable and the unstable state. (a) Flow in the case v ≥ max(v†, v∗). The trajec-
tory approaches the (0, 0) fixed point along the slowest contracting direction. (b)
If for some velocity v = v† the dashed trajectory becomes a “strongly heteroclinic
orbit” which approaches the (0, 0) fixed point along the more strongly contracting
direction, the equation admits a pushed front solution.

sketched for large arbitrary v in Fig. 9(a). 31 The solid lines near the two
fixed points in this figure denote the directions of the stable and unstable
manifolds flowing into and out of each fixed point. These are easily determined
by linearizing equations (62), (63) about the fixed point solutions and solving
for the eigenvalues of the linearized flow. The arrows in Fig. 9 indicate the
directions of the flow for increasing ζ (“time”). As is indicated in the figure,
there is one stable and one unstable stable direction at the (1, 0) fixed point.
For any fixed velocity v, there is hence a unique trajectory coming out of
this fixed point in the direction of decreasing u. At the (0, 0) fixed point,
however, both eigendirections are attracting; we have indicated the direction
along which the contraction is largest with a double arrow. Now, because there
is a two-dimensional manifold flowing into the (0, 0) fixed point, the unique
dashed trajectory that flows out of the (1, 0) fixed point will flow into the (0, 0)
fixed point, and it will asymptotically flow in along the slowest contracting
eigendirection — these observations correspond to the statements that there
is a front solution for a any v and that the asymptotic large-ζ behavior in (58)
is dominated by the smallest eigenvalue λ1.

Depending on the form of the nonlinearity f(u), the situation as sketched in
Fig. 9 may occur: for a particular value v† of the velocity, it may happen
that the unique dashed trajectory that flows out of the (1, 0) fixed point flows

31 For v < v∗ the eigenvalues at the fixed point (0, 0) are complex so trajectories
spiral into this fixed point.
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into the stable (0, 0) fixed point along the most rapidly contracting direction
which is indicated in the figure with the double arrow. In other words, for
this trajectory the asymptotic behavior of U(ζ) goes as e−λ2ζ , i.e., has a1 = 0
in (58). This “strongly heteroclinic orbit” thus corresponds to a pushed front
solution — if it exists, the selected front in the F-KPP equation is a pushed
front. Clearly, whether such a pushed front solution exists depends on the global
nonlinear properties of the equation, the full nonlinear behavior of f(u) in this
case — determining or proving whether for a given equation the selected front
is pushed, requires a fully nonlinear global analysis of the flow. All the details
of the nonlinear behavior count. In the example at the end of this section
we will show that for certain classes of nonlinearities f(u), the pushed front
solution of the F-KPP equation can be obtained analytically.

To give an idea of the complications that one immediately encounters when
one goes beyond the F-KPP equation, let us briefly consider the equation

∂tu = ∂2xu− γ∂4xu+ f(u), (64)

which can be thought of as an extension of the F-KPP equation. Indeed, with
f(u) = u − u3 this equation is the EFK (“Extended Fisher-Kolmogorov”)
equation which we will discuss in more detail in section 2.11.1. As we shall see
there, the pulled fronts in this equation exhibit a transition from uniformly
translating fronts to coherent pattern forming fronts at γ = 1/12, but we focus
for now on the uniformly translating fronts for γ < 1/12. If we substitute the
Ansatz = U(ζ) into the equation and write the resulting ordinary differential
equation as a set of first order equations, we get in analogy with (62) and (63)

dU

dζ
=U ′, (65)

dU ′

dζ
=U ′′, (66)

dU ′′

dζ
=U ′′′, (67)

dU ′′′

dζ
= γ−1 [U ′′ + v U ′ + f(U)] . (68)

Since the flow is now in a four-dimensional phase space, it is clear that the
question of existence of such uniformly translating front solutions is much
more subtle than for the F-KPP equation: all the simplifications of flow in
a two-dimensional plane, special to the F-KPP equation, are lost. 32 Let us

32 If one again linearizes the flow near the two fixed points (0, 0, 0, 0) and (1, 0, 0, 0),
the multiplicity of the stable and unstable manifolds is such that one would indeed
expect the existence of a one-parameter family of front solutions [421]. A more rig-
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Fig. 10. (a) Space time of a numerical solution of equation (64) with nonlinearity
f(u) = u + 9u2 − 10u3. This is an extension of the EFK equation discussed in
section 2.11.1. For this nonlinearity, the selected front is a pushed front propagating
with speed v† = 2.751[421]. The time increment between successive time-slices is
0.75; the initial condition is a small Gaussian peak centered at the origin, and the
total simulation time is 22.5. The dashed line indicates a position moving with the
speed v∗ = 1.8934. Although the front might appear to be monotonically decaying
to the right, close inspection of this pushed front in the tip shows that it is actually
non-monotonic; the enlargement in panel (b) shows this more clearly. (b) Blow up
of the asymptotic front profile in the leading edge. The symbols denote the actual
front values at the grid points in the simulations, while the full line is the profile in
the leading edge given by the three terms in (60). The dashed line denotes the mode
exp(−λ1ζ). Clearly, for the pushed front solution, a1 =0 indeed, in accordance with
the mechanism of pushed front propagation set forth in the main text. From [421].

here simply illustrate that one important simplifying property of the F-KPP
equation is immediately lost. From the phase space arguments sketched above
for the F-KPP equation, it immediately follows that the selected front is the
front solution with the smallest speed for which the front solution is monoton-
ically decaying with ζ . Therefore, this idea has sometimes been proposed in
the literature as a general principle for front selection. However, it is simply
a property of the F-KPP equation and a limited class of extensions of it —
it is a property that does not really have anything to do with front selection
and just does not hold generally. The simulations of Fig. 10 illustrate this
for the above equation (64) with f(u) = u + 9u2 − 10u3. As the left panel
illustrates, the selected front is a uniformly translating pushed front in this
case. Although this is hardly visible in the space-time plot on the left, this
pushed front solution is not monotonically decaying towardss the right. The
enlargement of the leading edge in the right panel shows how U first goes
through zero and then has a local maximum at negative U . This plot also
confirms fully the mechanism for pushed fronts that we have identified above:

orous study of such front solutions and of the flow in this four-dimensional phase
space has been taken up only recently in the mathematics literature. See in partic-
ular [371] for a proof of the existence of front solutions of the above flow equations
and [340,410] for other types of solutions.
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the selected profile fits the form (58) with a1 = 0.

Let us return to our general formulation of the mechanism through which
pushed fronts arise for uniformly translating fronts. While this scenario is
arrived at simply by exploiting our insight into the leading edge where the
dynamics is essentially given by the linear dynamics, it is in complete agree-
ment with (i) what is known rigorously for the second order F-KPP equation,
(ii) the (marginal) stability arguments for front selection (section 2.8) which
show that if a strongly heteroclinic front solution Φv† exists, all front solutions
with lower speed are unstable to invasion by this front, and (iii) all numerical
results known to me. Furthermore, the extension of the argument to coherent
pattern forming fronts is fully consistent with the analytical and numerical
results for the quintic CGL equation discussed in section 2.11.6).

We finally return to the question what happens if the front solutions do not
admit a one-parameter family of front solutions. If this happens, then we
generically expect that the equations will not admit a uniformly translating
pulled front solution moving with velocity v∗. A pulled front can then not be
uniformly translating — the pulled front solution must then show nontrivial
dynamics in the front region. Presumably, the dynamics is then either that
of a coherent or incoherent pattern forming front, even if the state it finally
leaves behind is structureless. Furthermore, the absence of a one-parameter
family of uniformly translating front solutions makes it also very unlikely that
there will be uniformly translating pushed front solutions, as these have to
obey one additional constraint a1 = 0.

✷ Examples of pushed front solutions of the F-KPP equation and the reduction
of order method

For the F-KPP equation, for which the dispersion relation ω(k) is quadratic, a
general uniformly translating front solution u(x−vt) = U(ζ) falls off to u = 0
with two exponentials — in other words, for a front solution with arbitrary
velocity v there are two terms in the expression (58) for the large ζ behavior.
However, as we already discussed above, a pushed front solution of the F-KPP
equation approaches u = 0 with a single exponent, as a1 = 0. A good strategy
to look for exact pushed front solutions of the F-KPP equation is therefore
[421] to investigate when front solutions of the first order equation

dUv

dζ
= h(Uv) (69)
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are also front solutions of the full ordinary differential equation for front so-
lutions Uv(ζ) of the F-KPP equation. This is the case if they satisfy Eq. (61),

− v
dUv(ζ)

dζ
=

d2Uv(ζ)

dζ2
+ f(Uv(ζ)). (70)

Searching for solutions of the type (69) is very easy; to see this, note that
upon substitution of (69) into (70) we get

− vh(Uv) = h′(Uv) h(Uv) + f(Uv), (71)

so that we just need to look for combinations of functions h and f which
obey this last equation (for any given h one can trivially find a function f but
the converse is not true). This is especially simple for polynomial functions.
Indeed, it is straightforward to check that the functions [144]

h(u) = −λu(1 − un), f(u) = ε̃u+ un+1 − (1 + ε̃)u2n+1 (72)

solve (71) provided we take

λ2 =
ε̃+ 1

n+ 1
, v = (n+ 2)λ− 1/λ. (73)

In order that the front solution of these equations corresponds to a pushed
front solution of the F-KPP equation, the decay rate λ given by (73) needs to
be bigger than λ∗ =

√
ε̃; this is easily found to be the case for ε̃ < 1/n. Thus,

the F-KPP equation with a nonlinearity f(u) given by 33 (72) has the pushed
to pulled transition at ε̃ = 1/n, and for ε̃ < 1/n the pushed front velocity v†

is given by (73).

For further discussion of these results for the most common cases n = 1 (f
a cubic polynomial in u) and n = 2 (f a function of u, u3 and u5), we refer
to [38,421]. Other examples are discussed in [34,144,198,212,326,355,436,447]
and section 3.15, where we will discuss a nontrivial case relevant to liquid crys-
tals. Quite surprisingly this “reduction of order method”, as it is sometimes
called, also allows one to find the pushed front solutions of the quintic CGL
equation (see section 2.11.6) and to construct other types of exact solutions of
the CGL equation [95,312,322,424]. Deep down, the method is related to the
construction of exact solutions of nonlinear equations using Painlevé analysis
[95,96,360]. Also symmetry reduction methods have been used to search for
exact solutions of the nonlinear diffusion equation [89,325].

33 The prefactor of the term un+1 looks special, but the analysis covers all cases
with f(u) of the form 72) since all other cases can be brought to this form by a
proper scaling of space, time and u — see [355] and appendix C of [144].
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2.7.2 Coherent pattern forming front solutions

Let us now turn to coherent pattern forming front solutions of the form (56).
Every function Φn

v (ζ) in this expression also depends only on the co-moving
coordinate ζ . Hence if we substitute the expansion (56) into the dynamical
equation under investigation, the functions Φn

v (ζ) will in general obey a set of
coupled ordinary differential equations. In general, this infinite set of ordinary
differential equations is quite cumbersome; however, for fronts we need to have
Φn

v (ζ) → 0 as ζ → ∞, and to linear order all the Φm
v obey essentially the same

equation obtained by linearizing the dynamical equation about the unstable
state. We then have the freedom to take the term with n = 1 to correspond to
asymptotic decay exp[−λ1ζ ] associated with the smallest root λ1; in analogy
with (58) we then have

Φ1
v(ζ) ≈ A1e

ikr,1ζ−λ1ζ + A2e
ikr2ζ−λ2ζ + · · · , (74)

where now the coefficients A1, A2 etcetera are complex. Again it follows from
the general arguments underlying Fig. 3 that for any v > v∗, we generally
have λ1 < λ∗, λ2 > λ∗.

One may, like in the case of uniformly translating fronts, wonder about the
multiplicity of coherent pattern forming fronts. There are even fewer results in
this case, but indications are that for front propagation into unstable states the
typical case is that there is a two-parameter family of front solutions. That this
is the case has been proved for the Swift-Hohenberg equation [92] and is also
found [424] for the quintic CGL equation of section 2.11.6. Moreover, counting-
type arguments for the pattern-forming regime of the EFK equation (section
2.11.1) are consistent with this — we expect that the methods developed by
Sandstede and Scheel [375] will allow one to establish this more generally and
cleanly. Intuitively, the existence of a two-parameter family of front solutions is
the natural extension of the existence of a one-parameter family of uniformly
translating front solutions, since the leading edge of pattern forming fronts
generically is characterized by a wavenumber kr in addition to the steepness
λ. In other words, our conjecture that the generic situation is that there is a
two-parameter family of coherent pattern forming fronts, means that for every
velocity v, there is a one-parameter family of fronts parametrized e.g. by the
wavenumber kr in the leading edge or by the wavenumber of the coherent
pattern behind the front. The front solutions whose wavenumber leads to
maximal growth in the leading edge for given steepness (∂ωi/∂kr = 0), then
correspond to the left branch in Fig. 3.

Let us proceed first by assuming that indeed the equations for the coherent
pattern forming front solutions admit a two-parameter family of front solu-
tions. The above considerations then imply that there will in general exist a
coherent pulled front solution, i.e., a solution whose asymptotic behavior to
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the right matches the linear spreading point behavior,

Φ1
v∗(ξ) ∼ (A1ξ + A2)e

−λ∗ξ+i(k∗r ξ−(ω∗
r−k∗r v

∗)t), (ξ = x− v∗t→ ∞), (75)

where in analogy with (59) the term linear in ξ arises because two roots
coincide at v∗. The coherent pulled front solutions determined this way will
be the ones that one will observe in the regime of pulled front propagation.

The mechanism to get coherent pushed solutions moving at a speed v† > v∗ is
completely analogous to the one we discussed above for uniformly translating
solutions with the aid of Fig. 8: starting from steep initial conditions an ar-
bitrary front solution with speed v > v∗ can not emerge, since that would be
incompatible with the dynamics in the leading edge, but any special coherent
front solution whose asymptotic spatial decay is steeper in that

Φ1
v†(ζ) ∼ A2e

−λ2ζ+ikr2ζ + · · · , (76)

can and will invade the leading edge. In other words, if a solution for which
A1 = 0 in (74) exists, this is the pushed front solution that will be selected by the
dynamics. Note that since the coefficients A1, A2 etcetera in (74) are complex
coefficients, the condition that A1 = 0 amounts to two conditions. Whether
there are front solutions which obey this condition depends on the equation
under investigation, but since we assume that there is a two-parameter family
of front solutions, if they exist, pushed front solutions are expected to be
isolated solutions.

This selection mechanism for coherent pattern forming front solutions is clearly
quite analogous to the one we discussed for uniformly translating fronts, but
for coherent fronts I am not aware of any rigorous work on the pulled to
pushed transition of coherent fronts. The numerical and analytical work on
a modified version of the Swift-Hohenberg equation and on the quintic CGL
equation, summarized briefly in sections 2.11.2 and 2.11.6 are in full accord
with the above scenario.

It is important to keep in mind that our discussion has been based on the idea
that coherent front solutions come as a two-parameter family if they exist.
For a particular equation, it is not guaranteed that they do exist, of course.
Indeed, the quintic CGL equation discussed in section 2.11.6 illustrates this:
In some parameter ranges one can show that the equation does not admit any
coherent pulled front solution. In the parameter range where this happens, the
pulled fronts become incoherent — see Fig. 17. Likewise, if the coherent front
solutions do not come as a two-parameter family, then neither coherent pulled
front solutions nor coherent pushed front solutions are expected to exist: the
dynamics is then expected to be incoherent.
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We finally note an important point. We already noted above that the condition
A1 = 0 is equivalent to two conditions, and that this implies that pushed
fronts solutions, if they exist, generically come as isolated (discrete) solutions.
Moreover, this simple counting argument also shows that the dominant spatial
decay rate λ2 of this isolated solution (76) generally does not lie on the thick
dashed branch in Fig. 3. 34 By the same token, this implies that at the pulled
to pushed transition, i.e. when v† ↓ v∗, λ2 6= λ∗ in (76). So, while for uniformly
translating profiles the pulled to pushed transition corresponds to a continuous
transition in the front shape, for coherent pattern forming fronts the transition
is discontinuous in the front shape! Such discontinuous behavior, which was
first discovered for the quintic CGL equation of section 2.11.6, imply that
“structural stability” conjectures do not apply to pattern forming fronts. We
will come back to this in section 2.8.3.

Examples of pushed coherent fronts will be encountered later in sections 2.11.1,
2.11.2, 2.11.6, 3.8, and 3.17; we also conjecture that pushed coherent fronts
can arise in the models of 3.2 and 3.3, for which so far only pulled fronts have
been found.

2.7.3 Incoherent pattern forming front solutions

Incoherent pattern forming fronts are those fronts which do not leave behind a
coherent pattern. Hence they can not be of the form (56). From the numerical
simulations of the cubic and quintic CGL equation discussed in sections 2.11.5
and 2.11.6 and the full-blown numerical simulations of turbulence fronts dis-
cussed in section 3.9 we know that both pulled and pushed incoherent fronts
can exist. Of course, as always we can calculate the speed of incoherent pulled
fronts, but to my knowledge there is essentially no good understanding of what
drives an incoherent front to be pushed. Thus I can not give a precise math-
ematical formulation, analogous to (60) or (76), that identifies what property
will give rise to a pushed incoherent front. My conjecture is that in analogy
with what we found for uniformly translating and coherent pattern forming
fronts, incoherent pulled fronts are solutions which in some average sense do
fall off with a well-defined steepness larger than λ∗. The simulations of turbu-
lence fronts discussed in section 3.9 confirm this idea, but I do not know how
to give predictive power to this statement. Unfortunately, the problem of the
transition from pulled to pushed incoherent fronts appears to be as hard as
the spatio-temporal chaos and turbulence problem itself!

Examples of pushed incoherent fronts will be encountered in 2.11.4, 2.11.6,
3.9 and 3.22.

34 In [421], we suggested that the combinations v†, λ2 of pushed fronts of the Swift-
Hohenberg equation should lie on the dashed branch. This suggestion is wrong.
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2.7.4 Effects of the stability of the state generated by the front

In our discussion of how pushed fronts can arise in the various modes of front
propagation, a central role is played by the existence of the special type of
uniformly translating or coherent pattern forming solutions which for ζ →
∞ decay with steepness larger than λ∗ — these become the pushed front
solutions. To what extent does the stability of fronts play a role? As we will
discuss in section 2.8 below, one can relate the above selection mechanism of
pushed fronts to the stability properties of front solutions with v < v†, but it
is more appropriate to think of this as a consequence rather than a cause of
front selection.

The stability or instability of the state generated by the front does have im-
portant consequences for the dynamics, however. The examples discussed in
section 2.11 will illustrate this most clearly: it is quite possible that the state
which emerges behind the front is itself unstable. When the selected state
is nonlinearly convectively unstable in the frame moving with the front, the
state behind the first front is invaded by a second front which moves slower
than the first. If, however, the state generated by the first front is absolutely
unstable in the frame moving with the first front, then the second one will
catch up with the first and alter its properties. In the examples we will discuss
the second front is usually an incoherent front, and when the one with which
it catches up is a coherent front, this induces a transition from coherent to
incoherent front dynamics in the leading front. In practice, therefore, what
type of front dynamics one will get is determined both by the existence of front
solutions and by the stability of the state these solutions generate.

2.7.5 When to expect pushed fronts?

The requirement for existence of a pushed front solution, a1 = 0 according
to Eq. (60) for a uniformly translating front solution to exist, or A1 = 0
according to Eq. (76) for a coherent pattern forming solution, is a condition
on the global properties of the solution of a nonlinear ordinary differential
equation. Hence whether a pushed front solution exists depends on the full
nonlinear properties of the dynamical equation we wish to investigate. There
does not appear to be a general mathematical framework that allows us to
predict from the appearance or the global structure of an equation whether a
strongly heteroclinic front solution does exist, and hence whether fronts will be
pulled or pushed. For the F-KPP equation one can derive general conditions
on the nonlinear function f(u) such that the selected fronts in the equation
are pulled [35,37]. One of the simple results is that when f(u)/u ≤ f ′(0) the
fronts are pulled, which confirms our intuitive understanding that for a front
to become pushed one needs the nonlinearities to enhance the growth. For
(sets of) equations that admit uniformly translating fronts one typically finds
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the same trend, namely that the enhancement of the growth by the nonlinear
terms in the dynamical equations tends to favor the occurrence of pushed
fronts.

It is important to realize, however, that for coherent and incoherent pattern
forming fronts, these intuitive ideas do not necessarily apply. Several of the
examples to be discussed in section 2.11 will illustrate this: in the quintic CGL
equation the cubic term enhances the growth, but there are large regions of
parameter space where nonlinear dispersion effects completely suppress the
occurrence of pushed fronts. Likewise, fronts in the Kuramoto-Sivashinsky
equation of section 2.11.4 are pulled, but if one adds a linear term to the
equation, a pulled to pushed transition is found. However, in dynamical pat-
tern forming equations which derive from a Lyapunov functional and for which
one has an reasonable understanding of whether the nonlinearities enhance or
suppress the growth about the unstable state, one’s intuition of what to expect
is usually correct. Our discussion of front dynamics in the Swift-Hohenberg
and Cahn-Hilliard equation will illustrate this.

As the example discussed at the end of section 2.7.1 illustrated, for the second
order partial F-KPP equation, the pushed front solutions can in a number
of cases be explicitly constructed analytically. The reason is the following.
While for an arbitrary v the large-ζ asymptotics (58) is characterized by two
different exponentials, the pushed front solutions (60) of the F-KPP equation
are characterized by one root. It is therefore possible (but not necessary) that
the pushed solutions obey a first order equation. The “reduction of order
method” briefly reviewed in section 2.7.1 is based on substituting a first order
Ansatz into the second order ordinary differential equation for the uniformly
translating solutions. The most remarkable success of this method is that the
pushed solutions of the quintic CGL equation have been found this way — see
section 2.11.6.

2.7.6 Precise determination of localized initial conditions which give rise to
pulled and pushed fronts, and leading edge dominated dynamics for
non-localized initial conditions

So far, we have focused on the front dynamics emerging from initial conditions
which are “steep”, in the sense that they fall off faster than exp[−λ∗x]. This is
because only for such initial conditions does the front selection problem have a
sharp and unique answer — whether fronts are pushed or pulled is an inherent
property of the dynamical equations. Indeed, the values of the corresponding
velocities v∗ and v† are determined completely by the equation itself.

What happens if the initial conditions are not steep, i.e., fall off slower than
exp[−λ∗x]? Given our assumption of locality of our dynamical equations (no
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influence of from points arbitrarily far away) the answer lies hidden again in
our analysis of the linear dynamics illustrated in Fig. 5. If initial conditions
fall off with steepness λ < λ∗, the spatially slowly decaying leading edge on
the right, which moves with velocity venv(λ), expands in time. In other words,
in the frame moving along with this leading edge, the crossover region to the
slower part of the profile recedes to the left and larger and larger parts of the
profile move with asymptotic velocity venv. Whatever the nonlinear dynamics
is, it must be compatible with this dynamical constraint in the leading edge
of the profile. Indeed, such initial conditions which are not steep necessarily
lead to a front moving with speed venv(λ) with λ < λ∗, unless a pushed front
solution exists whose speed v† is larger than venv. For, if such a pushed front
solution with v† > venv(λ) exists, this solution will invade the leading edge
according the the mechanism sketched in Fig. 8(b). Thus we conclude:

For an equation whose fronts are pulled, all initial conditions with steep-
ness λ < λ∗ lead to fronts moving with speed venv(λ) > v∗. In other words,
in the pulled regime we can identify “localized” initial conditions which
lead to pulled fronts with initial conditions which are steep, i.e., which fall
off faster than exp[−λ∗x].

For an equation whose fronts are pushed, only initial conditions with steep-
ness λ < λ1 lead to fronts moving with speed venv(λ) > v†, where λ1 is the
smallest root for which venv(λ1) = v†. In other words, localized initial con-
ditions which lead to pushed fronts are initial conditions which fall off
faster than exp[−λ1x], where λ1 is determined implicitly by the pushed
front solution through the requirement venv(λ1) = v†.

Intuitively the mechanism through which non-localized initial conditions lead
to fronts that move faster than the naturally selected pulled or pushed speed,
is very much like “pulling along” the nonlinear front. However, in order to
distinguish them from the pulled front solutions which naturally emerge from
all localized initial conditions, we refer to this type of dynamics more generally
as “leading edge dominated” dynamics [144].

2.7.7 Complications when there is more than one linear spreading point

In our discussion of the pushed fronts, we have so far assumed that the linear
dispersion is such that the venv(λ) versus λ diagram is of the type sketched in
Fig. 3, i.e., that there is only one branch which in the limit λ ↓ 0 corresponds
to a positive growth rate ωi and hence to a divergent venv(λ). This is the
normal situation for problems where there is essentially one branch of linear
modes which is unstable. We now briefly discuss the subtleties associated with
having more than one unstable branch of the dispersion relation.
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Fig. 11. Illustration of possible venv(λ) versus λ diagrams in the case in which there
is more than one unstable branch of modes. The relevant linear spreading velocity
in each case is indicated with a filled circle. As explained in the text, the asymptotic
steepness of a pushed front has to be associated with one of the two dashed branches.

Two examples of possible venv(λ) diagrams for the case of two unstable branches
are sketched qualitatively in Fig. 11. As we discussed before, according to the
fully linear spreading analysis, the relevant linear spreading velocity v∗ is the
largest spreading velocity of the two branches. The crucial point to understand
for the proper extension of the concept of a pushed front in such cases is that
the linear dynamics associated with the two individual branches is completely
independent — we can repeat the earlier discussion of how pushed fronts can
emerge for each branch individually, and this leads to the conclusion that a
pushed front is again a front whose asymptotic exponential decay is faster
than e−λ∗ζ . However, in addition the exponential steepness λ† of the pushed
front should be larger than the value λ∗1 or λ∗2 associated with the minimum of
the branch to which it belongs [86]. 35 . In other words, the leading steepness of
a pushed front should correspond to 36 one of the two dashed branches in the
figure. In the case of Fig. 11(a), a uniformly translating pushed front solution
is a solutions whose asymptotic decay is as e−λ2ζ, not as e−λ′

1
ζ . Likewise, for

the case sketched in Fig. 11(b) a transition from the pulled front with velocity
v∗ to a pushed one, whose asymptotic behavior is as e−λ2ζ , could occur.

35 Another way to arrive at the same conclusion, stressed in particular by Chomaz
and Couairon [86], is to note that asymptotic behavior with steepness given by one
of the two left branches λ1 or λ2 can only emerge dynamically from non-localized
initial conditions falling off with this steepness: Chomaz and Couairon [86] call
these branches non-causal. In the language of [421] one can understand this from
the fact that on these branches the group velocity is less than the envelope velocity
— perturbations can not work their way up towards the far tip.
36 In the case of coherent pattern forming front solutions, “correspond to” should
be read as “analytically connected to”, since as we explained in section 2.7.2 the
asymptotic decay of a pushed front does not correspond to a value on the dashed
branch of venv.
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Like before, the possibility of such situations to occur is intimately related with
counting arguments for the multiplicity of front solutions. E.g., for uniformly
translating fronts with a dispersion relation consistent with one of the cases
sketched in Fig. 11, one in general expects there to be a two-parameter family
of front solutions. For the case of Fig. 11(a) pushed front solutions with the
required asymptotic behavior are then expected to come as isolated front
solutions, just as before.

2.8 Relation with existence and stability of front stability and relation with
previously proposed selection mechanisms

In this section, we briefly discuss the relation between front selection and sta-
bility, and the relation with some of the older proposed selection mechanisms.

2.8.1 Stability versus selection

The main difference in perspective with the “marginal stability” selection
mechanism of the 1980ies [38,111,420,421] is that we here emphasize that by
starting from the classical linear spreading analysis [49,62,264] the concept of a
linear spreading velocity v∗ naturally arises. This concept holds irrespective of
whether or not there are well-defined front solutions, and applies equally well
to partial differential equations, difference equations and integro-differential
equations. From this perspective, the possibility of having pulled fronts arises
most naturally and independently of whether they are coherent or incoherent.
In addition, the saddle point integration immediately shows that the interme-
diate asymptotic dynamics giving the approach to the asymptotic spreading
speed is that of a diffusion equation, even if the equation itself is not at all
a simple diffusion equation. This latter fact lies at the basis of the universal
relaxation behavior discussed in the next section. Moreover, by exploring the
constraints imposed by the linear dynamics, the essential properties of pulled
fronts follow.

The drawback of the “marginal stability” formulation of [420,421] is that when
one wants to relate selection with the stability properties of fronts, one can at
best only understand the selection once one is already close to an asymptotic
front solution. 37 Why the intermediate asymptotics bring one there is less
clear — even though the two are quite consistent the attempt in the marginal
stability approach to treat selection and linear spreading in one fell swoop
makes the problem unnecessarily cumbersome and masks the generality of the
linear spreading concept. Likewise, the universal relaxation behavior of pulled

37 Booty et al. [53] have also analyzed the dynamics in the leading edge of the F-KPP
equation. Conceptually, their approach has much in common with that of [420,421].
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fronts that we will discuss in the next section is virtually impossible to get
from a stability analysis (for uniformly translating or coherent pulled fronts,
the spectrum of the stability operator is continuous with arbitrarily small
eigenvalues), whereas it naturally emerges from the linear spreading concept.

Our simple observation that whenever a solution (60) or (76) with v† > v∗

exists whose asymptotic steepness is larger than λ∗, this solution can and will
invade the leading edge and lead to pushed front propagation, is actually
a general formulation which encompasses the “nonlinear marginal stability”
scenario that when one considers fronts as a function of there velocity, front
solutions with speed v < v† are unstable [38,421]. One can see this as follows
([144], appendix I). For dynamical equations which are translation invariant,
the translation mode is always a mode with zero eigenvalue of the stability
operator. At v = v† the front solution is a strongly heteroclinic orbit, and
hence the zero eigenmode of the stability operator corresponds to a strongly
heteroclinic orbit. Continuity and counting arguments then imply that for v
close to but different from v†, there is a strongly heteroclinic solution of the
stability operator whose eigenvalue crosses zero at v = v†. In other words,
when the stability of the front solutions is studied for varying velocity v, the
stability changes at v† — front solutions with velocity v < v† are unstable due
to the invasion of the pushed front solution into the leading edge.

Another reason for separating front stability from front selection is that the
simulations discussed in section 2.11 will show that the state generated by
the front becomes absolutely unstable in the frame moving with the front,
this entails a transition from a coherent pattern forming front to an inco-
herent pattern forming front, not necessarily a change from pulled to pushed
dynamics.

2.8.2 Relation between the multiplicity of front solutions and their stability
spectrum

The above discussion of the implication of the existence of a pushed front
solution for the stability of fronts also illustrates that there generically is an
intimate connection between the multiplicity of uniformly translating and co-
herent front solutions and the stability properties. We can illustrate this for
the other stability modes as follows. As we discussed in the previous section,
a uniformly translating or coherent front solution corresponds to the an or-
bit in the phase space of the ordinary differential equations that govern these
solutions, and the multiplicity of these solutions is determined by “counting
arguments” for the dimension of the manifolds that flow into and out of the
fixed points that correspond to the asymptotic states. Consider now the case
in which the dynamical equations admit a one-parameter family of front solu-
tions, parametrized by their speed v — we argued that this is the usual case
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for front propagation into unstable states. If we now pick an arbitrary front
solution from this family and write down the stability operator for perturba-
tions about the front solution, then the counting arguments for the stability
modes is essentially unchanged because the linearization about the asymptotic
states before and after the front is unchanged. Hence the existence of a one-
parameter family of fronts, parametrized by v, generically implies that if we
fix v and consider the stability modes, then we expect there to be in general a
one-parameter family of stability modes, parametrized by their growth/decay
rate. Together with the fact that translation invariance of the dynamical equa-
tion implies that there is a zero mode of the stability operator, this also implies
that there generically is a continuous spectrum of the stability operator near
zero. A general analysis of the asymptotic behavior of these modes about the
unstable state shows that the modes from this spectrum which decay faster
than the front solution are stable, and that those which decay less fast than
the front solution are unstable [421]. This line of analysis in combination with
the one above for the possible presence of a localized stability mode if a pushed
front solution exists, gives a quite complete generic picture of the stability of
the front solutions in the generic case. In short: if no pushed front solution
exists, so that the selected fronts are pulled, then the front solutions with
v > v∗ are stable to perturbations which decay faster than the front itself,
and unstable to those which spatially decay less fast than the front itself. If
a pushed front solution exists, then the generic picture is that front solutions
with v < v† are unstable to the localized mode, and those with speed v > v†

are stable to this mode and to perturbations whose spatial decay to the right
is faster than that of the front solution itself.

For coherent pattern forming fronts, similar arguments apply. Let us again
focus on the generic case (see section 2.7.2) that these front solutions come
into a two parameter family. If we consider a particular front solution at a
fixed velocity v, then the generic scenario that results from similar continuity
arguments is that any arbitrary front solution which in the tail does not match
up with the maximal growth rate ωi in the leading edge, or, in other words,
whose asymptotic behavior does not correspond with the left branch drawn
with a full line in Fig. 3(a), is unstable. This is the reason we focused on the
analysis of venv defined in Eq. (21) in section 2.2: only that branch matches
up with asymptotic coherent front solutions which are stable to perturbation
that decay spatially faster to the right than the front solutions themselves.
The discussion of stability of a possible localized stability mode, associated
with the existence of a pushed front solution, is analogous to the one given
above.

The explicit stability calculation for the uniformly translating fronts in the
F-KPP equation or extensions of it can be found in a number of papers
[60,72,144,149,216,230,252,317,371,376] and will not be repeated here. The
results are completely in accord with the above general discussion.
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2.8.3 Structural stability

We finally comment briefly on the proposal to connect propagating front se-
lection with “structural stability” ideas. According to this conjecture [83,334],
the pulled front is the natural front speed as it is the only front solution which
is “structurally stable” to small changes in the dynamical equations (like those
which would suppress the instability or make the state φ = 0 even linearly
stable). It is easy to convince oneself that uniformly translating pulled solu-
tions do have this property, as the dynamically relevant front solutions are
characterized by a real spatial decay rate only, but that as we discussed at the
end of section 2.7.2 coherent pattern forming front solutions which are char-
acterized by a decay rate and wavenumber in the leading edge, generically do
not have this property. Indeed, the quintic CGl equation provides an explicit
counterexample to the “structural stability” postulate: As we shall see under
(iii) in section 2.11.6, for the quintic CGL equation the selected wavenumber
can jump at the pulled to pushed transition.

2.8.4 Other observations and conjectures

The issue of front selection issue has intrigued many authors, so various other
observations and conjectures have been made. In appendix B we briefly dis-
cuss some of these: a (wrong) conjecture concerning the analytic structure of
pushed front solutions, an observation about obtaining the selected uniformly
translating front by studying the front solutions on a finite interval, and the
connection with Hamilton-Jacobi theory and renormalization group ideas.

2.9 Universal power law relaxation of pulled fronts

Up to now, we have focused on the asymptotic front velocity. Let us now as-
sume we study an equation whose fronts are pulled, and ask how the asymp-
totic front velocity is approached. To do so, we first have to state how we
define a time-dependent velocity of a front during the transient regime when
it approaches its asymptotic value. We will be quite pragmatic in our discus-
sion: the asymptotic convergence to v∗ will turn out to be very slow, so slow
that the differences between various conventions do not really matter. We will
therefore focus simply on the most natural definition.

In this section, we will simply state the results for the convergence to v∗; the
essential ingredients of the derivation are reviewed in section 4.

It is good to stress that the universal relaxation only holds for pulled fronts.
The discussion of section 2.8 implies that the stability spectrum of a pushed
front solution is gapped, and hence that a pushed front relaxes exponentially
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fast to its asymptotic velocity and shape [144,227,421]. This is in line with
the intuitive idea illustrated in Fig. 8 that a pushed front invades the region
ahead of it with a finite speed.

2.9.1 Universal relaxation towards a uniformly translating pulled front

If a pulled front is asymptotically uniformly translating, we can simply follow
the same idea as in our discussion of the linear spreading problem in section
2.1: In essence our convention will always be to determine a front speed vC(t)
by tracking the position xC(t) of the level line where the dynamical field φ
reaches a level C; the velocity is then the speed of this point

φ(xC , t) = C ⇐⇒ vC(t) =
dxC
dt

. (77)

Of course, for dynamical fields with more than one component, the transient
velocity could in principle depend on which component we track, but we will
not distinguish this possibility notationally, as we will focus on those aspects
which are independent of those details.

The analysis [144] of the convergence of the nonlinear pulled front speed to
v∗ is based on matching the behavior in the leading edge, where corrections
to the asymptotic exponential behavior e−λ∗ξ are governed by an equation
which in dominant order is a diffusion-type equation, to the behavior in the
fully nonlinear region. In this step, the fact that the asymptotic front solution
Φv∗(ξ) has according to (59) a ξe−λ∗ξ behavior plays a crucial role — see
section 4. The final result of the matching analysis [144] is the following exact
expression for the velocity v(t) of an asymptotically uniformly translating
front,

v(t) = v∗ − 3

2λ∗t
+

3
√
π

2
√
D(λ∗)2t3/2

+ O
(

1

t2

)

, (78)

which holds provided one starts from steep initial conditions which fall off
faster than e−λ∗x. 38 This slow power-law like relaxation of the velocity to
its asymptotic value v∗ entails a slow relaxation of the front profile to its
asymptotic shape. Indeed, if we define X(t) as the shift of the front position

38 To be more precise, the result holds provided the initial conditions fall off ex-
ponentially faster than exp[−λ∗x], i.e., provided there is some δ > 0 such that
φ(x, t = 0)eλ

∗x < e−δx as x → ∞. The special case in which φ(x, t = 0) ∼ xνe−λ∗x

is discussed in [54,144,255,256,314].
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Fig. 12. Illustration of the logarithmic shift of the transient profile relative to the
asymptotic profile Φv∗ moving with constant speed v∗, for the case of the F-KPP
equation with f(u) = u − u3. The solid line shows the actual shape and position
of the front emerging from an initial condition at time t = 0 at three successive
times. The dotted line shows the uniformly translating solution Φv∗ (labeled Φ∗ in
the figure) at three successive times; at t = 5 this solution was placed such that
it intersects the actual solution at u = 0.5. The thick solid line indicates that the
transient solution and the asymptotic solution separate more an more as time goes
on, even though the shape of the transient front is alway close to the asymptotic
one. From [144].

in the frame moving with speed v∗,

X(t) =

t
∫

dt′ (v(t′) − v∗) ⇐⇒ X(t) ≃ − 3

2λ∗
ln t+ O(t−1/2), (79)

then one finds for the relaxation of the front profile to its asymptotic shape

φ(x, t) ≃ Φv(t)(ξX) + O
(

1

t2

)

, ξX ≪
√
Dt, (80)

where ξX is the frame

ξX ≡ ξ −X(t) = x− v∗t−X(t) (81)

which includes the logarithmically increasing shift X(t).

There are many points to note about these universal relaxation results for
pulled fronts and the physical picture underlying their derivation:

(i) While the above results are exact for all pulled fronts which asymptoti-
cally are uniformly translating, for the special case of the F-KPP equa-
tion, the 1/t term was known for over 20 years [138,139,291] and was
derived rigorously in 1983 by Bramson [54]. Since then it has been re-
derived by various methods (including a matching analysis of [64] similar
to ours), but to my knowledge even for the F-KPP equation the universal
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1/t3/2 term was not known before the matching analysis [144] described
in more detail in section 4.

(ii) The dominant logarithmic shift in X(t) which is driven by the diffusive
dynamics in the leading edge implies that when viewed in the frame
moving with the asymptotic velocity v∗, the front moves back while it
is relaxing. This is illustrated in Fig. 12 for a simulation of the F-KPP
equation starting from a localized initial condition. The plot shows the
actual front profile at times t = 5, 10 and 15 (full line), and compares
these with the uniformly translating asymptotic profile Φv∗ (dotted line)
which has been placed so that it intersects the transient profile at φ = 1/2
at time t = 5. The increase of the length of the thick line with time
illustrates that the actual transient profile and the asymptotic profile Φv∗

separate more and more in time.
(iii) The results which are illustrated in Fig. 12 show quite clearly that any

method based on linearizing about the asymptotic front solution Φv∗

will not work: the differences between the actual front solution and this
asymptotic one grow arbitrarily large! This is why the insight to use the
logarithmically shifted frame ξX is crucial for any theoretical analysis.

(iv) Nevertheless, the figure does confirm that already quite soon the transient
front shape is close to the asymptotic shape Φv∗ . This fact is expressed
in precise mathematical terms by (80): to order t−2 the front shape is
given by the expression for the uniformly translating front solution Φv,
provided we use the instantaneous value v(t) given by (78) for the velocity,
and put the front at the appropriately shifted position ξX . In other words,
to O(t−2) the transient front shape follows the uniformly translating so-
lutions adiabatically. This fact was first noted empirically in simulations
by Powell et al. [354].

(v) The above results are valid for any pulled front which asymptotically is
uniformly translating: it is independent on the precise nonlinearities and
applies to all pulled fronts in equations for which the linear spreading
speed v∗ can be determined according to our discussion of section 2.4.
The fact that these results apply equally well to difference equations like
the finite difference version (45) of the F-KPP equation or the difference-
differential equation discussed in section 3.23, is that the saddle point
expression for v∗ ensures that the corrections to the asymptotic exponen-
tial e−λ∗x behavior are governed by a diffusion-type equation. In other
words, as these corrections become arbitrarily smooth for long times, the
lattice effects only give higher order corrections [144,146]. See section 4
for further details.

(vi) Since the above results are independent of the precise form of the non-
linearities in the dynamical equation as long as the fronts are pulled, one
may wonder where the nonlinearities are hidden. Comparison with the
result for the convergence to v∗ according to the fully linear dynamics
discussed in section 4.1 shows that the prefactor 3/2 of the 1/t term and
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the subdominant t−3/2 term both reflect the nonlinear behavior. 39

(vii) In line with the earlier conclusion of section 2.3 that the limits t→ ∞, ξ
fixed and ξ → ∞, t fixed do not commute, we stress that the expression
(80) is the correct asymptotic expression for t → ∞, ξX fixed. At ξX ≃√
Dt, there is a crossover to a different asymptotics that governs the large

ξX limit [144].
(viii) Note that the above result for the universal velocity relaxation holds in-

dependent of the initial conditions and of the level line which is used
to track the position of the front, provided one is not at the pulled
to pushed transition. 40 In fact, the correction to the velocity relax-
ation associated with the shape relaxation is according to (80) of order
[δΦv(ζ)/δv]dv(t)/dt ∼ t−2.

(ix) The terms displayed in (78) for v(t) and in (80) for the relaxation of the
front profile are also the only universal terms. This can easily be seen
as follows. Suppose we compare the velocity formula for two cases, one
starting from some steep initial condition at time t = 0 and the other one
by viewing the dynamical state at time t = ∆t as the initial condition. For
large times the 1/t terms for the two cases differ of order ∆t/t2. Thus the
term of order 1/t2 depends on the initial conditions, i.e., is non-universal.

(x) The formula (78) shows that the asymptotic velocity is always approached
from below. This explains why in many finite time simulations of pulled
fronts the published velocity data are slightly below v∗ (we will encounter
several examples of this later). This fact together with Eq. (80) for the
shape relaxation of the front imply that for the transient dynamics the
front solutions with speed v < v∗ are important. This is the reason for
our cautionary note in section 2.2 about using the phrase “the minimum
velocity”.

(xi) Extensive numerical investigations and illustrations of the universal re-
laxation behavior of uniformly pulled fronts can be found in [144,146].
An example of such tests will be discussed in section 4.2.

2.9.2 Universal relaxation towards a coherent pattern forming pulled front

How to define the instantaneous front velocity for a coherent pattern forming
fronts is subtle issue. If one traces the position of the foremost point where

39 As we will show in section 4.1, Eq. (203), according to the fully linear dynamics a
level line asymptotically recedes as −(ln t)/2λ∗ in the frame moving with v∗, rather
than as the −3(ln t)/2λ∗ term of the nonlinear front profile. Hence if we would also
draw in Fig. 12 the profile as it evolves according to the linearized equation, it would
for large times and not too large u lie in between the asymptotic front profile Φv∗

and the actual transient profile.
40 At the pulled to pushed transition the prefactors of the 1/t and 1/t3/2 term are
different — see appendix G of [144].

64



a dynamical field which develops oscillations reaches a given value, this posi-
tion will make finite jumps when a new oscillatory part in the leading edge
grows large enough that it reaches the predetermined level C. Since the time
between successive jumps will be finite, averaging over some finite time then
already gives a crude idea of the slow long-time convergence. A better way is
to determine numerically an envelope of the front profile from traces of e.g.
the maxima of the oscillations during one period, and to then determine the
velocity from the positions of a level line of this empirical envelope of the
front [388,383]. The advantage of this method is that it also works well when
one wants to trace level lines in the range where the nonlinearities in the dy-
namical equation are clearly important. If, on the other hand, one decides to
track the front velocity in the leading edge only, then a good method is to fit
a decaying oscillatory exponential to the front profile, and to determine the
position of a given level from that fit. We will not dwell on the advantages
and disadvantages of the these methods further, as they are of little relevance
when one wants to probe the universal slow long-time relaxation.

Under the same assumptions as before for the uniformly translating fronts (see
footnotes 38 and 40), the front velocity of a coherent pulled front relaxes to
its asymptotic value v∗ as [147,383,388]

v(t) ≡ v∗ + Ẋ(t) = v∗ − 3

2λ∗t
+

3
√
π

2(λ∗)2t3/2
Re

1√
D

+ O
(

1

t2

)

, (82)

which reduces to the result (78) for uniformly translating fronts when ImD =
0. The relaxation of the front profile to its asymptotic behavior (56) is char-
acterized by the relaxation of the velocity and a global phase Γ(t): it is found
that in this case one can write for the long-time asymptotics

φ(x, t) ≈
∑

n=0,±1,···
e−in[Ωt+Γ(t)] Φn

v(t)(ξX) + O
(

1

t2

)

, (83)

where Γ(t) is given by [147,383,388]

Γ̇(t) = −k∗r Ẋ(t) − 3
√
π

2λ∗t3/2
Im

1√
D

+ O
(

1

t2

)

. (84)

These equations simply express that to O(t−2) also the pattern forming fronts
follow adiabatically a family of coherent front solutions.

Essentially all the remarks made about the slow relaxation behavior of uni-
formly translating fronts apply equally well to the relaxation behavior of the
pattern forming fronts — the only additional feature is the analogous slow

65



convergence of the frequency Γ̇(t): it implies a slow convergence of the wave-
length of the pattern generated by the front. To our knowledge, this behavior
has been verified both qualitatively as well as quantitatively only for the Swift-
Hohenberg equation — see section 2.11.2 and Fig. 19 below. It does not appear
to have been studied experimentally in a systematic way, although the slow
velocity relaxation of pattern forming fronts does appear to play a role in some
pattern forming experiments — see section 3.1.

2.9.3 Universal relaxation towards an incoherent pattern forming pulled front

Quite remarkably, though we can not make a prediction for the front shape
relaxation for an incoherent pulled front, we we will argue in section 4 that the
same velocity relaxation formula (82) applies to an incoherent pattern forming
pulled front. The reason for this is that even when a pulled front is nonlinearly
incoherent, the behavior in the leading edge is still very smooth and coherent,
as it is governed by the same linear dynamical equation for the expansion
about the linear spreading point. This latter observation also implies that
the velocity of an incoherent front is in practice most easily measured in the
leading edge. Even the phase correction Γ(t) is well-defined there and follows
(84) — the results for the quintic CGL equation shown in Fig. 19 provide
evidence in support of this claim.

2.10 Nonlinear generalization of convective and absolute instability on the
basis of the results for front propagation

In section 2.5 we discussed the difference between convective and absolute
instabilities in the case that the evolution of a perturbation around the un-
stable state evolves according to the linearized equations. As Fig. 7 illustrated,
if we focus on the right flank of the local perturbation, the linear instabil-
ity is absolute if v∗ > 0 and convective if v∗ < 0 — in the latter case the
perturbation “retreats” so that it eventually dies out at any fixed position. If
perturbations have enough time to grow that the nonlinearities become im-
portant and that a nonlinear front develops, it is straightforward to extend the
distinction between the two regimes to the nonlinear case [85,99,412]. Clearly,
in the pulled regime the criterion is the same since the nonlinearities do not
affect the asymptotic front speed, so the instability is nonlinearly convectively
unstable for v∗ < 0 and nonlinearly absolutely unstable for v∗ > 0. When the
fronts are pushed in the dynamical equation under consideration, the crite-
rion becomes simply that the instability is nonlinearly convectively unstable if
v† < 0 and nonlinearly absolutely unstable when v† > 0. That’s all there is to
it. A recent nice experiment on the Kelvin-Helmholtz instability in which the
transition from a nonlinearly convective to a nonlinearly absolute instability
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was observed, can be found in [186].

2.11 Uniformly translating fronts and coherent and incoherent pattern form-
ing fronts in fourth order equations and CGL amplitude equations

In this section we illustrate many of the basic issues of front propagation into
unstable states by reviewing the diversity of such fronts in Complex Ginzburg
Landau (CGL) equations and in a number of well known fourth order partial
differential equations which have been introduced in the literature as model
problems for a variety of physical phenomena. 41 In fact, we encounter all three
different modes of front propagation dynamics both for pushed and for pulled
fronts in these equations, so taken together the examples discussed below give
a good idea of the richness of front propagation into unstable state as well as
of the power of the concepts of a pulled and pushed fronts.

We will limit our discussion completely to the dynamics of fronts which prop-
agate into an unstable state, so it is important to keep in mind that such
behavior constitutes just a small fraction of the wide range of dynamical be-
havior that is found in these equations. The books by Greenside and Cross
[189] and by Nishiura [320] provide nice complementary introductions to these
model equations.

While the nonlinear front dynamics will be found to be different for all of
the fourth order equations we will discuss, the linear dynamics obtained by
linearizing the equations about the unstable state will always be a special case
of

∂tφ = aφ− b∂2xφ− ∂4xφ. (85)

The negative prefactor of the fourth order derivative term is required to en-
sure stable behavior of the equations at the short length scales. Indeed, the
dispersion relation corresponding to this equation is

ω = i(a+ bk2 − k4), (86)

so for any value of a and b the short wavelength modes at large k are always
damped (ωi < 0). The requirement that the state about which we linearize

41 We focus in the section on rather well known model equations. From a historical
perspective, it is interesting to note that pulled propagating fronts were also found
back in 1983 in a fourth order caricature model aimed at describing sidebranching in
dendrites [248]. The dispersion relation for the sidebranch instability in this model
is of the same form as the general form we consider here, Eq. (86) below.
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is unstable for a range of modes implies that the coefficients should obey
a + b2/4 > 0. It is simply a matter of some straightforward algebra to work
out the linear spreading point equations (12) and (13) explicitly. We find that
there are two regimes: for a > 0 and b < −

√
12 a we get

v∗4thord(a, b) =
2

3
√

6

(

−2b+
√
b2 − 12a

) (

−b−
√
b2 − 12a

)1/2
,

λ∗4thord(a, b) =
1√
6

(

−b−
√
b2 − 12a

)1/2
,

k∗r,4thord(a, b) = 0, (87)

D4thord(a, b) =
√
b2 − 12a,

while for a > 0 and b > −
√

12 a as well as for a < 0 but b > 2
√
−a

v∗4thord(a, b) =
2

3
√

6

(

2b+
√

7b2 + 24a
) (

−b+
√

7b2 + 24a
)1/2

,

λ∗4thord(a, b) =
1

2
√

6

(

−b +
√

7b2 + 24a
)1/2

,

k∗r,4thord(a, b) =± 1

2
√

2

(

3b+
√

7b2 + 24a
)

, (88)

D4thord(a, b) = 2
√

7b2 + 24a,

As we shall see below, in the first regime a > 0, b < −
√

12 a, fronts are
uniformly translating, while in the other regime they are pattern forming.

2.11.1 The Extended Fisher-Kolmogorov equation

While the relevant asymptotic front solutions of the F-KPP equation are uni-
formly translating and monotonically decaying in space to the right, if one
includes a fourth order derivative term in the equation, the front dynamics
becomes much more rich. If we consider the case in which the nonlinear term
is a simple cubic nonlinearity so as to study pulled fronts, we arrive at what
is usually referred to as the Extended Fisher-Kolmogorov or EFK equation
[113,421]

∂tu = ∂2xu− γ ∂4xu+ u− u3, (γ > 0). (89)

This form of the equation is the most suitable for studying the behavior in the
F-KPP limit γ → 0. For any nonzero γ, however, upon transforming to the
scaled coordinate x′ = x/γ1/4 the linear terms in this equation are precisely
of the form (85) with a = 1 and b = −1/

√
γ. Thus we can use the above
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Fig. 13. Space-time plot of simulations results for pulled fronts in the EFK equation
(89). The lines denote the front position at successive time intervals of 1.5, and are
shifted upward relative to each-other for clarity. The initial condition is a Gaussian
of amplitude 0.1 centered at the origin and the total simulation time is 75. (a)
Illustration of the front dynamics in the regime γ < 1/12. The plot, made for
γ = 0.06 illustrates that the fronts converge to uniformly translating solutions
propagating with velocity v∗EFK. (b) The simulation for γ = 0.25 illustrates that in
the regime γ > 1/12 the pulled fronts generate patterns: they leave behind an array
of kinks. As can be seen from the graph, nodes are conserved under the dynamics,
and as a result the wavelength of the pattern is given by the node conservation
formula (91). Note also the smooth uniform propagation of the leading edge, in
spite of the complicated nonlinear dynamics in the front region itself.

expressions provided we rescale all lengths by a factor γ1/4; e.g., the linear
spreading speed of the EFK equation is simply

v∗EFK = γ1/4 v∗4thord(1,−1/
√
γ). (90)

The most interesting aspect of the EFK equation as far as front propagation
is concerned is the bifurcation that occurs in the pulled front behavior at
γ = 1/12: For γ < 1/12, we are in the regime where the pulled front parameters
are given by (87) as b < −

√
12, and hence where we have k∗r = 0. This means

that the asymptotic front profile falls off monotonically, just like in the F-
KPP equation. Fig. 13(a) shows an example of the front dynamics in this
regime. For γ > 1/12, however, k∗r 6= 0, and the leading edge of the pulled
front falls off in an oscillatory manner. The dynamics that results from this
oscillatory behavior is illustrated in Fig. 13(b): the oscillations in the leading
edge periodically grow in size and “peel off” from the leading edge to generate
an array of kinks between the two stable states u = ±1 [113].

In the numerical simulation one empirically observes that, in this process,
nodes in the profile where u goes through zero, never disappear nor are gen-
erated spontaneously: They are formed in the far leading edge, and then just
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gradually drift through the leading edge until they detach and come to rest
as a kink. To our knowledge, there is no real theory which shows under what
conditions or for what type of equations nodes are “conserved” under the dy-
namics. However, given that we empirically observe it, we can calculate the
wavelength of the stationary nonlinear kink pattern behind the front [111,113]!
In the frame ξ moving with the asymptotic speed v∗, the oscillatory part of the
profile is for long times given by exp[−i(ω∗

r −k∗r v∗)t], so the angular frequency
with which nodes pass any fixed position in the leading edge is |ω∗

r −k∗r v∗|. Far
behind the front, the kinks come to rest in the x frame. If the wavenumber
of the kink profile is qstat, then the angular frequency with which nodes pass
a fixed position ξ far behind the front in the moving frame is simply v∗qstat.
Node conservation together with the expressions (88) therefore implies that

qstat = |ω∗
r /v

∗ − k∗r | =
3

8
√

2

(

3b+
√

7b2 + 24a
)3/2

2b+
√

7b2 + 24a
. (91)

The expression for the front speed in both regimes, as well as this one for the
pattern wavenumber in the regime γ > 1/12, was found to be fully consistent
with the results of numerical simulations. 42 In fact, an ideal periodic kink
pattern of the type generated behind the front is not necessarily stable, so
the emerging near-periodic state is usually only an intermediate asymptotic
state: For 1/12 < γ < 1/8, successive kinks and antikinks attract each-other.
This attraction is very weak for widely spaced kinks, and so the bunching
instability that it gives rise to is virtually unnoticeable in the simulations.
For γ > 1/8, the spatially oscillatory tail of a single kink gives rise to an
oscillatory interaction between kinks [113,340]. This is just one example of the
rich type of behavior that the EFK displays — see [340,410] for further details
or [370,371] for work on the existence and stability of the front solutions.

Just like the F-KPP equation exhibits a transition to pushed fronts if the
cubic nonlinearity u3 is changed into a nonlinear function f(u) whose growth
is enhanced over the linear term at intermediate values (e.g. by a quadratic
nonlinearity u2), so does the EFK equation [421] — we already illustrated this
in Fig. 10. Even for γ < 1/12, when pulled fronts in the EFK equation are
spatially monotonic, pushed fronts in this regime can be non-monotonic even
though they remain uniformly translating, see Fig. 10 and [421]. So, as we
already stressed before, unlike fronts in the F-KPP equation, both pulled and

42 Inspection of the data points for the velocity in [113] shows that they fall slightly
below the predictions for v∗EFK. This is due to the fact that in a finite time simulation
one always observes a velocity slightly less than v∗ due to the power law convergence
to v∗ from below discussed in section 2.9. Similar effects can be observed in virtually
all published data of studies of pulled fronts, some of which are reviewed in section
3.
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pushed fronts in the EFK equation can be non-monotonic — monotonicity
has nothing to do with front selection.

What else does the EFK equation teach us? Well, this equation with its bi-
furcation from uniformly translating fronts for γ < 1/12 to pattern forming
fronts for γ > 12 is probably the simplest equation that illustrates the essence
of pulled dynamics: the dynamics in the leading edge just does what the linear
spreading point conditions impose, while the rest of the front where the non-
linear saturation term becomes important just can not do anything but adjust
to the dynamics enforced by the leading edge dynamics. In the present case,
where essentially the only basic coherent structures admitted by the equation
are kinks, the state behind the front is in first approximation an array of such
kinks or domain walls. This state itself may be unstable or have other non-
trivial dynamics, but this does not really affect the propagation of the pulled
front.

As we discussed in section 2.7, the coherent pattern forming front solutions
(56) are coherent in that they are temporally periodic in the frame ξ moving
with velocity v∗. The node-conservation argument is one immediate implica-
tion of this. Hence the empirical observation of node-conservation in the EFK
equation for γ > 0 strongly suggests that the pattern forming solutions are
coherent, i.e., of the form (56). Indeed one can convince oneself [429] term by
term in the expansion that the EFK equation for γ > 1/12 should admit a
two-parameter family of front solutions, parametrized by their velocity v and
the wavelength of the kink pattern behind the front.

We finally note that while the EFK equation has been introduced mainly as a
model equation to illustrate the transition from uniformly translating fronts
to coherent pattern forming fronts as the spreading points parameters change
when γ is increased beyond 1/12. Zimmermann [450] has shown that the
equation can arise as a type of amplitude equation in electro-hydrodynamic
convection in liquid crystals. In this interpretation the point γ = 1/12 can be
viewed as a dynamical Lifshitz point. 43

2.11.2 The Swift-Hohenberg equation

The Swift-Hohenberg equation

∂tu = εu− (∂2x + 1)2u− u3 = (ε− 1)u− 2∂2xu− ∂4xu− u3 (92)

43 A Lifshitz point is a point in parameter space where a phase transition from a
homogeneous to a modulated state occurs.

71



0 30 60 90 120
0

5

10

15

Swift−Hohenberg equation
pulled front at ε=0.4

(a)

0 30 60 90 120
0

5

10

15

Swift−Hohenberg equation
with term 3φ2

 added and ε=0.4: pushed front

(b)

Fig. 14. Space-time plot similar to Figure 13, but now for the Swift-Hohenberg
equation. Total run time is 35, and the time difference between successive lines is
1; the simulations started from a Gaussian initial condition. The plots in this figure
are more detailed version of those in the middle column of Fig. 1. (a) A pulled
front at ε = 0.4. (b) Simulation of the Swift-Hohenberg equation with a symmetry
breaking term bu2 added to the right hand side. For b > bc(ε) fronts in this equation
are pushed, where bc(ε ↓ 0) =

√

27/38 [421]. The simulation shown is for b = 3 and
ε = 0.4, while bc(0.4) ≈ 1.85 [421]. Note that after a while, a second front develops;
at later times this moves into the periodic state generated by the first front. This
front generates a stable homogeneous state u = const.

was introduced as a simple model equation for the dynamics just above a su-
percritical finite-wavelength instability [389]. 44 In the Swift-Hohenberg equa-
tion, the u = 0 state is linearly unstable for ε > 0; for 0 < ε ≪ 1 the equation
gives rise to patterns of wavenumber about 1 whose dynamics can be ana-
lyzed in terms of an amplitude equation. The dispersion relation for small
perturbations about the unstable state is given by (86) with a = ε − 1 and
b = 2.

For ε > 0 the Swift-Hohenberg equation admits a band of stable periodic
states, and this has made the Swift-Hohenberg equation an attractive model
equation for front propagation in the past, as fronts propagating into the
unstable state u = 0 are found to generate one of these regular and stable
periodic patterns behind them — see Fig. 14(a). For this reason the Swift-
Hohenberg equation has played an important role both from a historical and
from a practical point of view:

(i) The first numerical study of a pulled pattern forming front was done
for this equation and the expression (88) for v∗ was confirmed in detail
[111,421].

(ii) The node conservation that we discussed in the previous subsection on

44 It also arises in the context of laser physics [258] or as an amplitude equation
near a particular type of co-dimension 2 bifurcation point [369].
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the EFK equation was first observed empirically for this equation by Dee
and Langer [111] and this lead these authors to derive Eq. (91) with
a = ε− 1 and b = 2 for the wave number qstat of the stationary periodic
profile generated behind the front. Numerical results were found to be
in full accord with this expression [111,421], indicating, as for the EFK
equation, that these front solutions appear to be of the coherent pattern
forming type (56).

(iii) It was the first pattern forming equation for which the transition from
pushed to pulled fronts was studied in detail both numerically and ana-
lytically by including either a symmetry breaking quadratic term u2 or
by changing the sign of the cubic term and adding a stabilizing quintic
term [421]. Simulations of a pushed front in the presence of a quadratic
term are show in Fig. 14(b). The dynamics of the pushed fronts generated
this way was confirmed to be associated with the existence of nonlinear
front solutions solutions with steepness larger than λ∗, in agreement with
the arguments presented in section 2.7.

(iv) The Swift-Hohenberg equation is to our knowledge essentially the only
pattern forming equation for which the existence of pattern forming fronts
has been proved rigorously and for which the pulled front selection has
been established with some rigor [91,92,93]. In fact, the first formulation
of what we refer to as coherent pattern forming front solutions appears
to have been made for this equation by Collet and Eckmann [92].

(v) The Swift-Hohenberg equation has recently also been used in extensive
numerical tests of the power law convergence discussed in section 2.7 of
the wavenumber of the pattern generated behind a pulled front [388]. The
results which are reported in Fig. 19 below are found to be in excellent
agreement with the theoretical predictions.

2.11.3 The Cahn-Hilliard equation

The Cahn-Hilliard equation is a simple model equation for the problem of
phase separation and dynamic coarsening [56,192], which we will briefly re-
view in the context of polymer phase separation in section 3.7. The dynamical
equation is based on the idea that in the phase separation regime the coarse
grained free energy functional F =

∫

dx 1
2
(∂xu)2−u2/2+u4/4 for the composi-

tion field u has two minima, at u = ±1, and on the idea that this composition
field is a “conserved order parameter”. This means that mass is neither cre-
ated nor destroyed, but that it can exchange due to diffusion in response to a
free energy gradient. These ingredients lead to the Cahn-Hilliard equation

∂tu = ∂2x

(

δF
δu

)

= −∂2x(u− u3) − ∂4xu. (93)
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Note that this gradient structure of the equation implies the conservation of
composition in the following form: if we imagine taking a large system of size
L with zero flux boundary conditions, then it follows immediately that

d

dt

L
∫

0

dx u(x, t) = 0. (94)

Thus the spatially averaged composition is conserved under the dynamics. 45

The long-time dynamical behavior implied by (93) is that the system is driven
towards a phase consisting of domains where u is close to one of the two
minimal values ±1, separated by domain walls or kinks. In higher dimensions
the dynamics of these domains is driven by the curvature of the domains
(“droplets”), while in one dimension the coarsening is driven by the interaction
between the domain walls. This interaction is exponentially small for large
separations, and the coarsening dynamics in one dimension is therefore quite
slow.

Consider now a homogeneous state u = uc = constant. If we linearize the
Cahn-Hilliard equation about uc, the resulting equation for u − uc is of the
form (85) with a = 0 and b = 1 − 3u2c. For uc < 1/

√
3 the homogeneous

state is thus unstable and one can consider the following front propagation
problem [266,21]: we consider an initial condition where u ≈ uc < 1/

√
3

everywhere except in a small localized region near the left edge, where we
impose the boundary conditions u = 1, ∂xu = 0 and investigate the front
which propagates into the linearly unstable state, whose linear spreading point
values are given by (88) with a = 0 and b = 1 − 3u2c.

An interesting aspect of the Cahn-Hilliard equation (and of similar equations
with conserved dynamics) is that one can immediately see that even if uni-
formly translating front solutions of the type u(x− vt) obeying the boundary
conditions exist, they can not be relevant for the dynamics. To see this, sup-
pose such a solution exists; for such a solution, we would then have

d

dt

L
∫

0

dx u(x− vt) = −v
L
∫

0

dx ∂xu(x− vt) = −v(uc − 1) 6= 0, (95)

in contradiction with (94). A more intuitive way to understand this is as
follows: because of mass conservation, the phase separation in the front region
can only occur through the formation of domains of the two preferred phases.
An isolated wall between two domains has no intrinsic motion. So, the region

45 Moreover, the form (93) implies that F is also a Lyapunov function for the dy-
namics: dF/dt = −

∫

dx [∂(δF/δu)/∂x]2 ≤ 0.
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Fig. 15. Space-time plot similar to Figure 13, but now for the Cahn-Hilliard equa-
tion, starting from a Gaussian initial condition. (a) A pulled front propagating into
the unstable state u = 0.4. Total run time is 300, and the time difference between
successive lines is 6. Note the slow coarsening (domain merging) behind the pro-
file at later times. (b) The same for an homogeneous initial state u = 0.475. The
total run time is 500, time difference between successive lines is 10. Note that the
front propagates slower than in the case shown in (a), due to the fact that the
homogeneous state on the right is less unstable.

behind the front is a modulated phase with only a slow coarsening dynamics
associated with the slow motion of domain walls in either direction, and a
coherent solution moving with the front speed is dynamically impossible. 46

The simulations of the Cahn-Hilliard equation of [21,267] and those shown
in Fig. 15 confirm that fronts in the Cahn-Hilliard equation are pulled in
agreement with intuitive notion that the nonlinearities slow down the growth.
Beyond this, not much is known with certainty, as the fronts in this equation
do not appear to have been investigated in any detail. The most likely sce-
nario, it appears to us, is that the relevant front solutions are incoherent ones,
since the coarsening of the pattern sets in as soon as it is formed. However, it
is not excluded that the equation does admit coherent pattern forming front
solutions, and that the state generated by the front is unstable to coarsen-
ing. Indeed, since during the coarsening process domains can merge, a simple
node counting argument can not be applied to predict the final state pattern.
Nevertheless, it does appear from the plots that such an analysis might give a
reasonable estimate of the transient domain size in the regime where the front
propagation speed is rather high. 47 Whether there might possibly be a tran-

46 Such arguments apply of course more generally to conserved equations. As an
example of this, the complex dynamics of bacterial flagella traces back partially to
the conserved nature of the underlying dynamical equations [97].
47 If so, the picture is somewhat similar to the one shown in Fig. 17(a) for the cubic
CGL equation: the first pulled front generates a state which is unstable, and which
hence is invaded by a second front.
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sition from coherent to incoherent pattern forming fronts as uc is increased,
has to my knowledge not been investigated.

Thus, while the linear spreading dynamics of the Cahn-Hillard equation is
just a special case of that of the Swift-Hohenberg equation, the dynamical
nonlinear behavior of the patterns that the front gives rise to is very different.
This confirms the picture that a pulled front just propagates as is dictated in
essence by the linear spreading point conditions, while the nonlinear dynamics
behind it just follows in whatever way is allowed or imposed by the dynamics
in the nonlinear region.

2.11.4 The Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky equation [244,386]

∂tu = −∂2xu− ∂4xu+ u∂xu (96)

has played an important role in the study of nonlinear chaotic dynamics. Even
though the equation admits periodic solutions, it has nearby weakly turbulent
states. Even though the latter states may be transient, they usually dominate
the dynamics, as their survival time grows exponentially fast with the size
of the system [381,448]. The scaling properties of these turbulent states, in
particular the question whether they are in the so-called KPZ universality
class, has also been a subject of intense research [52,273,367,445].

Clearly, the state u = 0 is unstable due to the negative prefactor of the
diffusion-like term, and the dispersion relation is again of the standard form
(86) with b = 1 and a = 0; substitution of these values into (88) gives the
linear spreading parameters for this equation for fronts propagating into the
state u = 0.

Several authors [94] have studied the front propagation problem in this equa-
tion both numerically and analytically. Some representative simulation results
are shown in Fig. 16, where starting from a localized initial condition one
obtains two pulled fronts which propagate out with velocity v∗4thord(0, 1) in
opposite directions. Although this has to my knowledge not been investigated
explicitly, it is quite clear from such simulations that these front solutions are
inherently incoherent. Whether the Kuramoto-Sivashinsky admits (unstable)
coherent pattern forming front solutions is not known to me; in any case this
issue is probably not very relevant for the dynamics.

Another interesting feature is that when the Kuramoto-Sivashinsky equation
is modified by adding a cubic term c∂3xu to the right hand side of (96), then
one of the two fronts becomes pushed for a critical value of c of about 0.14
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Fig. 16. Space-time plot similar to Figure 13, but now for the Kuramoto-Sivashinsky
equation, starting from a Gaussian initial condition. Total run time is 60, and the
time difference between successive lines is 1.2. (a) A pulled front propagating into
the unstable state u = 0. The state generated by the front is a weakly chaotic state
of the type typically found for this equation. (b) The same but now for an extension
of the Kuramoto-Sivashinsky equation, obtained by adding a term c∂3xu to the right
hand side. The results of [79,196] imply that upon increasing c, a transition from
pushed to pulled fronts occurs at c ≈ 0.14. The simulations shown in the plot are
for c = 0.15 as in [196], i.e., just above the transition, which itself is not understood
in detail. Note that in this case the transition is tuned by changing a linear term
in the equation, not a nonlinear term! The plots in this figure are more detailed
versions of those in the right column of Fig. 1, except that there c = 0.17 in the
lower panel.

[79,196]. The pushed fronts appear to be driven by a pulse-type structure
which propagates faster than v∗4thord, and which leaves behind a series of pulse-
type structures as well. It is an understatement to say that these empirical
observations are not very well understood theoretically. Possibly, in some limit
it is more appropriate to think of the pushed dynamics in terms of the splitting
and birth of pulse-type solutions [131,320] than in terms of a propagating front.

2.11.5 The cubic Complex Ginzburg-Landau equation

The cubic Complex Ginzburg-Landau (CGL) equation

∂tA = (1 + ic1)∂
2
xA + εA− (1 − ic3)|A|2A (97)

with ε > 0 is the appropriate amplitude equation just above the onset to finite
wavelength traveling wave patterns. The amplitude A is a complex quantity,
and describes the slow space and time modulation of the finite wavelength
mode that goes unstable [9,105,155,189,316,320,413,426,435]. The phase di-
agram of the dynamics behavior of this equation as a function of the real
parameters c1 and c3 is extremely rich, and includes chaotic phases as well as
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coherent dynamics phases [9,81,105,382,418,419].

An important simple set of solutions of the CGL equation are the periodic or
phase winding solutions

A = aeiqx−iΩt, (98)

with a a constant. Upon substitution of this expression in to the cubic CGL, it
is easy to check that these solutions form a one-parameter family parametrized
by q, as we can express a and Ω in terms of q as

a2 = ε− q2, Ω = (c1 + c3)q
2 − c3 ε, −

√
ε < q <

√
ε. (99)

In an amplitude description, the phase winding solutions represent periodic
traveling patterns whose wavenumber differs by q from the critical mode at the
bifurcation. Because the CGL equation admits a family of these pattern-type
solutions, fronts typically generate a pattern and hence are pattern forming
fronts — although the CGL equation looks superficially like the F-KPP equa-
tion, the fact that the dynamical field is complex makes its dynamical behavior
much more intricate (One might even say the pulled front propagation mech-
anism is virtually the only element they have in common!).

Not all the phase winding solutions are stable. Those near the edge of the
band are always linearly unstable (the so-called Benjamin-Feir instability),
while the stability of those near the center of the band depends strongly on
c1 and c3. In fact, for c1c3 > 1 none of the phase winding solutions is stable
[105,278,279,315]. Chaotic behavior is typically found in this region of the
phase diagram.

The state A = 0 in the cubic CGL (97) is linearly unstable; since the dispersion
equation is quadratic in k, it is easy to obtain the spreading point parameters

v∗CGL = 2
√

ε(1 + c21), λ
∗ =

√

ε

1 + c21
, k∗r = c1

√

ε

1 + c21
, D = 1 + c21. (100)

CGL equations generally admit an important class of so-called coherent struc-
ture solutions of the form

A(x, t) = e−iΩ̂tÂ(x− vt), (101)

which is a special case of the general form (56) of coherent pattern forming
fronts. Coherent structure solutions of this type — fronts, sources, sinks, pulses
[424] and other types of localized solutions [418,419] — turn out to be the cru-
cial building blocks of the dynamics of the CGL, but we limit our discussion
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here exclusively to fronts. The simplicity of the coherent fronts in the CGL
equation lies in the fact that they are of the coherent pattern forming type
(56), but that there is only one nonzero term in this sum (we can think of the
function Â as the term Φ1 in this expression). Since Â depend only on a single
co-moving coordinate ζ = x − vt, Â obeys an ordinary differential equation.
The multiplicity of coherent structure solutions (do they come in discrete sets,
one- or two parameter families?) can therefore be studied from the number of
stable and unstable manifolds near the fixed points that describe the asymp-
totic behavior of these solutions (so-called “counting arguments”). For fronts,
these counting arguments show [424] that there generically is a two-parameter
family of front solutions which to the right decay exponentially and on the
back side approach a phase winding solution. Since k∗ is a complex quantity,
this implies that there generally will be a unique coherent front solution (101)
with velocity v∗ and which smoothly connects the linear spreading point be-
havior eik

∗(x−v∗t) on the right with a phase winding solution like (98) on the
left.

Since the temporal phase factor is a global (x-independent) factor, one can
use an argument reminiscent of the conservation of nodes argument discussed
in subsection 2.11.1 to calculate the wavenumber of the coherent pulled front
solution. Indeed, if we compare in the frame moving with velocity v∗ two
points a fixed distance apart, this phase difference is fixed since Â(ξ) is time-

independent in this frame while the prefactor e−iΩ̂t is common to both points.
By equating the temporal phase winding in this frame at the two points we
then get the wavenumber q behind the front: In the leading edge to the right, Ω̂
simply needs to be equal to the temporal phase winding in the moving frame,
Ω̂ = ω∗

r − v∗k∗r = −c1. Likewise, let us write the asymptotic phase-winding
behavior behind the front for ξ → −∞ as Â(ξ) = aeiqξ; the amplitude a,
wavenumber q and frequency Ω are then related by Ω̂ = (c1 + c3)q

2 − c3 ε +
v∗q, which is the analog of Eq. (99) in the moving frame. Equating the two
expressions for Ω̂ and solving for the root −√

ε < q <
√
ε simply yields for

the wavenumber qsel selected by the coherent pulled front solution [321]

qsel =

√

1 + c21 −
√

1 + c23

c1 + c3

√
ε. (102)

Soon after the broader applicability of what we now refer to as the pulled front
concept started to emerge [38,111], Nozaki and Bekki [321] studied the front
propagation problem in the CGL numerically. Their results can be understood
simply in combination with the results of the stability analysis of the phase
winding solution qsel:

(i) In large parts of the phase diagram, the first front propagating into the
unstable state A = 0 is a coherent pulled front of the type (101), with
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Fig. 17. (a) Space-time plot of the amplitude A in a simulation of the cubic GL
equation (97) with ε = 1, c1 = 1 and c3 = 3. Time difference between successive
lines is 2 and the total simulation time is 80. The plot illustrates how the first front
is a pulled coherent pattern forming front of the type (101), but that the state
behind the front is unstable, so that the domain with the state selected by the first
front is invaded by a second front. This second front is also a pulled one. Note the
similarity between the leading part of the second front and the pulled front found
in the Kuramoto-Sivashinsky equation — see Fig. 16 (a). This is no accident, as the
Kuramoto-Sivashinsky equation is the lowest order amplitude equation just above
the Benjamin-Feir instability [105,189]. (b) Space-time plot of a propagating pulled
front in the quintic CGL equation with ε = 0.25, c1 = 1, c3 = −1 and c5 = −1.
For these parameter values, no coherent nonlinear front solution of the type (101)
exists [424]. The first front is followed by a region with phase slips (points where
A vanishes), before giving rise to a state close to a phase-winding solution. At the
later stage, this region is invaded by another front.

velocity v∗CGL given by (100) and selected wavenumber qsel given by (102).
(ii) If the selected mode ∼ exp(iqselx) is stable, a domain with this state

remains behind the front. 48

(iii) As Fig. 17 illustrates, if the qsel is unstable due to the Benjamin-Feir
instability, the domain behind the first coherent front is invaded by a
second front. This front is again a pulled front [112,321], whose speed v∗BF

can be calculated explicitly in terms of qsel and c1 and c3.
49 Depending

on the parameters c1 and c3 this front can give rise either to a more stable
phase winding solution, or a chaotic state. An example of the latter case
is shown in Fig. 17 (a). Clearly, this regime can only exist if the first
coherent front outruns the second one, hence in the parameter range
where v∗CGL > v∗BF. In the frame moving with the first front, the state

48 Depending on the initial conditions, this domain can subsequently be invaded by
a front connecting to another phase winding solution.
49 Since the Kuramoto-Sivashinsky equation is the amplitude equation for the
Benjamin-Feir instability in the limit when the instability is weak [105], the sec-
ond front is essentially a pulled Kuramoto-Sivashinsky front.
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generated by the first front is nonlinearly convectively unstable to the
Benjamin-Feir instability.

(iv) In the parameter range where the Benjamin-Feir instability becomes non-
linearly absolutely unstable in the frame moving with the first front, i.e.,
in the range where v∗CGL < v∗BF (which is most easily entered by tuning
c3 as v∗CGL does not depend on c3) the coherent pulled front solution is
irrelevant. Instead, one observes a pulled incoherent front: 50 the chaotic
behavior sets in right at the front region front. The dynamical behavior
in this regime is similar to that shown in Fig. 19 (a) below for the pulled
chaotic behavior of the quintic CGL.

In conclusion, the cubic CGL equation admits a two-parameter family of co-
herent front solutions. This family includes the pulled front solution, for which
the selected wavenumber can be determined explicitly. The dynamics behind
the first front depends on the stability of this state. When v∗BF < v∗CGL the
first front is a coherent pulled front, while in the opposite regime an incoherent
pulled front emerges.

2.11.6 The quintic Complex Ginzburg-Landau equation

Unlike the cubic CGL equation, which arises as the lowest order amplitude
equation near a supercritical (forward) bifurcation to traveling wave patterns,
the quintic CGL equation

∂tA = (1 + ic1)∂
2
xA + εA+ (1 + ic3)|A|2A− (1 − ic5)|A|4A (103)

is a model equation for the case in which such a bifurcation is subcritical
(backward). Because of the different sign of the cubic term, this term now
enhances the growth of amplitude, while saturation is only caused by the
quintic term. Indeed, the destabilizing cubic term implies that the only stable
phase winding solutions have a finite amplitude for any ε. So an expansion
based on assuming that the amplitude is small is not really justified. In other
words, the quintic CGL is not a consistent lowest order amplitude equation.
Nevertheless, the equation has played an important role in identifying the main
coherent structures and dynamical regimes near a subcritical bifurcation. Note
that the terms linear in A are the same in the quintic and cubic CGL, so the
linear spreading point expressions (100) apply to the quintic CGL equation
for ε > 0 as well.

50 Actually, it is conceivable that in some parameter ranges the Benjamin-Feir insta-
bility of the nonlinear region is so strong, that the very first front becomes a pushed
incoherent front. To my knowledge this issue has not been studied systematically.
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In the subcritical range, ε < 0, the state A = 0 is linearly stable, and hence a
small perturbation does not spread with a finite speed: instead it will die out.
However, nonlinear states, in particular phase winding solutions, can perfectly
well be stable. In analogy with thermodynamic systems, where one is used to
interface-type solutions between two stable phases separated by a first order
transition, one expects there to be front solutions in the subcritical range
ε < 0. When ε is increased towards small but positive values, these front
solutions would then be expected to remain dynamically relevant as they have
have nonzero speed larger than the linear spreading speed v∗CGL ∼ √

ε . In
other words, one would naively expect that for small ε fronts in the quintic
CGL are pushed.

The remarkable feature of the quintic CGL is that the front solutions cor-
responding to the pushed fronts can be obtained analytically [423,424] by a
generalization of the “reduction of order method” reviewed briefly in the ex-
ample at the end of section 2.7.1: When Â(ζ) with ζ = x − v†t is written in
the form Â = a(ζ)eiφ(ζ) and the Ansatz

da

dζ
=
√

e1(a2 − a2N ),
dφ

dζ
= qN + e0(a

2 − a2N), (104)

is substituted into the equations, one arrives at algebraic equations for the
coefficients e0 and e1 and the wavenumber qN and amplitude aN of the phase
winding solution behind this front solution. These coherent pattern forming
pushed front solutions, which are unique for a fixed set of parameters, only
exist in parts of the ε, c1, c3, c5 parameter space: Effectively they exist only in
a band around the line c3 = −c5 where the nonlinear dispersion terms almost
cancel and especially in the subcritical range ε < 0.

The main findings of a detailed study of the existence of these solutions and
of their competition with pulled front solutions are:

(i) Just like we discussed for the pulled front solutions of the cubic CGL
equation, the phase winding solution with wavenumber qN behind the
pushed front can be unstable to the Benjamin-Feir instability. If it is,
and if the propagation velocity v∗BF is smaller than v†, then the size of
the domain behind the first front grows as (v†−v∗BF)t in time. If v∗BF > v†,
however, an incoherent pattern forming pushed front results (see figures
13 and 14 of [424]).

(ii) Even though the quintic Ginzburg-Landau equation always admits phase
winding solutions in a subcritical range εc < ε < 0, outside a band
where c3 ≈ −c5 there are no pushed front solutions. This means that
the “thermodynamic” intuition formulated above, according to which one
always expects a pushed to pulled transition at some finite positive value
of ε, does not apply to the quintic CGL equation (in line with the fact
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Fig. 18. Space-time plot of A illustrating the pushed to pulled transition for inco-
herently propagating fronts in the quintic CGL equation (103) [119]. In each plot,
the total simulation time is 100, and the time difference between successive lines is
2. (a) Simulation for c1 = −2.2, c3 = −0.5, c5 = −2 in the weakly subcritical range
ε = −0.005. According to figure 15 of [424], in this range the incoherent domain
in the center slowly spreads, corresponding with a pushed incoherent front with
velocity ≈ 0.15, although this may be a finite-size effect. (b) The same for ε = 0.03.

that there is no standard Lyapunov function for this equation). In other
words, in some parameter ranges, the dynamically relevant fronts for any
positive ε are pulled fronts! This is quite remarkable, as it means that in
the parameter ranges where this happens, from the point of view of the
front propagation problem the dynamical behavior is more like that found
near a supercritical bifurcation. 51 This also illustrates that while for
the F-KPP equation the nonlinear behavior of the growth function f(φ)
determines whether fronts are pushed or pulled, the distinction between
the two regimes is generally more subtle — in the quintic CGL it is
determined by the strength of the nonlinear dispersion, in the extension
of the Kuramoto-Sivashinsky equation it is tuned by a symmetry-breaking
linear third order derivative term.

(iii) In equations where the relevant front solutions are uniformly translating
ones, the pushed solutions normally bifurcate off the pulled ones contin-
uously. In the quintic CGL equation, this is generically not the case for
pattern forming fronts — see the discussion in section 2.8. As a result, the
selected wavenumber can jump as one goes from a coherent pulled front
solution to a coherent pushed front solution (see figure 1(c) of [423] or
23 of [105]). Thus, the coherent pattern forming front solutions found in
the quintic CGL provide a counterexample to the “structural stability”
postulate [333,334] that pulled front solutions are smoothly connected
to the pushed front solutions, as one tunes one of the parameters in the

51 For ε < 0, a new class of retracting fronts (v < 0) was recently found [103];
these solutions determine much of the dynamical behavior in the subcritical regime,
especially outside the band where the pushed front solutions exist.
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Fig. 19. (a) Space-time plot of the amplitude |A| of a pulled incoherent front in
the quintic CGL at ε = 0.25, c1 = 1, c3 = c5 = −3. Note that in the leading
edge, where |A| is small, the dynamics is actually quite coherent, in agreement
with the fact that the linear spreading dynamics is always coherent. The front only
becomes incoherent once the nonlinear behavior sets in. (b) Scaling plot of the scaled
velocity relaxation [v(t) − v∗]T/C1 versus T/t for simulations of coherent fronts in
the Swift-Hohenberg equation and the quintic CGL simulations shown in (a). Here T
is a properly defined time scale introduced so that both equations fall on the same
asymptotic curve, and C1 is an appropriate combination of the linear spreading
point parameters [388]. From left to right, the first three lines are Swift-Hohenberg
data with ε = 5, at heights u =

√
ε, 0.01

√
ε and 0.0001

√
ε, and the next three lines

show the CGL data traced at amplitudes 0.002, 0.0002 and 0.00002. The solid line
is the universal asymptote predicted by the analytic theory. (c) The same for the
appropriately scaled Γ̇(t) relaxation (84). From [388].

dynamical equation.
(iv) As we discussed, for the cubic CGL equation, so-called “counting argu-

ments” for the multiplicity of front solutions indicate that there generally
is a two-parameter family of front solutions. Although this has not been
checked explicitly, we believe that for any value of the parameters there
is indeed a unique pulled front solution, in line with the fact that (102)
fixes qsel uniquely. For pulled fronts in the quintic CGL equation, a new
feature is encountered: an extension of the earlier analysis to the quintic
case shows that in some parameter ranges the equations for qsel behind
the front do not admit a solution. This implies that in these parame-
ter ranges no coherent front solutions (101) can exist [424]. Figure 17(b)
shows an example of the type of dynamical behavior that is found in this
regime: in the front region the dynamics is very incoherent and associated
with the occurrence of “phase slips” (points in space-time where A = 0).
The fact that the incoherent front region is followed by a zone where A
is close to a stable phase-winding solution illustrates that the incoherent
front dynamics in this case is not due to an instability of the selected
state, but to the absence of a coherent pulled front solution.

(v) Because of the subcritical nature of the transition, the quintic CGL equa-
tion also has parameter ranges at ǫ < 0 where a chaotic phase is statis-
tically stable. If one puts such a chaotic phase next to a domain of the
stable A = 0 phase, the front between them can move. Upon increasing ε
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one can then observe a pushed to pulled transition of an incoherent front
— see Fig. 18.

(vi) As we discussed in section 2.9 , the universal 1/t power law relaxation
even applies to the coherent and incoherent pattern forming fronts. This
was checked numerically for the simulations of the incoherent fronts of the
CGL equation shown in Fig. 19(a). The other panels confirm that after
scaling the velocity and time with the predicted values, both the velocity
[panel (b)] and wavenumber [panel (c)] relaxation data of the incoher-
ent quintic CGL fronts and the coherent fronts in the Swift-Hohenberg
equation are in accord with the universal predictions.

2.12 Epilogue

The insight we have attempted to bring across in section 2 is that the special
nature and generality of front propagation into unstable states lies in the
fact that there is a well-defined linear spreading speed v∗ associated with any
linear instability. The linear spreading point is the organizing center for all
subsequent developments: We can make a large number of general predictions
because the linear dynamics puts a strong constraint on any possible nonlinear
dynamics. On the one hand, it forces us to focus on the question “how can
a front faster than v∗ emerge?” and this naturally leads to the concepts of
pulled and pushed front. On the other hand it shows that the approach to
the asymptotic velocity and state of a pulled front is governed by an equation
which in lowest order is of diffusion-type, and this allows one to derive the
universal asymptotic relaxation of a pulled front.

For uniformly translating fronts and coherent pattern forming fronts, the
regime of pushed front propagation is essentially governed by the existence of
special solutions which we can think of as “strongly heteroclinic orbits”. For
incoherent pushed fronts we are at present unable to formulate the pushed
front propagation mechanism sharply, although intuitively we expect it to be
very similar to that of the other two types of fronts.

The various examples in the previous section illustrate that a pulled front
essentially does what it should do, namely propagate with asymptotic speed
and shape dictated by the linear spreading point, while the rest of the front
just follows in whatever way is allowed by the global nonlinear properties of the
dynamical equation: (i) a bifurcation in the structure of the linear spreading
point is responsible for the transition to coherent pattern forming fronts in the
EFK equation; (ii) the quintic CGL equation illustrates that the limited range
of existence of coherent pattern forming fronts can lead to a transition from
coherent pulled fronts to incoherent pulled fronts; (iii) if the state generated
by a front in the cubic or quintic CGL equation is unstable, the first front
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remains a coherent front if the spreading speed of the secondary instability is
less than v∗ of the first front, while the first front becomes incoherent if the
pulled speed of the secondary front is larger than v∗ of the first front.

The difficulty in making generic statements about pushed fronts is that apart
from the fact that their convergence to the asymptotic speed v† is exponential,
there are few generic features. Because of the strong heteroclinicity require-
ments (60) or (76) that the slowest decaying exponential mode is absent,
pushed front solutions are technically determined by an analysis which has
all the properties of a nonlinear eigenvalue problem for an isolated solution.
Because of this structure, the relaxation towards the asymptotic pushed front
speed and shape is generally exponential, and singular perturbation theory
can be applied to pushed fronts (section 5). Moreover, because of this struc-
ture, whether a pushed front solution exists depends on the full global and
hence nonlinear properties of the equations. As a result, virtually every exam-
ple is special, and there are few nontrivial examples which one has been able
to obtain analytically. The quintic CGL equation is a remarkable exception in
this regard.

As we discussed, with few exceptions, most mathematical investigations of
front propagation into unstable states have focused on uniformly translating
fronts and in particular on systems of equations which are closely related to
the F-KPP equation. It appears to us that many of the ingredients of the
theoretical framework that we have discussed here are ready for more rigorous
analysis: rigorous developments that I expect are around the corner are (i)
rigorous bounds for the Green’s function of whole classes of linearized equa-
tions and, in relation with this, rigorous proofs of the pulled front mechanism
of new classes of equations, (ii) proofs of the universal relaxation of pulled
fronts, (iii) the development of a mathematical framework for the pulled to
pushed transition of coherent pattern forming fronts, and (iv) extension of the
approach of Sandstede and Scheel [374,375] to analyze the interaction between
front dynamics and the dynamics of the state behind the front, or to classify
defects.

3 Experimental and theoretical examples of front propagation into

unstable states

In this section we discuss a number of examples of front propagation into
unstable states. We first review experiments on fronts or in which front prop-
agation plays an important role, and then move on to discuss examples of
fronts in theoretical models. The examples concern mostly fronts in one di-
mension. The difficulty of analyzing patterns whose dynamics is governed by
the propagation of pulled fronts is discussed later in section 5.
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At first sight, one might well wonder why front propagation into unstable
states is a relevant problem anyway. After all, it seems counterintuitive that a
physical system would naturally end up in an unstable steady state and wait
for a nice front to develop! On closer inspection, however, there are many
reasons why front propagation into unstable states is not an esoteric problem:

(i) A natural way in which a system can stay in a self-sustained unstable state
is when an overall flow or motion makes the instability convective (see
sections 2.5 and 2.10). This happens in particular in many fluid dynamic
systems. Likewise, in plasma physics the strong asymmetry between the
mobility of electrons and ions usually makes plasma instabilities convec-
tive. Examples where these considerations apply are discussed in sections
3.5, 3.9, 3.10, 3.11, 3.12, and 3.17.

(ii) Sometimes a natural way to probe a system is to quench it into an un-
stable state with a laser pulse, ramping or flipping a voltage, flipping
a plate, dropping a temperature, scraping a skin tissue, etcetera. In all
these cases, the relevant question is whether we can change the system
on a timescale shorter than the natural time scale of the evolution of the
state into which we quench it. Examples are encountered in sections 3.1,
3.2, 3.3, 3.5, 3.6, 3.7, 3.14, 3.15, and 3.20.

(iii) We sometimes encounter intrinsically chaotic systems where the dynam-
ics itself continuously generates states which are transient because they
themselves are unstable. We discuss a clear example of this in section 3.4.

(iv) In thermodynamic systems with first order transitions, interfaces play a
predominant role because the bulk nucleation rate is exponentially small
near the transition, while interface velocities usually vary linearly with
the distance from the transition. Although fluctuations near a second or-
der thermodynamic transition are usually too large to allow clear fronts
to develop, this is not necessarily true for polymer systems (section 3.7).
Moreover, near supercritical (“second order like”) bifurcations in pattern
forming systems, where fluctuation effects are usually small [105], a sim-
ilar argument holds as well: as we shall discuss more explicitly in the
next subsection, if ε is the dimensionless control parameter measuring
the distance from the instability threshold, the front speed scales as

√
ε

while the growth rate of bulk modes scales as ε. Hence, front propagation
in principle always dominates for sufficiently small ε [161]. Of course,
the range over which fronts do dominate the dynamics depends on the
prefactors, i.e., on the time and length scales of the problem under inves-
tigation. Such considerations play a role in the examples of sections 3.1,
3.2, 3.3, 3.5, 3.7, 3.8, and 3.14.

(v) Front propagation into an unstable state sometimes emerges theoretically
from an unexpected angle through mapping a seemingly unrelated prob-
lem onto a front propagation problem — see sections 3.21, 3.23, 3.25,
3.26.1 and 3.26.5.
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3.1 Fronts in Taylor-Couette and Rayleigh-Bénard experiments

Soon after Dee and Langer [111] and Ben-Jacob and co-workers [38] drew the
attention of the physics community to the special simplicity of what we now
refer to as pulled fronts, two experiments on pattern forming systems were
done that are still very illuminating: One by Ahlers and Cannell [4] on vortex
fronts in a Taylor-Couette cell, and one by Fineberg and Steinberg [161] on
front propagation in a Rayleigh-Bénard cell.

A Taylor-Couette cell consists of two concentric cylinders which can rotate
independently. The gap between the two cylinders is filled with a normal
Newtonian fluid. When the inner and outer cylinder rotate slowly, the flow
between the two cylinders is laminar and in the azimuthal direction. At higher
rotation rates, one finds an amazing number of fluid dynamics instabilities
when both the inner and the outer cylinder are rotating with sufficiently high
frequencies [105,125]. The experiments that are of interest to us probed fronts
that lead to the first nontrivial patterned state that emerges if the rotation
rate of the inner cylinder is increased while the outer cylinder does not rotate
[4]. At some critical rotation rate, there is a bifurcation to a state with so-
called Taylor vortices: a pattern which is periodic in the direction along the
axis of the cylinders emerges. This flow is referred to as Taylor vortex flow,
since the velocity in the r, z plane has the appearance of alternating clockwise
and counterclockwise rotating vortices that span the whole gap between the
two cylinders.

A Rayleigh-Bénard cell consists of a fluid sandwiched between two parallel
plates at a fixed but different temperature. When the bottom plate is hotter
than the top plate, the fluid density is largest at the top. For small enough
temperature differences, there is no convection — there is just heat conduction
through a quiescent fluid. However, when the temperature difference and hence
the density difference becomes larger than some threshold value, this simple
state is unstable and convection sets in spontaneously [105,155,189,282]. The
convection patterns that emerge just above threshold are often referred to as
rolls, but if we look at the velocity pattern in a vertical cross section, they look
like the vortex-type patterns in the r, z cross-section of the Taylor-Couette cell.

The transition to Taylor vortex patterns and to convection patterns in the
Rayleigh-Bénard case are both examples of forward (supercritical) bifurcations
to a stationary finite wavelength patterns. Just above onset, the patterns can
be described by a so-called amplitude expansion by writing the physical fields
in terms of the complex amplitude as [105,189,193,316,320]

physical fields ∝ Aeikcx + A∗e−ikcx. (105)
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For simplicity, we restrict the analysis to one-dimensional patterns as this
is the relevant case for the front experiments; kc is the wavenumber of the
pattern at onset, and x is the coordinate along which the patterns develop.
The amplitude expansion simply implements the observation that just above
onset the amplitude of the patterns is small, and that the amplitude A varies
on slow space and time scales. In lowest order, A then obeys the so-called real
Ginzburg-Landau amplitude equation 52 [105,155,189,316,320,413,435]

τ0∂tA = ǫA + ξ20∂
2
xA− g|A|2A. (106)

Here ǫ is the dimensionless control parameter, which for ǫ > 0 is a measure for
how far one is above the instability threshold. The time scale τ0 and length
scale ξ0 depend on the particular system, and can be calculated explicitly from
the linear dispersion relation of the system under study. This has been done
both for the transition to Taylor vortices and for the transition to Rayleigh-
Bénard convection patterns. The nonlinear parameter g, which follows from
the amplitude expansion, is also known for both systems, but it, of course,
does not play a role for the pulled fronts of interest here.

The real amplitude or Ginzburg-Landau equation should in general not be
thought of as just a simple straightforward generalization of the F-KPP equa-
tion to a complex field — while the F-KPP equation only allows for stable
homogeneous solutions u = ±1, the amplitude equation admits stable phase
winding solutions of the formA = aeiqx with a and q constant [105,155,189,320,435].
As (105) illustrates, these describe physical patterns with a wavenumber kc+q
different from the critical wavenumber. The interaction and competition be-
tween the various modes in general makes the dynamics of the amplitude A
much more interesting and complicated than that of the F-KPP equation.
Nevertheless, since the dynamics of pulled fronts is dominated by the linear
terms in A, and since these are the same for the two equations, both the
asymptotic pulled front solutions and the convergence to them are the same
for the two equations.

The attractive feature of the experiments is that because ξ0 and τ0 are known
explicitly, they offer the possibility to study front propagation quantitatively.
Indeed, for the amplitude equation in the form (106) we get for the pulled

52 The equation — used as the amplitude equation (106) in the discussion of fronts
in Rayleigh-Bénard and Taylor-Couette experiments in section 3.1 below — is called
the real Ginzburg-Landau equation because the prefactors of all the terms are
real. The amplitude equation for traveling wave patterns is the CGL equation;
as discussed in section 2.11.5, in principle all its terms have complex prefactors
[105,189,435].
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(a) (b)

Fig. 20. (a) Velocity data of fronts in the Taylor vortex experiments of Ahlers and
Cannell [4]. Data are plotted on a log-log scale as a function of ǫ. The solid lines
have slope 1

2 and hence illustrate the
√
ǫ scaling of the velocity. The lower line shows

that the data are consistent with a scaled velocity ṽ ≈ 1.1 instead of the asymptotic
values ṽas = 2. (b) Experimental data of Fineberg and Steinberg [161] on fronts in
the Rayleigh-Bénard system on a log-linear scale. The solid line is the theoretical
prediction (107). The inset shows the scaled velocity ṽ which is consistent with the
theoretical asymptotic value 2, within the error bars.

front speed

v∗ampeq = 2
ξ0
τ0

√
ǫ. (107)

This result explicitly confirms the assertion made already in point (iv) at the
beginning of section 3 that near a supercritical bifurcation, the front speed in-
creases as

√
ǫ, while the growth rate of bulk modes according to (106) increases

linearly in ǫ. As stressed by Fineberg and Steinberg [161], front propagation
into unstable states can therefore generally be observed at small enough ǫ, i.e.
just above the onset of the transition.

In order to compare the measured front velocities to the F-KPP equation in
the standard form in which the prefactors of the linear terms are equal to 1,
the experimental results have been reported in terms of the scaled velocity

ṽ = v
τ0
ξ0
√
ǫ
. (108)

Of course, front speeds should only converge to v∗ampeq if the initial condition
is sufficiently localized, as explained in section 2.7.6. In both experiments, the
system was initially below the instability threshold, corresponding to ǫ < 0
in the amplitude equation (106), and then brought above threshold (ǫ > 0)
at time t = 0. In the Taylor-Couette experiment, even below threshold, when
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the bulk of the cell is in the stable laminar flow state, there are so-called
Ekman vortices at the ends of the cylinders. These play the role of localized
nonzero initial conditions for the amplitude A when the system is brought
above threshold at time t = 0. For the Rayleigh-Bénard experiment, Fineberg
and Steinberg used a long cell, so as to get one-dimensional fronts, and they
turned on an extra heater at the cell ends as well, when they brought the
system to ǫ > 0. This made the convection patterns nucleate at the ends and
then propagate into the bulk of the cell.

Fig. 20(a) shows the velocity of the Taylor vortex fronts as they propagate
into the Taylor-Couette cell over a distance of up to 10 to 15 vortex diameters
[4], plotted on a log-log scale. As the two solid lines indicate, the

√
ǫ-scaling

of the vortex velocity is confirmed, but the prefactor is only about 55% of the
predicted asymptotic values ṽ∗ampeq = 2: the data are consistent with ṽ ≈ 1.1
instead of 2.

The fact that the measured front velocity was significantly below the asymp-
totic value in this 1983 Taylor-Couette experiment made many researchers
wonder whether there was something crucially wrong, 53 and stimulated Fine-
berg and Steinberg a few years later to perform experiments on fronts in
Rayleigh-Bénard convection. Actual space-time plots of their convection front
profiles as they propagate to the right along their cell, are shown in Fig. 21(a).
These traces illustrate how these fronts (as well as those in the Taylor-Couette
cell) are examples of true pattern forming fronts propagating into an unstable
state, like those observed in simulations of the Swift-Hohenberg equation (92),
see the central panel of Fig. 1, and Figs. 14(b) and 21(b).

The data of Fig. 20(b) for the scaled front velocity ṽ, calculated from the
actual data by using the theoretical values for ξ0 and τ0 in (108) were found
to be consistent to within a few percent with the asymptotic value ṽas = 2. At
the time, this was considered to be an important experimental confirmation of
the quantitative prediction of the pulled front speed, and of the idea that the
concept of a pulled front applies more generally to pattern forming systems.
But, as we shall see, there is a new twist to the story.

The reason for the apparent discrepancy between theory and experiment on
the Taylor vortex fronts remained unresolved till Niklas et al. [319] performed
an explicit numerical simulation of such fronts which showed that the front
speed had not yet relaxed to its asymptotic value, in contrast to what was
found in numerical studies of the propagating fronts in the Rayleigh-Bénard

53 It was realized that if the measured velocity had been too high, a possible candi-
date for the discrepancy could have been that the initial convection profile associated
with the Ekman end vortices was not sufficiently localized, i.e., that at t = 0 the
amplitude did not fall off to the right faster than e−λ∗x = e−

√
ǫx/ξ0 . However, as we

discussed in section 2.6, asymptotic front speeds below v∗ are impossible.
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(a) (b)

Fig. 21. (a) Space-time plot of a propagating front in the Rayleigh-Bénard exper-
iment of Fineberg and Steinberg [161] for ǫ = 0.012, made using the shadowgraph
technique. The time between successive traces is 0.42 tv, where tv is the verti-
cal diffusion time in the experiments, and distances are measured in units of the
cell height d. (b) A space-time plot obtained from a numerical simulation of the
Swift-Hohenberg equation at the same value ǫ = 0.012 and length and time scales
adjusted to correspond to those in the experiments of (a). After Kockelkoren et al.
[233].

cell [271]. Indeed, over the range of times probed experimentally, the transient
speeds they found for the Taylor vortex fronts were quite consistent with the
experimental data. Instead of showing these results, we will approach this issue
by extrapolating back from the asymptotic formula (78) as this allows us to
discuss both experiments in a unified way.

When (78) is applied to the amplitude equation, one finds for the long time
rate of approach to the asymptotic speed ṽ∗ = 2

ṽ(t) = 2 − 3

2ǫt/τ0
+

3
√
π

2(ǫt/τ0)3/2
+ · · · . (109)

This formula shows that in any experiments on fronts just above the onset
of a finite-wavelength supercritical bifurcation, one can a priori only hope to
observe front speeds very close to the asymptotic value at times

t≫ tco ≡ τ0π/ǫ. (110)

Note that we have defined the crossover time tco as the time at which the third
correction term is equal in magnitude to the first correction term in (109).
Although this asymptotic formula is only valid in the long-time regime when
the third term is much smaller than the second one, and although for times
of O(tco) one is in the non-universal crossover regime, the important message
is that the velocity always approaches the asymptotic value from below and
that transient effects are very significant, even for times of order several tco.
For example, even at times of O(3tco) when the formula becomes reasonably

92



accurate [144], the velocity is still some 8 percent below its asymptotic value,
and at tco both corrections terms, though of opposite sign, are about 24% of
the asymptotic value in magnitude.

When an actual experiment is suddenly brought into the unstable parame-
ter range ǫ > 0, bulk modes also start to grow at a rate proportional to ǫ.
Since one can only study fronts properly as long as bulk fluctuations have
not grown enough that bulk “nucleation” starts to become visible, in practice
experiments like those we consider here can only be done up to a time which
scales as ǫ−1 [4,161]. In other words, experiments can in practice only be done
up to a time which is a finite multiple of tco!

In the Taylor vortex front experiments, most measurements for ǫ = 0.02 were
done in the time interval of 1-2 tco. It is therefore not surprising that transient
effects did play an important role in these experiments [319,422] and that the
measured velocity was significantly below the asymptotic value. However, from
our present perspective, it is important to turn the question around and ask
whether the fronts observed in the Rayleigh-Bénard experiments were indeed
propagating with approximately the asymptotic speed, and if so, why [233].

As it turns out, in the experiments of Fineberg and Steinberg, growth of bulk
modes also limited the observation of fronts to times of order tco [161]. Kock-
elkoren et al. [233] therefore reanalyzed the experiment from this perspective,
and concluded that most likely the actual measured front speed was some 15%
below the asymptotic one. In their interpretation, the theoretical value for ξ0
used in converting the observed front speeds to dimensionless front speeds ṽ
may have been about 15% smaller than the actual one. 54 If so, the velocity
had been overestimated by about this amount in the interpretation of the
experiments, thus hiding a possible transient effect.

We stress that only new experiments can settle whether this interpretation is
the correct one. However, there are also indications in the actual traces of the
fronts in Fig. 21(a) that the velocity in this run was slowly increasing in time.
The solid line in Fig. 22(a) shows the experimental velocity as a function
of time, extracted by measuring successive front positions with a ruler and
using a value of ξ0 which is 15% larger than the theoretical value [233]. For
comparison, a plot of the velocity as function of time in a simulation of the
real Ginzburg-Landau equation (106) is shown with a dashed line.

One important point has not been included in the theoretical analysis so far.
When growth of bulk modes in practice becomes important for times of order
tco, then at the latest times the growth of the bulk fluctuations may become

54 Indications that this may be the case come from fact that the observed wavelength
at onset was also about 13% bigger than the theoretical one. See [233] for further
discussion of this.
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Fig. 22. (a) Full line: scaled velocity versus time in the Rayleigh-Bénard front
[161] whose space-time plot is shown in Fig. 21(a). The velocity is obtained by
interpolating the maxima of the traces. As explained in the text, a value of ξ0
which is 15% bigger than used by Fineberg and Steinberg to convert the data. A
different value would not change the shape of the curve, only the absolute numbers
on the vertical axis. The dashed line shows the measured velocity in a simulation of
Eq. (106) with an exponential initial condition A(x, 0) ∼ e−1.2λ∗x and the dotted line
the asymptotic result (109) with the t−3/2 term excluded. Note that the curves are
not fitted, as only the absolute vertical scale is affected by our choice of ξ0. (b) Open
circles: data-points for the wavenumber selected by the front in the experiments of
Fineberg and Steinberg. Dashed curve: q∗/qc for the Swift-Hohenberg equation,
with parameters corresponding to the Rayleigh-Bénard experiment. The fact that
the data follow the line q∗/qc for small ε, indicates that just above threshold the
experiments probe the leading edge of the front. After Kockelkoren et al. [233].

important. This will have the effect of increasing the velocity above the one
studied analytically and numerically with localized initial conditions and in the
absence of fluctuations. With this caveat, we nevertheless tentatively conclude
that both experiments on fronts in pattern forming systems illustrate that
such fronts are prone to transient behavior associated with the slow power
law relaxation of pulled fronts from below to v∗.

As a final note, we point out that both experiments also addressed the wave-
length selection by the front. Wavelength selection goes beyond the lowest
order amplitude equation (106), since the real F-KPP-type fronts in this equa-
tion simply yield a wavenumber equal to the critical wavenumber kc through-
out the front, to order

√
ǫ. For the changes in order ǫ, one needs to start from

the linear dispersion relation of the problem, correct to order ǫ. In the orig-
inal paper on the Rayleigh-Bénard experiment, the data were compared to
the results for the selected wavelength in the Swift-Hohenberg equation (92).
Strong deviations were found in this case. The most likely explanation for this
is the following [233]: for small ǫ, the full front whose width scales as 1/

√
ǫ is

too wide to even fit in the experimental cell; hence one then can not measure
the selected wavenumber behind a fully developed pulled front, but instead
only an effective wavenumber in the leading edge of the front which is close
to the local wavenumber k∗r given in (88). Fig. 22(b) shows that indeed the
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(a) (b)

Fig. 23. (a) Photograph of a well-developed array of pendant drops at the end of
the experiments of Fermigier, Limat, Wesfreid et al. [158,159,265]. The drops are
seen from above through the glass plate across which the film was spread before the
system was made unstable by flipping the plate. From [265]. (b) Two-dimensional
patterns observed in the Rayleigh-Taylor instability of a thin layer in the same
experiments [159,265]. Note that a “roll” or “stripe” type pattern generally appears
near the boundary of the regions. The two structures labeled A and A6 were initiated
by small dust particles on the interface. When they grow, they usually develop into
a six-field symmetric hexagonal pattern like in H. The pattern near R was initiated
by the thickness gradient close to the edge of the fluid layer.

Rayleigh-Bénard data for small ǫ are consistent with this.

More recently, the problem of fronts in the Rayleigh-Bénard and Taylor-
Couette system has been analyzed in great detail by Lücke and co-workers
[68,69,70,210,269,270,271,349,361], both in the case discussed here and in the
presence of a throughflow (see section 3.11). In these approaches, the front
predictions based on the lowest order amplitude equation are compared in
detail with those for pulled fronts obtained by determining the linear spread-
ing point of the full Navier-Stokes equations for this system, and with full
numerical simulations. We refer to these papers for a detailed discussion of
how the full result starts to differ from the lowest order amplitude result as
ε increases. In particular, the effect that the nodes of the fields drift in the
front region before coming to rest behind the front is a characteristic effect
that goes beyond the amplitude equation (the Swift-Hohenberg equation also
shows this, of course).

3.2 The propagating Rayleigh-Taylor instability in thin films

The name Rayleigh-Taylor instability refers to gravitational instabilities of
the interface between two fluids or of stratified fluids [78]. A simple example is
when one has two immiscible fluids separated by a planar interface, in which
the heavier fluid is on top of the lighter one. More generally the instability
arises in density-stratified fluids, when the acceleration is directed from the
heavier to the lighter fluid. The instability is important in a variety of practical
situations, ranging from explosives to the spreading of paint or coating on a
solid surface.
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About a decade ago, Fermigier, Limat, Wesfreid and co-workers [158,159,265]
performed a series of experiments on the Rayleigh-Taylor instability of thin
films. They studied pattern selection by first spreading thin films of silicon oil
on a flat solid plate, and then making the system unstable by flipping this plate
upside down. For films of suitable thickness, the instability develops slowly
enough that it can easily be studied. The photo of figure 23(a) illustrates that
the typical hexagonal patterns that one often observes after the instability
is well-developed. The experiments illustrate several basic issues in pattern
formation, 55 but we will focus here on the propagating fronts. Right after the
plate has been flipped, a film of uniform thickness is linearly unstable. In many
cases, the instability first developed near the boundary of the sample and then
propagated into the bulk of the sample. Figure 24 shows experimental traces
of such a front as it propagates into the unstable state [265].

The equations that describe the evolution of a thin liquid film are well known:
the separation of length scales allows one to simply integrate out the coordi-
nates perpendicular to the film layer (“lubrication approximation”) [324]. If
we denote for the experimental case of the free film flow the film height h as
the thickness of the film measured from the plane, the dynamical equation for
h becomes [324,158]

∂th +
1

3η
∇⊥ · [h3∇⊥(ρgh+ γ∇2

⊥h)] = 0, (111)

where η is the viscosity, ρ the density of the liquid, g the gravity, γ the surface
tension, and ∇⊥ the gradient operator in the direction along the surface.
To study the stability of a film of uniform thickness h0, we note that if we

55 For example, the generic appearance of hexagonal patterns is associated with the
fact that the thin film equations (112) below for the deviation ζ of the film thickness
from the uniform value, are not invariant under a change of sign of ζ (see [51] and ref-
erences therein). In the Rayleigh-Bénard instability hexagonal patterns generically
arise for the same reason very close to threshold, since very small non-Boussinesq
effects break the symmetry that the Boussinesq equations happen to exhibit. Fur-
thermore, the fact that the pattern looks stripe-like near the edge, even though the
pattern is hexagonal in the bulk — see Fig. 23(b) — is a generic phenomenon (also
known in convection, see e.g. [51]) which can be understood simply from symmetry
considerations [350]: When one considers a front or domain wall solution in the
amplitude equations for the three modes necessary to describe a hexagonal pattern,
symmetry considerations dictate that the prefactor of the spatial second derivative
term of the modes whose wavevector is normal to the front is a factor two larger
than those of the other two modes whose wavevector makes an angle of 60 degrees
with the front normal. This means that the “coherence length” or correlation length
of this first mode is larger than that of the other two modes, and that the pattern
in the front region looks stripe-like [350] (see also [106,126]).
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Fig. 24. Time evolution of the thickness profile as a Rayleigh-Taylor front propa-
gates into an unstable state in the experiments of Fermigier, Limat, Wesfreid and
co-workers [158,265]. The profiles have been shifted up for clarity and are separated
by time intervals of 30 seconds. x designates the coordinate perpendicular to the
stripe-type pattern in the front region.

substitute h = h0 + ζ into (111), the equation can be written in the form

∂tζ +
h30
3η

(ρg∇2
⊥ζ + γ∇4

⊥ζ) = N(ζ,∇⊥ζ,∇2
⊥ζ). (112)

Here N denotes all terms which are nonlinear in ζ and its derivatives. As
noted in [158], the linear terms in (112) are exactly the same as the lin-
ear terms appearing in the various model equations discussed in section 2.11
(the Kuramoto-Sivashinsky equation, the Cahn-Hilliard equation or the Swift-
Hohenberg equation at ǫ = 1). After a proper rescaling of space and time
units, the pulled front velocity v∗ for the Rayleigh-Taylor fronts in the thin
film experiments is therefore just given by Eq. (88).

The experimentally observed front speed was indeed found to be consistent
with the pulled speed v∗ within the uncertainty of the experimental measure-
ments and the theoretical estimate (which was of order 30%). In addition,
there seemed to be a clear trend for the front patterns to have a wavelength
some 5% smaller than the wavelength corresponding to the most unstable
mode. This is also what would be expected from the results for pulled fronts
with the above linear dispersion relation.

Although the results of the experiments thus seem to indicate that the Ray-
leigh-Taylor fronts in the experiment are examples of pulled fronts, we do
want to express an important caveat: just like the bifurcation to hexagonal
convection patterns is generally subcritical (except when a symmetry imposes
the equations to be invariant under a change of sign of the dynamical fields),
the bifurcation to hexagonal Rayleigh-Taylor patterns should be expected to
have a subcritical character too; indeed this is indicated by the weakly nonlin-
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ear results in [158]. This suggests that when the instability is weak, one will
actually get pushed rather than pulled fronts. However, to my knowledge this
possibility has neither been explored theoretically nor experimentally.

3.3 Pearling, pinching and the propagating Rayleigh instability

Another instability with which Rayleigh’s name is associated is the instability
of a cylindrical body of fluid [78]. In daily life, we encounter this phenomenon
when a stream of water from a tap breaks up into drops or when the paint on a
thin wire or hair of a brush breaks up into droplets. The instability is caused
by the surface tension: for a “peristaltic” perturbation of the radius of the
cylindrical fluid, the capillary pressure due to surface tension is enhanced in
the narrower region and reduced in the wider regions; this pressure difference
tends to enhance the perturbation even more.

In tubular membranes, the instability normally does not arise, since mem-
branes generally have a small surface tension but a high bending rigidity,
which measures the resistance of the membrane against changes in the cur-
vature. However, Bar-Ziv and Moses [26] observed that when they applied
laser tweezers to their tubular membranes, a sinusoidal instability developed,
see Fig. 25(a). This instability propagated out at a constant velocity in both
directions from the point of application of the tweezers. Presumably, the in-
stability is due to the fact that the tweezers pull some lipid molecules into the
trap, and that as a result the surface tension increases, rendering the cylindri-
cal geometry unstable. Indeed, as pointed out in [26], for a tube with surface
tension Σ and bending modulus κ, the free energy F can be written as

F =
∫

dS [Σ + 2κH2]. (113)

Here H is the mean curvature and the integral is over the surface S. For a
tube with cylindrical symmetry and the z-coordinate along the axis, we can
write the terms in F in terms of r(z) as

dS = dz 2πr
√

1 + r2z , H =
rzz

(1 + r2z)
3/2

− 1

r(1 + r2z)
1/2
. (114)

As pointed out by Bar-Ziv and Moses a tube of constant radius R exhibits
the Rayleigh instability when the surface tension is above a critical value
Σc ≈ 3κ/R2. Above this value the free energy is lower for a periodically
modulated tube than for a tube of constant radius. As κ → 0 one recovers
the pure Rayleigh instability. Thus, the experimental scenario is that the laser
tweezers pull in the lipid molecules, and that the increase in surface tension
that this entails is large enough for the membrane to become unstable.
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(a) (b)

Fig. 25. (a) Photographs showing the pearling front along a tubular membrane
formed by lipid bilayers in the experiments of Bar-Ziv, Tlusty and Moses [26,27],
as it propagates out from the bright laser spot on the right. In this experiment the
dimensionless control parameter ε = (Σ − Σc)/Σc = 6.5. From top to bottom the
times are 0.14, 0.68, 0.86, 1.04 and 1.22 seconds after the laser was turned on. The
arrow indicates the leading edge as it was determined by the authors. The height of
each photographs corresponds to a distance of about 10 µm. (b) Results by Powers
and Goldstein [356] for the simplified model (115) for the pearling instability. The
top panel shows four snapshots of the pearling obtained from numerical simulation
of the model. The higher snapshots are obtained at later times, so the front is
traveling to the left. Bottom panel: dimensionless front velocity as a function of the
ratio of surface tension and bending modulus. The solid line denotes the pulled front
velocity v∗, the dots the data obtained in the numerical simulations. Note that the
data points lie slightly below the curve for v∗. Undoubtedly, this is due to the slow
convergence of the front speed to the asymptotic speed v∗.

The pearling instability through propagation of the Rayleigh fronts that the
experiments suggest have been studied theoretically by Powers and Goldstein
and co-workers [356,185], who pointed out that in the approximation that
the flow profile through the tube remains a parabolic Poiseuille profile, 56 the
dynamical equation for the tubular interface becomes

∂tr
2 =

1

4η
∂z

(

r4∂z

[

δF
δr

])

, (115)

56 This approximation, which is in the spirit of the the thin-film equations described
in the previous section, is justified in the limit in which distortion of the tube
diameter happens on length scales much longer than the tube diameter. This is not
really true for the Rayleigh instability. Nevertheless, the equation is expected to
capture the essentials of the pearling instability.
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Fig. 26. Experimentally measured values of the wavenumber of the pearling insta-
bility as a function of the dimensionless control parameter ε = (Σ − Σc)/Σc in
the experiments of Bar-Ziv, Tlusty and Moses [27]. The line labeled MSC is the
wavenumber selected by the pulled front in the model discussed in the text.

where F is the interfacial free energy given in Eq. (113) above. The numerical
results from [356] for this equation are shown in Fig. 25(b). The top panel
shows four snapshots as the Rayleigh front propagates along the tube, gener-
ating strongly nonlinear bead-like undulations behind it. In the lower panel
the velocity of these fronts is compared to the pulled front velocity v∗ for this
model (full line) as a function of the dimensionless parameter R2Σ/κ. Note
that this velocity vanishes at a critical value — as already noted above, below
this value the cylindrical tube is stable. Note that the data points fall slightly
below the pulled speed v∗. Although not enough data are provided in [356] to
check this explicitly, this is undoubtedly due to the slow convergence of the
front speed to the asymptotic value v∗ — as mentioned before, numerical data
at long but finite times will alway approach v∗ very slowly from below, and
indeed a discrepancy like the one in this plot is what one often encounters if
a careful extrapolation of the speed to its asymptotic value is not made.

It is instructive to realize that although the nonlinear behavior of this pearling
model is quite different from those encountered before, the dispersion relation
for small linear perturbations of the radius is not! Note that when F is ex-
panded to quadratic order in the deviations from a cylinder shape, the highest
derivative terms it contains are of order r2zz. Upon taking the functional deriva-
tive in (115), we immediately see that the dispersion relation ω(k) is a poly-
nomial in k of sixth degree [185,27]. Thus, from the perspective of the linear
dispersion relation and the calculation of v∗, the equation can be viewed as an
interesting generalization to sixth order of the fourth order models equations
of section 2.11!

In more recent experiments, Bar-Ziv, Tlusty and Moses [27] have tested the
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(a) (b)

Fig. 27. Results from the full hydrodynamical simulations of Powers et al. [357]
of the propagating Rayleigh instability in the absence of a bending modulus. (a)
Sequence of drop shapes for viscosity ratio λ ≡ ηinner/ηouter = 0.05 at times
tn = 6.67nηouterR/Σ, n = 1, 2, 3, ..., 15 from top to bottom. The evolution of each
connected component was computed independently of the others. (b) The dimen-
sionless Rayleigh front velocity as a function of the viscosity ratio λ. For λ > 1 the
smoothly propagating front behavior is lost.

predictions from the above theory in detail, both for the propagation velocity
and for the wavelength of the pattern selected by the front. Their data for
the pattern wavenumber as a function of the dimensionless control parameter
ε = (Σ − Σc)/Σc are reproduced in Fig. 26. The full line in this plot (labeled
MSC for “Marginal Stability Criterion”) shows that the wavenumber of the
pattern selected by a pulled front in this model is slightly larger than the
wavenumber corresponding to the fastest growing mode. The experimental
data are consistent with this trend although they lie somewhat above the
predicted values. Whether this slight discrepancy is real is not clear. In any
case, however, the experiment illustrates an important point: the data shown
in Fig. 26 cover a large range of values of ε: if one knows the dispersion relation
for a given problem, predictions for the properties of a pulled front can be made
for any value of the parameters, not just close to threshold (ε≪ 1) where an
amplitude equation description with F-KPP-type fronts might be appropriate.

Although the driving force is different — gravity in one case, surface tension
in the other — there are some clear similarities between these propagating
Rayleigh fronts and the Rayleigh-Taylor fronts in the thin film equations dis-
cussed in the previous section. The analogy even extends to the following issue:
as we remarked at the end of our discussion of the Rayleigh-Taylor fronts, that
instability is expected to be (weakly?) subcritical; therefore when the linear
instability is weak, one expects there to be a transition to pushed fronts. The
same might happen here: as pointed out by Bar-Ziv and Moses [26], there is a
small regime where the transition to modulated states of the tube is subcrit-
ical. In this regime, one might therefore also expect pushed front solutions,
but to my knowledge this issue has not been studied here either.
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Powers and co-workers [357] have also studied the pure Rayleigh instability
(without bending rigidity for the interface) numerically using the full hydro-
dynamic equations using a boundary integral technique. As their calculations
reproduced in Fig. 27(a) illustrate, in this case droplets pinch off when the
viscosity ηinner of the fluid inside the tube is smaller than ηouter of the outer
fluid. Fig. 27(b) shows their data for the front velocity as a function of the
viscosity contrast λ = ηinner/ηouter. The full line is again the pulled front speed
v∗ for the full problem, while the symbols mark the numerical data. At the
smallest values of λ these are some 30% lower than v∗, but there is every
reason to believe that this is again due to finite simulation time and system
size. Provided this is true, these simulations are one of the most convincing
ones that illustrate that pulled fronts have no other choice than to propagate
for large times with the linear spreading speed, even if the dynamics behind
them is highly nonlinear — what could be more nonlinear and nontrivial than
the pinching off of a droplet?

3.4 Spontaneous front formation and chaotic domain structures in rotating
Rayleigh-Bénard convection

In section 3.1 we already encountered a Rayleigh-Bénard experiment: a fluid
heated from below exhibits a transition to convection patterns beyond some
critical value of the temperature difference between the top and bottom plate.
When a Rayleigh-Bénard cell is rotated as well, the interplay between the
thermal buoyancy and the rotation-induced Coriolis force gives rise to a whole
plethora of new effects, including traveling wave patterns [148,240,415]. One
of the novel phenomena is the so-called Kuppers-Lorz instability [242]: above
a critical rotation rate Ωc, a standard stripe pattern of straight rolls looses
stability to a stripe patterns which make an angle of about 2π/3 with the
original ones. However, the new pattern that emerges is in turn unstable to
stripes which make again an angle of about 2π/3 with it, and so on: no homo-
geneous stationary stable pattern exists. In practice, the systems settles into
a statistical steady state of domains of stripes of roughly three orientations,
separated by domains walls or fronts invading these domains: new domains
are created and invaded incessantly. A snapshot from an experiment is shown
in Fig. 28(a).

The interpretation of this statistical state was put forward by Tu and Cross
[407]. They analyzed the amplitude equations for the three roll amplitudes A1,
A2 and A3 in this system,

∂tA1 = ∂2x1
A1 + A1

(

1 − A2
1 − g−A

2
2 − g+A

2
3

)

,

∂tA2 = ∂2x2
A2 + A2

(

1 − A2
2 − g−A

2
3 − g+A

2
1

)

, (116)
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(a) (b)

Fig. 28. (a) Snapshot of a convection pattern in a rotating Rayleigh-Bénard cell
in the Kuppers-Lorz unstable regime, made with the shadowgraph technique. One
identifies domains with essentially three orientations of rolls. From Bodenschatz et
al. [51]. (b) A snapshot of the spatial pattern in the statistically steady state in
simulations of Tu and Cross [407] of Eqs. (116) with g+ = 2 and g− = 0.5. The
dark, grey and light regions represent the domains occupied by A1, A2 and A3,
respectively. The occupancy is determined by which one of the three amplitudes is
largest.

∂tA3 = ∂2x3
A2 + A3

(

1 − A2
3 − g−A

2
1 − g+A

2
2

)

.

Here 1,2 and 3 label the three orientations whose normals ê1, ê2 and ê3 make
an angle of 2π/3 with each other, and xi are the spatial coordinates projected
along these directions, 57 xi = êi · r. The amplitudes in Eqs. (116) are taken
to be real; this means that we can study the competition between domains
but not the variations of the wavelength of the convection patterns in each
domain.

For g− = g+ this system of equations is symmetric in all the amplitudes Ai,
and can be derived from a Lyapunov function. This implies that the dynamics
is then relaxational, the dynamics tends to drive the system to the minimum
of the Lyapunov function. 58 However, for g− 6= g+ (without loss of generality
one can take g− < g+) the system has a cyclic permutation symmetry only
and it is non-potential: it can not be derived from a Lyaponov functional. For
g+ large and g− small, the A2 amplitude is strongly suppressed by the A1

57 The geometrical projection factors in ∂xi
= êi · ∂r in the gradient terms in (116)-

(117) are precisely those which are responsible for the stripe-type appearance of
fronts or domain walls at the edge of a hexagonal pattern — see footnote 55.
58 By saying that a system has a Lyaponov function F , we mean that it can be
written in the form ∂tA = −δF/δA, where the term on the right hand side is a
functional derivative. An example is given in Eq. (120) below, and we a also briefly
encountered a Lyapunov function in the discussion of the the Cahn-Hilliard equation
in section 2.11.3. The derivative form implies that dF/dt = −

∫

(δF/δA)2 ≤ 0 so
that F either decreases under the dynamics or stays constant.
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amplitude but not vice versa, so it is intuitively clear that an A1 domain will
invade an A2 domain, etcetera.

The snapshot of the simulation of the above equations [407] shown in Fig. 28(b)
illustrates that at any given time, the pattern consists of domains of three roll-
orientations, separated by domain walls or fronts: the dark domains invade the
grey ones, the grey ones the light ones, and the light ones the dark ones. Note
also the similarity with the experimental picture of Fig. 28(a).

When Tu and Cross [407] analyzed the statistical properties of these steady
states, a surprising feature was found: while the Kuppers-Lorz instability sets
in when g− decreases below 1, the correlation length ξ and correlation time T
did not diverge as g− ↑ 1 — see Fig. 29(b). The clue to understanding this was
identified [407] to be the behavior of the fronts. For g− < 1 a homogeneous
state is linearly unstable to the growth of one of the other two amplitudes;
indeed, it is easy to see from Eq. (116) that the linear spreading speed of an
A1 perturbation into a domain where A2 = 1 equals

v∗KL = 2
√

1 − g−. (117)

On the other hand, even though an A2 domain is linearly stable to small
perturbations in all the amplitudes, for 1 < g− < g+ it is only metastable:
an A1 domain will invade an A2 domain even though it is linearly stable.
We can show this by using the curious feature that two-mode subdynamics
of these equations is actually of potential nature, even though the full three-
mode dynamics is not. Let us consider the one-dimensional dynamics of two
modes only,

∂tA1 = cos2 θ1 ∂
2
xA1 + A1

(

1 −A2
1 − g−A

2
2

)

, (118)

∂tA2 = cos2 θ2 ∂
2
xA2 + A2

(

1 −A2
2 − g+A

2
1

)

. (119)

Here θ1 and θ2 are the angles between the x-axis and the vectors ê1 and ê2.
Upon transforming to the variables Ā1 =

√
g+A1 and Ā2 =

√
g−A2 we can

write the equations in the potential form

∂Ā1

∂t
= − δF

δĀ1

,
∂Ā2

∂t
= − δF

δĀ2

, (120)

where the “free energy”, which plays the role of a Lyapunov functional, is
given by

F = 1
2

∫

dx

[

cos2 θ1
(

∂xĀ1

)2 − Ā2
1 +

1

2g+
Ā4

1+
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(a) (b)

Fig. 29. (a) The front velocity v versus g− for various values of g+ as determined
numerically by Tu and Cross [407] from the one-dimensional equations (120). The
dotted line indicates the pulled front velocity v∗KL given in (117). For sufficiently
small g− the fronts are pulled. From [407]. (b) The inverse correlation length ξ and
inverse correlation time T (defined in terms of the amplitude correlation functions)
as a function of g− in the numerical simulations for g+ = 2.

+ cos2 θ2
(

∂xĀ2

)2 − Ā2
2 +

1

2g−
Ā4

2 + Ā2
1Ā

2
2

]

. (121)

For g1 > 1, this free energy functional has local minima at Ā1 =
√
g+, Ā2 = 0

and Ā1 = 0, Ā2 =
√
g−. For g− < 1 the second point becomes a saddle, in

agreement with the fact that the state A2 state is unstable to the growth of
the A1-mode. However, even though the free energy has two local minima for
g− > 1, for any g− < g+ the second one corresponding to the nonzero A2-mode
always has a higher free energy than the first one, which corresponds with the
A1-phase. These two minima are separated by a free energy barrier (very much
like two stable phases near a first order transition), but the relaxational na-
ture of this subdynamics implies that any initial condition which corresponds
with an A1-domain on the left and an A2-domain on the right will develop
into a coherent front which moves to the right. Such “bistable” fronts which
connect two linearly stable states are well known for such types of equations;
they are like pushed fronts and their speed approaches an asymptotic value
exponentially fast.

Indeed, as Tu and Cross found — see Fig. 29(a) — the scenario which emerges
is that for any g− < g+ the dynamical attractor is a statistically steady
chaotic domain state. If g− is reduced below g+, the invasion of domains is
due to pushed fronts up to some critical value of g− below which the fronts are
pulled. 59 The Kuppers-Lorz instability is therefore not only a nice illustration

59 Note that the numerical data-points in the pulled regime in Fig. 29 are slightly
below v∗KL; as always, this is a sign of the slow power law convergence to the asymp-
totic pulled front speed.
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of how fronts propagating into an unstable state can be generated dynami-
cally, but it is also one of the few realistic examples we know of where the
front propagation mechanism changes from pushed to pulled upon changing
a parameter. In this particular experiment this parameter can even be tuned
easily by changing the rotation rate. 60

We finally note that as as we will discuss in section 5, pulled fronts are not
amenable to the usual sharp interface approximation or moving boundary ap-
proximation. Whether this gives rise to any noticeable difference between the
transient domains in the pushed regime just above the Kuppers-Lorz instabil-
ity and those in the pulled regime at higher rotation rates, has apparently not
been explored. However, I consider it unlikely that it does, since as Fig. 29(a)
shows, there is only a large separation of scales between the front thickness
and the domain size in the regime near threshold.

3.5 Propagating discharge fronts: streamers

When the electric field is large enough, free electrons in a gas accumulate
sufficient energy inbetween collisions that they can knock out an electron
from a neutral gas molecule in a collision. In air, the ionization of nitrogen is
dominant, and in this case the ionization reaction can be summarized as e− +
N2 =⇒ 2e−+N+

2 . This type of avalanche phenomenon can naturally lead to to
the formation of discharge patterns (sparks!) whose dynamics is dominated by
the propagation of fronts into the unstable non-ionized state, as is illustrated in
Fig. 30. Figures (a) and (b) show two snapshots of simulations of Vitello et al.
[433] of the formation of a discharge pattern in nitrogen between two planar
electrodes across which a potential difference of 25kV is applied. Initially,
at time t = 0, the gas between the electrodes is non-ionized, except for a
small region near the upper electrode. Due to the large field, the electrons
immediately get accelerated downward into the non-ionized region, ionizing
neutral molecules along the way. Figs. 30(a) and (b) show the electron density
level lines 4.75 and 5.5 nanoseconds later. The regions inside the finger-like
regions of these so-called streamer patterns are weakly ionized plasmas; the
regions where the level lines crowd mark the zones where the electron density
drops quickly to a very small value, and where most of the ionization takes
place. The negative space-charge in this transition zone effectively shields the
outer field in the non-ionized region from that in the streamer body where
both the space-charge and the field are small.

60 For fronts between two locally stable states the front velocity will behave linearly
in g+−g− for g− ≈ g+. Since the domain dynamics is driven by the front motion, we
therefore expect the correlation length ξ and time scale T to scale as ξ/T ∼ (g+−g−)
close to the point g− = g+. The correlation length ξ in Fig. 29(b) does seem to vanish
indeed faster than T , but there are insufficient data to test this hypothesis.
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Fig. 30. (a) and (b): results of the numerical simulations of Vitello et al. [433]
of the full three-dimensional simulation of equations (122)-(124) for parameters
corresponding to nitrogen gas and a potential difference between the planar elec-
trodes of 25 kV . Each line indicates an increase of ne by a factor of 10. Shown are
snapshots of the electron density 4.75 and 5.5 nanoseconds after an initial ioniza-
tion seed was placed at the upper electrode. (c) Space-time plot of a simulation of
the equations by Ebert et al. [142] for the case of a planar streamer front in the
case D = Deα0/(µeE0) = 1 [142]. Upper panel: the dimensionless electron density
σ = nee/(ǫ0α0E0) as a function of time and space. Lower panel: the electric field
measured in units of E0. The initial condition was a homogeneous field E = −E0

and a small, charge-neutral ionized region with Gaussian electron and ion density
around x = 55. The front propagating to the right in the same direction as the
electron drift velocity is called a negative streamer front; it is a pulled front with
asymptotic speed v∗str (=2.21 in dimensionless units), given by Eq. (125). The front
propagating slowly to the left is a pushed positive streamer front.

The propagation of streamer patterns is well described by the following set of
equations for the electron density ne, the ion density n+ and the electric field
E [142,433],

∂tne =α0|neµeE|e−E0/|E| −∇ · (−neµeE−De∇ne), (122)

∂tn+ =α0|neµeE|e−E0/|E|, (123)

∇ · E=
e

ǫ0
(n+ − ne). (124)

The first term on the right hand side of the first two equations is the impact
ionization term. As µe is the electron mobility, −µeE is the electron velocity,
so the prefactor is just the impact rate of electrons on the ions, while the
exponential factor accounts for the ionization rate as a function of the field
— small fields give a small ionization rate, as the electron speed at impact is
small. The other two terms on the right hand side of (122) account for the
drift and diffusion of the electrons. Similar terms are absent in the equation
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for the ion density n+ since on the time scales of interest drift and diffusion
of the much heavier ions can be ignored. Finally, Eq. (124) is the Maxwell
equation relating the field strength to the charge density.

Clearly the impact ionization term in these equations makes the non-ionized
state with ne = n+ = 0 linearly unstable. Moreover, since a nonzero charge
density tends to screen the field, the field is largest just ahead of a front. The
exponential factor in the impact ionization term is an increasing function of the
field strength, hence the growth is gradually decreased from a large value ahead
of the front to a small value in the plasma behind the front where the field is
screened. At first sight, it may therefore come as no surprise that discharge
fronts which propagate in the same direction as the electron drift velocity —
so-called negative streamers — are examples of pulled fronts [141,142]. Now,
apart from the drift term, Eq. (122) has, to linear order in ne, the same terms
as the F-KPP equation (1), a linear growth term and a diffusion term. We
therefore immediately obtain the asymptotic speed of planar streamer fronts

vasstr = v∗str = −µeE
+ + 2

√

De|µeE+|e−E0/E+ , (125)

where E+ is the value of the field just ahead of the front. This prediction
has been fully confirmed by extensive numerical simulations by Ebert et al.
[141,142], an example of which is shown in Fig. 30(c).

The streamer problem is very instructive from a more general point of view.
First of all, in the F-KPP equation, it is rigorously known [16,35,37] that one
is always in the pulled regime if the growth function f(φ)/φ < f ′|φ=0. The
streamer problem nicely illustrates that such simple results generally do not
hold in more complicated cases. As we mentioned above, the ionization term in
the streamer equations rapidly decreases when the field strength drops; hence
the ionization rate per electron α0µe|E| exp−E0/|E|, which is the analog of the
growth ratio f(φ)/φ in the F-KPP equation, decreases monotonically from the
front side to the back side of the front. In spite of this, for each set of parameter
values, the streamer equations not only admit pulled negative streamer front
solutions, but also pushed positive streamer front solutions which propagate
in the opposite direction. Fig. 30(c) illustrates this. The reason for this is
that streamer front propagation arises through the interplay of ionization and
screening of the field. Screening is a nonlocal phenomenon mediated through
Eq. (124), and so the monotonic behavior of the field dependence of the local
ionization term is just half of the story.

Secondly, the negative streamer patterns like those of Figs. 30(a,b) are nice
examples of interface-like growth patterns whose dynamics is associated with
propagating pulled fronts. Indeed, if we write the electric field in terms of
the electrical potential Φ as E = −∇Φ, we see that outside the streamer
body, where the charge density is negligible, the potential obeys to a good
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approximation the Laplace equation ∇2Φ = 0. Moreover, Eq. (125) shows
that to a good approximation the normal velocity of a streamer equals µe∇Φ.
These are precisely the two equations for viscous fingering [44,250,338] or
for thermal plumes in two dimensions [451], so if we think of the streamer
pattern as a moving interface, we expect their dynamics to have a number of
similarities with the dynamics of viscous fingers or plumes [142,428].

However, the story is not that simple! The problem is that pulled fronts can
not straightforwardly be mapped onto a moving boundary problem, even when
their width is much smaller than the pattern scale [as is clearly the case for
the streamer patterns of Figs. 30(a,b)]. As we will discuss more generally in
section 5, the fact that the dynamically important region of pulled fronts
is ahead of the front itself entails not only a power law convergence to the
asymptotic speed but also a breakdown of the standard moving boundary
approximation. The precise implications of this for streamers are still under
active investigation — very much like dendrites, they do show a tip-splitting
instability [18], but the dispersion relation of small perturbations of a planar
discharge front does appear to be different from what one would expect based
on the analogy with viscous fingering or dendrites.

3.6 Propagating step fronts during debunching of surface steps

When a crystal is cut with an angle slightly different from one of the principle
crystal facets, the resulting “vicinal surface” contains a lot of steps. The pre-
dominant mechanism during vapor growth is then that adatoms which have
landed on the surface diffuse towards these steps and attach there. The crystal
growth is thus accompanied by the propagation of steps along the surface.

It has been known since long that growing mono-atomic steps can “bunch”: in-
stead of staying equidistant, on average, they bunch together and form macro-
steps. Many of these and other step instabilities can be understood in terms
of the following simple model of step flow [42,168,214,411],

∂tXn = f+(Wn) + f−(Wn−1) + γ∂2yXn. (126)

Here Xn(y, t) is the position of the nth step measured along y, the coordinate
along the step. The terms f+(Wn) and f−(Wn−1) describe the growth due to
attachment of atoms from the terrace of width Wn = Xn+1 − Xn in front of
the step and the terrace of width Wn−1 just behind the step. The last term is
a curvature correction analogous to the surface tension type term that occurs
in almost all interfacial problems. Note that from a mathematical point of
view, Eq. (126) is of mixed character: it is a partial differential equation with
respect to the y-variable, but a difference equation with respect to the step
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(a) (b)

Fig. 31. (a) Reflection electron microscopy image of a vicinal Si(111) surface 10
seconds after the a change of direction of the current direction; a series of steps
“peel off” from a large macro-step in a characteristic pattern: steps “debunch”
from the macro-step that is visible as the thick line meandering through the middle
of the figure. From Latyshev et al. [253]. (b) Snapshot of a Monte Carlo simulation
by Kandel and Weeks [215] of the stochastic version of the step model (127). Note
the similarity with the experimental observations shown in panel figure (a).

index n.

A straightforward stability analysis shows that an equidistant array of steps
(all Wn = W ) is unstable when the attachment kinetics is such that steps
predominantly incorporate atoms from the terrace behind it, i.e. if f ′

−(W ) >
f ′
+(W ). This is in full agreement with the intuitive idea that when a step

lags a bit behind, the terrace behind it becomes smaller and hence the step
will capture fewer atoms from this terrace. 61 This instability leads to step
bunching in the nonlinear regime.

It has been found in various experiments that application of a current along the
surface can induce very complex patterns. Indeed, one of the new phenomena
that occurs is shown in Fig. 31(a): right after reversal of the current, steps
“peel off” from a macro-step in a characteristic pattern.

This experimentally observed “debunching” behavior is not found in the above
model for the step dynamics, but Kandel and Weeks [215] have shown that it
can be understood in terms of the following extension of it. The shortcoming
of model (126) is that the growth functions f±(W ) only depend on the terrace
width right ahead of and behind the step. However, when steps bunch they
get so close that this simple approximation breaks down: capture of adatoms
by steps in a bunch is strongly suppressed because steps cannot move any
closer. Instead, surface diffusion over the entire bunch becomes more probable.

61 Early work on step bunching by Frank [168] described it on a coarse-grained scale
in terms of the Burgers equation. If the step velocity decreases as a function of step
density, the well-known formation of shocks in the Burgers equation implies step
bunching. From this perspective, the phenomenon is similar to the formation of
traffic jams in elementary models for traffic flow.
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Fig. 32. Comparison of the prediction of v∗debunch(∆) (full line) with the velocity data
(symbols) from the simulations shown in Fig. 31(b). V0 is the initial step velocity
V0 = (k+ + k−)W and ∆c =

√

2γ/(k− − k+). From Kandel and Weeks [215].

Kandel and Weeks [215] therefore replace (126) by

∂tXn = f+(Z(f)
n ) + f−(Z(b)

n ) + γ∂2yXn, (127)

for Wn > Wmin, while ∂tXn = 0 for Wn < Wmin. Here Z(f)
n (Z(b)

n ) is the width
of the first terrace in front of (behind of) the nth step that is larger than Wmin.
Note that this introduces a dynamically generated non-locality in the model:
the terraces from which a step captures atoms depend on the dynamical state
of the step configuration itself. As a result, as discussed in detail in [215],
these equations also lead to a debunching instability near the edge of a step
bunch: one or a series of steps can “peel off” in a characteristic fashion from
the bunch, while the other steps in the bunch remain virtually immobilized
together. A snapshot of a Monte Carlo simulation [215] of a stochastic version
of this model with

f−(W ) = k−W, f+(W ) = k+W, (128)

is shown in Fig. 31(b) . Clearly, the type of step patterns found in this model
is remarkably similar to that seen experimentally.

From our perspective, the interesting aspect is the arrays of steps — the almost
parallel lines in the figure — which cross from one step bunch to the other.
As we mentioned above, the step configuration near the edge of a bunch is
unstable to the peeling off of an array of steps, and so the propagation of the
detachment point can be viewed an an example of a front propagation into an
unstable state problem. Indeed, by linearizing the dynamical equations (127)
and (128) about an array of straight steps separated by a distance ≈ Wmin

and assuming a behavior for perturbations δXn of the form

δXn(y, t) ∼ e−λ(y−n∆)+σt (129)
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one obtains a linear dispersion equation of the form

σ(λ) = k+
(

eλ∆ − 1
)

+ k−
(

1 − e−λ∆
)

+ γλ2. (130)

Note that the various terms in this expression do reflect the mixed character
of the equation: the exponential terms are characteristic of a finite difference
equation, the last term of a partial differential equation. The linear spreading
speed v∗debunch can of course be obtained straightforwardly by determining the
minimum of the curve σ(λ)/λ. The comparison of v∗debunch with the simula-
tion data for various ∆ is shown in Fig. 32. The data clearly show that the
debunching point propagates along the bunch with the linear spreading ve-
locity, so apparently the debunching process is an example of a pulled fronts.
Pulled fronts were also found to describe certain aspects of the initial bunching
process in the original model (126) [214].

Recent experiments on this debunching instability [438,393] are consistent
with the relation between growth length λ and step spacing ∆ found by Kandel
and Weeks [215] but do not test the predictions for the front velocity directly.
More recent theoretical work [207] shows that a strain-induced step bunching
instability can be convective.

3.7 Spinodal decomposition in polymer mixtures

When a homogeneous mixture is quenched within the so-called spinodal re-
gion, the homogeneous state is unstable to composition fluctuations. The low-
est free energy state towards which the system evolves at long times is one in
which it is demixed into two homogeneous phases of different composition. On
the way towards this demixed state the system is spatially inhomogeneous on
mesoscopic scales. This spatio-temporal demixing process is called spinodal
decomposition [56,192].

At intermediate times the dynamics is normally dominated by motion of in-
terfaces between domains in which the composition is close to one of the
equilibrium compositions. The initial phase, however, depend on the system
under study. For most systems (like ordinary liquids), the fluctuations are large
enough that right after the quench these fluctuations grow out due to the in-
stability of the bulk mode. Moreover, this regime is often difficult to probe
experimentally, since it happens on too short time scales. For sufficiently long
polymers, however, the dynamics is slow enough that this regime becomes ex-
perimentally accessible [440]. Moreover, the longer the polymers the smaller
the fluctuations, so that the coarse-grained mean-field like models which have
mostly been studied in the literature become more appropriate for polymer
systems. It is also conceivable that the short-time dynamics is then sometimes

112



dominated by the propagation of composition modulation fronts into the un-
stable homogeneous state. If so, it is likely that such fronts typically start at
the walls of the sample, since a wall is normally preferentially wetted by one
of the compositions [21].

A simple model equation for spinodal decomposition is the Cahn-Hilliard equa-
tion which we already introduced in section 2.11.3. The front propagation
problem in this equation in the presence of noise was studied from the above
perspective by Liu and Goldenfeld [266] and by Ball and Essery [21] who both
found that the composition modulation fronts in this equation are pulled fronts
which lead to a incoherent pattern which continues to coarsen. 62 The simu-
lations of Fig. 15 also showed this.

Experimental evidence for the above surface-induced front-dominated spinodal
decomposition scenario in polymers was found by Jones et al. [208], but no
direct quantitative comparison was made with the predictions from the theory
of front propagation.

We finally note that the competition between bulk growth and front propa-
gation in a model with a non-conserved order parameter was also studied in
[289,409].

3.8 Dynamics of a superconducting front invading a normal state

The equilibrium and dynamical behavior or vortices in type II superconductors
is a vast and active field with many ramifications, which range from fundamen-
tal statistical physical studies to applications [50]. Even in the area of vortex
dynamics, interesting questions concerning the behavior of propagating fronts
separating domains with different vortex properties (e.g. a different density
of vortices) come up [137,285], but most of the issues that arise in this area
are different from those which are the main focus of this paper. We therefore
limit our discussion here to some interesting theoretical findings concerning
fronts propagating into an unstable state of a type I superconductor, which
also raise some new fundamental questions. Some indirect evidence for such
fronts have been found from measurement of the magneto-optical response
of thin films [169] but the time-resolution has been insufficient to study the
dynamics directly. Recent advances in magneto-optical techniques [202,437]
to visualize vortex patterns may open up the possibility to do so in the near
future.

62 The data points for the numerical front velocities obtained shown in [266] are as
usual slightly below the value v∗: As we remarked already several times, this is true
for almost all published data, and reflects the slow convergence of the speed of a
pulled front to its asymptotic value.
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It is well known [394] that in so-called type I superconductors the normal state
is linearly unstable 63 to the superconducting state when the magnetic field H
is reduced below the critical value Hc2. For fields Hc2 < H < Hc, the normal
state is linearly stable, but has a higher energy than the superconducting state;
the superconducting state can then only form through nucleation. The barrier
for this nucleation of superconducting domains vanishes as H approaches Hc2

from above. The dynamical behavior that can result if a type I superconductor
is quenched into this unstable state was studied a number of years ago by Liu,
Mondello and Goldenfeld [267] and by Frahm, Ullah and Dorsey [132,167], who
pointed out the analogy of these two regimes to the spinodal and nucleation
regimes of phase separation (see section 3.7). Moreover, they drew attention
to the fact that when the superconducting phase propagates into the normal
phase, the effective long-wavelength equations show a strong analogy with
the diffusion equations describing diffusion limited growth. As a result, one
expects these fronts to have a similar Mullins-Sekerka like long-wavelength
instability as crystal growth problems (see [73,220,226,247,251,338,353] and
section 3.17).

In time-dependent Ginzburg-Landau theory the dynamics of a superconductor
is governed by the dynamical equation for the complex superconducting wave
function ψ(r, t) [132,167,132,394]

∂ψ

∂t
= − δF

δψ∗ , (131)

where the dimensionless free energy functional F is given by

F =
∫

dr
{

−|ψ|2 + 1
2
|ψ|4 +

∣

∣

∣

[

(iκ)−1~∇−A
]

ψ
∣

∣

∣

2
+ (~∇×A)2

}

. (132)

The Ginzburg-Landau parameter κ = λ(T )/ξ(T ) in this expression is the ratio
of the penetration depth λ and the coherence length ξ; type I superconductors
are characterized by κ < 1/

√
2. Furthermore, A in (132) is the magnetic vector

potential which is related to the magnetic field B through B = ~∇×A; using
Ampère’s law and Ohm’s law, the dynamics of A is governed by

Σ ∂tA =
[

κ−1Im
(

ψ∗~∇ψ
)

− |ψ|2A
]

− ~∇× (~∇×A). (133)

Here Σ is the dimensionless conductivity [167] and the term between square
brackets in this expression is the supercurrent contribution in the Ginzburg-

63 Tinkham [394] formulates this slightly differently, but if the the problem is for-
mulated as a stability analysis, i.e., as the problem of finding the growth rate eσt

of the linear eigenmodes, one immediately sees that below Hc2 the normal state is
unstable.
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(a) (b)

Fig. 33. (a) Penetration of the propagation of a superconducting domain into a
normal domain in numerical calculations by Frahm et al. [167]. The penetration is
visualized through the strength of the magnetic field shown in greyscale, with black
corresponding to B ≈ Hc and white corresponding to B ≈ 0. The field strength
in the normal phase corresponds to a value of about 0.57 Hc which corresponds
to the nucleation regime where the normal phase is linearly stable, while κ = 0.3
and Σ = 0.1. Times are measured in units of the order parameter relaxation time
[167,267]. (b) As in (a), but now for a field H = 0.28Hc which corresponds to the
spinodal regime where the normal phase is locally unstable.

Landau formulation. The gradient term in this term describes the generation of
supercurrents in fronts or interfacial zones and near surfaces, while the second
term is the Meissner term which is responsible for flux expulsion from the
superconductor state where |ψ|2 6= 0 (note that it acts like a linear damping
term for A which drives the field to zero).

Figure 33 shows two examples of the simulations of Frahm et al. [167] of a
superconducting state propagating into the normal state of a two-dimensional
sample with the magnetic field B = ~∇×A perpendicular to the sample. Since
the magnetic field is expelled from the superconductor a good way to represent
the dynamics is by plotting the strength of the magnetic field in greyscale.
Figure 33(a) shows an example of a superconducting front penetrating the
normal state in the nucleation regime (Hc2 < H < Hc) where the normal
state is linearly stable. Due to the flux expulsion, the superconducting region
shows up as white in the figure, while the black zones illustrate the field
enhancement due to the supercurrents in the interfacial region. Note also that
the size of the protrusion increases in time, in agreement with the analogy
with diffusion-limited growth problems noted above which suggests that the
interface should be unstable on long length scales.

Figure 33(b) shows that the dynamics is very different when the front prop-
agates into a linearly unstable normal phase (the spinodal regime). In this
regime the front itself appears to become very complex, and the dynamics
is accompanied by the occurrence of phase slips in the superconductor order
parameter ψ (points in space and time where the amplitude |ψ| vanishes so
that the phase of ψ can change by a factor 2π).
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The scenario that one expects for superconductor fronts propagating into a
normal state is somewhat similar to the one discussed for the quintic CGL
equation in section 2.11.6: for fields Hc2 < H < Hc the behavior is subcritical,
and the dynamics of the fronts separating the two phases is like that of a
bistable front or a pushed front. When upon reducing the field the value Hc2

is crossed, the normal state becomes linearly unstable — this corresponds to
ε becoming positive in the quintic CGL. The linear spreading speed v∗ then
becomes nonzero, but clearly for fields just below Hc2 the dynamically relevant
fronts will remain pushed. The question then arises, however, whether upon
decreasing the field even more the fronts may become pulled for some range
of parameters, just like it happens in the quintic CGL equation. If so, this
would be of great advantage, since it might provide a handle at calculating
some of the properties of the complex patterns of Fig. 33(b) analytically, just
like the propagating Rayleigh instability of section 3.3 allows one to obtain
most essential features of the pattern analytically.

To our knowledge, the question whether the full two-dimensional complex
patterns in the spinodal regime are governed in some cases by propagating
pulled fronts has not been studied yet. Some indication that a transition to
pulled front propagation might be possible comes from the work of Di Bartolo
and Dorsey [123]. They studied the propagation of one-dimensional fronts in
the absence of the possibility of phase slip generation (as ψ was taken to be
real and equal to f below) and in the case that the external field in the normal
phase vanishes. In dimensionless units, the equations in this case reduce to

∂tf = κ−2∂2xf − a2f + f − f 3, (134)

Σ ∂ta= ∂2xa− f 2a. (135)

The authors studied the case in which the front propagates into the normal
state with f = 0 and a = a∞. Since the magnetic field H is this case is simply
related to a by H = ∂xa, and since a = 0 in the superconductor behind the
front,

∫∞
−∞H = a∞ is simply the amount of magnetic field trapped in the

front region and the field in the normal phase far ahead of the front vanishes.
Di Bartolo and Dorsey [123] found that fronts in this restricted equation are
pulled for small enough values of a∞ but pushed for larger a∞. However,
because of the possibility of the generation of phase slips was suppressed by
taking f real, it is conceivable that fronts at some point are unstable to the
splitting off of a localized normal region with some magnetic field trapped
and a faster growing growing front with a smaller amount of trapped field.
Clearly, various issues regarding these superconductor fronts still remain to
be resolved.

We finally note that apart from the practical significance of studying whether
fronts might be pulled in the two-dimensional case, this question is also rel-
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evant from the following perspective. As we will discuss in section 5, pulled
fronts are not amenable to the usual moving boundary approximation. The
full implications of this are not know, so the superconductor front problem
might be a good one to explore this issue, if they admit pulled fronts. The
only other realistic example known to me where this issue appears to have
immediate relevance for the pattern formation are the streamer discharge pat-
terns analyzed in section 3.5 (See also the remark at the end of section 3.4
on the Kuppers-Lorz instability). The recent advance in increasing the time
resolution of magneto-optic techniques [437] may open up the possibility that
these dynamical issues will become experimentally relevant in the near future.

3.9 Fronts separating laminar and turbulent regions in parallel shear flows:
Couette and Poiseuille flow

In this and the next three sections we will discuss hydrodynamic instabilities
in which both front dynamics and fluctuation effects or turbulence play an
important role.

Two of the basic textbook examples of hydrodynamic flow states are Couette
flow and Poiseuille flow. We have already encountered Couette flow in section
3.1 where we considered flow between two concentric cylinders. For that setup,
Couette flow refers to the basic laminar flow state. The many instabilities that
are found in this system are due to the interplay of the inertial effects and the
Coriolis force in a rotating system. In this section, we will be concerned with
planar Couette flow, flow between two plates sheared in opposite directions.
Experimentally, this setup is realized by moving a transparent plastic band
between two glass plates; the fluid in between is then sheared by the plastic
band [108,109,283]. In planar Couette flow of a normal Newtonian fluid, the
basic flow state for flow in the x-direction between plates separated by a
distance 2d in the y direction is simply a linear velocity profile vx = vplatesy/d;
thus the shear rate ∂vx/∂y is constant. The other classic example of a shear
flow is flow through a pipe or between plates (the planar case) driven by a
pressure gradient: Poiseuille flow. In this case, the basic velocity profile is
parabolic, so the shear rate is zero on the center line and increases linearly
towards the walls.

The control parameter for Couette flow or Poiseuille flow is the Reynolds
number Re = Ud/ν where U is a typical velocity of the flow (the velocity
at the plates in the case of Couette flow), d the half spacing of the plates or
the radius of the pipe, and ν the kinematic viscosity of the fluid. For large
enough Reynolds numbers, Couette flow and Poiseuille flow become turbulent.
However, the transition to turbulence in such systems is not a supercritical
bifurcation, in which a nontrivial mode grows gradually in amplitude beyond
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Fig. 34. Schematic illustration of the subcritical bifurcation structure of the tran-
sition to turbulence in Couette and Poiseuille flow [205]. For planar Couette flow
and pipe Poiseuille flow (left plot), the laminar base flow is linearly stable for any
finite Reynolds number, but the threshold to turbulence decreases as Re−γ with
some exponent γ as Re → ∞ [80]. Planar Poiseuille flow is linearly unstable for
Re > 5772 but the transition is subcritical and the linear instability does not play
much of a role in practice for Re of order 2000 or less, where turbulence is often
already observed in practice. Note that the drawing is schematic only: although
only a single curve is drawn in the left plot, there are important differences between
planar Couette flow and pipe Poiseuille flow.

a threshold at which the basic flow becomes unstable. Instead, the transition
is subcritical [80,190,205], as sketched in Fig. 34. This implies that over some
range of Re linearly stable laminar flow can coexist with turbulent regions 64

(very much like near a first order phase transition). An example of a turbulent
spot in a planar Couette experiment is shown in Fig. 35(a). The competition
between such turbulent and laminar regions as a function of Reynolds number
has been explored in detail only in the last decade [108,109,283].

Actually, as Fig. 34 indicates, although the subcritical behavior is common
to all three cases, there is an important conceptual difference as well: planar
Poiseuille is linearly unstable beyond Re = 5772 while planar Couette and
pipe Poiseuille flow are stable for any finite Reynolds number — the critical
amplitude in the latter cases decreases as Re−γ for Re → ∞ [80,190] and
hence we can think of this case as an instability which has been pushed to
infinity. In the latter two cases, the absence of a true instability also implies
that there can not be any pulled fronts: the fronts that separate a turbulent
region from a laminar region must always be pushed.

For the case of planar Poiseuille flow, one might wonder whether the prop-
agation of a turbulent region into the laminar flow state could correspond
to a pulled front, as the situation is somewhat similar to the one found for
the quintic complex Ginzburg-Landau equation discussed in section 2.11.6. 65

64 It is interesting to note that also in turbulent superfluid pipe flow, there are strong
experimental indications for the coexistence of turbulent and laminar domains [284].
65 In the quintic complex Ginzburg-Landau equation, expanding chaotic spots were
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(a) (b)

Fig. 35. (a) Example of a turbulent spot in planar Couette flow, taken from the
review of Manneville and Dauchot [283]. The seeding of the fluid with small Kalliro-
scope flakes makes the turbulent regions show up brightly, while laminar regions
remain dark (the flakes are lined up by the shear gradient in laminar regions). The
spreading of such turbulent spots depends on the Reynolds number of the base flow
[108,109,283]. (b) Snapshot of a turbulent spot in the simulations of Schumacher
and Eckhardt [378]. The flow is in the x-direction. On the right, a cross-section in
the direction normal to the planes is shown. See Fig. 36 for further details.

However, a priori this possibility is already unlikely for realistic Reynolds
numbers: since the generic behavior of planar Poiseuille flow is so close to
that of planar Couette and pipe Poiseuille flow, where fronts definitely have
to be pushed, we similarly expect the fronts separating turbulent and lami-
nar domains to be pushed as well. It was indeed found [116] that the linear
instability of the planar Poiseuille profile always is always convective, so that
pulled fronts could never propagate upstream. As we shall see below, however,
the simplified picture based on a straightforward linear stability analysis of
the unperturbed flow does not suffice for studying the spreading of a spot,
because a coupling with induced cross flow has to be taken into account.

The point at issue here has recently been studied numerically for a closely re-
lated situation by Schumacher and Eckhardt [378]. These authors performed
direct simulations of the Navier-Stokes equations for the case of shear flow
between planes. However, unlike in the case of plane Couette flow, for numer-
ical convenience they imposed free-slip boundary conditions on the bounding
plates and drove the bulk flow by bulk force which varies as a cosine in the y-
direction normal to the planes, and which forces the flow in opposite directions
near the two plates.

Fig. 35(b) shows a snapshot of a turbulent spot in the simulations, which
evolved from a localized perturbation of the laminar profile in the center of
the simulation cell. Note that qualitative similarity with the turbulent spots
observed experimentally: Both spots shows a number of streaks in the stream-
wise (horizontal) direction. These streaks can also be recognized in cross-

observed in numerical simulations in some parameter ranges [424]. Their behavior
is very much like what one would expect intuitively for turbulent spots. See 18.
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Fig. 36. Snapshots of the stream-wise velocity vx(z, y) as it spreads downward in
the simulations of Schumacher and Eckhardt [378] for Re=200. Dotted lines denote
contour lines for positive velocity values, solid lines the contour lines with negative
velocity values. Note that the turbulent region propagates downward with a roughly
constant speed.

sections in the y-direction perpendicular to the planes shown on the right.

The spreading of the turbulent spot in time in the “span-wise” (vertical) di-
rection in these simulations is shown in Fig. 36. It is immediately obvious that
the turbulent region spreads vertically through some kind of front structure
which advances with a rather well-defined speed. Moreover, the local turbulent
energy v2 averaged over the normal direction was found to decay exponentially
into the laminar region, very much as one would expect for a well-defined front
solution and as has been found in some incoherent regimes of the quintic CGL
equation [424]. Since Schumacher and Eckhardt found that the turbulent spot
also gives rise to an overall “span-wise” outflow Uz in the vertical direction,
they analyzed the linear spreading velocity v∗ by linearizing the flow equa-
tions about a laminar state which is the sum of the base flow and this outflow
Uz [378], using the so-called Orr-Sommerfeld equation. 66 The measured front
speeds in the numerical simulations were about a factor 10 larger than the
value of v∗ obtained this way, leaving no doubt that in the parameter regime
studied the span-wise spreading of a turbulent spot is not governed by a pulled
front: These fronts are pushed. An earlier analysis along the same lines of the
spreading of turbulent spots in plane Poiseuille flow lead to the same conclu-
sions [197].

66 The Orr-Sommerfeld equation is the linearized equation governing the stability
of nearly parallel flows. It is based on linearizing the Navier-Stokes equations in the
deviations about a base flow profile U . [135]. In the inviscid limit the equation re-
duces to the so-called Rayleigh stability equation used in some of the work discussed
in section 3.10 on the formation of Bénard-Von Karman vortices.
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We would like to stress that the above observations are just empirical: the
simulations do give strong indications that it does make sense to associate
the expansion of a turbulent spot with a rather well-defined coherent front,
but, as we already pointed out in section 2.7.3, not much is known about the
properties of such fronts. In fact, also in the quintic CGL equation, spreading
of chaotic spots was found to proceed with a more or less constant speed larger
than v∗ (see Fig. 18(a)), but to our knowledge it is a complete mystery why
and how this happens, and whether there are still common mechanisms at
play.

From this perspective, it is very intriguing that the simulations show that the
turbulence front has a spatial decay rate λ which is about twice as large 67

as λ∗: these pushed turbulent fronts apparently also fall off with an exponen-
tial decay rate larger than λ∗, just as uniformly translating pushed fronts or
coherent pattern forming fronts do!

3.10 The convective instability in the wake of bluff bodies: the Bénard-Von
Karman vortex street

Another classic hydrodynamic instability which was analyzed by some of the
founding fathers of fluid dynamics, Bénard and Von Karman, is the formation
of a “vortex street” behind a cylinder in a flow: for Reynolds numbers Re less
than about 4 the fluid flow around a cylinder is laminar. When Re increases
past this value, two symmetric eddies form behind the cylinder, but when
Re become larger than about 50, vortices are shed from the cylinder in an
asymmetric pattern. This well known instability is also of immediate techno-
logical interest, since the formation of these vortices can cause serious damage
to suspension bridges if they are in resonance with the eigenfrequencies of
the bridge. Much of the original work focused on the formation and dynam-
ics of these vortices, their spacing, etc., in other words on the well-developed
strongly nonlinear flow regime. In the last two decades, it has become clear
from experimental [286] and theoretical work [401,446], however, that the on-
set of the instability is associated with a linear instability in the wake of the
cylinder.

In 1984, Mathis, Provansal and Boher [286] studied the velocity fluctuations in
the region behind the cylinder (the “wake” of the cylinder) using laser Doppler
velocimetry. It was found that beyond a threshold which for long cylinders ap-
proaches a value Rec = 47, the root mean square velocity fluctuations grow

67 According to Fig. 8 of [378], in dimensionless units the exponential decay rate
λ ≈ 1.05 at Re=300. From the numerical values listed after Eq. (19) in this paper,
one finds λ∗ =

√

ε/D ≈ 0.55 at Re=300.
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as
√
Re−Rec. This is already a strong indication that the transition to vor-

tex formation is associated with a supercritical (“forward”) bifurcation in the
wake, and that the behavior there could be modeled by a CGL type of ampli-
tude equation.

Further evidence for this scenario came soon from an analysis of the stability
of the flow in the wake [203,300,301,302,401,446]. In this region, the flow is
nearly parallel. It varies rapidly in the y-direction normal to the cylinder and
the overall flow direction, but very slowly in the stream-wise direction itself.
If one then ignores in a first approximation the variation of the flow in the
stream-wise x-direction, 68 one can then decompose the flow perturbation in
this direction in terms of Fourier modes by writing

flow field ∼ f(y; k)eikx−iω(k)t, (136)

where the eigenfunction f(y; k) and the dispersion relation ω(k) are deter-
mined by the Orr-Sommerfeld equation. The latter is based on linearizing the
Navier-Stokes equations in vy and vx(x, y) − U(y) about a solution for the
velocity profile vx = U(z) in the wake [135]. Once ω(k) is determined from the
eigenvalue problem of the Orr-Sommerfeld equation (or the Rayleigh equation
to which it reduces in the inviscid limit), the linear spreading speed v∗ can
easily be determined numerically. An analysis along these lines shows that the
flow becomes linearly convectively unstable for value of Re around 20, and
that for Re around 40 the wake becomes linearly absolutely unstable. This
means that for Re above this value, a pulled front in the wake will propagate
upstream, towards the cylinder. The frequency of the mode at the transition
point, Reω(k∗), then gives the frequency of vortex shedding.

The above results imply the following scenario for the Bénard-Von Karman
vortex instability. At some critical Reynolds number Rec, which the experi-
ments indicates to be about 47 [286], the region behind the cylinder changes
over from convectively unstable to absolutely unstable. The saturation of the
velocity fluctuations as

√
Re−Rec indicates that one can describe the be-

havior close to threshold with a cubic CGL equation for the variation of the
unstable mode along the stream-wise x-direction. According to the linear dy-
namics of the flow equations in the wake, the instability is convective below

68 At this point, of course, there is a strong connection with the discussion of so-
called “global modes” discussed in section 6. In principle one should take the equa-
tion linearized about an overall flow pattern U(y, x) whose spatial x-dependence in
the stream-wise direction is kept. Then the linearized equation has spatially depen-
dent coefficients, so one can not do a Fourier-type analysis. Usually, a a WKB-type
analysis of the resulting global mode is done instead at this stage. In the limit where
the region of instability is large enough, the latter type of analysis reduces to the
local one used here [84]. See section 6 for further discussion of this point.
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Rec and absolute above Rec: in the latter regime a perturbation also spreads
upstream towards the cylinder. If a perturbation of the wake flow field grows
large enough that nonlinearities become important, then the perturbation de-
velops into a front. This front is pulled (as fronts which propagate into the
zero-amplitude state of the cubic CGL equation are always pulled) and hence
its velocity v∗ behaves just as discussed already above: for Re > Rec the pulled
front moves upstream towards the cylinder. In this picture, the vortices arise
as the highly nontrivial and strongly nonlinear structures behind the pulled
front! The situation is thus analogous to the one for the propagating Rayleigh
instability discussed in section 3.3, where the propagating Rayleigh front left
behind pinching droplets.

For a detailed study and discussion of this scenario of vortex shedding, we
refer to the recent work by Pier and coworkers [344,345]. We also note that the
ideas have been taken further by Leweke and Provansal and coworkers: they
show that secondary transitions in the wake of bluff bodies (like a cylinder)
in the regime 180 < Re < 350 are both qualitatively as well as quantitatively
described by a CGL equation for the behavior in the wake [5,261,262]. Some
of the incoherent behavior of the fluctuations is attributed to a Benjamin-Feir
instability [105,189] of the nonlinear mode.

3.11 Fronts and noise-sustained structures in convective systems I: the Tay-
lor-Couette system with through flow

In almost all hydrodynamic systems with advection due to an overall flow,
front propagation is an important ingredient of the dynamics. We already
encountered an example in the previous section on the Bénard-von Karman
instability in the wake of a cylinder. There are also many pattern-forming
systems in which the primary bifurcation is a Hopf-bifurcation to traveling
waves. The issue whether the instability is convective or absolute then imme-
diately arises, and if the instability is strong enough that nonlinear saturation
effects play a role — as is generally the case near a supercritical (forward)
bifurcation — fronts often play an important role in the dynamics and in the
emergence of noise-sustained structures. E.g., the so-called “blinking” travel-
ing wave state in binary mixtures can be understood quantitatively in terms of
fronts which propagate back and forth in the experimental cell [104,162], and
also incoherent pulse dynamics in traveling wave systems has been analyzed
in such terms [414]. In this and the next section, we focus on two examples
where front dynamics is intimately connected with the transition from coher-
ent to incoherent pattern dynamics. In this section we focus on an example of
flow-induced advection, and in the next section we discuss aspects of the role
of fronts in systems exhibiting a Hopf bifurcation to traveling wave states.
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(a) (b)

Fig. 37. (a) The growth of a perturbation in the convectively unstable region of the
phase diagram for Re = 6 and ε = 0.0477 (ε−εc(Re) ≈ 0.032) in the experiments by
Tsameret and Steinberg [405] on Taylor-Couette flow with though flow. The pulse
was generated by a sudden movement of the inlet boundary back and forth. Times
are measured in units of the vertical diffusion time τv (= d2/ν with ν the kinematic
viscosity of the fluid) and the distance along the axis is measured in units of the gap
spacing d. (b) The threshold to the convective instability εc(Re) as a function of
Reynolds number Re in similar experiments by Tsameret and Steinberg [405]. The
solid line marks the threshold according to a full theoretical stability calculation,
and the solid circles the threshold values determined experimentally by tracing the
evolution of a pulse generated near the inlet. The open squares are data obtained by
extrapolation from a fit to the CGL equation down from higher ε values. At small
enough values of Re, these agree to within experimental error.

We already introduced the Taylor-Couette cell in section 3.1: two concentric
cylinders whose “gap” between them is filled with a fluid. When the inner
cylinder is rotated, at some critical rotation rate Ωc a stationary Taylor vortex
pattern is formed; this pattern is periodic in the direction along the axis of the
cylinders. Babcock, Ahlers and Cannell [19,20] and Tsameret and Steinberg
[404,405] studied the behavior near threshold in the presence of a through
flow in the axial direction. 69 Such a through flow has two effects. Firstly, it
changes the onset of the instability to Taylor vortex patterns. Secondly, and
more importantly, it changes the nature of the instability, as the through flow
obviously advects perturbations away from the inlet of the flow at a finite
rate. Hence just above the instability threshold, when the growth is small,
the system is only convectively unstable. This is illustrated in the space-time
diagram of Fig. 37(a), which show the evolution of a perturbation which was
initiated near the inlet. Clearly, the initial perturbation grows out and spreads
(the pattern widens in time) while being advected away down the axis. The
fact that also the left flank of the perturbation is moving to the right — hence
is retracting — confirms that the system is convectively unstable in this case.

By studying whether the center of such a wave packet grows or decays in the

69 Similar effects will happen in a Rayleigh-Bénard cell with through flow [305], but
this system does not appear to have been studied experimentally in as much detail.
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Fig. 38. (a) Space-time plots of the patterns at Re = 3 for increasing val-
ues of ε in the experiments by Babcock et al. [19], from bottom to top
ε = 0.0347, 0.0632, 0.0822 and 0.1020. Only the first quarter of the apparatus behind
the inlet is shown. (b) A longer space-time plot in the convectively unstable regime
from the experiments of Tsameret and Steinberg [405] at ε = 0.04 and Re = 3. The
full vertical line marks the position of the front defined by the position where the
pattern amplitude reaches a fixed value.

co-moving frame, both groups have extracted the threshold εc = [Ωc(Re) −
Ωc(0)]/Ωc(0) as a function of the Reynolds number Re of the through flow.
The results from Tsameret and Steinberg [405] are reproduced in Fig. 37(b).
The experimental variation of the threshold is in excellent agreement with the
results of a direct stability analysis of the Couette flow with axial through
flow. For values of ε above the line in the diagram, the flow in an infinitely
long system is unstable to the formation of Taylor vortices.

If there were no noise in the system, one would not observe patterns in a finite
system in the convectively unstable regime just above the line in Fig. 38(b).
In practice, there is of course always some noise, and the type of patterns this
gives rise to as ε is increased above εc(Re) is illustrated in Fig. 38(a) from
Babcock et al. [19].

The lower panel corresponds to the case just above threshold (ε−εc ≈ 0.031).
In this case, incoherent Taylor vortex patterns are found a distance of order 25
down the cylinders away from the inlet — small perturbations and fluctuations
near the inlet are amplified while they are advected away, and only at this point
have they grown large enough in size that they are measurable. Behind this
region, they saturate (the plot actually shows only the first quarter of the total
cell). In this region, the combination of the fluctuations and perturbations near
the inlet and the convective effects give rise to an incoherent front-like state.
As Fig. 38(b) from the other group [405] illustrates, the effective front position
(defined by tracing the point where the pattern amplitude reaches a certain
level) is indeed slowly wandering back and forth on a longer time scale.

As we go up in Fig. 38(a), ε is increased. The pattern fills more and more
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(c)

Fig. 39. Various data from the experiments of Babcock et al. [19]. (a) (Upper left
panel) Normalized mean squared width σ2 of the peak in the frequency spectrum as
a function of ε at Re = 3 obtained from the measurement of the pattern amplitude
as a function of time at a position 100d behind the inlet (note that this is three times
further from the inlet than the region shown in Fig. 38(a)). The sharp transition at
ε = 0.065 indicates the change from the small-ε regime where the patterns are inco-
herent due to phase noise to a coherent large-ε regime where pattern are coherent.
This value is therefore associated with the transition from the convectively unstable
to the absolutely unstable regime. (b) (Lower left panel) Corresponding results for
the CGL equation (137) with three different noise levels, 10−6(×), 10−5(∆), and
10−4(O). The dashed line locates the transition εCGL

ca = 0.071 [19]. (c) Stability
diagram for axisymmetric Taylor vortex patterns. The lower line and data points
mark the line εc(Re) where the instability sets in. The upper data points locate
the transition εca from the convectively unstable regime to the absolutely unstable
regime as determined from the change-over from coherent to incoherent patterns
via measurements of the spectrum like those in (a), while the dashed line indicates
εCGL
ca . Between the lower line and the upper line, the system is convectively unsta-

ble, and noise-sustained structures like those in the one but lowest panel of Fig. 38
occur. Open symbols indicate the boundaries where noise sustained structures occur
in simulations, from top to bottom, at z = 25d, 50d, and 100d. The dotted lines
indicate estimates of these boundaries from the deterministic CGL equation (137)
with a fixed value of A(z = 0) imposed.

of the cell, and at the same time become more coherent, while the width of
the front separating the two regions decreases. Clearly, in the upper panel
for ε = 0.102 the Taylor vortex pattern fills the whole cell, and one is in the
absolutely unstable regime. The pattern selection in this regime and near the
transition was studied numerically in [68,69,272,390].

The transition from the convectively unstable to the absolutely unstable regi-
me is reflected in the coherence of the pattern. A good way to quantify this is
to measure the frequency of the pattern at a fixed position. The more coherent
the pattern, the sharper the peak associated with the pattern frequency (the
position of the peak is simply fixed by the wavelength and phase velocity of
the pattern). The upper panel of Fig. 39(a) shows the mean squared width σ2

of the measured peak.
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The experimental data on this system have been compared in detail [19,405]
with the results of numerical studies [318] and with the analytical predictions
based on the amplitude equation. Just above the threshold of supercritical
(forward) bifurcation to a finite-wavelength pattern, the pattern dynamics
can quite generally be described by an amplitude equation [105,189,193,435].
Because of the advection of the patterns by the through flow, the appropriate
amplitude equation in this case is the cubic CGL equation

τ0∂tA+ s0∂zA = ξ20(1 + ic1)∂
2
zA+ ε(1 + ic0)A− g0(1 − ic3)|A|2A, (137)

where the second term on the left hand side is the group velocity term asso-
ciated with the advection of the pattern, and where z is the fixed coordinate
frame along the axis of the cylinders. For an impression of the various types
of behavior of the incoherent structures in the CGL equation with an ad-
vection term in a finite system with noise we refer to the work by Deissler
[115,116,117,119], Deissler and Kaneko 70 [118] and Proctor et al. [358]. In
the present case, all parameters associated with the terms linear in A in this
equation were known directly from the stability analysis [318], while c3 was
determined via the standard method of calculating the nonlinear terms in an
amplitude expansion [318] (the parameter g0 only sets the amplitude scale
and hence is not of importance in comparing theory and experiment). This
therefore allowed a direct comparison between theory and experiment to be
made with only one adjustable parameter, the effect of the noise at the inlet. 71

Fig. 39(b) shows the results of simulations of Babcock et al. [19] in which only
a random noise term of strength ∆ was added to Eq. (137). As can be seen, the
behavior of the mean squared width of the spectrum of A in the simulations,
sampled at the same distance z = 100d as in the experiments, quantitatively
reproduces the experimental data of Fig. 39(a)! Moreover, it is seen that the
behavior is quite independent of the value of the noise strength ∆, so the com-
parison between theory and experiment is effectively made without adjusting
any crucial parameter!

For the CGL equation (137), the transition from the nonlinearly convectively
unstable to the nonlinearly absolutely unstable regime can easily be calculated
explicitly since the fronts are pulled. For zero group velocity, s0 = 0, the linear
spreading velocity v∗ is simply

v∗CGL = 2
ξ0
τ0

√

ε(1 + c21), (138)

70 Deissler and Kaneko [118,213] have introduced in particular the notion of velocity-
dependent Lyapunov exponent. This concept will be touched upon briefly in section
3.22.
71 Several features of the scaling behavior are actually captured by the deterministic
equation if one takes the value of A at the inlet at z = 0 fixed at a given value.
[19,405].
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compare Eq. (100) for the case ξ0 = 1, τ0 = 1. In the presence of the advection
term with s0, a pulled front connecting the A = 0 state on the left to the
saturated state on the right moves with velocity s0−v∗CGL. When this velocity
is positive, the front is convected away and the system is convectively unstable,
while when s0−v∗CGL < 0 the front moves upstream to the inlet and the system
is absolutely unstable. The transition from the convectively unstable to the
absolutely unstable regime therefore occurs when s0 − v∗CGL = 0, i.e., for

εca =
s20τ

2
0

4ξ20(1 + c21)
. (139)

For the parameters corresponding to the experiments of Figs. 39(a) this gives
the value marked with the dashed line in panel (b) — the remarkable agree-
ment confirms that the transition from coherent, virtually noiseless patterns
at larger values of ε to noise-induced fluctuating structures coincides with the
transition from the absolutely unstable to the convectively unstable regime.

Finally, Fig. 39(c) from [19] shows the full phase diagram of the present system
as a function of Re. The full symbols along the upper line mark the transi-
tion from the coherent patterns to the incoherent noisy patterns determined
experimentally from the spectrum, as in panel (a) for Re = 3, and the dashed
line marks εca according to (139). The open symbols denote the values of ε
where noise-sustained structures arise for three different downstream values
of z.

A detailed theoretical study of the Taylor-Couette system with through flow,
which goes beyond the amplitude equation, can be found in [69,349,361]. Also
the Rayleigh-Bénard system with through flow has been analyzed along similar
lines [70,210].

In conclusion, these experiments on Taylor-Couette patterns in the presence
of through flow nicely illustrate several conceptual issues: (i) the distinction
between nonlinearly absolutely unstable and convectively unstable regimes;
(ii) the change from coherent to incoherent patterns that this transition im-
plies; (iii) the fact that in realistic systems true front structures arise where
saturation behind the front is important; (iv) since fronts in the cubic Com-
plex Ginzburg-Landau equation are pulled, all essential properties can still be
calculated explicitly from the linear dispersion relation; (v) the importance of
noise sustained structures in general for convective systems.

The effect of noise on convective systems has recently been studied system-
atically for the CGL equation by Proctor et al. [358], who map out the full
phase diagram (see also [272,390]). In line with our discussion of the behavior
of fronts in the CGL equation in sections 2.11.5 and 2.11.6, the behavior as a
function of the control parameter ε depends strongly on whether or not the
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state selected by the front is unstable to the Benjamin-Feir instability.

We finally note that recently the effect of through flow on chemical reactions
has also been studied experimentally and theoretically [211,290].

3.12 Fronts and noise-sustained structures in convective systems II: coherent
and incoherent sources and the heated wire experiment

In the previous section, we discussed the relation between noise-sustained
structures in pattern forming system in which an advection of the patterns
is induced by externally imposing a flow. In pattern forming systems which
exhibit a Hopf-bifurcation to spatially and temporally periodic patterns, the
ensuing traveling wave patterns intrinsically have a nonzero group velocity,
and close to the threshold the instability to a single mode is always convec-
tive. If the transition is supercritical (forward), then close to the threshold in
the convectively unstable regime the emergence of noise-sustained patterns is
again intimately connected with the dynamics of pulled fronts.

We focus here on the discussion of defects in one-dimensional systems which
exhibit a supercritical transition to traveling-wave patterns, as these are most
intimately connected with the front propagation issue of interest in this pa-
per. One should note, however, that the motion of defects has experimentally
also been studied in great detail in binary mixtures [217,235]. The fact that
transition to traveling wave states in this system is subcritical rather than
supercritical gives rise to a number of interesting additional effects, like the
“locking” of a defect to the underlying period of the pattern [46,352]. We refer
to the papers by Kaplan and Steinberg [217] and Kolodner [235] for examples
and for an entry into the literature on these issues.

A new feature, in comparison with the discussion of the previous section,
is that if the underlying system is spatially reflection symmetric, two types
of traveling-wave states will be possible, left-moving waves and right-moving
waves. If each mode suppresses the other, the long-time dynamical state of the
system is often dominated by sources and sinks. A source is a solution which
sends out left-moving waves to the left, and right-moving waves to the right,
while a sink absorbs a right-moving wave from the left and a left-moving wave
from the right. Since sources are the active generators of the traveling waves,
their behavior is most important for the dynamics of a traveling wave pattern.
As we shall see, sources induce a sharp crossover from coherent to incoherent
dynamics, which is closely related to the one discussed in section 3.11 above.

The appropriate amplitude equations for the pattern dynamics just above
onset of a Hopf bifurcation to traveling wave patterns are [105]
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τ0(∂tAR + s0∂xAR ) = εAR + ξ20(1 + ic1)∂
2
xAR − g0(1 − ic3)|AR|2AR

−g2(1 − ic2)|AL|2AR, (140)

τ0(∂tAL − s0∂xAL ) = εAL + ξ20(1 + ic1)∂
2
xAL − g0(1 − ic3)|AL|2AL

−g2(1 − ic2)|AR|2AL. (141)

Here AR and AL are the amplitude of the right and left moving waves, and
s0 is the linear group velocity. 72 The terms on the first line of each equation
are the same for each individual mode as in the single CGL equation (137)
for the advected Taylor vortices. The last term on the second line describes
the coupling of the modes. We will be interested in the regime g2 > g0 where
one mode suppresses the other one sufficiently strongly that standing wave
patterns do not form [105,417].

To understand how the dynamical behavior or sources is intimately related
to that of fronts and to the transition from the convectively unstable to the
absolutely unstable regime, consider first the case in which there are no left-
moving patterns, AL = 0. In this case the amplitude equation (140) for AR

reduces to the single CGL equation (137) considered in the case of the advected
Taylor vortex pattern. As we already mentioned there, fronts in the cubic CGL
equation are pulled, and hence the velocity of the rightmost front in the top
panel of Fig. 40 (it is sketched with a dashed line and connects the unstable
state at x → −∞ to the saturated finite amplitude state for x → ∞) is
simply s0 − v∗CGL, where v∗CGL is the linear spreading velocity of the single
CGL equation, given in (138). Furthermore, εca given by (139) marks the
transition from the absolutely unstable regime for larger ε to convectively
unstable regime for smaller ε. Thus, for ε < εca the right front actually recedes
in the positive x-direction, for ε > εca the growth is strong enough that it
moves upstream. See the top panel of Fig. 40.

The picture of how sources are built from fronts, as it has emerged from
theoretical studies [102,417], is the following. Consider two widely separated
fronts in AL and AR, as sketched in Fig. 40(a). When ǫ > εca the two fronts
move towards each other; once they get close they form a stationary coherent
source solution which sends out waves of the same wavelength and frequency
to both sides [417]. 73 Very much like what we saw in the previous section,

72 We stress here that the term “right-moving” and “left-moving” refers to the group
velocity, in particular also in the definition of a source. In principle, it is possible
that the phase velocity of the traveling waves is opposite to the group velocity. If
this is the case, to the eye it appears that the pattern runs into the source instead
of being sent out by it. See [417] for further discussion of this.
73 We can thus think of the sources in the absolutely unstable regime ε > εca
as bound states of two pulled fronts. This is somewhat reminiscent of the pulse
solutions in the single quintic CGL equation, which can be thought of as a bound
state of two pushed front solutions [424].
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Fig. 40. Schematic illustration of how incoherent and coherent sources in traveling
wave systems are built from front solutions. In the upper panel, we start from two
isolated front solutions which are so far apart that they are non-interacting. In the
absolutely unstable regime, for ε > εca, the two fronts move together. The coherent
source solution they then form can be thought of as a bound state of the two fronts
(lower left panel). In the convectively unstable regime, ε < εca, the two fronts would
move apart in the absence of interactions and of noise. In practice, a wide incoherent
fluctuating source results. Whether the average source width is determined by the
noise or the interactions, is at present unknown. Possibly, this also depends on the
initial separation of the fronts.

sufficiently deep into the absolutely unstable regime ε > εca the coherent
sources give thus rise to coherent traveling wave patterns with only very small
fluctuations.

In the convectively unstable regime ε < εca the two fronts of Fig. 40(a) would
move infinitely far apart if there were no fluctuations and no interactions. The
discussion of the previous section would lead one to expect incoherent pattern
dynamics in this regime, which originates from the center of the convectively
unstable region between the two fronts, as indicated in Fig. 40(c). This is
indeed what is found in numerical studies [417], but the origin of the fluctua-
tions is not completely understood in this case. Clearly, if a sufficiently large
random noise is added to the coupled equations (140) and (141), one will enter
a similar incoherent fluctuation-dominated regime like the one we discussed
in section 3.11. The numerical studies give reason to believe, however, that
in the small noise limit, another intrinsic incoherent dynamical regime exists
where the fluctuations result from the interaction of the two fronts in their
tails, presumably via the generation of phase slips which give rise to intrinsi-
cally chaotic behavior which in turn is advected away towards the front-like
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Fig. 41. Results of numerical simulations of the behavior or sources in the coupled
CGL equations (140) and (141) in the absence of external noise. (a) Inverse average
source width as a function of ε for the coupled equations with s0 = 1.5, c1 = −1.7,
c2 = 0, c3 = 0.5, g2/g0 = 2, and ξ0 = τ0 = 1. Note the crossover at εsoc just above
εca = 0.14, and the fact that the width diverges inversely proportional to ε for
small ε. (b) Space-time plot of the local wavenumber of the fluctuating source for
ε = 0.11 < εca = 0.14, illustrating the fluctuations of the width and the incoherent
dynamics it entails in the traveling wave domains away from it. In the black region
the sum of the modulus of the two amplitudes have fallen below 10% of the saturated
value; the light and dark streaks correspond to hole-like wavenumbers packets sent
out by the source. From Pastur et al. [335].

regions.

One way in which the crossover between the two results shows up is in the
width of the sources, defined as the distance between the two points where
the two amplitudes reach a fixed fraction of the saturated value. In Fig. 41(a)
we show the results for the inverse of the (average) source width in numerical
simulations of Eqs. (140) and (141). When ε is decreased towards εca, the
width of the coherent source solutions increases rapidly: the width of the co-
herent source solutions appears to diverge at εca. Just before εca, however, the
width becomes so large that the fluctuation effects from the region where both
amplitudes AR and AL are small, take over. This happens at the point marked
by εsoc in Fig. 41(a). For smaller values of ε sources are incoherent and their
width scales as ε−1. Fig. 41(b) shows a space-time plot of an incoherent source
in this parameter range: the core (black region) fluctuates in time, and these
fluctuations are reflected in the grey regions where the amplitudes are close
to their saturation values. 74 As noted before, whether the incoherent source
fluctuations arise from numerical noise in the simulations or from intrinsic
dynamics in their center, is at present not completely clear. It is possible that
there is no unique answer: when we generate source solutions starting from
initial conditions with two widely separated fronts, it is conceivable that it
depends on the initial separation of these fronts, which mechanism dominates.

74 Not only is the phase of the amplitudes fluctuating in these regions, the source
also sends out coherent structures at irregular intervals. These are visible as the
light streaks, and appear to correspond to so-called homoclon solutions [416,418].
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Fig. 42. (a) Dependence of the inverse of the average width of a source on the re-
duced control parameter ε which measures the distance from the threshold at which
traveling waves appear in the heated wire experiment of Pastur et al. [335,336]. The
value of εca which was obtained independently from measurements of the group
velocity s0, the correlation length ξ0 and the time scale τ0, is indicated by an arrow.
At this point, a crossover in the inverse source width as a function of ε is observed
in the same way as in the numerical simulations, see Fig. 41(a). (b) Space-time
diagram of the local wave number of a source in the experiments for ε = 0.11, i.e.,
in the incoherent source regime. The extent of the x-axis is 42 cm, the total time is
10485 s.

Recent experiments on traveling waves near a heated wire 75 have confirmed
these theoretical predictions [335,336]. In such experiments, a wire is sus-
pended a few millimeters below the surface of a fluid, and heated with the aid
of an electrical current [136,431,432]. Above some critical heating, the tem-
perature pattern near the wire exhibits a bifurcation to waves which travel
along the wire; by detecting the deformation of the surface, they can be de-
tected with high precision. Measurements of this type not only confirm that
the bifurcation is supercritical, and hence that the above coupled CGL equa-
tions are the appropriate amplitude equations, but also yield all parameters
entering formula (139) for the crossover value [335,336]. The value obtained
from such measurements is εca = 0.14± 0.02. In agreement with the results of
the theoretical and numerical studies, a crossover in the inverse width of the
sources is found precisely at this value, see Fig. 42(a) [335,336]. Furthermore,
as Fig. 42(b) illustrates, space-time traces of the dynamics in the convectively
unstable regime below εca show that the sources are wildly fluctuating in this
regime. Very much like what was found for the width of the frequency peak in
the traveling Taylor patterns in Fig. 39(a), the peak in the spectrum rapidly
broadens as ε is reduced below εca [336].

We finally stress again that just above a supercritical transition, the situation

75 In a related experiment on hydrothermal waves in a cell heated from the side,
the transition from the convectively to absolutely unstable regime was recently also
verified quantitatively [178].
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is generally rather simple because the fronts are pulled: For this reason, the
transition from convective to absolute instability is given by the linear criterion
(the sign of s0−v∗). When a transition is subcritical (inverted), the fronts near
the transition are usually pushed (see section 2.7.5), and then the distinction
between the two regimes is determined by the velocity of the pushed front,
for which no general results are know. As an example of this, we may mention
that a secondary bifurcation observed in a cell heated from the sides is sub-
critical, and that a pushed-front mediated transition from the convectively to
absolutely unstable state was recently observed in such an experiment [179].

The discussion in this session clearly illustrates that fronts are important build-
ing blocks of the dynamics of traveling wave systems. Although this behavior
has been mapped out sufficiently well that quantitative predictions can be
made in realistic cases, on a more fundamental level many issues are poorly
understood. We already mentioned that the origin of the fluctuating sources
is not understood very well — is external noise necessary or is the determin-
istic interaction between the tails of the fronts sufficient to give the incoher-
ent behavior? Can one understand some of the behavior from studying the
(non)existence of coherent source solutions following the methods of [374]?
Do sources send out homoclon solutions [418,419]? Why do sources seem to
conform experimentally to those arising in amplitude equations, while sinks
do not?

3.13 Chemical and bacterial growth fronts

The issue of front propagation into unstable states often plays a role indi-
rectly in theoretical analysis of waves and fronts in coupled reaction-diffusion
equations — e.g., fronts are an important building block of spirals. Neverthe-
less, clean examples of single fronts in realistic experimental situations do not
appear to be abundant. In this section we will first briefly discuss few of the
results of a series of experiments designed specifically to study fronts, and then
briefly touch on the broader implications of the difference between pushed and
pulled fronts for pattern dynamics in coupled reaction-diffusion systems.

In the last decade, experimentalists have been able to develop chemical re-
actors in which the Turing instability and other chemical reaction patterns
could be probed [76,120,152,254,263,293,327]. The Turing instability is the
stationary bifurcation to periodic patterns in coupled reaction diffusion sys-
tems, which may occur when the activator (the component with autocatalytic
characteristics) has a diffusivity which is significantly smaller than that of the
inhibitor [152,311,435]. The suppression of the activator diffusion coefficient is
experimentally achieved by reversibly binding to an immobile species attached
to an aerogel; this same gel also allows the continuous feeding of the reactants
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without inducing convection.

A few years ago, Horváth, Lagzi and Tóth [201,398] and De Kepper and
coworkers [110,173] have introduced variants of such experiments that allow
them to systematically produce and study fronts and the two-dimensional pat-
terns they give rise to. The basic reaction is a chlorite oxidation of the S4O

2−
6

ion. In this reaction, the hydrogen H+ ion plays the role of the autocatalyst,
and its diffusion is suppressed in a controlled way by incorporating carboxy-
late groups which reversibly bind it in the polymer gels (even an electric field
may change the effective diffusion ratio [399]). Initially planar reaction fronts
were created by cutting the polymer gel with the reactants into two, treating
one of the parts so as to induce a reaction, and then putting the two parts
carefully back together again in a sealed cell to prevent evaporation.

The dominant reactions in this system can to a good approximation be de-
scribed by the following dimensionless coupled reaction-diffusion equations
[110,201]

∂tα=∇2α− αβ2(κ+ 7α), (142)

∂tβ = δσ−1∇2β + 6σ−1αβ2(κ + 7α), (143)

where α is the dimensionless S4O
2−
6 concentration and β the dimensionless H+

concentration, δ is the ratio of diffusion coefficients of these two components
in the absence of the binding of the H+ to the carboxyl groups, and κ is
a parameter which depends on the relative chlorite excess. The coefficient σ
accounts for the reversible binding of the hydrogen: as σ increases, both the
effective hydrogen diffusion and the effective reaction rate is suppressed.

Note that the state β = 0 (no hydrogen) in this system of equations is un-
stable: as soon as β becomes nonzero the autocatalytic reaction term in these
equations makes β increase. However, since this reaction term is quadratic in
β, to linear order in β there is no instability. Hence there is no nonzero linear
spreading speed v∗, and fronts in this equation are always of the pushed type.

Theoretical studies [200,243,244] of fronts in such coupled reaction-diffusion
models have shown that when the effective diffusion coefficient δ of the auto-
catalytic β component is sufficiently small, the fronts exhibit a long-wavelength
instability of the type found for the Kuramoto-Sivashinsky equation discussed
in section 2.11.4. In agreement with this, Tóth and Horváth [398] found that
when the hydrogen ion diffusion was sufficiently suppressed, the fronts ex-
hibited the lateral type of structures familiar from the Kuramoto-Sivashinsky
equation [243,244,277,351,381,386], in agreement with the theoretical predic-
tions. An example of some of their observations is shown in Fig. 43.

To what extent are these results of interest from a more general perspective?
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(a) (b)

Fig. 43. (a) Front images in the experiments by Tóth and Horváth [398]. The
upper image corresponds to the regime where the front is stable, while the lower
one to the regime where the effective hydrogen diffusion coefficient is so small that
the planar interface is unstable. The fronts are advancing upward. (b) Traces of
the front positions in these experiments at time intervals of 120 minutes in the
regime corresponding to the lower image of (a). The dynamics of the interfaces in
this regime is very similar to that found in the Kuramoto-Sivashinsky equation, the
generic lowest order equation just above threshold of a long-wavelength interface
instability.

The answer lies in the deep connection with the issue discussed later in section
5: because the fronts in this reaction-diffusion system are pushed, the spectrum
of the linear stability operator of a planar front is gapped, and the dynamically
important region for the stability modes is the front region itself. Because of
this, in the thin interface limit the front behavior can be described by a moving
boundary or effective interface approximation, in which the front is viewed as
a line (in two dimensions) or a sheet (in three dimensions) of vanishing width.
As we shall argue below, this immediately implies that for sufficiently small
ratio of diffusion coefficients, the reaction front exhibits a long-wavelength
instability, and this in turn means that just above the instability threshold,
the interface dynamics maps onto that of the Kuramoto-Sivashinsky equation
(96). 76

The point now is the following. As we will discuss in section 5 pulled fronts
can not simply be viewed as a moving boundary or interface in the limit when
their nonlinear transition zone is thin, because their dynamically important
region is the semi-infinite region ahead of the front. On the other hand, when
a front is pushed, the situation is very different and actually much simpler: in

76 The prefactor of the linear terms in the Kuramoto-Sivashinsky equation are fixed
by the coefficients in the dispersion relation of the weakly unstable interface mode.
The prefactor of the nonlinear term is fixed by the fact that for an isotropic system,
the projection of the velocity onto the overall propagation direction of a piece of
interface of height h whose normal makes an angle θ with the propagation direction,
is simply vplanar/ cos θ = vplanar(1 + 1

2 (∇h)2 + · · ·). For a more explicit derivation
of the Kuramoto-Sivashinsky equation and a study of the chaotic behavior in the
context of the present type of reaction-diffusion equations, see, e.g., [277].
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Fig. 44. Schematic illustration of the origin of long-wavelength lateral instabilities
of a fronts in coupled reaction diffusion equations which describe the propagation
of the domain of an “autocatalytic” substance β (e.g. bacteria in a bacterial growth
model) into a region with abundant reactant α (nutrient in the bacterial case). The
front is indicated by the solid line and is moving to the right. If it is a pushed front,
its dynamics can be mapped onto an effective interface model or moving boundary
problem for perturbations on length scales much larger than the interface width.
For long-wavelength perturbations of this effective interface or boundary (drawn
with a solid line), the supply of the reactant is enhanced at forward protrusions and
decreased for the protrusions staying behind. This effect clearly tends to enhance the
instability. On the back side, the situation is the opposite: the diffusion of β towards
the interface is reduced behind the forward protrusions, and this tends to stabilize
the interface. Which of the two effects dominates, depends the ratio of diffusion
coefficients. If the diffusion coefficient of β is sufficiently large relative to that of the
α reactant, then the stabilizing effect wins, while if the diffusion coefficient of β is
small enough, the destabilizing effect dominates and the interface is unstable. For
pulled fronts, the argument does not hold because they can not be described in an
effective interface approximation.

the limit where their width is much smaller than the typical length scale of the
pattern (e.g., the typical front radius of curvature), pushed fronts are amenable
to a moving boundary or effective interface approximation in which the front
is treated as a line or sheet of zero thickness at which the outer fields obey
certain boundary conditions. As we illustrate in Fig. 44, a propagating reaction
diffusion front which effectively leads to a replacement of one species ahead
of it by another one on the back, will generically exhibit a long-wavelength
instability of the Kuramoto-Sivashinsky type in the limit in which the diffusion
coefficient of the species behind the front (the autocatalyst in the language used
above) is much smaller than that of the one in front (the reactant). 77

77 For moving fronts, the long-wavelength instability that arises for sufficiently small
diffusion coefficients of the phase behind the front is intimately related to the
Mullins-Sekerka instability discussed in section 3.17. This may not be obvious at
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We need to stress that the above analysis does not give a prediction concern-
ing the lateral instability of fronts which are pulled. Indeed, the discharge
fronts discussed in section 3.5 are examples of pulled fronts which do exhibit a
long wavelength instability, while for the fronts in coupled chemical reaction-
diffusion equations of the form

∂tα=∇2α− καβ − αβ2, (144)

∂tβ = δ∇2β + καβ + αβ2, (145)

Horváth et al. [200] have found strong numerical indications that the fronts
were always weakly stable in the pulled regime κ > 1

2
. As soon as they were

pushed for κ < 1
2
, they were found to exhibit a long-wavelength instability, in

accord with the above arguments. From a different angle, Kessler and Levine
[228] have also found results which are consistent with our scenario: they
pointed out that if a set of continuum reaction-diffusion equations with pulled
fronts is simulated with a discrete lattice model, the resulting model does obey
a long-wavelength lateral front instability of the type discussed above if the
ratio of diffusion coefficients is sufficiently small. This is consistent with the
observation, to be discussed in section 7, that the effective cutoff provided by
the particles makes the front (weakly) pushed, and hence that it should have
a long-wavelength instability in the limits in which the diffusion coefficient of
the phase on the back is much smaller than the one in the phase ahead of the
front.

The general theme of this section is also of immediate relevance for biological
growth models. E.g., bacterial colonies can exhibit growth patterns which are
reminiscent of Diffusion Limited Aggregation clusters [292] and other growth
patterns [39,40,107,183,288]. Various reaction diffusion models have been sug-
gested to explain some of this behavior [41,107,183,298]. In particular, it has
been argued [183,231,236] that in cases in which the bacteria secrete a fluid
which acts like a lubricant for their motion, a model with a nonlinear diffusion
coefficient of the type

∂tα=∇2α− αβm, (146)

first sight, since the dispersion relation (158) is not analytic in k, while the actual
dispersion relation near threshold of the long-wavelength instability of an interface
has of course an expansion in k2. The reason for the difference is that the usual
Mullins-Sekerka dispersion relation is derived in the limit that the interface growth
velocity is small enough that the diffusion equation of the outer phase ahead of the
front can be approximated by the Laplace equation. Deep into the unstable region
of the phase diagram, the dispersion relation of bacterial growth models like the
one specified by equations (146) and (147) becomes more like the Mullins-Sekerka
form (158) — see e.g. [306].
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∂tβ = δ~∇ · (βk ~∇β) + αβm, (147)

with m = 1 would be appropriate. In this case, β is the dimensionless bacterial
density, and α plays the role of the nutrient field. As we already mentioned
above, fronts in this model are pulled in the case k = 0, m = 1, and for any
m > 1 the fronts are pushed and do have a long-wavelength lateral instability.
Likewise, with nonlinear diffusion, k > 0 but bilinear kinetics (m = 1), fronts
are pushed and have a long-wavelength lateral instability for small enough δ
[306], again in accord with our general arguments. 78 Thus, these considera-
tions are an important ingredient for chemical and biological model building:
the above reaction-diffusion model (146), (147) with m = 1, k = 0 is a bit of a
singular case, 79 as for any m > 1 or k > 0 the fronts are pushed and exhibit
a long wavelength instability for small δ.

It is important to stress that although I believe the above scenario to be
generally true on the basis of the strength of the arguments of section 5 and
those illustrated in Fig. 44, this powerful line of argument is, to my knowledge,
relatively unexplored — I have not seen it discussed explicitly in the physics or
mathematics 80 literature, and it should be considered as an interesting line of
future research to investigate or (dis)prove this argument. The considerations
are clearly an important ingredient for chemical or biological model building:

We finally note that the fronts we have discussed here connect domains where
the system itself does not have a finite-wavelength instability. Fronts which
generate a state which is unstable to a Turing or Hopf instability, or which
propagate into a state with a pattern due to this instability, are discussed in
[374].

78 Technically, the situation for the bacterial growth model (146), (147) with m = 1
is somewhat more complicated than we present it here: in the limit δ ↓ 0 the growth
fronts have all the properties of an interfacial growth model with a Mullins-Sekerka
like instability, but the moving boundary approximation is probably not rigorously
correct, as it is not quite justified on all physically relevant length scales [306].
79 Actually, to my knowledge, neither the singular behavior in the limit k ↓ 0 nor
the one in the limit m ↓ 1 has been worked out; these limits appear to be interesting
technical challenges [306].
80 Apparently, in some cases which we would refer to as an example of a coupled
reaction-diffusion problem with pulled fronts, it has been noted that standard anal-
ysis trying to prove convergence to a moving boundary description breaks down
(D. Hilhorst, private communication), but the connection with the general scenario
advanced here appears not to have been made.
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3.14 Front or interface dynamics as a test of the order of a phase transition

When the thermodynamic phase transition between two phases is of first order,
both individual phases are stable to small perturbations of the order parameter
in the neighborhood of the transition. This immediately implies that there is
then a nucleation barrier for the formation of a droplet or nucleus of one
phase in the other. Since this nucleation barrier is large near the transition
(as it proportional to a power of the ratio of the finite surface tension of the
interface between the two phases and the difference in chemical potentials,
which becomes arbitrarily small near the transition), the nucleation rate for
such droplets of the other phase is small. On the other hand, once an interface
exists, it can usually grow with a speed which is linear in the driving force,
i.e., the difference in chemical potentials or free energy ∆F . 81

v ∼ ∆F ∼ T − Tc, (148)

where Tc is the transition temperature. Here we used the fact that near first
order transition the difference in free energy is linear in the temperature dif-
ference. The fact that the nucleation rate is exponentially small near the tran-
sition, while interfaces respond linearly to the driving force, is the reason for
the ubiquity of interfacial growth phenomena in physics.

Near a second order transition, the situation is very different. For our purposes
the important point is that the response is very asymmetric. If the system is
rapidly heated up from below Tc where the system is ordered to above Tc,
the driving force for the order to disappear is finite everywhere in the bulk of
the system, so the order parameter relaxes homogeneously in the bulk of the
system — one normally will not see a propagation of domains of the disordered
phase into ordered domains: Instead, the order just dies away homogeneously.
On the other hand, when the system is quenched from above to below Tc, the
most common situation is that patches of the stable ordered phase grow out;
usually the order parameter has a different sign (say magnetization up or down
in the cases of systems with an Ising symmetry) or direction (in cases where
the order parameter is a vector) in different patches, and so the initial phase is
then followed by one where the domains coarsen in size or where defects anneal
out. However, if the fluctuations are small it may happen that the ordering
in this case occurs mostly through the growth of domains of the stable phase
into the disordered phase. The velocity of these interfaces will scale as ξ/τ

81 An exception are faceted crystals which in the absence of dislocations grow via
the nucleation of new layers on top of the existing one. This nucleation rate is again
small for small driving forces. If there are screw dislocations at the surface, these
can act as sources for step motion, and the growth rate is quadratic in the chemical
potential difference [42].
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Fig. 45. Schematic sketch of the relation between the order of a phase transition
and the behavior of the interface velocity near the critical point. The qualitative
behavior is indicated within a Landau picture, but the behavior holds more generally
for non-mean-field systems. (a) The case of a second order phase transition. The
upper part indicates the behavior of the free energy density as a function of the order
parameter below and above Tc, while the lower part illustrates that the interface
velocity is linear in the deviation of the temperature at the interface from the critical
value. (b) Similarly for the case of a second order phase transition. Note that the
steady state propagation of an interface into a domain of the ordered state is not
possible, as there is a finite driving force on the bulk order parameter to relax to
zero. On the ordered side, the front velocity depends nonlinearly on the deviation
from the critical point. In Landau theory this dependence is as v ∼

√

|Tc − T |.
where ξ is the correlation length which diverges as |T − Tc|−ν at a second
order transition, and τ is the characteristic correlation time which diverges as
|T − Tc|−νz [199]. So we generally get a power-law scaling v ∼ |T − Tc|ν(z−1).
In mean field theory, with ν = 1

2
and z = 2 for diffusive systems, this gives

v ∼ |T − Tc|1/2.

These considerations can be illustrated simply in a Landau mean field picture
for an order parameter φ described by a the dynamical equation

∂φ

∂t
= −δF

δφ
, with F =

∫

dr
[

1
2
(~∇φ)2 + F (φ)

]

. (149)

The dynamics implied by this equation is such that the free energy F is non-
increasing in time (F acts like a Lyapunov function, see footnote 58), so it
tends to drive φ to the value at which the free energy density F (φ) is minimal.

In the case of a first-order transition, the function F (φ) has the form sketched
in Fig. 45(a): there are two local minima (or three if the order parameter
is symmetric under a change of sign). At high temperatures, the one corre-
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sponding to the disordered phase (φ = 0) is the absolute minimum, but as
the temperature is lowered, the other one corresponding to the ordered phase
comes down, and at T = Tc the value of F at the two minima is the same.
Below Tc, the latter one is the absolute minimum. If one consider a planar
interface solution φ = φ(ζ) in a frame ζ = x − vt moving with velocity v in
this case, Eq. (149) reduces to

− v
∂φ

∂ζ
= −δF

δφ
, (150)

which upon multiplying with ∂ζφ gives

v =

∫∞
−∞ dζ ∂ζδF/δφ
∫∞
−∞ dζ (∂ζφ)2

=
F (φ(∞)) − F (φ(−∞))

∫∞
−∞ dζ (∂ζφ)2

. (151)

The term in the numerator is a unique number for functions F (φ) like those
sketched in Fig. 45(a). For stationary interfaces, when the minima of the free
energy in the two phases is the same, this term is related to the excess energy
associated with the presence of the interface [56,192,428]: we can then interpret
it as the surface tension. Since this term is positive, the above expression
confirms that the interface velocity is linear in the difference in the free energy
densities of the two phases it separates, and hence linear in the temperature,
as sketched in the figure and anticipated already in Eq. (148). Moreover, it
propagates in such a direction that the domain with the lowest free energy
density expands.

The function F (φ) corresponding to a second order transition is sketched in
Fig. 45(b), and the prototypical dynamical equation for this case is of course
the F-KPP equation (1) with f(u) = εu − u3 and ε ∼ T − Tc. For ε > 0,
i.e., below Tc, we have indeed the possibility of fronts propagating into the
unstable state u = 0 with speed v∗ = 2

√
ε. As was already stated above, for

ε < 0, (above Tc), any nonzero initial condition for u is driven rapidly to zero,
and hence no front propagation is possible. Thus, as illustrated in the lower
part of Fig. 45(b), near a second order transition, propagation of fronts is very
asymmetric relative to Tc, on one side fronts or interfaces are possible, but
their growth velocity is a nontrivial power law of the distance from criticality,
T − Tc, while on the other side interface motion does not occur.

Normally, one does not study the motion of an interface in order to determine
the order of a phase transition, of course. However, these considerations have
been of use in at least one case, the study of the so-called Halperin-Lubensky-
Ma [194] effect near a nematic-smectic A transition. In the nematic phase,
the orientation of the long liquid crystal molecules acquire a directional order:
on average they all point in the same direction [114]. This directional order
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Fig. 46. (a) Normalized universal scaling form for the change of entropy ∆S at the
transition (which is proportional to the latent heat) in a three series of liquid crystal
mixtures. The full line is a fit to a scaling form obtained from the Landau free energy
expression (152). The variable along the horizontal axis is a scaled composition
variable. In the absence of the cubic term proportional to b in Eq. (152), the curve
would vanish linearly at y−y∗ = 0, and would be zero to the left of it: y∗ marks the
tricritical point in the scaled parameters and in the absence of the cubic term. From
Anisimov et al. [8]. (b) The measured interface mobility v/ε plotted as a function of
the concentration in the 9CB-10CB mixtures according to the analysis by Anisimov
et al. [8]. The full line is obtained from the Landau expression obtained by fitting
the parameters to latent heat data like in (a) and to measurements of the correlation
length, apart from an overall factor that sets the scale.

is the slow mode of a nematic phase that is responsible for much of the spe-
cial behavior and applications of these materials. In the smectic phase, the
molecules also obtain a layered ordering, and the smectic A phase is the one
where the molecules point on average along the normal to these layers. In a
classical Landau theory, the nematic to smectic-A transition can be both of
first and of second order: if we think of φ in the discussion above as the smec-
tic layering order parameter, then in a Landau theory, the free energy density
F (φ) can have either of the forms sketched in Fig. 45. However, Halperin et
al. [194] showed that when the coupling to the director fluctuations is taken
into account, and when subsequently the director fluctuations are integrated
out, 82 the Landau expression acquires a cubic term |φ|3 which renders the
transition weakly first order in the regime where without this term it would
be of second order. The Halperin-Lubensky-Ma effect is thus an example of a
fluctuation-driven first order transition.

The first dynamical indications for the existence of this fluctuation effect came
from a series of experiments near the nematic to smectic-A transition of Cladis

82 The analysis of Halperin et al. [194] also applies to type I superconductors: the
couping to the gauge fluctuations can drive the normal to superconductor transition
weakly first order in some regimes.
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et al. [87]. When the temperature was changed through Tc for a series of liquid
crystals mixtures which before had been concluded to span a tricritical point
where the transition changed from first order to second order, propagating
interfaces were observed, both upon raising the temperature and upon lower-
ing the temperature through Tc. As explained above, this might be taken as
a sign that the transition was in fact always at least weakly first order for all
compositions. 83 A more careful analysis by Anisimov et al. [8] later confirmed
this and showed the consistency of these dynamical measurements with mea-
surements of the latent heat and the correlation length near the transition [7].
These authors took the Landau free energy expression

F(φ) =
∫

dr
[

1
2
ξ20(~∇φ)2 + aφ2 + b|φ|3 + cφ4 + dφ6

]

, (152)

with the cubic term motivated by the analysis of Halperin, Lubensky and Ma,
which as mentioned above always renders the transition first order. They then
fitted the parameters a and c in this expression to both the latent heat data
and the X-ray measurements of the correlation length of this series (for b = 0,
the point where c = 0 marks the tricritical point). The other parameters were
fixed once for the whole series of mixtures. The fit of the measurements of
the cross-over function for the latent heat (which is always nonzero for b 6= 0)
is shown in Fig. 46(a). Once these coefficients are determined, one can the
calculate the slope v/ε ∼ v/|T−Tc of the interface response near the transition,
apart from an overall factor that sets the scale. As Fig. 46(b) shows, the curve
obtained this way from static measurements fits the experimental data for the
interface mobility v/ε remarkably well for the 9CB-10CB mixtures. Taken as
a whole, the dynamical measurements together with the theoretical analysis
thus give quite strong evidence for the prediction by Halperin et al. [194]
that the coupling to the director fluctuations drive the nematic to smectic-A
transition weakly first order.

3.15 Switching fronts in smectic C∗ liquid crystals

In the previous section, we already encountered the smectic-A phase of a liquid
crystal. In this phase the molecules form layers. Along the layers the molecules

83 The tricky part experimentally is to rule out the possibility that there were no
temperature gradients in the experiments which induced an effective interface —
after all, if the temperature is above Tc on one side of the sample and below Tc on the
other side, one will also create an interface if the transition at constant temperature
is second order. Care was taken in the experiments [8,87] to rule out such gradients,
but the strongest evidence for the fluctuation-induced weakly first order transition
actually comes from the consistency of the dynamical measurements with the latent
heat measurements and the X-ray measurements of the correlation length [8].
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Fig. 47. (a) Sketch of a smectic-C∗ phase of a liquid crystal. In this phase the
molecules are layered, but their average orientation is tilted relative to the normal to
the planes. The local polarization Ps, which is normal to the c-director, is indicated
with arrows in this figure. From layer to layer, this angle φ makes a small rotation,
so that over a large distance the angle is wound over 2π. From Maclennan et al.
[274]. (b) Schematic illustration of the stable angle solution φ(z) of a smectic-C∗

in a strong electric field E along pointing in the positive x-direction (full line) and
in the negative x-direction (dashed line). Note that in the first case, there are wide
plateaus at 0,±2π,±4π, · · ·, while in the latter case these are at ±π,±3π, · · ·. Upon
switching the field direction, each domain wall where φ changes rapidly before the
switching splits into two fronts propagating into the two adjacent plateaus, which
have been made unstable due to the reversal of the field. From [427].

are fluid-like (no ordering), but the orientation of the molecules is aligned on
average along the normal of the layer. In a smectic-C phase, the molecules
again have a layered ordering, but on average they are tilted in each layer
with a fixed angle relative to the normal. The projection of this tilt onto the
layers forms an azimuthal angle, which is an important slow hydrodynamic
variable for the smectic-C phases. In the smectic-C∗ phase, finally, this angle
rotates over a small angle from layer to layer, so that it makes a full twist of
2π over a mesoscopic distance, the “pitch” of the liquid crystal. This situation
is sketched in Fig. 47(a). In this figure, the local polarization (which is normal
to the average orientation of the molecules) is indicated with little arrows, and
the angle this vector makes with the x-axis is denoted by φ; the z-axis is the
coordinate along the normal of planes.

What makes the smectic-C∗ phase especially interesting from our perspective is
that the angle φ can be oriented both with an electric field and with a magnetic
field. Without a field, the twist of the director is uniform, i.e. φ = 2πz/p, where
p is the pitch length, which depending on the material can range from a few
tenth of a micron to several microns. If we consider for simplicity the case that
the angle φ is uniform within each layers, then in the presence of electric and
magnetic fields perpendicular to the layers, the free energy per unit area can
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be written as [88,114,274]

F =
∫

dz





K

2

(

∂φ

∂z
− q0

)2

− PE cosφ+

(

∆εE2

8π
+

∆χH2

2

)

cos2 φ



 (153)

Here P is the ferroelectric polarization, which points normal to the direction
in which the molecules are tilted. The second term describes the the dielectric
and diamagnetic coupling: ∆ε is the dielectric anisotropy and ∆χ similarly
the diamagnetic anisotropy [114]. Note that the electric and magnetic field
enter the same way. In the theoretical analysis below, we therefore simply
put H = 0 and consider the two cases in which ∆ε is positive or negative.
Experimentally, however, the fact that there are two different contributions
to this term is important. First of all, it allows one to shift the importance
of this term relative to the polarization term. Secondly, if ∆ε and ∆χ have
opposite signs it opens up the possibility to change the sign of this term. As
we shall see below, this has important implications for the front dynamics.

Suppose we start from a case without any fields, so that the smectic is in the
uniform helical state φ = 2πz/p, and switch on the electric field to a large
positive value. Then the free energy density is lowest for φ ≈ 0,±2π,±4π,
etc. Because of the twist in the initial state, the smectic will form a series of
domains of length close to the pitch length p, separated by thin domain walls
where φ rapidly changes by 2π. This situation is sketched in Fig. 47(b) with
the full line. If the field is now rapidly reversed, E → −E, then the free energy
density is lowest in the regions where φ = ±π,±3π, etc. In the limit in which
the fields are large so that the domain walls are thin, the original walls will
then split into two fronts which propagate into the domains which have been
made high energy domains by the field reversal.

In the absence of the dielectric and diamagnetic terms the situation is very
simple: the switching of the fields makes the state in the domains unstable,
since the prefactor of the sin φ term in the free energy changes sign. Hence
in the high field limit we have a clear case of pulled front propagation into
unstable states. The general situation is more intricate as it depends on the
sign of the dielectric and diamagnetic term; let us define for H = 0

α =
∆ε|E|
4πP

(H = 0). (154)

If α is negative, then the dielectric field contribution has extrema for the same
angles where the polarization term is extremal, while when α is negative, it is
minimal for φ = ±π/2, 3π/2, etc. The full behavior of the field contributions
to the free energy density as a function of φ are sketched in Fig. 48(a) for
various values α, both for field E < 0 (upper panel) and for field E > 0 (lower
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Fig. 48. (a) Electrical free energy density (153) of the smectic-C∗ as for various
values of α. The upper panel corresponds to the case E < 0 and the lower panel
to the same field positive field strength. From Maclennan et al. [274]. (b) Front
velocities for the generalization of Eq. (155) to the case H = 0 for three values of
the field. The full curve corresponds to the case H = 0 discussed in the text. The
crossover from pulled to pushed fronts occurs at E = 1/2 in this case. Symbols
indicate the velocity obtained numerically from simulations in runs of finite length.
Note that the data points tend to lie slightly below the asymptotic velocities in the
small field range, due to the slow power law convergence to the pulled front speed
v∗. From [427].

panel). Consider first the case α < 0, and take initially E > 0. As the lower
panel shows, the state with φ = 0 then has the lowest free energy, so in the
domains we have φ ≈ 0 (modulus 2π). Now, upon switching the electric field,
the free energy becomes the one of the upper panel. As the curves indicate,
the state in the domains is then unstable for −1 < α < 0 and metastable for
α < −1. Thus, by increasing the field one can continuously go from a case of
front propagation into unstable states to a case of a front propagating into a
metastable state, in this regime.

Clearly, the regime α > 0 is different, as Fig. 48(a) illustrates. While upon
increasing the field E for negative values of α the free energy density sharpens
at minima, upon increasing the field for α > 0 the minimum initially flattens
and then turns into a local maximum. Moreover, upon switching the electric
field for α > 1 the state which was stable before switching experiences a finite
driving force to the new minimum. This implies that in this regime one will
not observe front propagation.

For smectic-C∗ liquid crystals, the moment of inertia of the molecules is nor-
mally small enough that the inertial terms can be neglected in comparison
with the viscous torque. In this regime, the dynamical equation for the angle
φ then becomes η∂tφ = −δF/δφ, where η is a twist viscosity. In appropriate
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dimensionless variables this gives for α < 0 and E > 0 [88,114,274]

∂tφ = ∂2zφ+ f(φ) with f(φ) = E sin φ−E2 sin φ cosφ, (155)

which is nothing but the prototype equation for front propagation, the F-KPP
equation (1); the only difference with the usual case is that the function f(φ)
is now a periodic function of φ, which allows for stable arrays of kinks 84 like
those sketched in Fig. 47(b).

For a full study of the dynamics exhibited by this equation upon reversal of
the field direction we refer to the work by Maclennan, Clark and Handschy
[274]; we focus our discussion here on the front dynamics which is relevant in
the parameter range where the front width is much smaller than the pitch p.

The surprising feature in this case is that the selected front velocity can be
obtained analytically both in the pulled and in the pushed regime, because it
turns out that it is possible to solve for the pushed front solutions by making
the Ansatz h = E sin(φ) in the “reduction of order method” discussed briefly
in the example at the end of section 2.7.1. Indeed, for the case H = 0 this
yields pushed solutions for E > 1/2 with velocity v† = 1 of (155), whose
analytic form is given by [88,387,427]

φ†(ξ) = 2arctan[exp(−
√

|α|ξ)]. (156)

Since v∗ = 2
√
E − E2, one indeed immediately sees that v† > v∗ for E > 1/2.

As mentioned earlier, the results for H 6= 0 can all be obtained by appropriate
transformations that translates this case back to the case H = 0 summarized
above. Nevertheless, from a practical point the possibility to play with both
E and H may be quite important, since when H 6= 0 the front solutions are
pushed both for small and for large fields E. Fig. 48(b) shows the selected
front speed as a function of E for three values of the magnetic field H .

As is well known, liquid crystals are important for displays; if one would want
to use the present switching effect in applications, the switching time is of
course an important parameter, and this is inversely proportional to the front
speed. For a discussion of the transient behavior as well as of the comparison
with experiments, we refer to the review by Maclennan et al. [274].

84 In the usual case, the equation also admits solutions which correspond to a pe-
riodic array of kinks where φ switches between the stable states of f(φ), but these
multiple kink arrays are then unstable to pairing.

148



3.16 Transient patterns in structural phase transitions in solids

One possible way in which a structural phase transition in a solid can occur
is when certain atoms or ions which have two different competing sub-lattices
available, order below some critical temperature. Often, such ordering phe-
nomena in solids are strongly coupled to strain deformations and lower the
symmetry of the crystal structure. About a decade ago, it was conjectured
that certain transient metastable tweed patterns that are sometimes found
near structural phase transitions might be due to the propagation of a pat-
tern forming front into an unstable state [373].

For the transient patterns of interest — e.g. tweed patterns associated with
vacancy ordering in YBCO superconductors or Al,Si ordering in Na feldspar
— the equilibrium ordered state is to have have a homogeneous phase in which
the ions are (partially) ordered on one of two available sub-lattices. In practice,
however, domains with alternating order are sometimes observed upon shock
heating. Salje [373] has suggested that these pattern arise from a pattern form-
ing front propagating into the structurally unstable homogeneous disordered
phase. In particular, if φ denotes the dimensionless kinetic order parameter
with φ = ±1 indicating the two possible sub-lattice ordered states, and φ = 0
the disordered state in a coarse-grained description, Salje [373,406] arrived, on
the basis of a treatment of the kinetics which approximately includes nonlocal
strain effects, at the following dynamical equation for the order parameter:

∂tφ = ∂2xφ− γ∂4xφ+ δ1(∂xφ)2 + δ2φ
2∂2xφ. (157)

Note that this equation can be viewed as an extension of the EFK equation
discussed in section 2.11.1. Like that one, the stable lowest energy states are
clearly the homogeneously ordered states φ = ±1. Moreover, since the terms
linear in φ are exactly those of the EFK equation, it follows from the results
of section 2.11.1 that indeed for γ > 1/12 a pulled front propagating into the
unstable disordered φ = 0 state will give rise to transient patterns. Simulations
in [373] also confirmed this. 85

To our knowledge, there is at present no direct evidence in support of the in-
triguing conjecture that the transient modulated order patterns are caused by
pattern forming pulled fronts — the difficulty with solid ordering phenomena
is that it is often hard to rule out other possible mechanisms.

85 Note that the term proportional to δ in (157) tends to enhance the growth rate,
and that it is quadratic in the amplitude. We therefore would expect a transition
to pushed fronts for sufficiently large δ; to our knowledge, this possibility has not
been explored, however.
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3.17 Spreading of the Mullins-Sekerka instability along a growing interface
and the origin of side-branching

When the growth of an interface is limited mainly by how fast the material
necessary for growth can be transported towards it from the phase into which
it grows, or by how fast heat produced at the interface can be transported away
through diffusion into the phase into which it grows, then a growing planar
interface of this type is unstable: A small protrusion of the interface towards
the phase into which it grows leads to an enhancement of the gradients in
front of the interface. This enhanced gradient leads to an enhancement of the
diffusion and hence to an enhanced growth: the protrusion will grow larger and
larger, and render the interface unstable. This so-called Mullins-Sekerka insta-
bility [73,220,247,308,309], which we essentially already encountered in section
3.13, underlies an enormous variety of diffusion-limited growth processes, rang-
ing from crystal growth from the melt or electric discharge patterns like the
streamers of section 3.5, to fractal growth phenomena like Diffusion Limited
Aggregation [22,292].

We focus our discussion on the Mullins-Sekerka instability of a planar crystal
interface growing into an undercooled melt. In this case, the dispersion relation
of small perturbation in the height h of the interface of the form h ∼ e−iωt+ikx

is [73,247,308]

ω = ivn|k|(1 − d0ℓDk
2). (158)

Here vn is the normal velocity of the planar interface, as sketched in Fig. 49,
d0 is the capillary length which is proportional to the surface tension of the
interface, and ℓD is the diffusion length on the liquid side of the interface.

The linear spreading velocity associated with this dispersion relation is easy
to determine; one simply finds

v∗MS =
√

3vn, (159)

with

λ∗ ≡ k∗i =
1√

6d0ℓD
, k∗r =

1√
2d0ℓD

, (160)

where, as before, k∗r = Re k∗ and k∗i = Im k∗. To our knowledge, the spread-
ing of the Mullins-Sekerka instability along the interface has not been stud-
ied directly, neither theoretically nor experimentally. 86 We therefore do not

86 The experimental difficulty is that it is very hard to prepare an unstable interface
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Fig. 49. Schematic illustration of the spreading of a localized perturbation along a
growing crystal melt interface which is unstable as a result of the Mullins-Sekerka
instability. The dashed line indicates the unperturbed planar interface, which is
growing in the vertical direction with a normal velocity vn. The dashed arrows
indicate the propagation of the perturbation along the interface. In accord with the
discussion of section 2.6, the asymptotic Mullins-Sekerka front speed is larger than
or equal to the linear spreading velocity v∗MS given in Eq. (159).

know whether the propagation of the Mullins-Sekerka along the interface cor-
responds to a pushed or pulled front, although since we know that dendritic
growth is such a strong instability without saturation, we might intuitively ex-
pect it to be pushed in the case of a flat interface illustrated in Fig. 49. Thus,
in line with the arguments of section 2.6, we simply conclude that the front
will propagate sideways with asymptotic velocity v ≥ v∗MS. Note that if the
front would happen to be pulled, the relation (160) shows that the amplitude
of the oscillations grows exponentially by a factor er

∗

over one wavelength
2π/k∗r , with

r∗ ≡ 2πk∗i
k∗r

=
2π√

3
≈ 3.62. (161)

As was also discussed in section 2.7.6, even if a front is pulled for sufficiently
localized initial conditions, it can move faster than v∗ if the initial conditions
are falling off slower than e−λ∗x in space (this case was referred to as “leading
edge dominated dynamics” in section 2.7.6 and in [144]). For pattern forming
fronts like these, it was argued in [421] that for a given spatial decay rate λ =
ki < λ∗, the wavenumber would be the one maximizing the growth rate Imω,
i.e., that kr would be determined implicitly by the condition ∂ωi(k)/∂kr=0. In
the present case this gives

k2r = k2i +
1

3d0ℓD
, (162)

in this case; if one starts with a stable interface and then tries to bring the interface
to the unstable regime, the buildup of the diffusion boundary layer usually gives rise
to long transients. Often, the instability already arises during this transient regime.

151



(a) (b)

�

r

=

2

�

k

i

=

k

r

<

3

:

6

?

v

s

b

>

v

�

M

S

?

Fig. 50. (a) Snapshot of a NH4Br dendrite in the experiments by Dougherty et al.
[133,134]. (b) Sketch of a dendrite tip identifying the various quantities discussed
in the text.

and for the velocity v of the leading edge of such profiles this gives

v≡ ωi

ki
= vn

kr
ki

2d0ℓD
r

= vn
2π

3r (1 − r2/(4π2))
(163)

>v∗MS = vn
√

3 (for r ≡ 2πki/kr < r∗ = 2π/
√

3)

Let us now explore a simple implication of this idea for dendrites. Dendrites
are the tree-like growth structures of the type sketched in Fig. 50(a) which the
Mullins-Sekerka instability gives rise to. Understanding the shape and velocity
selection of a dendritic tip was one of the outstanding problems in the field
of interfacial pattern selection in the 1980-ies. As discussed in various reviews
[39,40,73,226,251,338,353], it is now accepted by most workers that the size and
velocity of the near-parabolic tip are determined by the nonlinear eigenvalue
problem for a uniformly growing near-parabolic tip, and that although surface
tension effects are typically small, they act as a singular perturbation. The
picture that has emerged is thus that the occurrence of “sidebranches” on these
dendrite tips is not important for the dynamical mechanism that “selects” the
tip shape and velocity.

The accepted view in the field is that the sidebranches occur due to selective
amplification of noise from the tip: small perturbations and fluctuations occur
at the tip of the dendrite; these grow out, while being convected away in a
frame moving with the tip itself. These ideas have been put forward on the
basis of WKB-type analysis of the spreading, growth and advection of side-
branch “wave packets” which start near the tip [23,346,347]. Though there is
some evidence for this behavior [359], experiments on this issue have turned
out to be hard in general; moreover, it is not clear how realistic a WKB-
type calculation is for the experimentally relevant regime where tip radius
and sidebranch spacing are comparable. However, our analysis above gives
us a very simple different way to verify this picture from the data, and in
addition suggests a useful way to analyze experimental data on sidebranches.
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The discussion is a slight reformulation of [425].

The above picture that sidebranches arise from the amplification of noise near
the tip is based on the idea that the flanks of the smooth needle solution under-
lying the dendritic tip region are unstable to the Mullins-Sekerka instability,
but that the instability is convective there. Although the sidebranches do not
form a coherent front due to the fluctuations, their envelope must propagate
on average with a velocity whose projection vsb|| along the growth direction is
equal to the tip velocity vtip. For a region on the side illustrated in Fig. 50(b)
where the underlying tip profile makes an angle θ with the growth direction,
this velocity can be expressed in terms of the velocity vsb of the sidebranch
front along the interface and the normal velocity:

vtip = vsb|| = vsb sin θ + vn cos θ = vsb sin θ + vtip cos2 θ, (164)

where we used the fact that vn = vtip cos θ. Equating the two sides gives simply

vsb = vtip sin θ. (165)

This equation immediately allows us to compare measured quantities and infer
the underlying dynamics from it. Indeed, if we take the interface on the sides
as locally planar by ignoring the curvature of the underlying needle solution
in this region and assume that the average wavenumber of the incoherent
sidebranches can be associated with kr above, vsb is nothing but the velocity
given in (163). If vsb is indeed significantlybigger than v∗MS, the sidebranch
instability is indeed convective, and the selective amplification of noise scenario
is corroborated by this analysis too. Since v∗ =

√
3vn =

√
3vtip cos θ, in our

lowest order approximation we may conclude:

sidebranch instability convective

sidebranches = amplified tip noise
=⇒



























θ > 60o

r < 3.62

vsb > v∗ [vsbobeys (163)]

(166)

To illustrate this, let us apply the above line of argument to the dendrite shown
in Fig. 50(a). First of all, the angle on the flanks of the tip region where the
sidebranch amplitude is small, is bigger than 60o. Furthermore, the ampli-
tude of the sidebranch amplitude in this experiment was measured explicitly
by Dougherty, Kaplan and Gollub [133,134]. As Fig. 51 shows, this amplitude
initially does rise exponentially; the spatial exponential growth rate ki is easily
estimated to be about 1/(16µm) from these data. This is an indication that
indeed in this case, nonlinearities lead to saturation of the sidebranch insta-
bility, and hence that if there were no fluctuations, the sidebranch front would
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Fig. 51. Measured root mean square amplitude (squares) of the sidebranches of the
dendrite shown in Fig. 50(a) as a function of the distance z from the tip, in the
experiments by Dougherty, Kaplan and Gollub [133]. The crosses give a measure
of the amount of coarsening of the sidebranches; they are based on the amount of
spectral power at low frequencies [133].

correspond to a pulled front. Since the wavelength is about 13 µm in this ex-
periment, we find r ≈ 0.8 < r∗. In addition, the sidebranch velocity vsb is also
found to obey (163) to a good approximation, which indicates that the consis-
tency of this line of argument. Hence, both the angle and the spatial growth
rate confirm that the sidebranches in this experiment are consistent with the
scenario [23,346] that they emerge from the amplification and convection of
small fluctuations near the tip.

Many dendrites appear very much like the ones shown in Fig. 50(a) at first
sight. It therefore does appear that in most cases the sidebranches are con-
sistent with the above amplified tip-noise scenario. Unfortunately, the dimen-
sionless growth rate r is hardly ever mentioned in experiments, but judging
by the eye this quantity does appear to vary significantly from experiment to
experiment.

An interesting question remains whether in some cases, the sidebranch insta-
bility might become absolute, in that the projection of the linear spreading
velocity v∗MS becomes comparable to the tip velocity (such a scenario was also
envisioned in [248,287]). One would expect that tip and sidebranches then
become strongly coupled, and possibly that the tip region would show appre-
ciable oscillations. That might happen in some parameter range was already
suggested by simulations of the so-called Boundary Layer Model by Pieters
[346]. Recently, Sakaguchi and Tokunaga [372] observed such behavior in phase
field model calculations but the data were not correlated with the parameter
r introduced above. A good way to classify sidebranch regimes experimentally
and to search for this possibility is to measure the dimensionless growth factor

154



r — if this value is found to increase towards r∗ ≈ 3.6 then the possibility of
such a regime becomes more likely. Of course, for a realistic comparison with
experiments, effects of interface kinetics and crystalline anisotropy may have
to be included, but at the level of the approximations discussed here this poses
no technical problems.

The above considerations concerning the absolute or convective nature of the
sidebranch instability in my view help us understand how two competing theo-
ries might actually emerge as different limits within a more general framework.
The usual “solvability theory” which focusses on the existence of featureless
needle solutions, amounts, within a WKB approximation, to the requirement
that a smooth tip solution without sidebranch-type modes on the flanks is
stable [45]. In his “Interfacial Wave Theory”, on the other hand, Xu [444]
develops an approach in which he allows, essentially within the same WKB
approximation, a tip mode to match to divergent sidebranch modes on the
sides. 87 To my knowledge, the stability of these solutions, constructed this
way, has not been fully investigated. Based on the above analysis, I would ex-
pect such dendrite-type solutions to be actually unstable in substantial parts
of the parameter range — if so, they would presumably, in the parameter
range where this happens, give way to needle-type solutions which are convec-
tively stable in a deterministic approach. In other words, in the range where
this happens the usual solvability scenario would hold, both for the selection
mechanism and for the amplification of noise. In other parts of parameter
space (roughly identified by generalizations of the ideas presented in this sec-
tion), needle solutions would be absolutely unstable to sidebranch modes. I
would expect Xu’s picture to emerge naturally in this regime.

Unfortunately, the dendrite problem is a hard one, and at present we have to
consider the above scenario as speculative. In addition, the reader should keep
in mind that the above view on the dendrite problem is a minority viewpoint
— most workers consider the various theories as mutually exclusive, rather
than as two extreme limits of a more general framework.

3.18 Combustion fronts and fronts in periodic or turbulent media

The classic work of Landau [245], who analyzed the stability of flame fronts
in terms of a flame sheet of infinitesimal thickness, separating unburned and

87 The turning point in Xu’s WKB analysis becomes, in some limit, the linear spread-
ing point of our analysis, and in principle the “interfacial wave theory” predicts the
value of the parameter r introduced above. Also note that the differences and sim-
ilarities between Xu’s approach and the usual solvability theory are brought out
most clearly if one thinks of solvability theory in the spirit of the formulation of
[45].
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burned gases, provides a very early example of the clever use of a moving
boundary approximation for a problem which more fundamentally is formu-
lated in terms of continuity equations for the temperature and composition
of a combustible mixture. The justification for this approximation was later
shown to be that the activation energy of the relevant reactions is normally
very high, so that the reaction rate is a very steep function of the temperature
[67,90,209,439,449]. Inherently, realistic flame fronts are therefore in practice
almost always examples of pushed fronts: the reaction rate is very strongly (es-
sentially exponentially) suppressed ahead of the flame sheet. In other words,
the linear spreading speed is essentially zero.

Although the minimal model for flames amounts to two coupled partial differ-
ential equations for the temperature and composition, simple model equations
have always played an important role in combustion too. We mention two in-
teresting examples coming from the combustion literature. In fact, an early
examples of the F-KPP equation (1) with a nonlinearity f(u) which vanishes
identically in a finite interval (e.g. f(u) = 0 for u < uc, f(u) = (u−uc)(1−u)
for u ≥ uc is due to Gel’fand [180]. This form was motivated by the above
observation that the reaction rate drops so fast with decreasing temperature
that it is virtually zero below some critical value.

Two other interesting classes of problems have also emerged from combustion
theory: propagation of fronts in periodic media or turbulent media. We first
discuss the case of fronts in periodic media. The simple model problem which
has often been studied in this context is the following extension of the F-KPP
equation [47,48]

∂tu = ∂2xu+ q(x)∂xu+ f(u, x), (167)

and generalization to higher dimensions. In this equation, the advection rate
q(x) and nonlinear growth rate f are periodic functions of x with period L:
q(x+ L) = q(x), f(u, x+ L) = f(u, x).

Two classes of growth functions f have been studied, those analogous to the
one by Gel’fand mentioned above, and those which give rise to pulled fronts in
the F-KPP equation [e.g. f(u) = a(x)u(1−u)]. The latter type of problem of a
pulled front in a periodic medium is especially interesting from our perspective:
It should be possible to obtain the asymptotic propagation speed v∗ of such
pulled fronts by extending our general approach using Floquet-Bloch theory
for the linearized equation. To be specific, consider the linearized version of
(167) with f(u, x) given as above,

∂tu = ∂2xu+ q(x)∂xu+ a(x)u, (168)
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where q(x) and a(x) are L-periodic,

q(x+ L) = q(x), a(x + L) = a(x). (169)

According to Bloch’s theorem in the language of a physicist or Floquet theory
in the more general setting, the generalization of the Fourier transform become
the “Bloch waves”

ũ(k, t) = e−iω(k)t+ikxU(x), (170)

where U(x) is a periodic function of x, U(x + L) = U(x). Just as we did
in section 2.1 for the Fourier transform, once the dispersion relation ω(k)
is obtained, one can analytically continue k into the complex plane. This
immediately leads to the conclusion that the linear spreading velocity v∗ is
again given by the same saddle-point equations (12) — the periodicity of the
medium is simply encoded in the dispersion equation ω(k). For solid state
physicists this is no surprise: ω(k) is the analog of the band energy ε(k) of
Bloch electrons, and as they know, the behavior of free electrons in a solid is
completely determined by the band structure.

To the best of my knowledge, the above line of analysis has unfortunately not
been tried yet; we do hope such an approach will be explored in the near future,
as it would probably be the most direct route to obtaining the asymptotic
speed of pulled fronts and as interesting new phenomena might arise from the
band structure. In particular, for the simple case a(x) = 1 + a0 cos(2πx/L)
the linear equation reduces to the Mathieu equation, for which it should be
possible to obtain a number of (semi-)analytic results.

Another class of front problems which has emerged from combustion the-
ory is the propagation of a front in a spatially and/or temporally random
medium as a model for turbulent combustion [225,241,341,443]. From an ap-
plied point of view, an important question is to understand the enhancement
of the combustion rate due to turbulent advection. One way in which this
issue has been approached recently within the context of model problems is
to to take the function f in Eq. (167) x-independent but the advection field
q in this equation a space- and time-dependent random variable. This makes
the field u into a stochastic variable as well, and recently several workers
[1,2,153,171,172,225,400] have derived results for various probability distribu-
tions of the advected u variable. One reason that progress can be made on this
complicated problem is that for a pulled front, the linear u-equation captures
the essential elements of front propagation (more mathematically: bounds can
be derived for the nonlinear equation, using the linearized advected dynamics).
It was recently also found that if the q-variable is a stochastic Levy process,
the front propagation can change drastically[281] — even an exponentially
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increasing speed is possible. 88

There is one important issue concerning fronts in turbulent or random media
that to our knowledge has not been discussed explicitly in the literature. Real
combustion fronts are pushed fronts, because the combustion rate decreases
very rapidly with decreasing temperature. In the limit of large activation en-
ergies, flame fronts are very thin and they can be analyzed with a moving
boundary approximation [341,439] — this amounts to the approximation in
which the flame sheet is treated as an interface of zero thickness. As we discuss
in section 5, for pushed fronts this approximation is indeed justified, but for
a pulled fronts it is not: For these, the dynamically important region is the
semi-infinite domain ahead of the nonlinear front region. It is therefore con-
ceivable that simple models like (167), whose dynamically important fronts
are pulled, are not necessarily good models for turbulent combustion. Proba-
bility distribution functions in simple combustion models might well be very
different depending on whether fronts are pushed or pulled.

3.19 Biological invasion problems and time delay equations

As mentioned in the introduction, the first studies of front propagation into an
unstable state were done in the context of population dynamics and biological
invasion problems [163,234]. Not surprisingly, this has therefore remained an
active field of research within mathematical biology. The main focus of a large
fraction of the literature is still on proving existence, stability and uniqueness
of traveling wave solutions in population dynamics models which can be con-
sidered as extensions of the F-KPP equation. We refer to chapter 14 of the
books by Britton [63] and Murray [311] or to the recent review of Metz et al.
[296] for an introduction and overview of this subfield. The book by Shigesada
and Kawasaki [385] not only gives a good review of the theory, but also dis-
cusses in detail a number of applications of the theory to practical invasion
problems. Pulled front propagation into unstable states plays a dominant role
in a recent model of infection in the Hantavirus epidemics [3].

Also in the bio-mathematical literature the slow power law convergence of
pulled fronts to their asymptotic speed has been discussed [296], but I am not
aware of examples in that field where this phenomenon has played a significant
role. In real life, the fact that the entities in invasion problems are normally
discrete may play a more important role — as we shall discuss in section 7.1,
the cutoff in the growth function that the discrete nature of the spreading

88 We speculate that this may be related to the fact that an F-KPP equation with
power law initial conditions can give rise to an infinite speed [256], and that the
probability distribution function of a Levy process has power law tails.
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population gives rise to, alters a pulled front in a continuum equation to a
(weakly) pushed front in a model for discrete variables.

A recent development in this field, reviewed recently by Fort and Mendéz
[165] has been to consider the effects of time-delay on a front[157,166,174,175].
The motivation for such terms in the case of the spreading of viruses into an
uninfected population is that the time which elapses between the moment a
cell gets infected and the moment a cell dies and the virus begins to spread
is an inherent part of the dynamics which can not be neglected. Within the
context of an F-KPP type equation, these effects would seem to lead naturally
to equations with a memory kernel, like 89

∂tu = ∂2xu+

t
∫

dt′K(t− t′) u(t′) − un (171)

or equations with a finite delay time τ which are obtained when K(t − t′) =
δ(t− t′−τ). However, in practice most work has concentrated on second order
equations of the type [165,174,175]

τ∂2t u+ ∂tu = ∂2xu+ u− un (172)

which after appropriate rescalings are obtained by assuming that the time
delay is sufficiently short that the memory kernel K can be expanded for
short times as

t
∫

dt′K(t− t′) u(t′) = τ0u(t) + τ1∂tu(t) + τ2∂
2
t u(t) · · · , (173)

τm =
1

m!

∞
∫

0

dτ τmK(τ). (174)

Of course, the transition from a parabolic (first order in time) partial differ-
ential equation to a hyperbolic partial differential equation like (172) poses
new mathematical challenges concerning existence, uniqueness and conver-
gence [165,174,175]. However, from our pragmatic more “applied” point of
view, we want to stress the following. In practice most of the cases that are
considered in the literature on delay effects on front propagation into an un-
stable state, are pulled. Furthermore, the front velocity is the most important
property one needs to know in practice. In view of this, it is important to

89 In cases in which the growth term is most naturally modeled by delay kernel,
it would of course make more sense to also take a delay-type term for the nonlin-
ear term describing saturation [295,296]. Of course, as long as the fronts remained
pulled, this does not affect our conclusions.
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Fig. 52. Photograph of a typical human cell front 10 hours after wounding. The
cells are mesothelial cells from the peritoneum, the cells that form the superficial
layer of the membrane that covers the abdominal cavity and its organs. From Maini
et al. [275,276], courtesy of S. McElwain and B. MacGillavray.

realize there is absolutely no reason to approximate a true time delay equa-
tion like (172) by a hyperbolic equation by expanding the delay kernel as in
(173). After all, as explained in sections 2.4, the spreading velocity v∗ and the
associated parameters λ∗ and D which govern the shape and convergence of a
pulled front, can straightforwardly be determined from the more general class
of models as well. An example was given at the end of section 2.4.

3.20 Wound healing as a front propagation problem

In the previous sections we already mentioned that front propagation into
an unstable state features in various models that have been studied in the
context of biological growth and invasion problems, as well as in the context
of pulse propagation in nerves. Since there have, to our knowledge, been few
experiments in the life sciences which are directly aimed at testing some of the
specific front propagation predictions, we want to draw attention to a very
nice recent experiment [275] on the healing of epidermal wounds, i.e., wounds
on the outer layer of the skin. In the experiments, a 4mm scrape wound was
made; after removal of the displaced cells, the remaining cells were bathed
in a fresh culture medium and the position of the invading healing front was
measured. Fig. 52 shows a photograph of the wound while it is healing: clearly
a rather well-defined front is seen to propagate into the right into the space
made by the scrape. The data for the position of the cell front as a function
of time, extracted from such visual observations, are shown in in Fig. 53 with
large solid circles. As one can see from these data, the cell front initially moves
ahead fast, and then slows down (around a time of order 40-60 hours), before
it finally settles to a more or less constant speed.

As discussed in [275] several mechanisms of wound healing have been discussed
in the literature. Mathematically, most approaches are formulated as a system
of nonlinear partial differential equations for cells, whose dynamics is usually
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Fig. 53. (a) Crosses: typical plots from experimental data for the position of the
invading cell front over different substrates. The distance units are 0.25 mm; the
origin is taken as the position at 9.5 hours and time is measured from that moment
on. The other symbols denote results from simulations of the F-KPP equation with
a quadratic nonlinearity, in which the front position is tracked at 1% (triangles),
10% (squares), and 50% (diamonds) of the asymptotic value. (b) Crosses: velocity
extracted from the front position data of figure (a). From Maini et al. [275,276],
courtesy of S. McElwain and B. MacGillavray.

taken diffusive, and whose growth responds to various chemical signals via
chemokinesis and chemotaxis, or to mechanical signals. In the most simple-
minded approach, one then arrives again at a F-KPP type equation, which
then incorporates the diffusion, but lumps all the coupling to chemical and
mechanical signals into a simple growth term. For this reason, the results of
the experiment on the healing of wounds were compared with numerical re-
sults for the front dynamics in the F-KPP equation, obtained by tracking the
front position at various levels of the dynamical variable u in Eq. (1) (symbols
in Fig. 53); indeed, as the figure illustrates, the velocity data for fronts in the
F-KPP equation have some similarities with those found experimentally: ini-
tially the velocity is relatively high, then there is a transient regime where it
is relatively low, and then it gradually approaches the asymptotic speed from
below (more detailed examples of such transient behavior and of the depen-
dence on the level curve which is tracked, can be found in [144]). However, the
behavior in the simulations appears to be more gradual then the rather sharp
crossover seen experimentally after 40-50 hours.

It is important to keep in mind that the time-dependent velocity of pulled
fronts behaves this way quite generally – in fact, we already encountered the
same behavior in the discussion of fronts in the Taylor-Couette and Rayleigh-
Bénard systems, see Fig. 22(a) of section 3.1. As we mentioned already there,
and as will be discussed in more detail again in section 4, for any pulled front
emerging from sufficiently localized initial conditions, the asymptotic speed
is approached from below. The precise behavior at small and intermediate
times does not only depend on the model, but also on the initial conditions.
In particular, when the initial conditions have large gradients (e.g., when they
show step-function like behavior), the initial front speed at almost all levels
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of u is initially large, and then undershoots v∗ — see Fig. 6 of [144].

If the sharp dip in the velocity of the wound healing is a reproducible effect,
then my own guess is that this is a sign of the importance of other effects
not included in the model, rather than a transient behavior of an F-KPP-type
model with which the data have been compared so far.

3.21 Fronts in mean field approximations of growth models

In the last two decades it has become clear that many stochastic interfacial
growth processes exhibit scale invariant behavior on long time and length
scales: many growth processes are characterized by nontrivial dynamical crit-
ical exponents for the growth of the the interface roughness (the root mean
square interface fluctuations) with time and system size. There are various
types of approaches that have been used to uncover the various universality
classes that govern the long-wavelength long-time scaling, ranging from analyt-
ical mappings and solution of lattice models, to field-theoretic renormalization
group calculations and extensive numerical simulations. The common denom-
inator of almost all of these approaches is that one starts from an appropriate
coarse-grained interfacial model. Provided such an interfacial description is
appropriate, the topics that concern us in this paper are not directly relevant
for this issue, for a discussion of which we therefore refer to the reader to the
various reviews of this field [22,195,239,292]. However, if the universal scaling
properties are not the main focus for a given growth problem, but if instead
one wants to analyze the overall growth shape or a growth pattern or the
possibility of a morphological transition, then a mean-field approximation is
often an indispensable tool. In this approximation, the analysis of fronts often
does play an important role. We illustrate this general observation with an
old example of a deposition model which at the same time is a nice example
of a pulled front in a very nontrivial difference equation [238]. The discussion
will also prepare us for an issue to which we will return later and which is at
present not completely resolved: quite often, in a mean-field description one
arises at pulled fronts. As we shall discuss in more detail in sections 5 and 7,
deterministic pulled fronts do not converge to the standard type of interfacial
description and as a result a standard type mean-field analysis may miss some
of the essential ingredients of the underlying stochastic model, or even exhibit
pathological behavior that the underlying model does not have.

In ballistic deposition, particles rain down ballistically but at random positions
onto a cluster and stick to it with a given probability as soon as they come to
a site neighboring the cluster. Consider the special case of a two-dimensional
square lattice with the depositing particles coming straight from above at
discrete times (for simplicity we summarize a special case of the analysis of
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Krug and Meakin [238], who consider more general dimensions and deposition
under and angle). Then a particle coming down in the ith column can stick
with probability p at a the first site in that column which is a nearest neighbor
of the highest occupied site in that column or in the two neighboring columns.
In a mean-field approximation, one ignores all correlations and formulates this
growth process in terms of the probability ρt(x, z) that a site at x, z is part of
the deposit at time t. In this approximation and for one-dimensional profiles,
the appropriate dynamical equation is [238]

ρt+1(z) − ρt(z) = p[1 − ρt(z)]
{

1 − [1 − ρt(z − 1)][1 − ρt(z)]
2
}

×
∞
∏

z′=z+1

[1 − ρ(z′)]3. (175)

The term on the left describes the change in the probability at a site at height
z that is part of the cluster; it changes when a particle is deposited at that
site, and the terms on the right hand side model this effect in a mean field
approximation. The first term on the right hand side is the probability that
that site at height z is empty, the terms between parentheses is the probability
that at least one of the neighboring sites (at height z − 1 in that column or
at height z in the neighboring columns) is occupied, and the product term on
the second line is the probability that none of the sites in the column or its
two neighbors is occupied.

Eq. (175) is a difference equation in both the discrete space and time vari-
ables; its form is unusual, in that the change at height z depends on all the
probabilities at higher sites. 90 A rather complete study of the general form of
this equation was given by Krug and Meakin [238]; their numerical solutions
showed that at long times, the dynamics leads to front type solutions. More-
over the asymptotic velocity of these fronts turned out to be v∗: empirically,
the fronts are found to be pulled. 91 Indeed, although as we discussed in sec-
tion 2.4 it is now clear that the linear spreading velocity v∗ is given by the
same equations for any equation which upon Fourier-Laplace transform leads
to a linear equation of the form (41), this appears to be one of the earliest
examples where the pulled velocity was calculated for a nontrivial difference
equation, and where the power law convergence to v∗ was also tested. Indeed,
by linearizing the equation in ρ and substituting ρ ∼ eσt−λz , one finds the
dispersion relation [238]

σ(λ) = ln
{

1 + p
[

eλ + 2
]}

. (176)

90 A continuum version appropriate in the limit p→ 0 can be found in [43].
91 Intuitively, this can be understood from the observation that the nonlinearities
in the dynamical equation express the suppression of the growth due to screening.
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from which λ∗ and v∗ can easily be obtained by calculating the minimum
of σ(λ)/λ. As mentioned above, Krug and Meakin also verified that the front
velocity converged to v∗ as 1/t, with a prefactor which was consistent with (78)
to within 15% (presumably, this small discrepancy is due to the higher order
1/t3/2 correction, which was not known at the time). This slow convergence
in time in this case actually entails a very slow 1/z correction of the frozen-in
density profile!

A common feature of mean field approximations of growth models that (175)
also exhibits is that the growth is nonzero for arbitrarily small particle density
ρ. This makes the state ρ = 0 really a linearly unstable state and gives rise
to the existence of a finite linear spreading speed. In reality however, lattice
models have an intrinsic cutoff for growth: there has to be at least one particle
for a cluster to be able to grow. As we shall see in section 7, the fact that the
particle occupation number is “quantized” has important consequences for
growth fronts: they are effectively always pushed rather than pulled.

3.22 Error propagation in extended chaotic systems

In almost all examples we have considered so far, the unstable state into
which a a front propagates is a well-defined state which is homogeneous in the
appropriate variables. 92 An exception to this which deserves to be mentioned
is the work by Kaneko [213] and Torcini, Grassberger and Politi [396] on fronts
propagating into extended chaotic systems. The unstable state in this chase is
itself a chaotic state which is characterized by positive Lyapunov exponents.
Specifically, the authors consider the Coupled Map Lattice

xn+1
i = f

(

[1 − ε]xni + 1
2
ε[xni−1 + xni+1]

)

, (177)

where i and n are the discrete space and time variables. Note that the terms
in the argument of f proportional to ε have the form of a discretized version
of the diffusion term. The function f maps the interval onto itself, as is usual
in studies of maps.

In general, a Lyapunov exponent of a chaotic system measures how two in-
finitesimally close initial states grow apart. In this sense a chaotic state is an
unstable state, since any small perturbation away from it grows out in time.
The notion of a front introduced for such a system is illustrated in Fig. 54
from [396]. One considers two realizations of extended chaotic states x0i and
y0i which differ on one side of the system (say i ≤ 0) but not on the other. The

92 The unstable phase-winding state into which the fronts discussed in section 2.11.5
propagate are homogeneous in the amplitude a and wavenumber k.
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Fig. 54. Two initial realizations x and y of states of the coupled map lattice con-
sidered by Torcini et al. [396], together with the difference x − y. Note that while
each state is chaotic, the difference variable vanished on the right. The propagation
of the “error” x − y into this state is then an example of a front propagating into
an unstable chaotic state. Both pulled and pushed fronts can occur, depending on
the form of the function f .

front in this case is thus an “error propagation front” in the difference vari-
able xni − yni — while each individual state is chaotic everywhere, the “error”
between them spreads more and more to the right.

In the early work of Kaneko [213], the Lyapunov exponent was studied in
a frame moving with fixed speed. The natural speed of the front was then
found to be the speed at which this velocity-dependent Lyapunov exponent
was equal to zero. In our words, this means that for the nonlinearities studied
by Kaneko, the “error fronts” were pulled and that the speed v∗ was given in
terms of the Lyapunov exponent. Here we follow the formulation of Torcini
et al. [396], who also studied the transition from pulled to pushed incoherent
error fronts (see also [182]). One can indeed extend the notion of a pulled
front to this case by analyzing the Lyapunov exponents Λ(λ) for infinitesimal
perturbations uni of xni of the form

uni ∼ eΛn−λi, (178)

where the evolution of the uni is governed by the linearized tangent map

un+1
i = f ′

(

[1 − ε]xni + 1
2
ε[xni−1 + xni+1]

) (

[1 − ε]uni + 1
2
ε[uni−1 + uni+1]

)

(179)

Clearly, Λ(λ) is the analogue for an extended chaotic system of the disper-
sion relation −iω(k), and the analogue of the expression (12) for the linear
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spreading speed v∗ is

v∗CML =
Λ(λ∗)

λ∗
=
dΛ(λ)

dλ

∣

∣

∣

∣

∣

λ∗

. (180)

Although the precise justification of this expression has not been studied, it is
intuitively clear that the basis it is that the Lyapunov exponent defines a finite
time scale Λ−1(λ∗). Thus, after averaging over times sufficiently longer than
Λ−1(λ∗), one obtains a linear problem characterized by an effective dispersion
relation Λ(λ), in terms of which the asymptotic (t → ∞) spreading problem
is well-defined.

In the numerical studies, it was found that for various functions f (correspond-
ing to the logistic map, the cubic map and the tent map), the error propagation
fronts were pulled (in the average sense) while in other cases (e.g., f(x) = rx
mod 1 with r > 1), the fronts were pushed in that their average asymptotic
speed was larger than v∗. Clearly, these error propagation fronts are examples
of incoherent fronts, and as we noted in section 2.7.3 we have at present no
sharp mathematical characterization of a pushed incoherent front solution —
intuitively we expect that enhancement of the growth by the nonlinearities
will tend to give rise to a pushed front and that, like a coherent pushed front
solution, it falls off spatially faster than the pulled front. But how to identify
a pushed front other than by the empirical observation that it moves faster
than v∗ I do not know. Indeed, Torcini and co-workers [396,77] have been
able to provide a reasonable guidance into what type of maps give pushed
error fronts, building on the insight from the nonlinear diffusion equation that
pushed fronts are generally associated with growth functions f which increase
faster than linear for increasing u. Possibly, further study of the pushed to
pulled transition in these fronts might help to develop a sharp definition of
pushed incoherent fronts. For recent extensions of such chaotic front studies,
including the effective diffusion of such fronts, the reader is referred to [397].

We note in passing that Politi and coworkers [181,348] have argued that upon
coarse-graining the effective equation for the dynamics of the difference vari-
able di = xi−yi of the lower graph of Fig. 54 becomes a diffusion-type equation
with multiplicative noise, ∂td = ∇2d+ ηd where η is a stochastic noise term.
With the Cole-Hopf transformation d = eh this equation is equivalent to the
KPZ equation [22,195,218,239]. It is amusing to realize that the arguments of
section 7.3 indicate that therefore the scaling properties of such fluctuating
error-propagation fronts are equivalent to those of the KPZ equation, but in
one dimension higher than one would naively expect: As explained in that sec-
tion, for pulled fronts the fluctuations in the direction of propagation continue
to contribute to the scaling behavior, instead of being integrated out.
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3.23 A clock model for the largest Lyapunov exponent of the particle trajec-
tories in a dilute gas

One present line of research in kinetic theory touching on the foundations of
statistical physics is the study of the Lyapunov exponents of the trajectories
of the constituent particles or atoms in a dilute gas (the largest Lyapunov
exponent gives the rate with which two nearby initial conditions grow apart
under the dynamics, see section 3.22 above). A few years ago van Zon, van
Beijeren and Dellago [430] were able to calculate the largest Lyapunov ex-
ponent exactly in a low density hard sphere gas by expressing it in terms of
the speed of a pulled front in a differential-difference equation. The model is
actually very closely related to a computationally very efficient lattice model
introduced by Brunet and Derrida [64,66] in the context of the connection
with phase transitions in disorder models discussed in section 3.25.

For calculating the Lyapunov exponents, one has to analyze how the original
trajectories of a typical hard sphere grow apart from a shadow one obtained
from an infinitesimally different initial condition. For the largest Lyapunov
exponent, the following picture becomes appropriate in the dilute gas limit.
When a sphere collides with another one, the difference after the collision
between the original trajectory of each sphere and its shadowing trajectory is,
on average, equal to the largest of the two before the collision, multiplied by
a constant factor that accounts for the enlargement due to the collision. This
implies that the largest Lyapunov exponent is, in appropriate units, given by
the front speed of a “clock model”, in which every particle carries a clock
with a discrete time k which is advanced at every collision [430]. This happens
according to the following rule: when two particles collide, they both reset their
respective clock values, say k and ℓ, to either k + 1 or ℓ+ 1, whichever is the
largest. Thus, if we denote the number of particles with clock value k by Nk,
we obtain the following dynamical equation:

dNk

dt
= −

∞
∑

ℓ=−∞; ℓ 6=k

Rk,ℓ − 2Rk,k + 2
k−1
∑

ℓ=−∞
Rk−1,ℓ , (181)

where Rk,ℓ denotes the rate by which collisions occur between particles with
clock values k and ℓ. In the dilute gas limit correlation effects become neg-
ligible; then Rk,ℓ is simply proportional to NkNℓ/N

2 when k 6= ℓ and to
N2

k/(2N
2) when two particles with equal clock value k collide. Then, upon

writing fk = Nk/N and scaling the time appropriately, we obtain

dfk
dt

=−fk + f 2
k−1 + 2fk−1Ck−2 ,

=−fk + C2
k−1 − C2

k−2 , (182)
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where we have set

Ck =
k
∑

ℓ=−∞
fℓ. (183)

Adding the equations for fℓ for all values of ℓ ≤ k then yields

dCj(t)/dt = −Cj(t) + C2
j−1(t). (184)

Equation (184) has two spatially and temporally constant solutions: Cj = 0
and Cj = 1. The first one is stable and describes the state where all clocks
are set to a value larger than j; the second one is unstable and corresponds
to the case where all clocks are set to values less than j. As time proceeds,
all clock values are continuously increased, and hence in the context of this
model it is natural to consider the invasion of the unstable state Cj = 1 by
the state Cj = 0 — as indicated above, the front speed then determines the
largest Lyapunov exponent of the dilute hard sphere gas.

Numerical solutions have shown that the fronts propagating into the unstable
state Cj = 1 are pulled fronts [430]. This in itself is maybe not so much of a
surprise, as it is easy to convince oneself that the nonlinearity on the right hand
side tends to reduce the growth relative to that of the terms linearized about
the unstable state (very much like in the F-KPP equation with a nonlinearity
of the form f(u) = u − u2). However, the equation does illustrate nicely a
number of general points concerning pulled fronts:

(i) The dynamical equation (184) is a difference-differential equation. Nev-
ertheless, as we already pointed out so often, the same equations for v∗

and for the rate of approach to v∗ (Eq. (78) of section 2.9) hold. The
convergence of the front speed to its asymptotic value according to this
result was checked explicitly with high precision numerical simulations in
[144,146].

(ii) Although the dynamics is very different from that of the F-KPP equation
— note the very asymmetric dynamics: the dynamics of Cj is unaffected
by that of Ck with k > j — the equation is simple enough that several
of the methods that play an important role in proving the existence and
convergence of fronts for the F-KPP equation (like comparison theorems)
can be extended to this equation [146].

(iii) As we will discuss in section 7, when a mean field equation is simulated
with a stochastic equation with a finite number of particles N , the con-
vergence as a function of N to the asymptotic pulled v∗ of the N → ∞
mean-field equation is very slow, logarithmically slow. This slow conver-
gence was also found when the present clock model was simulated with
a finite number of particles [430].
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(iv) In the context of the clock model the Cj’s are non-decreasing functions
of j: Cj ≤ Cj+1 for any j. However, if we just take Eq. (184) as a gen-
eral dynamical equation in which the Cj ’s are allowed to decrease with
increasing j, then we find that the state Cj = 1 is also convectively un-
stable to a front where the Cj decrease for increasing j! This turns out
to be a retracting pulled front, a front which moves to the right in ac-
cord with the fact that any perturbation or coherent structure solution of
(184) can only move towards increasing j. Such a retracting front corre-
sponds to a negative value of v∗ in our equations, 93 and has an amusing
property: whereas the speed of a front which genuinely propagates into
the unstable state approaches the positive asymptotic speed from below
due to the negative 1/t correction in (78), the absolute value of the speed
of a retracting front is larger than |v∗| for large times, since v∗ itself is
negative!

(v) It is easy to modify the equation according to the general rules of thumb
of section 2.7.5 so that the fronts become pushed; an explicit example is
discussed in [146].

3.24 Propagation of a front into an unstable ferromagnetic state

Although it may not be of great practical relevance, we briefly mention an
amusing example whose front dynamics is governed by two pulled fronts sepa-
rated by a phase slip region, the dynamical equations for an anisotropic ferro-
magnet [150,151]. The width of domain walls and the wavelength of spin-wave
states in ferromagnets is often large enough that a continuum approximation
is justified. For a ferromagnet with with an easy-plane anisotropy the free
energy in dimensionless units reads [246]

F = 1
2

∫

dx [(∂xθ)
2 + sin2 θ(∂xφ)2 + cos2 θ]. (185)

Here θ and φ denote the direction of the magnetization M in polar coordinates,
and we have assumed that the magnetization only varies in the spatial x-
direction. The last term in the expression shows that the energy of states with
polar angle θ = π/2 is lowest, so indeed the free energy density describes a
situation with an easy-plane direction.

93 Of course,there is only one dispersion relation for Fourier modes of the dynam-
ical equation linearized about the unstable state. The fronts discussed above and
analyzed in [430,146] fall off as exp(−λ∗j) with λ∗ = 0.768 and v∗ = 4.311. The re-
tracting fronts correspond to the solutions of (78) which have negative λ∗ = −1.609
and negative v∗ = −0.373.
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The dynamics of a ferromagnet is governed by the so-called Landau-Lifshits
equations

dM

dt
= γM× dF

dM
+ λM×

(

M× dF
dM

)

. (186)

In the high damping limit, the first term which describes the torque can be
neglected; in appropriate time units the equations then become

∂tθ= ∂2xθ + [1 − (∂xφ)2] sin θ cos θ, (187)

∂tφ= ∂2xφ+ 2(∂xφ)(∂xθ)cotgθ. (188)

Note that if we could consider ∂xφ to be fixed, the first equation would be
nothing but the F-KPP equation for θ, with the state θ = π/2 stable if
(∂xφ)2 < 1 and unstable if (∂xφ)2 > 1. Thus a phase-winding solution of
the form θ = π/2, φ = kx is unstable for k > 1. Elmer et al. [150,151] con-
sidered front propagating into this unstable state; because of the similarity of
the first equation with the F-KPP equation, it is no surprise that these fronts
are pulled, but the new feature is the coupling to the φ-variable. 94 This front
leaves behind a state with θ ≈ 0 but with the phase gradient ∂xφ essentially
unaltered. Because of the strong coupling between phase and polar angle due
to the cotangent term in the φ-equation, this phase-winding state is unstable.
As a result, the first front is followed by a region where phase slips occurs.
The state which emerges from here has no appreciable phase gradient: The
nonlinear term in the θ-equation then flips sign and this makes the θ ≈ 0
state unstable. As a result, this region is in turn invaded by a second pulled
F-KPP-like front. The propagation speed of the phase slip region can even be
calculated from a conservation-type argument for the phase winding, as all
the properties of the back side of the first front and of the leading edge of the
trailing front are known [150,151].

When the dynamical equations are written in terms of a complex amplitude
A = sin θeiφ, A is found to obey a Ginzburg-Landau type equation with an
unusual nonlinearity [151]. From this perspective, the problem has some sim-
ilarity with the problem of front propagation into an Eckhaus-unstable phase
winding solution in the real Ginzburg-Landau equation that was mentioned
briefly in section 2.11.5.

94 It is amusing to note that the nonlinearity of the θ-equation for fixed phase
gradient ∂xφ is a special case of the dynamical equations for the director angle in
the smectic C∗ problem discussed in section 3.15.
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3.25 Relation with phase transitions in disorder models

In hardly any of the situations that we have discussed so far do the front so-
lutions which become relevant when the initial conditions are not sufficiently
localized, play a role. There is one remarkable exception to this: it was dis-
covered by Derrida and Spohn [122] that there are some statistical physical
disorder models which can be shown to have phase transitions by mapping
their generating function onto the F-KPP equation. The two regimes of pulled
fronts emerging from localized initial conditions and of leading edge dom-
inated dynamics associated with not sufficiently localized initial conditions
then translate into two different phases of the disorder model! An amusing
aspect is also that in the first regime, the 1/t power law relaxation and the as-
sociated crossover behavior of the front solutions translates back into detailed
knowledge of the scaling behavior of the statistical model. More recently, the
same type of mapping was applied to the renormalization group analysis of
disordered XY models [74] — see section 3.26.1.

Let us sketch the essence of the argument for the case of polymers on a Cay-
ley tree with a random potential [122]. A Cayley tree is is a graph which has
branches but no loops, as sketched in Fig. 55(a). The hierarchical structure of
Cayley trees makes the statistical physical models defined on them amenable
to detailed analysis — phase transitions in such models are usually of mean
field type, due to the absence of loops, but apart from this they often catch
the essence of a transition in higher dimensions. We now consider “polymers”
on such Cayley trees — we can think of them in terms of self-avoiding ran-
dom walks which step one level down in every “time” step — in the presence
of a random potential V at the bonds. These values of the potential are un-
correlated random variables distributed according to some distribution P(V ).
The statistical problem for a given realization of potentials is then defined as
follows in terms of the so-called partition function

Z =
∑

walks

exp [−β(V1i1 + V2i2 + · · ·)] (189)

where β is the inverse temperature. The term in the exponents is the sum of
all the potentials in level 1, level 2, etc. It is convenient to consider the vertical
direction as a time coordinate t and to take the time-continuous limit. The
potentials V on a branch of length dt are then taken as independent Gaussian
variables with distribution

P(V ) =
1

(4π dt)1/2
exp

(

− V 2

4 dt

)

. (190)

Because of the branching structure of the Cayley tree, the partition function
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Fig. 55. (a) A “polymer” (thick lines) or self-avoiding walk on a Cayley tree. On each
bond an independent random potential is defined. (b) Illustration of the statistical
problem of a polymer on a Cayley tree with a random potential in the continuum
limit. After Derrida and Spohn [122].

obeys a simple recursion relation,

Z(t + dt) =











e−βVZ(t) with probability 1 − dt,

e−βV
[

Z1(t) + Z(2)(t)
]

with probability dt,
(191)

which expresses that in the first small timespan dt, the walk could remain a
single walk with probability 1 − dt, or have split into two with probability dt
(the generalization to Cayley trees where every branch splits into n > 2 is
obvious). Z(1) and Z(2) are the two partition functions on these two branches.

Because the potentials are random variables, one actually has to study the
distribution of partition functions. Instead of doing this, it is more conve-
nient [122] to study the so-called generating function Gt(x) which encodes the
average and all moments of Z,

Gt(x) ≡
〈

exp
[

−e−βxZ(t)
]〉

, (192)

where the brackets indicate an average over the disorder. From this definition,
one finds immediately that for small dt

Gt+dt(x) = (1 − dt)
∫

dV
1

(4π dt)1/2
exp

(

− V 2

4 dt

)

Gt(x + V )

+ dt G2
t (x). (193)

That the branching process simply leads to a term proportional to G2 relies on
the fact that the partition functions Z(1) and Z(2) in (191) are independent,
because on a Cayley tree two branches do not intersect below their common
branch point. In the limit dt→ 0 the above equation for G becomes simply

∂tG = ∂2xG+G(G− 1), (194)
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which is nothing but the F-KPP equation (1) with quadratic nonlinearity, if
we put G = 1 − u.

The remarkable finding is that the dynamical equation for G does not de-
pend on the temperature β−1 explicitly: the temperature only enters indirectly
through the initial conditions which Derrida and Spohn considered,

G0(x) = exp
(

−e−βx
)

⇐⇒ u ≃ e−βx (x→ ∞). (195)

As we know from our discussion of fronts in the F-KPP equation, when β > 1,
this corresponds to localized initial conditions, and the long-time behavior of
Gt(x) is then simply given by the pulled front solution whose speed approaches
v∗ according to the asymptotic formula (78). This means that the “long-time”
asymptotic average properties of the polymers are completely independent of
temperature, and that they approach an asymptotic scaling behavior indepen-
dently of temperature as well. Furthermore, when β < 1, the fronts correspond
to fronts whose dynamics is “leading edge dominated” and whose velocity is
determined by the initial condition, i.e., the temperature. This is the high-
temperature regime. The low-temperature (β > 1) regime can be associated
with a frozen phase: roughly speaking the fact that the front speed is indepen-
dent of initial conditions translates into the free energy sticking at a constant
temperature-independent value — we refer for a detailed discussion of this and
of the translation of the various front results to those for the random polymer
problem to [122]. Below in section 3.26.1 the connection to renormalization
treatments of disorder models is discussed.

We finally note that a lattice model version [64,66] of the statistical-physical
disorder problem discussed here is closely related to the clock model discussed
in section 3.23.

3.26 Other examples

We finally draw attention to a number of issues related to front propagation
which we do not review in detail.

3.26.1 Renormalization of disorder models via traveling waves

In the previous section 3.25 we briefly reviewed how the generating function of
a disorder model on a Cayley tree obeys the F-KPP equation. This connection
between traveling waves and disorder models is actually more general and
powerful, as was discovered by Carpentier and Le Doussal [74,75]. Very much
like (194) is the evolution equation for the generating function in the “time-
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wise” direction down the Cayley tree, they found that the renormalization
group equation for the distribution function of the local fugacity variables
of defects in a disordered XY model takes the form of an F-KPP equation,
with the length scale ℓ playing the role time. Like we saw in section 3.25, the
universal behavior of this distribution function comes from the independence
of v∗ on the details of the model. Moreover, the results for the universal rate
of approach to the asymptotic pulled front speed v∗ in the case of localized
intial conditions (corresponding to temperatures below the glass transition)
translate into nontrivial predictions for the scaling at the transition. We refer
to these papers for an in-depth discussion of this.

3.26.2 Singularities and “fronts” in cascade models for turbulence

As is well known, fully developed turbulence is characterized by an energy
cascade: energy flows from small wave numbers to larger wave numbers, till it
is dissipated in the viscous range. In a shell model for this energy flow [408],
this energy flow down the cascade shows similarities with front propagation.
However, the essential dynamics is more properly analyzed in terms of a sim-
ilarity analysis like that for the porous medium equation [17,184,339] than in
terms of fronts. If interpreted in terms of front dynamics, these fronts have
a nonlinear diffusion equation reminiscent of the one in the bacterial growth
model (147) and are pushed.

In fact, as stressed in particular by by Barenblatt [24,25], there is a formal con-
nection between similarity analysis and front propagation, since if one write x
and t of a propagating front solution u(x−vt) in terms of logarithmic variables,
x = lnX , t = lnT , a uniformly translating front solution u(x− vt) looks like
a similarity solution ũ(X/T v). In this formulation the propagation velocity of
the front plays the role of a similarity exponent. This reformulation illustrates
that in principle a sharp distinction between front propagation and similarity
analysis [24,25] is difficult to make. In practice, however, it is often quite clear
what the most natural type of analysis is for a given problem: especially if the
system admits a linearly unstable state with a well-defined dispersion relation
for the unstable branch of Fourier modes, the linear spreading analysis and
the associated front formulation are the methods of choice.

3.26.3 Other biological problems

Although the clearest biological examples of front propagation into an unstable
state appear to be the population spreading phenomena mentioned in section
3.19 and the bacterial growth patterns discussed in section 3.13, it is impor-
tant to realize that there are many problems in biology and biophysics which
are closely related. E.g., much work on pulse propagation in bistable systems
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or excitable media traces back to the study of the propagation of pulses in
nerves [229,379]. Since these are not examples of front propagation into un-
stable states proper, and since excellent books in which these problems are
treated have appeared recently [222,311], we will not explore the differences
and similarities here.

3.26.4 Solar and stellar activity cycles

There is an extensive literature — see e.g. [28] for a brief introduction and
entry into the literature — associating the sunspot cycle to the occurrence of
so-called dynamo waves. The coupled equations for the azimuthal and radial
magnetic fields take the form of two reaction-diffusion type equations, and an
important ingredient of the relevant dynamics is associated with the problem
of front propagation into unstable states [28,395,441]. Of course, for waves on
a spherical rotating object like the sun, there are many complicating aspects:
not only is there the question whether the instability is locally convective or
absolute, but also the fact that the geometry is intrinsically finite and that
the background of the waves is spatially varying plays a role. These latter
type of issues are related to the question of the emergence of so-called “global
modes” which we will discuss briefly in section 6. For a detailed discussion of
the dynamo waves themselves we refer to the literature cited above.

3.26.5 Digital search trees

After acceptance of this article, we learnt about a very new exciting line of
research: traveling fronts play an important role in computer science in digital
search trees and data compression. Moreover, such types of problems can be
related to directed DLA on a Cayley tree. See [452,453] and references therein.

4 The mechanism underlying the universal convergence towards v∗

In section 2.9 we saw that pulled fronts converge to their asymptotic speed
and shape 95 with a universal power law behavior — e.g., for the velocity we

95 The shape convergence only holds for uniformly translating fronts and coherent
pattern forming pulled fronts, of course. Nevertheless, the incoherent dynamics of
an incoherent pulled front arises from the intrinsic chaotic behavior of the nonlinear
state behind the front (as, e.g., in panels (a) of Figs. 16-19) or from the fact that
the spreading point dynamics does not match on to a fully coherent front profile
in the nonlinear region (as, e.g., in Fig. 18(b)). In the leading edge the dynamics
of incoherent pulled fronts is still smooth and coherent, as close inspection of these
figures and Fig. 58 below shows quite clearly. This dynamics is governed by the
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have according to (82)

v(t) = v∗ − 3

2λ∗t
+

3
√
π

2(λ∗)2t3/2
Re

1√
D

+ O
(

1

t2

)

. (196)

For uniformly translating fronts, for which D is real, this expression reduces
to the simpler version (78).

In the above expression v∗, λ∗ and D are given explicitly by Eq. (12) in terms
of the dispersion relation ω(k) of the linearized dynamical equation. This and
other remarkable features of this general expression were discussed extensively
in section 2.9.3 but we did not justify or derive the result itself. It is the aim
of this section to review the underlying mechanism and derivation [144] in
some detail. The importance of the derivation does not lie in the technicalities
themselves, but in the fact that the pulled front picture that we have advanced
can be made into a fully explicit and predictive formalism.

4.1 Two important features of the linear problem

Several of the most important insights on which the full derivation of (196) is
based [144] come from our understanding of the fully linear problem discussed
in sections 2.1 through 2.4. In section 2.1 we saw that according to the saddle
point analysis of the fully linear spreading problem a “steep” initial condition
gives rise to the following long-time expression for a generic dynamical field
φ,

φ(ξ, t) ∼ e−λ∗ξ+ik∗rξ−i(ω∗
r−k∗rv

∗)t e
−ξ2/(4Dt)

√
t

, (197)

where ξ = x−v∗t, and where λ∗, k∗r , v
∗ and D are given by the linear spreading

point equations (12). The first exponential factor is the asymptotic exponential
fall-of with steepness λ∗ in the frame moving with velocity v∗. The second
exponential factor, together with the t−1/2 term, is the first correction term
to the asymptotic behavior — it arises simply from the Gaussian saddle point
integral. Of course, in this Gaussian term we also recognize the fundamental
similarity solution of the diffusion equation. Thus, if we define a new field ψ
through the transformation

φ(ξ, t) ≡ e−λ∗ξ+ik∗rξ−i(ω∗
r−k∗rv

∗)tψ(ξ, t), (198)

extension of Eq. (210) below to pattern forming fronts.
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then we expect that the long-time dynamics of ψ is governed by the equation

∂ψ

∂t
= D∂

2ψ

∂ξ2
+ corrections, (199)

since its fundamental similarity solution is the Gaussian form ψ = t−1/2e−ξ2/4Dt

of (197). Note that the transformation (198), which was called the “leading
edge transformation” in [144], acts like a mathematical magnifying glass: it
allows us to focus on the dynamics of the correction to the dominant expo-
nential behavior. Moreover, do realize that since the saddle point analysis is
quite general (see section 2.4) the long-time dynamics of the leading edge vari-
able ψ is effectively governed in dominant order by this diffusion equation even
if the underlying dynamical equation is of higher order, a set of equations, a
difference equation, etcetera. The reason that ψ obeys a differential equation
even when the original dynamical equation is a difference equation is that for
long times ψ becomes arbitrarily smooth in space and and time.

The above line of reasoning is intuitive and based on working backward from
the general expression (197). The diffusion-type form of the equation — first
order in time and second order in space — is actually an immediate conse-
quence of the fact that two roots k coincide at the linear spreading point k∗.
After all, Eqs. (9) and (12) imply that in the neighborhood of the spreading
point we have in the co-moving frame ξ

ω − ω∗ = −iD(k − k∗)2 + · · · , (200)

and upon inverse Fourier-Laplace transformation this gives (199) for long
times. In fact, the full generalization of (199) for ψ is easy to derive [144]:
by expanding about the linear spreading point and taking an inverse Fourier-
Laplace transform, we immediately obtain [144]

∂ψ

∂t
= D∂

2ψ

∂ξ2
+ D3

∂3ψ

∂ξ3
+ w

∂2ψ

∂t∂ξ
+ τ2

∂2ψ

∂t2
+ · · · , (201)

where the expansion coefficients D3, w, τ2 etcetera can all be expressed in
terms of the characteristic equation of the branch corresponding to the rel-
evant spreading point — see Eq. (5.64) of [144]. E.g., we simply have D3 =
(1/3!)d3ω/dk3|k∗.

Since we already know from the saddle point analysis that the relevant long-
time dynamics of the leading edge variable ψ is a diffusion-type dynamics on
slow spatial and temporal scales, the crucial conclusion from these considera-
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tions is that 96

the dynamical equation of the leading edge variable ψ that governs the
convergence to the linear spreading behavior in the leading edge is a diffu-
sion equation, with subdominant terms which are determined explicitly in
terms of the dispersion relation ω(k) of the linear dynamical equation of
the original problem. The appropriate similarity variable for the long-time
expansion of ψ is the similarity variable ξ/

√
t of the diffusion equation.

Our second important observation concerning the fully linear problem is the
following. One may well wonder “how can the leading edge dynamics ever
determine the dominant convergence dynamics of the full nonlinear profile?”
To understand this, let us return to (197) and write it as

|φ(ξ, t)| ∼ e−λ∗ξ

∣

∣

∣

∣

∣

e−ξ2/(4Dt)

√
t

∣

∣

∣

∣

∣

= e−λ∗ξ−1
2
ln t−ξ2/(4Dt), (202)

where, as in (13), D−1 = ReD−1. If we follow the position ξC of the level line
φ(ξC, t) = C, then according to the above expression for the linear dynamics
we have in dominant order

ξC = − 1

2λ∗
ln t+ · · · ⇐⇒ ξ̇C = − 1

2λ∗t
+ · · · . (203)

We already drew attention to this logarithmic shift in our discussion of the
front relaxation in section 2.9.1, but we now identify more clearly where this
behavior originates from: The 1/t relaxation of the velocity of the level line
corresponds to a logarithmic shift in the position, and this results from the
Gaussian t−1/2 prefactor in combination with the overall e−λ∗ξ spatial decay
of the leading edge variable. In other words, the prefactor of the 1/t velocity
relaxation is essentially the exponent of the appropriate similarity solution of
the diffusion equation (199).

So why then does the logarithmic shift carry over to the fully nonlinear profile?
The important point to realize is simply that 97

96 There is actually a surprise here: A priori, one would expect that the second
and third terms of (201) would affect the subdominant t−3/2 correction term in the
expression (196) for v(t). Actually, they do affect the shape scaling function but
not the velocity correction — see Eq. (5.70) of [144]. I do not have a real intuitive
understanding of this remarkable finding which comes out of the explicit calculation.
97 The argument is obvious for the divergent logarithmic term. Actually, since the
front shape relaxation is driven by the 1/t term in the velocity — see Eq. (211) below
— any contribution from the leading edge which gives a time-dependent shift which
decays slower than the 1/t intrinsic shape relaxation is universal. This is the reason
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when we track the position of a front whose width of the nonlinear region is
finite, the unbounded logarithmic shift imposed by the diffusive leading edge
dynamics always dominates the large time behavior over the relaxation of
the front shape itself.

This observation was already illustrated in Fig. 12.

4.2 The matching analysis for uniformly translating fronts and coherent pat-
tern forming fronts

So we know that the leading edge variable ψ, which measures the deviation
from the asymptotic exponential profile e−λ∗ξ+ik∗rξ−i(ω∗−k∗v∗)t in the moving
frame, obeys a diffusion-type equation with corrections. To construct the so-
lution to the fully nonlinear font relaxation problem, we have to match the
behavior in the leading edge (the region where the dynamical equation can be
linearized about the unstable state) to the nonlinear front region, the region
where the nonlinearities in the equation are important.

In order to understand the matching behavior, it is clearest to first consider
the case of uniformly translating fronts or coherent pattern forming fronts:
For these the arguments can be made most precise and for these the matching
analysis has been worked out in detail. The case of incoherent pattern form-
ing fronts will be discussed in the next section; the analysis given there will
give a more intuitive dynamical argument why the leading edge variable ψ
approaches the behavior that we identify with matching arguments here.

At the linear spreading point k∗ two roots coincide — this is illustrated both
by Eq. (200) and the fact that v∗ corresponds to the minimum of the curve
venv(λ) in Fig. 3. It is a general result [13,14] that in the presence of a double
root the ξ → ∞ asymptotic behavior of the uniformly translating pulled front
solutions Φv∗(ξ) or the leading coherent pulled front solution Φ1

v∗(ξ), is

Φv∗(ξ) ∼ (a1ξ + a2)e
−λ∗ξ, Φ1

v∗(ξ) ∼ (A1ξ + A2)e
−λ∗ξ+i(k∗r ξ−ω∗

r t), (204)

as we already noted before in Eqs. (59) and (75). As t→ ∞, the leading edge
dynamics should approach this behavior, so in dominant order the matching
condition for the leading edge variable ψ is

ψ(ξ, t→ ∞) ∼ ξ. (205)

that even the 1/t3/2 term in the velocity relaxation is universal: it corresponds
to a shift proportional to 1/t1/2. Even incoherent fronts whose fluctuating width
converges faster than 1/t to some average value, still exhibit the subdominant 1/t3/2

velocity relaxation term.

179



At this point, we can already understand the leading term of the convergence
behavior of v(t) in a very simply manner. For simplicity, we will from now on
specialize to the case of uniformly translating fronts but the generalization to
coherent pattern forming fronts is straightforward [147,383,388]. The similarity
solution of the diffusion equation which for large times matches the above
ψ ∼ ξ behavior is the “dipole solution”

ψ ∼ ξ

t3/2
e−ξ2/(4Dt) ⇐⇒ φ ∼ e−λ∗ξ−3/2 ln t+ln ξ−ξ2/(4Dt). (206)

Analogously to the discussion following Eq. (202), this result implies that to
order 1/t the velocity relaxation is

v(t) = v∗ − 3

2λ∗t
+ · · · , (207)

which is indeed the leading order term of the full expression (196).

To go beyond the leading order term, we have to perform a full systematic
matching calculation. To do so, it is crucial to describe the nonlinear front
in the right frame: As we saw in the previous section, a 1/t relaxation of the
velocity corresponds to an ever-increasing logarithmic shift in the position of
a level line, when viewed in the frame ξ moving with the asymptotic speed
v∗. Thus, as Fig. 12 illustrates so nicely, if we would attempt to do perturba-
tion theory about the asymptotic front solution Φv∗(ξ), the difference between
the actual transient profile and this asymptotic profile would increase with-
out bound. Nevertheless, the shape of the transient profile is always close to
Φv∗ placed at an appropriate position. This suggests to perturb about the
asymptotic front solution in a frame ξX which incorporates this shift,

ξX = ξ −X(t) = x− v∗t−X(t), (208)

where the shift X(t) has the expansion

Ẋ(t) =
c1
t

+
c3/2
t3/2

+
c2
t2

+ · · · . ⇐⇒ X(t) = c1 ln t− 2c3/2
t1/2

+ · · · . (209)

The expansion in powers of 1/
√
t results from the fact that the similarity

variable governing the long-time dynamics of ψ is ξX/t
1/2, so powers of ξX

generate powers of 1/t1/2.

From here on, the matching expansion is conceptually straightforward but
technically nontrivial. In the leading edge we make a large-t expansion in
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terms of the similarity variable ξX/t
1/2,

ψ =





t
1
2 g−1/2(ξX/t

1
2 ) + g0(ξX/t

1
2 ) +

g1/2(ξX/t
1
2 )

t
1
2

+ · · ·





 e−ξ2
X
/(4Dt), (210)

where the matching condition (205) requires that g−1/2(ξX/t
1/2) ∼ ξX/t

1/2. In
the nonlinear front region we expand the profile in the form dictated by the
above observations, 98

φ(x, t) = Φv∗(ξX) +
η1(ξX)

t
+
η3/2(ξX)

t3/2
+ · · · . (211)

These expansions generate hierarchies of equations which can be solved order
by order; in first nontrivial order we straightforwardly recover the 1/t term
along the sames lines as above, and in the next order the nontrivial t−3/2 term
in the general expression (196) for v(t) is found [144].

The explicit calculation also shows that the functions η1 and η3/2 are propor-
tional to the “shape mode” δΦv/δv which gives the change in the shape of the
profile under a change of the velocity v: one finds

Φv∗(ξ) +
η1(ξX)

t
+
η3/2(ξX)

t3/2
= Φv∗(ξX) +

δΦv(ξX)

δv

∣

∣

∣

∣

∣

v∗

Ẋ(t) + O(t−2).(212)

Since Ẋ(t) is nothing but the deviation v(t) − v∗, this implies that to order
t−2 the profile shape can be written in the form (80), i.e.,

φ(x, t) = Φv(t)(ξX) + O(t−2). (213)

In other words, to order t−2 the shape of the profile follows the shape of a
uniformly translating profile with velocity equal to the instantaneous value
v(t).

At first sight, it may appear surprising that such a result could hold, since on
the one hand v(t) always approaches v∗ from below, and since on the other
hand uniformly translating profiles Φv with v < v∗ approach the asymptotic
state φ = 0 in an oscillatory manner. There is no contradiction here, however.
The above expression is only the asymptotic expression for ξX fixed, t → ∞.
The limits do not commute: For any fixed time, the profile crosses over to the

98 Remember that we have written here the form for the case that the asymptotic
front solution is uniformly translating. For coherent fronts the expansion is similar
[147,383,388], we only have to add the upper indices and a phase relaxation term.
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Fig. 56. Numerical confirmation of the analytical prediction for the shape relaxation
of a transient front in the F-KPP equation (1) with cubic nonlinearity for various
times ranging from t = 20 to t = 400. Plotted is the normalized deviation from
the asymptotic profile Φv∗ given by (214). As indicated by the dashed vertical line,
the co-moving coordinate ξX is taken such that φ(ξX , t) = 1/2. The fact that the
ratio (214) converges to 1 confirms that to order t−2 the shape of the profile follows
Φv(t)(ξX) adiabatically. Note the diffusive-type crossover on the far right to the
asymptotic behavior (210). Whether it is accidental or significant that all the lines
roughly cross at one point near ξX ≈ 10 is at present not understood. From Ebert
et al. [144].

expression (210) for large enough ξX . As one might expect from the diffusive
nature of the ψ-equation, this crossover region moves to the right diffusively,
as

√
t [144].

These analytical predictions for the relaxation of the profile shape have been
confirmed in great detail numerically for the F-KPP equation (1) with a cubic
nonlinearity [144]. Fig. 56 shows a plot of

φ(ξX, t) − Φv∗(ξX)

δΦv/δv|v∗(v∗ − v(t))
, (214)

where the shape mode in the denominator was obtained by numerically solving
the ordinary differential equation that it obeys. According to the analytical
predictions, the ratio (214) should approach unity for long time; the numer-
ical results clearly confirm this. Note that since the denominator approaches
zero for long times, plots like Fig. 56 are very accurate confirmations of the
analytical expressions — in some cases the predictions have been verified to
within six significant figures [144,146]!

As we already indicated, the matching calculation can be extended to the
case of coherent pattern forming fronts [147,383,388]. We actually already
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Fig. 57. Demonstration of the universal relaxation behavior of the shape of a front
in the Swift-Hohenberg equation (92), according to Spruijt et al. [147,383]. Plotted
is the ratio (215) for times 20 to 160 in steps of 20 for fronts in numerical simulations
of fronts in for ε = 1/2. The fact that the various curves fall almost on top of each
other confirms that the shape of the fronts follows the relaxation of the velocity
adiabatically. The curve which deviates somewhat on the left side is taken at the
earliest time, t = 20. Up to an overall multiplicative constant, the resulting curve
represents the shape mode of the pulled Swift-Hohenberg front. Note that since ε is
not small, various harmonics contribute to the expansion of the asymptotic profile,
and the front solution is not close to the front solution of the cubic amplitude
equation that one can derive in the limit 0 < ε≪ 1.

illustrated in Fig. 19 how the results of numerical simulations of the Swift-
Hohenberg equation (92) confirm the predicted relaxation behavior of the
velocity and the wavenumber just behind the front. That the shape relaxation
of the front also follows the velocity adiabatically has also been verified in these
studies [147,383]. For coherent pattern forming fronts an explicit calculation
of the shape modes δΦn

v/δv is quite nontrivial, even numerically, since it in
principle involves an infinite set of coupled ordinary differential equations.
Therefore in these studies the quantity

〈φ(ξX , t) −
∑

n=0,±1,··· e
−inΩ∗tΦn

v∗(ξX)〉T
t−1

(215)

was studied. Here the brackets 〈·〉T denote an average over one period T ≈
2π/Ω∗ in the co-moving frame. According to the analytical predictions, the
various plots of this ratio should all fall on top of each-other, and the resulting
curve is nothing but the shape mode. As Fig. 57 shows, this expectation is
borne out by the simulations. Given that for such a coherent pattern forming
front obtaining the front profile involves extensive interpolation, it is remark-
able how nicely the scaling works [147,383]! To our knowledge this is the only
existing explicit demonstration of the universal shape relaxation of a coherent
pattern forming pulled front.
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4.3 A dynamical argument that also holds for incoherent fronts

The matching arguments reviewed above were essentially based on the obser-
vation that the asymptotic uniformly translating and coherent front solutions
have a ξe−λ∗ξ behavior, and that the long-time dynamics in the leading edge
should match this behavior. This essentially gave the requirement that ψ ∼ ξ
in dominant order for long times. From there on the calculation is in essence
a straightforward matching calculation.

The above argument does not give much insight into how this linear gradient
in ψ builds up dynamically. Moreover, the argument hinges on the existence
and behavior of a coherent pulled front profile. However, the same relaxation
holds for incoherent fronts. Let us now clarify why this is so and how the linear
gradient builds up dynamically [388].

The argument can be formulated quite generally, but let us for simplicity just
consider the quintic CGL equation (103). If we make a transformation to the
leading edge variable ψ = eλ

∗ξ−ik∗rξ+i(ω∗
r−k∗rv

∗)tA and write the equation for ψ
in the frame ξX defined in (208), we obtain

∂tψ = D∂2ξXψ +N(ψ) + O(t−1), (216)

where the terms of O(t−1) are proportional to Ẋ(t) and come from the trans-
formation to the frame ξX , and where N(ψ) denotes the nonlinear terms

N(ψ) = (1 + ic3)e
−2λ∗ξX |ψ|2ψ − (1 − ic5)e

−4λ∗ξX |ψ|4ψ. (217)

We normally associate a front with a solution for which the physical field, the
amplitude A in the present case, saturates behind the front. Because of the
exponential term introduced in the leading edge transformation, this means
that the leading edge variable should vanish exponentially ∼ exp λξX as ξ →
−∞. Thus, to the right, for large positive ξX , |N | vanishes exponentially as
e−2λξX due to the explicit exponential term in front of the cubic term in (217),
while to the left |N | vanishes exponentially as eλξX because of the exponential
vanishing of the leading edge variable ψ. In other words, |N | is actually nonzero
only in some limited spatial range. This is illustrated in the space-time plot
of Fig. 58(a), which shows |N | for the same simulation of the quintic CGL as
in Fig. 19(a). The exponential vanishing to the right is clear from the figure;
the time-dependent behavior of |N | on the left reflects the fact that the front
is incoherent.

The leading edge of the front is essentially the region where |N | is negligible.
Hence it is the semi-infinite interval to the right of N , and this nonlinear
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Fig. 58. Results from simulations by Storm et al. [388] of the quintic CGL equation
for the same parameter values and run as in Fig. 19(a), shown from time 35 to 144.
Panel (a) shows the nonlinear function |N | defined in (217) as a function of ξX .
Note that this function falls off exponentially to both sides. (b) The evolution of
the leading edge variable |ψ| for the same run as in panel (a). The region marked I
in the figure is the region where a linear gradient builds up, II marks the crossover
region which moves out as

√
t and in region III ψ is falling of in dominant order

as a diffusive Gaussian with width proportional to
√
t. The solid line indicates the

position of the maximum. The regions I, II and III are also marked in panel (a).
Note that the nonlinear function N essentially vanishes in these regions and that ψ
builds up to the right of the region where N is non-vanishing. Intuitively, we can
think of the nonlinearities as acting like an “absorbing wall” for the field ψ.

term acts like a boundary condition for the dynamics of ψ in the leading edge!
Moreover, since in leading order ψ obeys a diffusion equation, let us think of
ψ as a density field obeying a diffusion equation. In this analogy, the nonlinear
term N acts like a localized sink term or an absorbing wall which suppresses
the density field (it must suppress it as behind the front ψ vanishes). Now, as
is well known, when we have an absorbing wall at long times the density field
will build up a linear gradient — from this analogy we see that the role of the
nonlinearities in the equation is to make the dynamical field ψ build up a linear
gradient, ψ ∼ ξX , at long times! In other words, the long-time behavior (205)
is not only a matching condition, but it also naturally emerges dynamically
from the fact that the dynamics of the leading edge variable is essentially
governed by a diffusion equation with an absorbing wall. Fig. 58(b) shows
a space-time plot of |ψ| from the simulations of the quintic CGL equation,
which fully confirms the gradual buildup of a linear gradient to the right of
the “absorbing wall” |N |, with a crossover to a diffusive Gaussian behavior to
the right of it.

In conclusion, we finally understand the universal nature of the power law
corrections to the asymptotic pulled front velocity: Only the fact that there
is an absorbing wall matters, its internal structure — i.e., the form of the
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nonlinearities in the equation, or the question whether the front is uniformly
translating, coherent or incoherent — is unimportant [144,388]!

5 Breakdown of Moving Boundary Approximations of pulled fronts

So far, we have focused our discussion on the dynamics of fronts in one dimen-
sion. Quite often, however, we are interested in the formation of patterns in two
or three dimensions which naturally can be thought of as consisting of domains
separated by domain walls or fronts. Usually — think of viscous fingering
or dendritic growth [57,73,220,226,247,249,251,338,353], bacterial growth pat-
terns [39,40,41], late stage coarsening [56,192], flames [67,90,209,449], chemical
waves [160,293,294], thermal plumes [30,451] etcetera — the state of the sys-
tem inside each domain is asymptotically close to an intrinsically stable homo-
geneous state. But we have also encountered examples of such type of pattern
formation in higher dimensions which are driven by the motion of a front into
a linearly unstable state: streamer patterns of section 3.5 are formed when
an ionization front propagates into a non-ionized gas, the unstable normal
state of a superconductor can give way to the superconducting state through
the motion of a front (see section 3.8), the chaotic dynamics of domains in
the rotating Rayleigh-Bénard experiments discussed in section 3.4 is in one
regime driven by the propagation of fronts into linearly unstable states, and
if fluctuation effects are sufficiently small, front propagation into an unstable
state can be relevant to the early stage of spinodal decomposition as well (see
section 3.7).

When the width of the fronts or domain walls separating the domains is much
smaller than the radius of curvature which is set by the typical scale of the
pattern, then a natural way to analyze the pattern dynamics is in terms of
a moving boundary approximation or effective interface approximation. This
approximation amounts to treating these fronts or transition zones as a math-
ematically sharp interface or boundary. In other words, their width is taken to
be zero on the outer scale of the pattern, and their internal degrees of freedom
are eliminated using singular perturbation theory. We shall henceforth use the
word boundary or interface to denote this zero width limit and use the word
front when we look at a scale where its internal structure can be resolved.

Sometimes, it is numerically advantageous go in the opposite direction, i.e., to
translate a model with sharp interfaces into what has become known as a phase
field model in which the order parameter field varies continuously through
the interfacial zone. Examples where this idea was exploited for a variety
of physical problems can be found in [29,71,187,219,221,232,372]; for careful
discussions of the derivation of a moving boundary problem for a variety of
different physical systems, we refer to [30,67,132,160,219,306].
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Is it true, as one might be tempted to think when looking at pictures like
the streamer patterns of Fig. 30, that a moving boundary approximation or
effective interface description can be derived whenever the fronts in the system
under study are much thinner than the scale of the pattern? Or, to put it more
clearly, can one generally derive a moving boundary approximation for front
propagation into unstable states in the limit that the width of the front is much
less than its radius of curvature? The answer to this question is a definite
“no” for pulled fronts and “yes” for pushed fronts [145].

How come? The reason for this statement is that for a moving boundary
approximation to hold, we need not only have separation of spatial scales but
also separation of time scales: the main physical idea underlying the derivation
of a moving boundary approximation is that the front itself can on large length
and time scales be viewed as a well-defined coherent structure which responds
on a “fast” time scale — the internal front relaxation time — to the “slow”
change in the local values of the outer dynamical fields that characterize the
domains. Both elements are missing for a pulled front. Indeed, as we have
seen in section 2, the dynamics of a pulled one-dimensional front is essentially
determined in the whole “semi-infinite” region ahead of the front, not in the
nonlinear transition region itself. As a consequence, the velocity and shape
of a pulled front relax very slowly, with a 1/t power law, to their asymptotic
velocity and shape. For a pushed front, on the other hand, both conditions
are fulfilled: in one dimension, a pushed front relaxes exponentially fast to its
asymptotic velocity and shape, and its dynamics responds essentially only to
changes in the nonlinear front region only.

We will clarify the above statements below. We first illustrate how in two and
three dimensions the relaxation correction and the curvature correction are of
the same order for a spherically symmetric expanding pulled front, and then
trace the main steps of the derivation of a moving boundary approximation
to discuss the breakdown of singular perturbation theory for pulled fronts.

5.1 A spherically expanding front

It is well known — see e.g. the classic work of Allen and Cahn [6] or the reviews
[56,192] — that when the radius of curvature of a front which connects two
stable states of an order parameter equation is much larger than the front
width, the dominant correction to the front velocity is a curvature correction.
Consider now an a front expanding radially in two or three dimensions. For
large times, the curvature correction to the front velocity will go as 1/R(t) ≈
1/(vast), where vas is the asymptotic front velocity. For a front connecting two
stable states, or more generally for a pushed front, this is the only asymptotic
correction. This is simply because such fronts reduce in this limit to an effective
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Fig. 59. Illustration of the fact that while a moving boundary approximation applies
to a weakly curved pushed front, an interfacial description does not apply to weakly
curved pulled fronts. In both graphs the full lines show the velocity as a function of
time of a spherically expanding front in the F-KPP equation, starting from initial
conditions u(r, 0) = 1 for r < 1 and u(r, 0) = exp[−(r − 1)2] for r > 1. (a) In the
pulled case, obtained with f = u− u3, the long time relaxation asymptotically ap-
proaches the result v(t) = 2−5/2t, illustrating that curvature and relaxation effects
are of the same order. The upper dashed line indicates the relaxation that would
result if only the curvature term would contribute, in other words if a moving bound-
ary approximation would hold. The slow convergence to the line v(t) = 2 − 5/2t is
due to the subdominant t−3/2 term in the velocity relaxation expression (78). (b)
Results for the pushed case, obtained with f(u) = εu+ du3 − u5 with ε = 1/4 and
d = (2+2/

√
3). According to the exact result discussed in the example at the end of

section 2.7.1, the velocity of the pushed front for these parameters is v† = 2 (v∗ = 1
in this case). Note the rapid convergence to the line v(t) = 2 − 2/R(t) = 2 − 1/t
which is the result given by the curvature correction to the velocity, in accord with
the fact that a moving boundary approximation applies to a weakly curved pushed
front.

interface — the formal derivation is summarized in the next section — and
because for a weakly curved interface separating two states of a single order
parameter the curvature is the dominant correction.

For a pulled front, on the other hand, the universal power law relaxation term
is according to (78) also of order 1/t, i.e., of the same order as the curvature
correction in this case. This illustrates that a weakly curved pulled front can
not simply be viewed as a weakly curved interface with velocity given uniquely
in terms of its local curvature: A moving boundary approximation does not
hold.

We can illustrate these considerations by considering the F-KPP equation in
three dimensions in the case of spherical symmetry,

∂tu(r, t) = ∂2ru(r, t) − (2/r)∂ru+ f(u). (218)
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For a front at a distance R(t) ≫ 1 from the origin, the second term on the
right hand side which accounts for the curvature of the spherical front, serves
as a small perturbation. When the front is pushed, the singular perturbation
methods discussed below show that indeed it gives a correction −2/R(t) to the
front. Thus, starting from a localized initial condition u(r, t = 0) (nonzero only
in a ball around the origin), the velocity of the pushed front for large times
is v(t) ≈ v† − 2/R(t) ≈ v† − 2/(v†t) + · · ·. For a pulled front with f ′(0) = 1,
on the other hand, one expects that for large times one can add the curvature
correction and the asymptotic relaxation term given in (78) with v∗ = 2 and
λ∗ = 1, to get 99 v(t) ≈ v∗ − 2/R(t)− 3/(2t) ≈ v∗ − 5/2t+ · · ·. The numerical
results shown in Fig. 59 are consistent with this asymptotic expression and
hence confirm the fact that a moving boundary approximation can never hold
for a pulled front — one can not simply characterize the properties of the
weakly curved pulled front in terms of its asymptotic behavior and curvature
correction only.

5.2 Breakdown of singular perturbation theory for a weakly curved pulled
front

Let us now trace the main steps of the derivation of solvability type expressions
for a weakly curved or weakly perturbed front, to illustrate the breakdown of
singular perturbation theory for pulled fronts. Our main goal is to discuss how
the crucial differences in behavior of pulled and pushed fronts is reflected in
the derivation and in the behavior of solvability expressions that underly the
moving boundary approximation. Therefore, it suffices here to consider the
simplest case, a weakly curved front in the F-KPP equation with a slowly
varying external parameter, rather than a more general “phase field model” of
the type referred to in the beginning of section 5. More detailed discussions of
the derivation of a moving boundary approximation can be found in virtually
any of the references cited there. The general and more precise discussion of
the breakdown of singular perturbation theory for pulled fronts is given by
Ebert et al. [145].

Let us consider the F-KPP equation in two dimensions in the case that the
nonlinear function f depends on a small and spatially slowly varying external
field W ,

∂u/∂t = ∇2u+ f(u,W ). (219)

A moving boundary approximation consists of first matching an inner expan-
sion of the problem on the scale where the fast variable (usually the order

99 This result was first pointed out to me by B. Derrida (private communication).
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parameter variable in phase field models) varies rapidly to the outer problem
on large scales, the scale of variation of the other variables like the tempera-
ture etcetera. In the present case, when W is a slowly varying external field,
the outer problem is simple for the stable states of f(u,W ): u will to lowest
order follow the stable stationary states of f(u,W ).

Let us imagine that the front is also curved on a large length scale, so that
the curvature κ of the front is a small parameter. Since κ and W are expected
to be small and slowly varying, the velocity and shape of the profile will
differ only weakly from the velocity and shape of the straight (planar) front,
and we expect them to vary only slowly in time and space. One therefore
introduces a locally curvilinear coordinate system, with ζ measuring distances
normal to the front, and s distances along the level lines of the front. In the
adiabatic approximation we then perturb about the reference front solution
in the absence of curvature and W , by writing in the front region

u(x, y, t) = U0(ζ) + U1(ζ, s, T ) + . . . , (220)

where T denotes the slow outer time scale and where U0 is the planar front
profile for W = 0 which obeys the ordinary differential equation

d2U0

dζ2
+ v0

dU0

dζ
+ f(U0,W ) = 0 . (221)

with v0 the velocity of this profile. Since the strongest variation of the profile
in the front region is in the ζ direction, in the weakly curved ζ, s coordinate
system the Laplacian becomes to lowest order in the curvature

∇2 =
∂2

∂ζ2
+ κ

∂

∂ζ
+ . . . . (222)

Upon substituting (220) with this result into the F-KPP equation (219), ex-
panding in U1 and W , and making the Ansatz that the velocity correction v1 of
the profile follows the change due to the curvature and potential adiabatically,
we get

LU1 = −(v1 − κ)
dU0

dζ
− ∂f(U0,W )

∂W

∣

∣

∣

∣

∣

W=0

W. (223)

Here L is the linear operator

L ≡
(

d2

dζ2
+ v0

d

dζ
+
∂f(U, 0)

∂U

∣

∣

∣

∣

∣

U0

)

, (224)
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which results from linearizing about the profile about U0 in the frame moving
with v0.

If we perform a stability analysis of a planar front profile in one dimension, the
same operator L arises: for the profile U0 to be stable, its eigenvalues have to
be non-positive. However, since the F-KPP equation with W = 0 is translation
invariant, L always has one eigenmode with eigenvalue zero: dU0/dζ gives the
change in the uniformly translating profile U0 if it is shifted over some small
distance a, U0(ζ + a) = U0(ζ) + adU0(ζ)/dζ + O(a2), and hence it is a zero
eigenmode of L,

L
dU0(ζ)

dζ
= 0. (225)

Since the unknown function U1 in (223) is acted on by L, solvability theory
(the “Fredholm alternative” in more mathematical terms) requires that the
sum of the other terms in (223) are orthogonal to this zero mode. In more
technical terms, they have to be orthogonal to the “left zero mode” χ0 of L,
the zero mode of the adjoint L+

L+ ≡
(

d2

dζ2
− v0

d

dζ
+
∂f(U, 0)

∂U

∣

∣

∣

∣

∣

U0

)

(226)

of L, which obeys L+χ0 = 0. Normally, it is nontrivial to find the zero
mode of the adjoint of a non-self-adjoint operator. In this particular case,
L can transformed into the self-adjoint Schrödinger operator with a simple
transformation, a trick that has often been exploited in the stability analysis
[72,144,216,230,252,317,376]. Here it suffices to note the result of this analysis,
which can be verified directly by substitution, namely that

χ0(ζ) = ev0ζ
dU0

dζ
. (227)

The solvability condition obtained from taking the inner product of (223) with
χ0 simply reads

v1 = −κ−
∫∞
−∞ dζ ev0ζ dU0

dζ
∂f(U0,W )

∂W

∣

∣

∣

W=0
∫∞
−∞ dζ ev0ζ

(

dU0

dζ

)2 W. (228)

This equation explicitly gives the change in the velocity of the front due to
the curvature and the variation of the parameter W . The first term is the one
we already alluded to in the previous section on spherical fronts and gives the
“motion by mean curvature” effect familiar from many models for coarsening
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[6,56,192]. The second one which gives the response to the changes in the
parameter W is of the form that one typically encounters in a solvability type
approach.

The above discussion has been based on the assumption that the curvature
and front velocity change on a slow time scale. Underlying this idea is the
assumption that the shape and velocity of the front relax exponentially on
some time scale of order unity to the shape and velocity of the planar front
we perturb about. One can show this more explicitly [145] by a more careful
analysis in which the adiabatic assumption is not made immediately, and in
which U1 is expanded explicitly in terms of the eigenmodes of the stability
operator L. The amplitude of these modes are than of order τi/T , where τi
are the relaxation times of these modes and T the time scale of the change of
v1 and κ. Thus, if the spectrum of the stability operator L is “gapped”, i.e.,
if the relaxation times τi associated with the stability operator are bounded,
the separation-of-time-scales-condition underlying the derivation of the above
expression is fulfilled.

There are two ways in which the difference between pushed and pulled fronts
shows up in the context of the above analysis. First of all, for pushed fronts the
results summarized in section 2.8 do indeed show that the stability spectrum
of a pushed front is gapped, and hence, pushed fronts obey the conditions
underlying the derivation of a moving boundary approximation following the
lines sketched above. For pulled fronts, however, the conditions are not fulfilled.
That a separation of scales is not possible is immediately clear from the fact
that the velocity and shape of a planar pulled front profile relax as 1/t to their
asymptotic values; within the above analysis, this emerges from the fact that
the spectrum of the stability operator L of a pulled front is not “gapped”, i.e.,
the relaxation times τi of the eigenmodes are arbitrarily large.

Secondly, while for pushed fronts the solvability integrals in expressions like
(228) are finite and well-defined, for pulled fronts they are infinite. For the
F-KPP equation discussed above, one can see this as follows. As we discussed
in section 2.7.1, a pushed front falls off for large ζ as exp[−λ2ζ ], where λ2 is
the second smallest spatial decay rate. According to the results (28) for the
F-KPP equation given in the example at the end of section 2.2, for the F-KPP
equation one has according to (60)

pushed front: U0(ζ)
ζ≫1∼ a2e

−λ2ζ with λ2 =
v0 +

√

v20 − 4

2
, (229)

with v0 = v† > 2. Hence the integrand of the term in the denominator of (228)
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converges as

ev0ζ
(

dU0(ζ)

dζ

)2

∼ e(v0−2λ2)ζ ζ≫1
= e−

√
v2
0
−4 ζ (v† = v0 > 2), (230)

so that the solvability integral is finite. Likewise, if ∂f(U0,W )/∂W ∼ U0 as
ζ → ∞, the integral in the numerator of the second term in (228) converges.
Thus, for a pushed front, the conditions underlying the derivation of a moving
boundary approximation are fulfilled, and the resulting expressions for the
dependence of the velocity of the front on slowly varying parameters like W
are finite, as it should.

It is easy to see that for pulled fronts, on the other hand, the integrand in the
solvability integrals diverges for ζ → ∞: indeed, according to Eq. (59) for the
asymptotic decay of the pulled profile U0, we have

pulled front: ev0ζ
(

dU0(ζ)

dζ

)2
ζ≫1∼ ζ2e(v0−2λ∗)ζ = ζ2, (231)

with v∗ = v0 = 2. The divergence of the solvability integrals reflects the fact
that for pulled fronts the dynamically important region is the semi-infinite
region ahead of the front, while for pushed fronts or fronts between two stable
states the dynamically important region for the front dynamics is the nonlinear
front region itself. At the same time, the divergence signals the inapplicability
of singular perturbation theory for pulled fronts. 100

In this section, we have simply illustrated the breakdown of the singular per-
turbation theory approach to deriving a moving boundary or effective interface
approximation for pulled fronts by considering the simple cases of the F-KPP
equation. But from our general result that pulled fronts always relax with the
same slow power law to their asymptotic speed, it is clear that this conclusion
holds more generally. Indeed, even the divergence of the solvability integrals
for pulled fronts can be derived quite generally [145].

100It has been proposed [83,333] to regularize the integrals by introducing a cutoff
ζc which is taken to infinity at the end of the calculation. Since then only the most
divergent terms survive, this procedure reproduces trivially the change in v∗ upon
changing the linear term in f , but it does not cure the inapplicability of a moving
boundary approximation for pulled fronts [145].
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5.3 So what about patterns generated by pulled fronts?

So far, we have focused our discussion on the fact that a moving boundary
approximation does not hold for a pulled front. What then are the implica-
tions? To my knowledge, there is at present no clear answer to this question.
Clearly, the fact that moving pulled fronts in higher dimensions can strictly
speaking never be viewed as moving interfaces, reflects that the important dy-
namics of a pulled front takes place ahead of the front itself! This makes these
fronts especially sensitive to changes in the initial conditions or even to slight
changes in the dynamics 101 (see section 7). Although there are some indica-
tions for this for the streamer patterns discussed in section 3.5, this issue has
to my knowledge not been explored systematically. More fundamentally, the
question is whether in most cases making a moving boundary approximation
in patterns dominated by propagating pulled fronts is “almost right” in the
sense that it captures all the gross qualitative features, or whether there are
new effects which are fundamentally due to the pulled nature of the fronts.
To put it concretely: are there qualitative or quantitative differences in the
chaotic domain dynamics of the rotating Rayleigh-Bénard patterns of section
3.4 between the regime where the fronts are pulled and when they are pulled?
Could it be that the behavior of the domain correlation function, or the be-
havior of the correlation length and time shown in Fig. 29 for the amplitude
model, is fundamentally different in the pulled and pushed regimes? Likewise,
does the pulled nature of a discharge front show up in any fundamental way
in the shape and dynamics of a propagating streamer front, or does the differ-
ence between the superconductor patterns of Figs. 33(a) and 33(b) reflect in
a fundamental way the fact that in the first figure the front is pushed, while
in the second one it might be pulled? To my knowledge, these basic questions
have not been studied at all.

One interesting example of a qualitative change in the front behavior, which is
related to this issue, is the work of Kessler and Levine [228], who show that the
finite particle cutoff effects discussed in section 7.1 may render a stable pulled
front unstable. Likewise, the behavior of the average occupation density of an
ensemble of DLA fingers hinges on the fact that the fronts are pushed rather
then pulled, as one finds in a mean field approximation — see the introduction
of section 7.

101Pulled fronts are therefore also very sensitive numerically to the scheme and grid
size in the region ahead of the front. Adaptive grid size methods that tend to put a
dense grid in the nonlinear front region may not converge to the right result. This
was pointed out to me by U. Ebert (private communication).
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6 Fronts and emergence of “global modes”

Throughout most of this paper, we have focused our analysis on systems which
were infinite and homogeneous, so that their dynamical equations were spa-
tially invariant. Especially in fluid dynamics systems in which there is an
overall convective flow, a crucial feature is often the fact that the system is
finite and that there is a well-defined inlet — think of the Taylor-Couette cells
with throughflow discussed in section 3.11 — or the fact that there is a well-
defined obstacle behind which the effective parameters are slowly varying in
space — think of the wake of the fluid flow behind a body in the stream-wise
direction, where as we discussed in section 3.10 an instability can give rise to a
vortex street. Investigations of these issues in the field of fluid dynamics have
given rise to the concept of “global mode” [84,203,206,257].

The idea of a “global mode” is essentially the following. Suppose we consider
a system whose properties are slowly varying as a function of the spatial co-
ordinate x (in the case of the flow behind the cylinder of section 3.10 this
would be coordinate in the stream-wise direction). As a result of this, the di-
mensionless control parameter ε(x) is then a slowly varying function of x. The
dimensionless control parameter ε is defined as the parameter which marks
that when the system is spatially homogeneous, the basic state of the system
exhibits an instability for ε > 0, while it is stable for ε < 0. For pattern form-
ing instabilities in homogeneous systems, the control parameter ε appears as
the prefactor of the linear term in an amplitude description, see Eqs. (97)
and (103). When ε(x) is a slowly spatially varying function which, as sketched
in Fig. 60(a),(b), is only positive in some finite range of coordinates x, then
we can think of the system as being locally unstable. Nevertheless, the sys-
tem only turns globally unstable once the interval [x−, x+] where ε(x) > 0
is large enough: it is clearly not sufficient that the system is locally unstable
(ε(x) > 0 for some x) — instability only sets in when a global mode goes un-
stable. While for the translationally invariant system the unstable modes are
Fourier modes, the modes which have been termed “global modes” and which
govern the instability of inhomogeneous systems are essentially localized to
the spatial range [x−, x+] where ε(x) > 0. The global modes that govern the
linear instability problem in spatially varying systems have been studied in
particular for the cubic CGL equation (97) for general ε(x) in the limit that
the range over which ε(x) varies is much larger than the wavelength of the
pattern, so that a WKB analysis can be employed [84,203,206,257]. In the case
sketched in Fig. 60(b), which might be a reasonable model for the instability in
the wake of a cylinder of section 3.10, the linear eigenmodes can be calculated
explicitly. The nonlinear behavior of such global modes has in recent years
also been studied [99,100,342,343,344,358]. We will only highlight here those
aspects of global modes that connect immediately with the general theme of
this paper.
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Fig. 60. (a), (b) Examples of a control parameter ε(x) which varies in space, and for
which the system is locally unstable only in some finite interval [x−, x+]. Case (b)
is supplemented with a boundary condition A(x+) = 0. (c) Qualitative sketch of a
“nonlinear global mode” in the regime where ε(x) varies as sketched in (b) and in
which the interval [x−, x+] is large enough that different scaling regimes exist. The
steep region on the right is close to a front solution in a spatially uniform system.

6.1 A front in the presence of an overall convective term and a zero boundary
condition at a fixed position

As a model problem to investigate the influence of a fixed boundary in a system
with a convective instability, Couairon and Chomaz [99] have analyzed the F-
KPP equation (or Ginzburg-Landau equation for a real variable)

∂tu(x, t) − s0 ∂xu = ∂2xu(x, t) + f(u), f(u) = εu+ u3 − u5, (232)

in the semi-infinite axis (−∞, L], with the boundary condition

u(L, t) = 0. (233)

Note that the second term on the left hand side models an overall convection
with velocity s0 to the left. 102 As we already discussed in the example at the

102Like in our earlier sections, we use the notation s0 instead of U0 of [99] to denote
the overall group velocity; moreover, unlike in [99] the overall convection is to the
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end of section 2.5, for an infinite system this term can simply be transformed
away by going to a frame moving with velocity s0 to the left; here, however, the
boundary condition at the fixed position x = L does not allow us to do so. The
specific choice for the function f(u) in (232) has the advantage that explicit
calculations can be done, since in the pushed regime ε < 3/4 the pushed front
solutions are known explicitly (see the discussion of the “reduction of order
method” at the end of section 2.7.1), but is not needed for the general scaling
arguments below.

Let vsel be the selected front speed in the infinite system for s0 = 0. If the
advection velocity s0 is larger than the selected front speed, s0 > vsel, a front
naturally retracts to the left and the system is nonlinearly convectively unsta-
ble, as discussed in section 2.10. We then expect that the asymptotic state is
simply u = 0; the explicit analysis [99] confirms this. Of course, as we already
saw in section 3.11, in this regime s0 > vsel, the system remains very sensitive
to perturbations. For example, a finite forcing at x = L gives rise to a finite
u front-type profile [99], while a small amount of noise at x = L gives rise to
incoherent front-type patterns. The phase diagram of convective systems with
noise has been worked out in particular by Proctor et al. [358].

If s0 < vsel the infinite system is nonlinearly absolutely unstable: virtually any
initial perturbation of the state u = 0 for x < L will evolve into a front that
propagates to the right, till the boundary condition at x = L makes itself
felt. A full analysis in this regime confirms our intuitive expectation that the
long-time asymptotic state is a stationary front-type profile locked near the
right boundary.

When the advection speed is just slightly less than the selected front speed in
the infinite system, for 0 < vsel − s0 ≪ 1, we expect that the final stationary
front profile remains very close to the profile with speed s0 just below vsel
for essentially all u > 0, until a crossover behavior occurs for very small u of
O(δ) ≪ 1.

Let us first make this more precise for the pushed regime, i.e., when vsel = v†.
The line of analysis we will present below generalizes many of the results of
[99,100] for the specific case considered there. As we noted in section 2.7.1,
the pushed front profile is precisely the one for which the coefficient a1 in the
asymptotic expression (58) vanishes: a1(v

†) = 0. Since a1 will generally go
through zero linearly in v, the uniformly translating front profile Us0(ζ) with
velocity s0 in the infinite system will to a good approximation in the leading
edge be given by

Us0(ζ ≫ 1)≈ a′1 (−∆v) e−λ1ζ + a2(v
†)e−λ2ζ ,

left rather than to the right.
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= a2(v
†)e−λ2ζ

(

1 +
|a′1|∆v
a2(v†)

e−(λ1−λ2)ζ

)

, (234)

where a′1 = da1/dv and where

∆v ≡ vsel − s0 = v† − s0 (235)

is assumed to be positive but small. As we explained above, the stationary
front solution in the presence of the boundary condition u = 0 at x = L
and the convective term −s0 ∂xu in the dynamical equation (232) will be the
one given by (234) on the outer scale till it crosses over to different behav-
ior when u becomes of order δ. In this crossover range, clearly the overall
term a2e

−λ2ζ must be of order δ, while the perturbative correction term will
be comparable to the dominant one. The latter implies that the exponential
term between parentheses in the second line must be of order unity in the
crossover region. Upon eliminating ζ from the two expressions obtained from
these requirements, we obtain the scaling relation

δ ∼ (∆v)β with β =
λ2

λ2 − λ1
. (236)

According to this expression the scaling exponent β depends on the properties
of the pushed front through the spatial decay rates λ1(v

†) and λ2(v
†). Since

outside the crossover region we can to a good approximation use the term
proportional to e−λ2ζ for the front profile, the distance between the point,
where the front reaches a finite value, and the point, where it is pinned by the
boundary condition u = 0, will for ∆v → 0 scale as

1

λ2
ln δ ≃ β

λ2
ln ∆v. (237)

The above scaling behavior (236) has also been obtained by Kessler et al.
[227], and as they point out this formula gives the scaling of the effect of a
finite particle cutoff on the front speed in the pushed regime (see section 7).

The scaling behavior of a pulled front is very different. In fact, as it turns out
the perturbation theory about a uniformly translating pulled front in the case
that the front is “cut off” at a small value δ of the field by a boundary condition
that makes the dynamical variable vanish, was also developed by Brunet and
Derrida [64] in the context of the stochastic fronts. We will discuss the rather
peculiar logarithmic scaling dependence in more detail in section 7.1; the final
result for the relation between ∆v = v∗ − s0 and δ obtained from Eq (246)
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below is

∆v ≃ π2Dλ∗

ln2 δ
⇐⇒ δ ≃ exp



−π
√

Dλ∗

∆v



 , (238)

where as before in this paper D is the effective diffusion coefficient which is
given in terms of the linear dispersion relation by Eq. (13) and which according
to (24) is related to the curvature of venv(λ) at the minimum v∗. Since the front
profile rises approximately as δe−λ∗(ζ−L) away from the boundary in the outer
region, the distance between the right boundary and a point where u is finite
will to dominant order diverge as | ln δ|/λ∗, i.e., as

π

√

D

λ∗ ∆v
. (239)

The detailed matching analysis in [99] and in [100] is fully consistent with
the above scaling relations and also yields the prefactors for the specific non-
linearity f(u) used in (232). On the other hand, our arguments show that
these scaling results hold more generally for uniformly translating pulled and
pushed fronts which are pinned by a zero boundary condition. In fact, the
arguments apply to coherent pattern forming fronts too; indeed the result of
[100] for pulled fronts in the quintic CGL equation (103) are consistent with
the above dominant scaling behavior as well.

6.2 Fronts in nonlinear global modes with slowly varying ε(x)

Just above the threshold to instability of a global mode, a weakly nonlinear
description in terms of the single most unstable mode suffices. However, as
soon as the interval [x−, x+] and ε(x) are sufficiently large, it is more natural
to think of the the nonlinear structures as being decomposed into various
regions, as sketched in Fig. 60(c): a front region where the amplitude rises
quickly, a bulk region where a well-developed pattern exists whose properties
follow the local variation of ε(x) and a tail region where the pattern amplitude
decays back to zero. Most of the analysis of such type of structures has been
done in terms of a cubic or quintic CGL equation with a slowly spatially
varying ε. To emphasize the separation of scales, let us denote the slow scale
on which ε is varying by X . Since the CGL equation is of second order in its
spatial partial derivatives, there are always two roots q corresponding with
a given amplitude a of a phase winding solution of the form A = a eiqx−iΩt

of the homogeneous (translationally invariant) CGL equation — see sections
2.11.5 and 2.11.6 and in particular Eq. (99). Hence, when ε varies on a slow
scales X much larger than q−1, it becomes possible to treat the two roots
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q± as slow variables q±(X) whose variation can be treated by a nonlinear
WKB type analysis — as is well known [105,155,193,413], the phase is the
slow variable of the translation invariant CGL equation, while the amplitude
is slaved adiabatically to the phase dynamics.

Intuitively, we expect that when we consider structures of the type sketched in
Fig. 60(c), the region on the right should be close to a front-type solution of the
type we have discussed in this paper for translationally invariant systems, and
that depending on the dynamical equation under investigation these front-like
regions could be either pulled-like or pushed-like. How does this emerge in the
above type of WKB analysis? Very simply: if the translation invariant equation
admits pulled front solutions, the existence of a front type region is signaled
by the two roots q±(X) both approaching the linear spreading point values k∗

in some region [342,343,344], while if the translation invariant equation admits
pushed fronts [101] there is a region where the profile is dominated by one of
the roots which is locally close to the mode k2 of the underlying pushed front
in accord with the defining property (76) of a pushed coherent front solution.

For further discussion of these scenarios and of the detailed scaling analysis of
the width of the various regions we refer to the literature. In closing it is also
useful to point out that while the idea of a global mode has emerged mostly in
the fluid dynamics literature in recent years, the problem of pattern selection
through a slowly varying control parameter — often called a “ramp” — was
already considered in the 1980ies both from a more general perspective and
for various specific problems [140,237,280,299,362,368]. Not surprisingly, there
are strong similarities between these approaches and those mentioned above.

7 Elements of Stochastic Fronts

We have so far limited the theoretical analysis of front propagation into unsta-
ble states to the case in which the front dynamics is governed by deterministic
dynamical equations. In this last section on special topics we finally briefly
address some elements of the propagation of stochastic fronts into an unstable
state.

We do want to stress that we will only touch on a few selected topics that
tie in with this review’s main emphasis on deterministic fronts. First of all,
in reading this section, one should keep in mind that the study of stochastic
fronts is a vast field in itself, to which we can not do full justice. Our choice
will be to focus on those issues that are connected with the question of how
the deterministic limit can be approached, and on how the front velocity and
front diffusion coefficient behave in that limit. Secondly, as is well known,
the critical scaling properties of fluctuating growing interfaces are an active
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research subject in itself [22,195,239]. We will not directly touch on these
interesting issues, except for a brief discussion at the end of this section of the
question whether fluctuating pulled fronts are in a different universality class
from the normal type of fluctuating interfaces.

In section 5.2 we have seen that while singular perturbation theory works fine
for weakly curved pushed fronts or for one-dimensional fronts in a slowly spa-
tially varying external field, it breaks down for pulled fronts. We saw that this
implied that while the motion of a weakly curved pushed front can be mapped
onto an effective sharp interface model, such an interfacial description does
not apply to fluctuating pulled fronts. These findings carry over to fluctuating
fronts propagating into an unstable state: when these are pushed, their asymp-
totic scaling properties are simply those of an appropriate interface model. For
pulled fronts, on the other hand, the situation is more complicated: as we shall
discuss, fluctuating variants of fronts which in the mean field limit are pulled
are very sensitive to noise or to the cutoff effects introduced inherently in sim-
ulations with discrete particles executing stochastic jumps. We will focus our
discussion on these effects which are special to fluctuating fronts propagating
into a linearly unstable state. A more detailed review of several of these issues
is given by Panja [332].

It is amusing to note that on hindsight, it is fair to say that the first clear
evidence of the strong finite-particle cutoff effects on fluctuating fronts already
surfaced in 1991 [58] in the context of a mean-field analysis of Diffusion Limited
Aggregation (DLA) fingers. It had been found empirically that when one grows
many DLA fingers in a channel, the level lines of the average occupation
density of these fingers is very close to the shape of viscous fingers. When
researchers made attempts to study this issue with the aid of the mean-field
equations for this density, they ran into the problem that the naive theory,
which was based on the existence of pulled fronts in these equations [313],
leads to divergences in two dimensions. Brener et al. [58] then showed that if
the nonlinear growth term is modified, the fronts behaved properly and the
theory reproduced the observed behavior. The broader implications of this
empirical trick seem not to have been realized at the time. In hindsight, this
was the first sign that in a finite-particle model like DLA, the fact that there is
no growth if there is no particle at all makes the front intrinsically pushed and
that this is crucial for the model to be well-behaved. This will be a recurrent
theme in our discussion.

In the next section, we will first discuss the slow convergence to the asymptotic
spreading speed v∗ as a function of N , the average number of particles in the
saturated state behind the front in a stochastic discrete particle model. Then
we briefly review some of the field-theoretic formulations of stochastic fronts,
and we close with a short discussion of the implications or our findings for the
asymptotic scaling properties of fluctuating fronts in more than one dimension.
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7.1 Pulled fronts as limiting fronts in diffusing particle models: strong cutoff
effects

The most natural deterministic dynamical equation that arises in the mean
field limit from a stochastic model is the F-KPP equation. After all, this
equation embodies the two essential ingredients of a lattice model with discrete
particles A which make diffusive hops to neighboring sites, and which have
some reaction of the type A ⇀↽ 2A. The latter type of reaction would after a
proper scaling lead to a nonlinearity of the type f(u) = u− u2 in the F-KPP
equation (1). In line with the literature on this subject we will in this section
take the F-KPP equation as our reference deterministic front equation, but
one should keep in mind that all our conclusions hold more generally.

One can arrive at the full continuum F-KPP equation from a stochastic lat-
tice model with discrete particles by taking the limit in which the length ℓD
which a particle diffuses before giving birth to another particle, becomes much
larger than the mean inter-particle spacing. A very nice pedagogical discus-
sion of this limit can be found in [304]. Note that while the convergence to a
F-KPP type equation in such limits is rather obvious, the precise way in which
the front diffusion coefficient Dfront vanishes is less trivial — stochastic parti-
cle models generally give rise to fronts which themselves exhibit a stochastic
wandering around the average front displacement, but Dfront generally de-
pends in an intricate way on the total front structure (see also below). We will
not review the details of such type of scaling limits here as they essentially
rely on advanced methods of probability theory, and refer to the literature
[31,55,121,127,128,223,224,304] for details.

The approach to the mean field limit that will interest us here in particular
is the case in which we allow an arbitrary number of particles per lattice site,
but in which N , the average number of particles per lattice site (or correlation
length) in the region behind the front, becomes large. Again, as N increases,
fluctuation effects are suppressed and we expect a mean field front equation
to emerge from the underlying stochastic model as N → ∞. Note that in this
case we keep Dpart fixed (and often of order unity), so we can not expect the
limit to be governed by a continuum F-KPP equation: The mean field limit
will be an equation for a continuum density variable u on a discrete lattice.
Luckily, this is no problem for our discussion as the concepts of pulled and
pushed fronts are equally well defined for difference equations, as we discussed
in section 2.4.

Even though earlier simulations [59] had already given hints of a very slow con-
vergence of the speed with N to its asymptotic value, Brunet and Derrida [64]
were the first to clearly identify this issue and to recognize that the N → ∞
convergence to the mean field limit is very different depending on whether the
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limiting front is pulled or pushed. For pushed fronts, the nonlinear front region
where the particle density u is finite determines essentially the front speed.
This is also reflected in the fact that the integrands of the solvability integrals
that arise in the singular perturbation theory of section 5.2 converge expo-
nentially. In this finite-density region the relative importance of fluctuations
decreases rapidly with N , typically as N−1/2. Hence the convergence to the
mean field limit is power law fast if the asymptotic front is pushed. For pulled
fronts, on the other hand, the situation is different: The fact that they are
pulled by the growth and spreading of arbitrarily small perturbations about
the unstable state implies that they are very sensitive to small changes in the
dynamics in the region of very small particle densities. At the very tip of any
such front is always a region where there are very few particles per lattice site
or correlation length, and where the mean field approximation breaks down:
Pulled fronts are very sensitive to the unavoidable existence of this tip region
where the particle density is of order 1/N .

Following Brunet and Derrida [64], we can understand the effect of this on
the front speed as follows. For F-KPP type equations, the asymptotic front
profiles are uniformly translating, i.e., of the type u(ζ) = u(x − vt). 103 This
is true even for pulled fronts on a lattice. As we have discussed in section 2.2,
following Eq. (25, the uniformly translating fronts with velocity v > v∗ are
monotonic and fall off simply as e−λζ (in other words, kr = 0), but for v < v∗

the solutions in the leading edge are of the form

uvN ≈ Re c e−λζ+ikrζ = c1e
−λζ sin (krζ + c2) , (240)

where c1 and c2 are real coefficients.

Let us now consider the case in which as N → ∞ the front is pulled, and
normalize the density field u such that u ≈ 1 in the region behind the front.
Let us furthermore assume that the stochastic model we consider is such that
in the very tip region of the fluctuating front — we refer to the region where
there are only very few particles per site so that the density field u is of
O(1/N) at the tip of the front — the stochastic rules are such that the growth
is significantly suppressed. This is what one typically expects intuitively, as
there needs to be at least one particle in order to have any growth at all. In
the case of suppression of the growth, one expects that the asymptotic average
front velocity vN approaches v∗ from below as N → ∞, and hence that for
finite but large N the profile in most of the leading edge is given to good
approximation by Eq. (240) above.

For uniformly translating profiles, we already saw in section 2.2 that by ex-

103Remember that as in section 2.7, we use the co-moving coordinate ζ = x− vt for
arbitrary velocities, while ξ = x− v∗t.
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Fig. 61. Schematic sketch of the front profile for a stochastic particle model for very
large N . Along the vertical axis, we plot the logarithm of the density u as a function
of the co-moving spatial coordinate ξ plotted along the horizontal axis. The leading
edge of the front, where u≫ 1, corresponds to the behavior on the right for positive
ξ. The mean field profile given by (243) is plotted as a full line, while the dotted area
gives a qualitative idea of the importance of fluctuation effects. For very large N ,
the fluctuation effects are small and can be treated perturbatively throughout most
of the leading edge, except near the tip where ξc ≃ (λ∗)−1 lnN . As the increase in
slope of the full line in this region indicates, the finite particle effects suppress the
growth.

panding about the linear spreading point we can for vN < v∗ express kr as a
function of the velocity as

kr ≈
√

λ∗(v∗ − vN)

D
, (241)

where we have used Eqs. (27) and (24) to write the result in terms of the
effective diffusion coefficient D associated with the linear spreading point.
The variation of the steepness λ is of higher order in v∗−vN and to obtain the
leading behavior we can therefore take λ ≈ λ∗; likewise we can in the analysis
below replace the co-moving coordinate ζ by ξ = x− v∗t.

Let us position this coordinate system ξ suitably so that the nonlinear front
region is roughly near ξ ≈ 0. As N becomes large, the overall exponential
behavior e−λ∗ξ of the density field u then implies that the crossover region
where u = O(1/N) is located at

ξc ≃
1

λ∗
lnN. (242)

Moreover, as Fig. 61 illustrates, upon increasing N the leading edge of the
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asymptotic profile increases logarithmically in size, as it spans the region from
ξ small to ξc defined above. On the other hand, the region where fluctuations
are important is roughly confined to a range of finite size near the tip. E.g.,
a distance of order 5/λ∗ behind the tip the typical number of particles per
lattice site or correlation length is already of order 100, so their effect is al-
ready relatively small. Stated more clearly, for any finite N the leading edge
exhibits a crossover at ξc ≃ (λ∗)−1 lnN to a fluctuation-dominated regime but
as N → ∞ the fraction of the leading edge where the fluctuating front pro-
file is accurately approximated by the mean field expression (240) approaches
100%!

The asymptotic large-N correction to the velocity now follows directly from
simple matching arguments [64]. For ξ positive but small, at the left side of the
leading edge, we know that the profile should converge to the ξe−λ∗ξ behavior
as vN ↑ v∗ and hence kr → 0. This implies c2 = 0 and c1 ≃ 1/kr, so that

uvN ≃ 1

kr
sin(krξ) e

−λ∗ξ (kr → 0). (243)

Let us now look at the crossover region at ξc; Eq. (243) immediately implies

duvN/dξ

uvN

∣

∣

∣

∣

∣

ξc

≃ kr cotg(krξc) − λ∗. (244)

As we stated above, near and beyond the crossover scale ξc the deviations from
the mean field expressions are significant, say of order unity. In order that
the above expression in the leading edge is consistent with this, the matching
condition we have to impose is that the right hand side of the above expression
(244) deviates more than infinitesimally from the value 1/ξc−λ∗ it has in the
limit kr → 0, ξc fixed. This is only possible if the argument of the cotangent
approaches π in this limit, 104 hence if in dominant order

kr ≃
πλ∗

lnN
, (245)

so that according to (241) we finally have

vN ≃ v∗ − π2 λ∗D

ln2N
+ · · · . (246)

104This is the smallest value of kr satisfying this constraint. Higher values are asso-
ciated with profiles which have oscillations in the leading edge itself, and therefore
rejected.
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This is the central result for the dominant large-N correction that was first
obtained by Brunet and Derrida [64]. 105 As our discussion shows, this expres-
sion holds generally for fluctuating pulled fronts which converge to a pulled
front as N → ∞ and for which the fluctuation-dominated region is in the
large-N limit confined to a finite range near the tip. 106 Just like the power
law convergence to v∗ of a deterministic front is universal and independent of
the details of the model (see sections 2.9 and 4), so is this large-N convergence:
like the expressions for the temporal convergence it only depends on λ∗ and
D, quantities which are completely determined by the linearized equations of
the deterministic (mean field) limit! Note also that the universality is inti-
mately related to the logarithmic N -dependence: the only input condition for
the derivation is the fact that the region where the strength of the fluctuations
is non-vanishing remains finite in the limit N → ∞. Since lnN/a ≃ lnN in
dominant order, this implies that the asymptotic behavior is independent of
the precise behavior in the fluctuation region — it does not matter whether
the cutoff is effectively at 100/N or at 1/N — the only thing that matters is
that it scales as N−1!

The above logarithmic correction to the front velocity contrasts with the power
law dependence δv ∼ N−1/β derived for the the pushed regime in Eq. (236)
above. This scaling behavior was first pointed out and verified by Kessler et
al. [227].

To perform an explicit calculation, one of course needs an explicit model. In
their paper [64], Brunet and Derrida did the detailed matching analysis for
the deterministic F-KPP equation (1) with a cutoff for the nonlinear growth
function f of the form sketched in Fig. 62(a), i.e., f(u, ε) = Θ(|u|−ε)u(1−un),
where ε = 1/N .

This deterministic front model has the advantage that many aspects can be
calculated explicitly, and that it helps one to get intuitive insight into the
behavior. For instance, since there is no growth for |u| < ε arbitrarily small
perturbations about the state u = 0 do not grow: a Gaussian initial condition
with maximum less than ε = 1/N just spreads out diffusively, without growing
in amplitude. Strictly speaking, therefore, the state u = 0 in this model is not
linearly unstable in the sense we have defined it. An immediate consequence of
this is that for ε 6= 0 fronts in this equation can not be of the pulled type 107 —

105It is amusing to note that from a technical point of view the same result emerged
the same year in the work of Chomaz and Couairon [99] on global modes from a
very different perspective — see Eq. (238).
106We shall see in section 7.3 below that when the strength of fluctuations scales with
the density field itself (rather than with the square root of it), then the fluctuations
throughout the whole leading edge contribute. The fluctuation behavior of such
fronts is in a different universality class.
107Keep in mind that this is only true for this particular model. If one takes instead a
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Fig. 62. (a) The nonlinear function f(u, ε) used by Brunet and Derrida [64] in the
F-KPP equation to study the effect of a cutoff on the growth function at ε = 1/N .
Since ε≪ 1, the nonlinear behavior of f for values of u of O(1) is not visible on this
scale. (b) The nonlinear function f(u, ε, r) analyzed by Panja et al. [330] (thick line).
In a small interval of u of order ε the growth is enhanced. For r < rc = 0.283833
the fronts are pushed in the limit ε→ 0. Stochastic simulations confirm this effect.

they are pushed! In line with the fact that the stability spectrum of a pulled
front is generally continuous, while it is discrete for a pushed front, one can
calculate the relaxation times τm of the slowest relaxation modes of the fronts
in the above model to find [227,328]

1

τm
≃ π2[(m + 1)2 − 1]

ln2N
, (m ≥ 1). (247)

The modes associated with this slow relaxation extend throughout the whole
leading edge; that they are also relevant for fluctuating fronts is for the same
reason that for N → ∞ the dominant velocity correction is determined by
the matching of the mean field front profile to a finite cross-over region where
fluctuations are important. Even though the relaxation times diverge as N →
∞ the logarithmic divergence is so slow that for many practical values of N
the relaxation time is still relatively short. If so, convergence to the asymptotic
speed vN is relatively fast [227], and for all practical purposes the front behaves
like a pushed front.

The prediction (246) for the asymptotic large-N velocity correction of fluctu-
ating fronts has been corroborated 108 by simulations of a variety of stochastic

modified models in which f(u) = µu for |u| < ε and with µ < 1, then the state u = 0
is linearly unstable, but strictly speaking the linear spreading speed is then equal
to 2

√
µ. Since this is less than the spreading speed to which the model converges in

the limit ε → 0, the velocity correction is than still given by (246). Also from this
point of view we conclude that the dynamically relevant front is a pushed one. The
details of the matching analysis and of the calculation of the relaxation spectrum
are different in this case, but the final conclusions are the unchanged.
108Kessler et al. [227] have reported a discrepancy of a factor of 2 in the prefactor
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lattice models [59,64,65,66,227,329,430]; also field-theoretic arguments are in
agreement with this prediction [337] for reasons we shall come to below in the
next section.

For any finite N , a front in a stochastic model also shows a stochastic wander-
ing about the average position. This diffusive wandering, which for the type
of models we are interested in can be studied by tracking, e.g., the position of
the point where the particle density reaches a certain fraction of the average
particle density behind the front, 109 can be characterized by a front diffusion
coefficient Dfront. The large-N asymptotic scaling of Dfront is very difficult to
study by simulations since one needs reliable data over several decades while
Dfront rapidly becomes very small. Nevertheless, Brunet and Derrida have been
able to study the scaling in simulations of a stochastic model which is closely
related to the clock model of section 3.23, by using a clever trick which allowed
them to go up to values of N of order 10150. They obtained a scaling

Dfront ∼ 1/ ln3N, (N → ∞), (248)

and empirically found that this asymptotic scaling originates from fluctuations
in the tip region: In a simplified version of their model in which only the very
first lattice site of the front shows stochastic fluctuations, they observed the
same asymptotic behavior for Dfront as in their full model. It appears that the
behavior is associated with the fluctuation behavior of the low-lying modes of
the stability operator of the deterministic equation, whose relaxation time τm
is given in (247) above. 110

of the 1/ ln2N correction, but the simulations by Panja [329] do not find evidence
for such a large deviation.
109In models in which the total number of particles remains fixed, like in the clock
model of section 3.23 or the model studied by Brunet and Derrida [64], one can
equivalently track the center of mass of the particles. However, in models where
the particle density behind the front region is finite, one has to be careful not to
include the fluctuations from this region — the total mass fluctuations in this region
will grow proportionally to

√
NL where L is the size of this region. Since L grows

linearly in time, this will look like a diffusive behavior, but it has nothing to do
with the diffusive wandering of the front position that is of interest here and in the
stochastic Langevin models discussed in the next section.
110If one follows the arguments of [365] by expanding the fluctuation behavior of the
fronts in terms of the eigenmodes of the stability operator, one finds that for large
N the coefficients in this expansion obey Langevin-equations with noise which is
exponentially dominated by fluctuations at the tip. Moreover, the noise that drives
the different coefficients is correlated. It is easy to convince oneself that the resulting
expressions (and Eq. (251) below) lead to logarithmic scaling of Dfront but whether
such arguments lead to the behavior (248) is at present unclear to me. It is also
possible that non-perturbative effects like those discussed in the next section are
important.
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The analysis we have sketched above only identifies the leading order finite-N
velocity correction. This term is remarkably universal; it appears that if one
wants to go beyond this term, one is forced to perform a detailed analysis of
the fluctuations in the tip region, and to match the behavior there to the front
profile in the rest of the leading edge. This is a complicated problem, because
the number densities in the tip region are small so that standard perturbation
methods do not apply. Although a first-principles theory is still lacking, quite a
bit of insight is obtained from an approximate analysis [329] in the tip region,
which focuses on the stochastic behavior of the foremost occupied lattice site
(an idea that has also played a role in earlier stochastic lattice models for small
values of N [31,223,224,331]). This analysis shows that corrections beyond the
leading velocity correction term depend on virtually all the details of the
microscopic model, including the precise mean-field behavior in the region
behind the front. In fact, in the tip region the lattice and finite-particle effects
are so important that the profile is not truly a uniformly translating profile
anymore [328].

Finally, it is good to stress once more that the analysis summarized above is
based on the assumption that the fluctuation effects in the tip region suppress
the growth. Obviously, if the growth rate for u of order 1/N is enhanced, the
very tip region can move faster than v∗ of the unperturbed case, and this
will lead to a pushed front with asymptotic velocity larger than v∗. It easy to
show this explicitly following the lines of [64] by using the growth function
shown in Fig. 62(b). The explicit analysis shows that for r < rc = 0.283833
the asymptotic front speed in the limit ε = 1/N → 0 is indeed larger than v∗.
Simulations of a stochastic particle model in which growth rates for particle
occupancies of 3 or less are enhanced in the same way as suggested by the
function f(u, ε, r) of Fig. 62(b) already show this enhancement of the average
front speed. Note that these results clearly illustrate that the limits do not
commute: if we take the limit ǫ→ 0 in the function f , we arrive at the classic
F-KPP equation with asymptotic velocity v∗ = 2, while if we consider fronts
with ε > 0 and r < rc and then take the limit ε → 0, we get a pushed front
with speed v† larger than v∗!

Since the main conclusions of this section affect the gross features of fluctuat-
ing fronts in more than one dimension, we summarize them below:

Fronts in stochastic particle models which in the mean field limit N → ∞
converge to a pulled front solution, are generically pushed fronts for any
finite N . Their speed relaxes exponentially in time to an asymptotic speed
vN which for models in which the growth at small particle occupancies is
suppressed relative to the mean field value, is given for large N by (246).
Different growth rules at very small particle numbers can give pushed fronts
for finite N with speed v† larger than the spreading speed v∗ of the mean
field limit.
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For a fixed N one has to consider such fluctuating fronts as being “pushed”
as far as their long-time large-size scaling properties is concerned (see section
7.3 below). On the other hand, all the special scaling properties as N → ∞
originate from the fact that in this limit one approaches a pulled front solution.
To remind us of their special character, we have therefore sometimes referred
to such fronts as fluctuating “pulled” fronts [328]. However, as we will see
below, even this name does not do full justice to the fact that in particle
models, the fluctuation properties of the fronts are essentially like those of
pushed fronts, not like those of pulled fronts.

A remarkable consequence of the effects discussed in this section has been
demonstrated by Kessler and Levine [228]. As we discussed in section 3.13,
there are deterministic pulled fronts which do now show a long-wavelength in-
stability for any value of the parameters, but which do so for suitable diffusion
ratios as soon as they are pushed. As we have just seen, finite particle effects
are sufficient to induce this crossover, and as was shown in [228] in this way
finite particle effects can induce a long-wavelength interfacial instability.

7.2 Related aspects of fluctuating fronts in stochastic Langevin equations

The previous discussion has already mentally prepared us for another sur-
prise concerning fluctuating fronts in field-theoretic approaches to the study
of fronts propagating into an unstable state. In a field theoretic formulation,
the natural starting point to study propagating fronts in the presence of noise
[10,11,129,130,177,176,259,260,289,297,337,377,409] is to start with a stochas-
tic version of the F-KPP equation (1),

∂tu(x, t) = ∂2xu(x, t) + f(u(x, t)) + g(u(x, t))η(x, t). (249)

In this Langevin-type equation η is a stochastic noise term which is delta-
correlated in space and time with strength 2µ,

〈η(x, t)η(x′, t′)〉 = 2µ δ(x− x′)δ(t− t′), (250)

where the brackets denote an average over the noise. Since η is multiplied
by some function g(u) of the fluctuating field u in (249), the noise term is
“multiplicative” rather than additive. 111

111As is well known, for a stochastic differential equation with multiplicative noise,
one faces the question whether the noise is interpreted in the Itô or in the
Stratonovich sense. The issues we address here are unaffected by the particular
choice one makes, so we refer to the literature [12,176,177] for further discussion.
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The form of the function g in (249) that gives the noise strength as a function
of the dynamical variable u, depends on the physical model for the noise. When
the origin of the noise lies in the fluctuations in the number of particles per
correlated volume or per lattice site, then it is customary to take g(u) ∝ √

u.
The rationale behind this is that quite generally the fluctuations in the number
of stochastic moves of n independent particles in some correlated volume or
at some lattice site is of order

√
n; after normalization this gives fluctuations

of order
√
u in the particle density. In simulations, it is often advantageous to

take the function g(u) to vanish too in the saturated state behind the front, so
that fluctuations in the trivial state behind the front are suppressed (compare
footnote 109).

If the noise originates from independent random fluctuations in one of the
parameters of the function f(u), it is natural to take the noise strength g(u) ∝
u for small u (see [366] and references therein). We shall come back to this
case in the next section.

Let us return to the case in which g(u) ∝ √
u for small u. The remarkable find-

ing [129,130,307] is that these stochastic fronts have compact support! In other
words, these stochastic fronts are identically zero beyond some finite value of
x [307]. This is illustrated in Fig. 63. Since for any finite time front solutions
in the deterministic F-KPP equation are nonzero for all x, this implies that
this type of noise has a non-perturbative effect on fronts — we can not think
of the noise as being a small stochastic perturbation on top of an underlying
smooth front profile that obeys a mean-field like deterministic equation!

The fact that fronts in stochastic front equations with multiplicative noise with
g ∝ √

u for small u have compact support has as a remarkable consequence
that they show the same surprising 1/ ln2N scaling of the correction to the
front velocity in the small noise limit (µ → 0 in (250) [337]. The reason for
this is clear from the discussion of the previous section: as long as the non-
perturbative effects of the noise is limited to a finite region near the tip of
the front, then as we saw the 1/ ln2N scaling of the velocity correction results
from the matching analysis of the part of the leading edge of the front where
the noise effect becomes arbitrarily small in the limit N → ∞.

There are many intriguing and open questions regarding such stochastic fronts,
but we refer to the two recent papers by Doering et al. [129,130] for further
discussion of such issues. To my knowledge, an open question is a proper un-
derstanding of the scaling (248) of the front diffusion coefficient Dfront, e.g, by
exploiting the fact that in some limits the behavior of such Langevin equa-
tions can be mapped onto finite particle models using a duality transformation
[129,130,337].
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Fig. 63. Snapshot of a stochastic front in a simulation by Doering et al. [129] of the
stochastic F-KPP equation (249) with f(u) = u(1 − u) and g(u) =

√

u(1 − u) (full
line). With this function g(u) there are no fluctuations in the stable state u = 1
behind the front. The dashed line is a plot of a uniformly translating front profile of
the deterministic F-KPP equation (1). Note that the stochastic front solution has
compact support: the dynamical variable is identically zero beyond some point. The
deterministic front solution, on the other hand, is nonzero at every position.

We stress once more that these considerations are in practice essentially only of
importance for fronts which are pulled in the mean-field limit. As we mentioned
earlier, the discussion of section 5.2 showed that singular perturbation theory
does apply to pushed fronts, and this means that in the weak noise limit one
can study the effect of noise on the motion of pushed fronts perturbatively.
As an example, we note that for small noise strength the diffusion coefficient
Dfront of pushed fronts is given by

Dfront = µ

∫∞
−∞ dζ e2vasζ (dU0/dζ)2 g2(U0)
[

∫∞
−∞ dζ evasζ (dU0/dζ)2

]2 . (251)

Here g is the multiplicative noise strength in (249) and U0(ζ) = U0(x−vast) is
the pushed front solution of the deterministic limit of this stochastic differen-
tial equation [11,297,365]. This expression has the typical structure discussed
in section 5.2, a ratio of two solvability-type integrals with the perturbing
term in the numerator — compare, e.g., Eq. (228). For pushed fronts the in-
tegrands vanish exponentially for large positive ζ and hence pushed fronts are
quite insensitive to the non-perturbative effects in the tip region when the
stochastic noise is turned on. But, as we already discussed in section 5.2, for
pulled deterministic fronts the integrals do not converge; the anomalous scal-
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ing properties of fluctuating pulled fronts that we will discuss in the section
below are a result of this. Armero et al. [11] have compared the above ex-
pression for Dfront with extensive numerical simulations of pushed fronts with
noise, and found that the formula works quite well, even at appreciable values
of the noise strength µ.

7.3 The universality class of the scaling properties of fluctuating fronts

Now that we understand some of the important features of the behavior of
stochastic fronts in one dimension, let us close with considering the implica-
tions for the universality class of the scaling properties of these propagating
fronts in more than one dimension.

As we noted in the very beginning of this section on stochastic fronts, the scal-
ing properties of fluctuating front and interfaces is usually studied in terms
of interface models like the KPZ equation [22,195,218,239]. Now, even though
in the limit N → ∞ some stochastic fronts can become pulled, for any fixed
N or noise strength µ the stochastic fronts we have examined all are pushed
fronts. Therefore, in view of the conclusion of section 5.2 that pushed fronts
do map onto an effective interface model for their long-wavelength and long-
time dynamics, these models should all effectively map onto one of the fa-
miliar type of interface models that have been studied so extensively in the
literature[22,195,218,239]. Or, to put it differently:

the particle lattice models or the stochastic differential equations with mul-
tiplicative noise and g(u) ∝ √

u which in the mean field limit map onto
dynamical equations with pulled fronts, are in practice in the same univer-
sality classes as the usual interface models that one would naively write
down for them.

As a historical note, it is only fair to admit that I got this issue wrong initially
[402]. When we started to wonder about the question whether fluctuating
pulled fronts might be in a different universality class, we were motivated by
several observations: (i) the fact that deterministic pulled fronts do not map
onto an effective interface model; (ii) the fact that their dynamics is driven
by the dynamics in the semi-infinite region ahead of the front itself rather
than the dynamics in the front region itself; and (iii) the fact that there
were simulations of stochastic versions of the F-KPP equation [363] which
appeared to suggest that in two and higher dimensions such fronts are in a
different universality class than the KPZ equation. This made us argue [402]
that stochastic lattice model realizations of the F-KPP equation with pulled
fronts would exhibit non-KPZ scaling. The insight summarized above that
both lattice model realizations and Langevin-type versions with multiplicative
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noise strength proportional to
√
u make the fronts always pushed invalidates

this conjecture. In fact, soon after our proposal, Moro [303] demonstrated this
and presented numerical simulation results in support of this.

There is actually one rather special case where fluctuating fronts deserve to
be viewed as genuinely pulled, and for these the scaling properties seem to
be anomalous indeed [364,403]: if one has a medium in which the parameters
entering the nonlinear growth function f(u) are fluctuating (see, e.g., [366]),
a natural model is to take g(u) ≈ u for small u in (249). Let us consider the
case that the growth function f(u) is such that the fronts are pulled, and that
f ′(0) = 1. In the presence of noise the leading edge equation for a front in d
bulk dimensions then reads 112

∂tu = ∇2
xu+ (1 + η)u. (252)

If the front propagates on average in the x direction, then upon transforming
to the co-moving frame ξ = x− v∗t = x− 2t the equation for the leading edge
variable ψ = eξu, which already played an important role in the analysis of
the universal relaxation of pulled fronts in section 4.1, reads

∂tψ = ∇2ψ + ψη. (253)

As is well known, with a Cole-Hopf transformation ψ = eh this equation
reduces to the standard KPZ equation [22,195,218,239] for h,

∂th = ∇2h+ (~∇h)2 + η. (254)

The point to note about this simple argument is that one arrives at the KPZ
equation in the dimension of the system in which the front propagates: h and
the noise η are functions of both the ξ coordinate perpendicular to the front
and the coordinates parallel to the front. This implies that the universality
class of such genuinely pulled fluctuating fronts is that of the KPZ equation,
but in one dimension higher than one would naively guess if one would think
of the front as a moving interface [364,403]. One implication of this is that
such fronts in one dimension show sub-diffusive behavior, an observation that
is corroborated by numerical simulations [364].

We emphasize again that this anomalous scaling — KPZ-type scaling but in
one dimension higher than one would naively expect — is only expected if the
effective equation is of the form (252), i.e., if the strength g(u) of the noise is

112We immediately focus on the analysis in the leading edge, where nonlinear terms
in u can be ignored. In section 4.3 we showed that the nonlinear terms play the role
of a boundary condition for the leading edge dynamics.
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linear in the dynamical field u. As we discussed above, intrinsic fluctuations
like those that arise naturally in any particle model correspond naturally to
fluctuations of strength proportional to

√
u and in such models one indeed

never sees signs of anomalous diffusion or scaling behavior. I believe that this
is due to the following. Whatever the precise model, the relative strength
g(u)/u of intrinsic fluctuations is stronger the smaller u, i.e., the stronger
the smaller the number of particles. Now, it is easily seen from (251) that
whenever g(u)/u behaves as u−γ with γ > 0 for small u, the integrand in the
numerator is exponentially dominated by the contributions at the tip of the
front. This means that fronts with intrinsic fluctuations behave like objects
with fluctuations in a finite region and hence with normal scaling behavior. In
other words, only if fluctuations throughout the whole leading edge contribute
equally to the fluctuating behavior (γ = 0), as they do when they are driven by
fluctuations in an external parameter (or possibly for error propagating fronts
— see the last paragraph of section 3.22), will one see anomalous (transient)
scaling. In realistic particle models, one won’t.

These observations illustrate that the behavior of a fluctuating front is subtle.
Because they operate close to a bifurcation point, whether or not we should
think of them as being close to being pulled depends on the quantity under
consideration. Indeed, regarding their velocity, we can consider such fronts as
being “weakly pulled” for large N in the sense that their velocity approaches
v∗ for N → ∞, but when we consider the fluctuation properties of a front with
intrinsic fluctuations we should not think of them as being weakly pushed. 113 .
Hopefully future research will clarify these subtleties and the scaling behavior
(248) of Dfront.

8 Outlook

In this article we have aimed to introduce the subject of front propagation into
linearly unstable states from a unifying perspective, that allows us to bring
together essentially all important developments in this field. The concept of
linear spreading speed v∗ not only aids in developing an intuitive understand-
ing and in sharply defining pulled and pushed fronts, but it also lies at the basis
of the formalism that allows one to derive the universal relaxation towards the
pulled front speed, using matched asymptotic expansions. In addition, “global
modes”, the breakdown of an effective interface formulation of pulled fronts
or the universal large-N velocity corrections of stochastic fronts can all be
naturally approached from this perspective. The many examples that we have
discussed show the ubiquity of the problem of front propagation into unstable

113This was stressed in particular to me by E. Moro.
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states, and illustrate how one can understand an enormous variety of systems
with a few simple tools.

There are several open issues. Concerning deterministic fronts, the most press-
ing one is a sharp definition, using an appropriate averaging procedure, of an
incoherent pushed front. In what sense are incoherent fronts which arise from
the nonexistence of coherent pattern forming fronts different from incoherent
fronts which originate from the instability of coherent fronts? Furthermore,
while our definition of coherent pattern forming pushed fronts is consistent
with what is know for the quintic CGL equation or extensions of the Swift-
Hohenberg equation, such types of fronts remain relatively unexplored. For
pulled fronts in periodic media, we have conjectured that their asymptotic
speed can be calculated using Floquet analysis, but this proposal remains to
be explored. Also our understanding of stochastic fronts, especially when they
are close to the mean field limit, is still incomplete. In addition, I have the
impression that the difference between pulled and pushed fronts may be un-
derestimated in the fields of turbulent combustion and wave propagation in
periodic media. Finally, even though we have argued that there are hints of
slow convergence to the asymptotic speed in experiments specifically aimed
at probing pulled fronts, only very accurate new experiments can settle this
issue.

Of a different nature are the challenges posed by pushed fronts. Even though
the mechanism of pushed front propagation for uniformly translating and co-
herent pattern forming fronts can be considered known, making concrete pre-
dictions for a given problem requires the explicit construction of the nonlinear
pushed front solution. Even for nonlinearly translating fronts, this is a highly
nontrivial problem for any equation beyond the F-KPP equation. Moreover, I
do not think there is much hope that there will ever be a general framework
that allows one to calculate pushed front solutions for large classes of equa-
tions, as every detail counts. Guessing how one can add a term to a dynamical
equation to make the front propagation become pushed is often trivial, but
any serious analysis of pushed fronts is often virtually impossible — the fact
that the pushed front solutions of the quintic CGL equation can be obtained
analytically is an exceptional miracle.

For those mathematicians who only accept rigorous proofs, almost everything
in this paper can be considered an open issue. The route we have chosen to
follow here is quite different from the usual one favored in the mathematics
literature. I believe the approach we have advanced here is ready to be put on
rigorous footing. If this will be done, it will undoubtedly allow one to approach
large classes of equations at one fell swoop.
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A Comparison of the two ways of evaluating the asymptotic linear

spreading problem

There are two ways to extract the long-time asymptotics of the general equa-
tion (44),

φ̂(k, ω) = Ĝ(k, ω) · Ĥ(k, ω) · φ̄(k, t = 0), (A.1)

depending on whether one first evaluates the ω-integral of the inverse Laplace
transform, or the inverse k-integral of the Fourier transform. The first route
most closely parallels our earlier discussion of section 2.1. Indeed, if we first
evaluate the ω-integral — which runs along a line in the upper half ω-plane, as
(42) converges for sufficiently large ωi, so the functions are analytic sufficiently
far up in the upper half ω-plane — then the poles where |Ŝ| = 0 determine
the dispersion relations ωα(k) of the various branches which we label by α.
The remaining spatial Fourier inversion then has a form similar to (8), except
that there is an additional sum over the branch index α, and that associated
with each branch α and wavenumber k there is an eigenvector Û of the linear
dynamical matrix (see section 5.5 of [144] further details). From there on, the
analysis is essentially similar to the one given for a single field in section 2.1 for
each branch. If it so happens that there is more than one branch where modes
are unstable, then it is possible that there is more than one linear spreading
velocity v∗α. Since we are considering a fully linear problem, it is clear that the
largest value of v∗α is the relevant linear spreading velocity for generic initial
conditions which have nonzero overlap with the associated eigenvector Û . We
refer to the largest velocity of these as the linear associated with each of these
branches spreading velocity v∗ and likewise associate k∗, λ∗ and D with the
values at the corresponding linear spreading point. 114

The advantage of this line of analysis (first evaluating the ω-integral by con-
tour integration) is that the importance of initial conditions is immediately
clear. In complete analogy with (37) and the earlier discussion, so-called steep
initial conditions, for which the amplitudes of the components φm(x, t = 0) de-
cay faster than exp(−λ∗x), lead to profiles which asymptotically spread with
velocity v∗.

The second route to extract the long time asymptotics is the one which was
developed since the late 1950-ies in plasma physics. We only summarize the
essentials here and refer to [49,62,204,264] for details. The main idea of the

114Since the discussion of section 2.2 implies that each velocity v∗α corresponds to
the minimum of a curve vα,env, it is sometimes said that the selected speed is the
maximum of the minimum velocities. An example where this was checked for fronts
can be found in [334].
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analysis is the following. For each ω, there are poles of the integrand in the
complex k-plane, so when ω varies along the ω-integration path in the upper
half of the complex ω-plane which runs parallel to the real axis, the poles
trace out curves in the k-plane. Imagine now that we lower the ω-integration
path; then these lines of poles in the k-plane will shift. If one of these lines
of poles tends to cross the k-axis, we just deform the k-integration path, so
as to avoid the lines traced out by the poles. Now, we can continue to deform
the k-integration path so as to avoid the lines of poles, until at some point,
upon lowering the ω -path, two lines of poles in the k-plane come together from
opposite sides of the integration path and “pinch off” this path [49,62,204,264].
Where will this “pinch point” be? Not surprisingly, it is the same as the saddle
point in the previous formulation. Indeed, since close to the the point ω∗

α, k∗α

ω − ω∗
α ≈ 1

2

d2ω

dk2

∣

∣

∣

∣

∣

k∗α

(k − k∗α)2 = −iD(k − k∗α)2, (A.2)

we have

k − k∗α ≈ ±
√

i(ω − ω∗
α)/D. (A.3)

Hence as the ω-integration path is lowered towards ω∗
α, two poles in the k-plane

merge together to “pinch off” the k-contour. In this analysis, which is often
referred to as the “pinch point analysis”, one thus evaluates the k-integral
first and then performs the ω-integration. In view of (A.3), after performing
the k-integration there is a branch cut in the ω-plane. Evaluation of the ω-
integration around the branch cut then gives the same expressions as those
we found before.

The above discussion of the pinch point analysis gives the long-time asymp-
totic behavior of the Green’s function. This implicitly means that delta-function
like initial conditions are assumed; the possibility of exponentially decaying
initial conditions is usually not discussed in the literature, but these do lead to
the same conclusions as before: steep initial conditions lead to profiles spread-
ing asymptotically with velocity v∗. In fact, since the k-integral is closed first
in the pinch-point analysis, poles in the complex k-plane arising from exponen-
tially decaying initial conditions give rise to additional terms in the ω-integral
which compete with the contribution from the pinch point in a way similar to
the one we discussed before in section 2.2.

One final caveat is important. While the linear spreading point k∗ is deter-
mined by a local condition, the relevance of this point for the dynamics is
subject to some (mild) conditions on the analytic structure in the k-plane. In
the first formulation, where we focus on the k-integral evaluation given the
dispersion relation ω(k), the underlying assumption is that the k-integration

219



path can be deformed continuously to go through the saddle point. In other
words, there should be no branch cuts or non-analyticities to prevent us from
reaching this point. Furthermore, the condition that at the spreading point
D > 0 is important. For, if this condition is not fulfilled, then if we would
write φ(ξ, t) = e−λ∗ξψ, the equation for ψ is governed by a negative diffu-
sion coefficient [see section 4.1, Eq. (199)]. This means that convergence to a
smooth asymptotic exponential behavior is not possible for D < 0.

Likewise, there are conditions on the analytic behavior in the pinch point
formulation: the “pinching off” of the deformed k-integration path by the
two lines of poles in the complex k-plane means that these two lines have
to be analytical continuations of branches which are below and above the k-
integration path when it was running along the real k-axis. It actually appears
to me that the precise status of such conditions and of the relation between the
conditions in the two formulations is not fully understood. E.g., the condition
D > 0 is not generally found in the pinch point literature. 115 Nevertheless, our
pragmatic point of view in this paper is that once can proceed with the general
analysis laid out in this paper, keeping in mind that for any given problem, one
can explicitly check whether the conditions underlying the general derivation
are satisfied.

B Additional observations and conjectures concerning front selec-

tion

It turns out that the exact pushed front solutions of the F-KPP equation
obtained by the “reduction of order method” discussed briefly at the end of
section 2.7.1, do have some special properties in the complex ζ-plane [188].
This has led to the speculation that these properties hold more generally[188]
— if true, this would allow one to obtain the pushed front speed v† without
explicitly constructing the strongly heteroclinic front profile itself. However,
the fact that pushed front solutions are sensitive to every change in the equa-
tions indicate that such a remarkable property is very unlikely; detailed in-
vestigations and the construction of an explicit counterexample have indeed
confirmed that the idea is untenable [82].

115In view of (A.3) this condition implies a statement about the local orientation of
the two lines of poles in the complex k-plane: if the ω-contour grazes just over ω∗ in
the horizontal direction the condition D > 0 implies that one of the lines of poles
always lies in the upper half ∆k-plane and the other one in the lower ∆k-plane.
The example give in [49] of two poles which merge but which do not form a pinch
point, is actually an example of a point where D < 0, but whether this is accidental
I do not know. See also appendix M of [144] for further discussion of the difference
between the two methods.
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Another observation which has been proposed as a possible road to under-
standing the selection problem of uniformly translating fronts is to look for
front solutions which monotonically connect the exact unstable state φ = 0
and the stable state in a finite but large interval [0, L] of the co-moving coor-
dinate ζ [391,392]. It is clear that this requirement does reproduce the selected
speed for uniformly translating fronts. After all, this requirement amounts to
searching for front solutions which go trough zero at L when a larger interval
is considered. Now, in the uniformly translating regime the selected front is
always the only front solution which is close to a front solution Φv(ζ) which
will just go through zero when the velocity is lowered. Indeed, the pushed front
solution Φv†(ζ) has a1 = 0 and so in its neighborhood are the first solutions
(58) which have a 6= 0 and which go through zero, while in the pulled case
the first solutions which go through zero appear just below v = v∗, because
the kr 6= 0. Thus this approach is consistent with known results for uniformly
translating fronts, but it gives no insight into the underlying dynamical mech-
anism and it does not apply to pattern forming fronts. The convergence of
the velocity obtained this way to the selected one can be analyzed using the
methods discussed in section 6.1.

Recently, there has been interest in reformulating the front propagation prob-
lem in terms of Hamilton-Jacobi theory (see, e.g., [156]). At present such
methods appear to be limited to the obtaining the asymptotic front speed,
not the convergence to it. Since these results are already contained within
those discussed here, we will not discuss it further.

We finally note that the renormalization group approach developed for partial
differential equations [184] has also been used in the context of front prop-
agation [61,83,333,334]. Viewed as a reformulation of singular perturbation
theory, the renormalization group method is very useful in reinterpreting the
basis of amplitude equations and similar methods [60,184]; however, as we dis-
cuss in section 5 singular perturbation methods do not apply when one wants
to go beyond the asymptotic speed of pulled fronts, so here its use for the
front propagation problem appear to be limited. In addition, renormalization
group methods can be used to study contraction to the asymptotic speed or
front stability [61]. Whether the universal convergence towards the asymp-
totic speed can be analyzed or proved with this method, is to my knowledge
an open question.
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C Index

Several colleagues have asked me to supply an index for this paper. Unfor-
tunately, the paper format of Physics Reports does not allow for an index
with references to the page numbers. We therefore provide an index to section
numbers.

absolute instability 2.5, 2.10, 3.11, 3.12, 3.17, 6
absorbing wall 4.3
adiabatic relaxation 2.9.1, 2.9.2
amplitude equation 3.1, 3.4
autocalytic reaction 3.13
bacterial front 3.12
ballistic deposition 3.21
bending regidity 3.3
Benjamin-Feir instability 2.11.5, 3.11
biological invasion/growth model 3.13, 3.19, 3.26.3
Bloch theorem 3.18
bluff body 3.10
boundary condition 4.3
Boussinesq effect 3.2
branch cut 2.4
branches 2.4, 2.7.7
Brillouin zone 2.4
bunching 3.6
Cahn-Hilliard equation 2.7.5, 2.11.3, 3.2, 3.7
cascade model 3.26.2
Cayley tree 3.25
chaotic domain/system 3.4, 3.22
chemical front 3.13
clock model 3.23
coarsening 2.11.3, 3.14, 5
coherent pattern forming front 1.1, 2.7, 2.7.2, 2.8.3, 2.9.2, 2.11.2, 2.11.5,

2.11.6, 3.1, 4.2
coherent structure solution 2.11.5, 2.11.6
combustion 3.18
comparison argument/theorem 2.2
Complex Ginzburg Landau equation 2.11, 2.11.5, 3.9, 3.12
conservation of steepness 2.3
conserved dynamics 2.11.3, 3.7
convective instability 1.2, 2.5, 2.10, 2.11.5, 3, 3.6, 3.9, 3.10, 3.11,

3.12, 3.17, 6
convective versus absolute instability 2.5, 2.10, 3.10, 3.11
Couette flow 3.9, 3.11
counting argument 2.7.1, 2.8.1, 2.11.5
coupled map lattice 3.22
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Crank-Nicholson 2.4
crossover region 2.3
cubic CGL equation 2.11.5, 3.11
curvature correction 5.2
cutoff effect 7.1
debunching 3.6
delay equation 3.19
dendrite 3.5, 3.17, 5
deposition model 3.21
difference equation 2.4, 2.8.1, 2.9.1, 3.23
diffusion limited aggregation 3.13, 3.17
director fluctuations 3.14
discharge 3.5, 3.17
discrete set 2.11.5
disordered XY model 3.25
dispersion relation 2.1, 2.11
effective diffusion coefficient D 2.1
effective interface approximation 3.4, 3.5, 3.13, 5, 5.1, 7
effects of stability 2.7.4
entire function 2.4
Euler approximation 2.4
exponential solutions 2.2
Extended Fisher-Komogorov equation 2.11.1
error propagation 3.22
facet 3.6
ferromagnet 3.24
finite difference equation 2.4, 2.9.1
first order phase transition 3.14
F-KPP equation 1.2, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.7.1, 2.8.2,

2.9.1, 2.11.1, 3.15, 3.18, 3.19, 3.23, 3.24,
3.25, 4.1, 4.2, 5.1, 5.2, 6, 7.1, 7.2

flame 3.18, 5
Floquet theory 3.18
fluctuations 3.1, 7, 7.1, 7.3
fluid dynamics 3
fourth order equations 2.11
free energy 2.11.3, 3.3, 3.4, 3.8, 3.14, 3.15
front diffusion coefficient 7.1
front propagation/selection problem 1.1, 2.7
global mode 1.2, 3.26.4
generating function 3.25
Ginzburg-Landau theory 3.8
Green’s function 2.4, 2.12
group velocity 2.8.1, 3.12
Halperin-Lubensky-Ma effect 3.14
Hamilton-Jacobi theory App. B
hard sphere gas 3.23
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heated wire experiment 3.12
hexagonal pattern 3.2
Hopf bifurcation 3.11, 3.12
homoclon solution 3.12
imperfections 2.5
incoherent pattern forming front 1.1, 2.7, 2.7.3, 2.9.3, 2.11.4, 2.11.5, 2.11.6,

3.12, 3.22, 4.3
initial conditions 2.3
instantaneous front velocity 2.9.1, 2.9.2
integration contour 2.4
integro-differential equation 2.4, 2.8.1
intermediate asymptoticd 2.8.1
invasion model 3.19, 3.26.3
kernel 2.4, 3.19
kink 2.11.1, 3.15
KPZ universality class 2.11.4, 7.3
Kuramoto-Sivashinsky equation 1.1, 2.7.5, 2.11.4, 2.11.6, 3.2, 3.13
Landau-Lifshitz equation 3.24
large-time asymptotics 2.3, 2.4, 2.11.5
langevin equation 7.2
leading edge 1.1, 2.7.2, 4.1
leading edge dominated dynamics 2.7.6, 3.17, 3.25
leading edge transformation 4.1
leading edge variable 4.1
level line 2.9.1
Levy process 3.18
liquid crystal 3.14, 3.15
linearly unstable 2.1
linear marginal stability 1.2
linear spreadin point 2.1, 2.7.7
linear spreading speed 2.1,
lipid 3.3
locality 2.6
localized initial condition 2.6, 2.7.6
locking 2.4
logarithmic shift 2.9.1, 4.1
long wavelength instability 3.13
Lyapunov exponent 3.22, 3.23
Lyapunov functional 2.7.5, 2.11.3, 3.4, 3.14
marginal stability 1.2, 2.8.1, 3.3
matching analysis 2.9.1, 4.2, 4.3, 7.1
Mathieu equation 3.18
maximum growth condition 2.2
mean field growth model 3.21
membrane 3.3
memory kernel 2.4, 3.19
monotonic front profile 2.11.1, 3.5
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motion by mean curvature 5.2
moving boundary approximation 3.4, 3.5, 3.13, 5, 5.1, 5.2, 7
Mullins-Sekerka instability 3.8, 3.13, 3.17
multiplicative noise 7.2
nematic 3.14
node conservation 2.11.1, 2.11.2, 2.11.3, 2.11.5
noise-sustained structures 3.11, 3.12, 3.17
non-causal 2.8.1
non-conserved dynamics 3.7
non-monotonic front profile 2.11.1
non-perturbative effect 7.2
nucleation 3.1, 3.8
one-parameter family 2.7.1, 2.8.2, 2.11.5
ordinary differential equation 2.7.1
Orr-Sommerfeld equation 3.9, 3.10
Painleve analysis 2.7.1
partition function 3.25
pattern selection 1.2
pearling 3.3
periodic media 3.18
periodic front solution 2.7
phase field model 3.17, 5, 5.2
phase separation 2.11.3
phase slip 2.11.6, 3.8, 3.12
phase winding solution 2.11.5, 3.1
pinching 3.3
pinch point 2.1, 2.4, App. A
pipe flow 3.9
pitch 3.15
plasma 2.4, 3.5
Poiseuille flow 3.3, 3.9
pole 2.4
polymers 3.7
population dynamics 3.26.3
power law initial conditions 2.2
pulled front 1.1, 2.6, 2.7.1, 2.7.2, 2.7.3, 2.7.5,

2.9.1, 2.9.3, 2.11.1, 2.11.2, 2.11.3, 2.11.4,
2.11.6, 3.4, 3.5, 3.6, 3.7, 3.12, 3.13, 3.18,
3.21, 3.22, 5, 5.2, 6

“pulled front” 7.1, 7.2, 7.3
pulled versus pushed 2.6, 2.7.1, 2.7.2, 2.8.1, 2.11.6, 2.12, 3.4, 3.5,

3.13, 3.21, 3.22, 5.2
pulse-type solution 2.11.4, 2.11.5, 3.20
pushed front 1.1, 2.6, 2.7.1, 2.7.2, 2.7.3, 2.7.5, 2.11.1,

2.11.2, 2.11.4, 2.11.6, 2.12, 3.4, 3.5, 3.12,
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ramp 6.2
Rayleigh instability 3.3, 3.8
Rayleigh-Benard instability 3.1, 3.4, 3.20, 5
Rayleigh-Taylor instability 3.2
reaction-diffusion model 3.13
reduction of order methods 2.7.1, 2.7.5, 2.11.6, App. B
relaxation mode 7.1
renormalization group 3.20, 3.26.1, App. B
retracting fronts 2.11.6, 3.23
Reynolds number 3.9
saddle point 2.1, 2.8.1, 4.1
second order phase transition 3.14
selected wavenumber 2.11.1, 2.11.5, 3.1
separation of scales 5, 5.2
sidebranches 2.11, 3.17
shape mode 4.2
similarity analysis 3.26.2, 4.1
similarity variable 4
singular perturbation theory App. B
sink 2.11.5
slowly varying control parameter 6.2
smectic 3.14, 3.15
solar cycle 3.26.4
solvability condition 2.4, 5.2
source 2.11.5, 3.12
spark 3.5
spherically expanding front 5.1
spinodal decomposition 3.7, 3.8
spots 3.9
stability 2.8.1, 2.9.1, 5.2
steep initial conditions 2.3, 2.6, 4.1
steepness 2.2, 2.8.1
stellar activity cycle 3.26.4
step instability 3.6
stochastic fronts 7
stratified fluid 3.2
strongly heteroclinic orbit 2.7.1, 2.8.1, 2.12
structural phase transition 3.16
structural stability 2.8.3, 2.11.6
subcritical bifurcation/transition 2.11.6, 3.3, 3.9, 3.12
sufficiently localized perturbation 2.1
superconductor 3.8
supercritical bifurcation/transition 3, 3.1, 3.11, 3.12
surface tension 3.3
surface step 3.6
Swift-Hohenberg equation 1.1, 2.7.2, 2.11.2, 2.11.3, 3.1, 4.2
switching 3.15
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Taylor-Couette cell/flow 3.1, 3.11, 3.20
Taylor vortex 3.1, 3.11
thermal plume 5
thin film (equations) 3.2, 3.3
throughflow 2.5, 3.11
tip of a front 7.1
transients 2.3, 3.16, 3.20
traveling wave 3.11
tricritical point 3.14
tweed pattern 3.16
two-parameter family 2.7.2, 2.7.7, 2.8.2, 2.11.5
turbulence 3.9, 3.18, 3.26.2
Turing instability 3.13
uniformly translating front 1.1, 2.2, 2.7, 2.7.1, 2.9.1, 4.2
universality classes 2.6, 3.21, 7.3
universal relaxation 2.9, 2.9.1, 2.11.2, 3.23, 3.25, 4, 4.1, 4.2,

4.3
vco 2.3, 2.122.12
venv 2.2, 2.4, 2.7.6, 2.7.7, 3.21, 3.23
von Karman vortex street 3.9, 3.10
vortex 3.8, 3.9, 3.10
WKB-analysis 6.2
wound healing 3.20
zero mode 2.8.2
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