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We discuss both the ground-state properties and the kink-antikink dynamics of finite conjugated chains,
using the Su-Schrieffer-Heeger Hamiltonian with a boundary term added. We establish a clear relationship
between model parameters for the case of infinite chains or rings, where one uses periodic boundary condi-
tions, and the case of finite chains for which open boundary conditions are employed. Furthermore, we derive
the exact expression for the sound velocity renormalization due to thep-electron-phonon coupling, arrived at
earlier heuristically. The suppression of the sound velocity is only exponentially small in the weak-coupling
limit. Some numerical studies of the influence of finite chain length and end effects on kink-antikink dynamics
are also presented.@S0163-1829~96!03921-5#

I. INTRODUCTION

The Su-Schrieffer-Heeger~SSH! Hamiltonian has proven
to be a successful theoretical framework for understanding
conjugated polymer chains.1–5 In this tight-binding model
one focuses on the coupling between thep electrons that
constitute the valence band and the ionic motions along the
one-dimensional polymeric chain. As is well known, this
model exhibits a rich variety of nonlinear phenomena and
topological excitations coupling the two possible and equiva-
lent configurations of bond-length alternation in the Peierls
distorted ground-state.

The semiclassical dynamics following the excitation of a
p electron from the top of the valence band into the bottom
of the conduction band in the dimerized ground state has
been the subject of a number of papers.6–9However, in these
works kink-antikink generation and their dynamics were
considered on chains of effectively infinite length only, using
periodic boundary conditions; therefore, little is known about
finite-size effects.10

Our motivation for studying these kink-antikink excita-
tions on chains of finite length comes from a somewhat un-
expected corner. In biochemistry one encounters small light-
harvesting molecules or ‘‘chromophores’’ that trigger a~not
yet fully determined! sequence of steps after photoexcitation.
A specific example of such a chromophore is the relatively
small conjugated molecule 11-cis-retinal that has a carbon
backbone of five (C2C5C) units, and which is bound in-
side the protein opsin to form the light-sensitive rhodopsin.
Rhodopsin is present in membranes of the rod cells of ver-
tebrate retina, thereby enabling perhaps the most important
sense: vision.

In recent years~bio!chemists have been slowly uncover-
ing the secrets of vision and now some aspects of the first
steps in vision seem well established. To be more specific,
photoexcitation of this chromophore leads to an intermediate
state~which is called bathorhodopsin! on an extremely short
time scale, of the order of 200 fs.11 On this time scale the
chromophore undergoes a cis-to-trans isomerization; all
other processes, which eventually lead to the triggering of a
nerve signal, happen on much longer time scales. The first
step in vision, the cis-to-trans isomerization of the retinal,

therefore appears to be isolated from many of the other bio-
physical processes that play a role in vision, and presents a
challenge to our understanding. Besides being extremely fast
— the fastest photochemical reaction — the first step is also
found to have a high quantum yield of about 65%, meaning
that for every 100 photons supplied, 65 bathorhodopsin mol-
ecules are formed. These two remarkable facts, the speed and
the efficiency of the first step in vision, lead us to believe that
the physical principles involved are due to classical-coherent
motion of the elementary excitations.

To study this system theoretically, one has to come up
with a definite model. Because of the fact that many details
of the structure and function of rhodopsin are not yet known
and that it is unclear precisely which details are relevant to
the functioning of rhodopsin, a complete model obviously is
asking too much. It does seem clear, however, that an exten-
sion of the SSH model~taking into consideration torsional
degrees of freedom! is well suited because of the fact thatthe
chromophore itself is a small conjugated molecule. The SSH
model is also a model of intrinsic simplicity and one in
which kink-antikink excitations are consistent with both the
short time scale and the high quantum yield. In fact there are
experimental indications that the charge distributions in the
neighborhood of a charged nitrogen group on the retinal are
described quite well by the SSH Hamiltonian with Coulomb
corrections.12 In our opinion, studying the effects of finite
chain lengths on the kink-antikink dynamics within the SSH
model is a modest but logical first step towards the under-
standing of the first step in vision.

Before we can turn our attention to the dynamics of the
untwisting of the retinal, it is necessary to formulate more
precisely how to study chains of finite length within the
framework of a SSH-type model. It is this issue which is the
subject of this article. In order to study chains of finite length
without periodic boundary conditions, the question arises as
to which boundary condition to use, e.g., whether to leave
the chain ends open or to use a potential at the outer ends to
regulate the chain length. Although this question has arisen
before, it has, to our knowledge, not been addressed system-
atically. We do so in this paper, and in particular we calcu-
late the value of the stretching force which facilitates com-
parison between long chains with nonperiodic boundary
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conditions and those with periodic boundary conditions.
Our analysis relies on a general expression that we derive

for the energy per site«(u,d) of the SSH model, for uniform
but arbitrary values of the dimerization amplitudeu and
bond stretchingd. We show that a careful but relatively
straightforward evaluation of«(u,d) for a finite and open
SSH chain allows one to determine the proper boundary con-
ditions such that the bulk properties~ground-state dimeriza-
tion amplitudeu and stretchingd) of long but open SSH
chains are the same as those of periodic chains for the same
parameter sets. This facilitates comparison of results for the
two types of boundary conditions.

In fact, the central role played by«(u,d) for long-
wavelength properties was already demonstrated by us13 re-
cently in another context: In the SSH model, a long-
wavelength acoustic mode corresponds to a gradual change
in d, and the optical mode to one inu; so the second deriva-
tives «dd , etc., play the roles of elastic coefficients. This
allows one to derive a compact exact expression for the
sound velocity in the SSH model,

c5c0A«dd

K
2

«ud
2

K«uu
, ~1!

where c0 is the sound velocity in the absence of
p-electron-phonon coupling, andK the bare elastic constant
@defined in Eq.~4! below#. As we only gave a physically
motivated but heuristic derivation of Eq.~1! in Ref. 13, we
give its explicit derivation from the equations of motion in
this paper. For a discussion of the implications of Eq.~1!, in
particular the fact that the sound velocity renormalization is
exponentially small for weak coupling, we refer the reader to
Ref. 13.

In Sec. II we present the SSH model, discuss the bound-
ary conditions, and show which choice of a stretching force
is most convenient to compare various boundary conditions.
We then derive Eq.~1! in Sec. III. In Sec. IV we briefly
discuss the generation and subsequent dynamics of kink-
antikink pairs on finite chains, and compare it to the the case
of these excitations on a chain of infinite length or periodic
chains. Finally, in Sec. V, we summarize our findings and
pose some questions for future study.

II. MODEL HAMILTONIAN FOR FINITE CHAINS

The one-dimensional tight-binding Hamiltonian we use to
describe the physics of the conjugated polymertrans-
polyacetylene~CH!N , is given by

H5Hel1Hl , ~2!

with thep-electron-lattice coupling written as

Hel52(
s

(
n51

N21

@ t2a~un112un!#@cn,s
† cn11,s1H.c.#

~3!

and a lattice part

Hl5
K

2 (
n51

N21

~un112un!
21

M

2 (
n51

N

u̇n
22G (

n51

N21

~un112un!.

~4!

In Eqs. ~3! and ~4!, n numbers the~CH! groups,un is the
displacement along the chain of thenth ~CH! group relative
to some reference positionna, andcn,s

† (cn,s) creates~anni-
hilates! an electron with spin projections at site n. The
model parameters are the hopping parametert for uniform
spacing a between adjacent~CH! groups, the electron-
phonon coupling constanta, the force constantK for bond-
length deviations from equal spacing of thes-bonding back-
bone, and the mass of a~CH! group M . The harmonic
stretching forceG will be discussed below.

Thep-electron-lattice part of the HamiltonianHel models
the coupling of thep electrons to the lattice degrees of free-
dom via a linear~distance! modulation of the bare hopping
frequencyt. The first term in the lattice part of the Hamil-
tonian Hl models a harmonic restoring force on the
s-bonded~CH! groups when displaced from equal spacing
a, and the second term is the kinetic energy. Up to the last
term in Eq. ~4! the three equations constitute the familiar
SSH Hamiltonian.1,2

The last term in Eq.~4! gives a constant stretching force
G on a finite chain. As(n

N21(un112un)5(uN2u1) denotes
the change of length of the chain, it corresponds to a poten-
tial term which is linear in the total chain length. Usually, the
SSH model is studied with periodic boundary conditions, as
these are most convenient to model long, essentially infinite
chains. As already recognized by Vanderbilt and Mele14 and
by Su,15 however, for finiteopenchains, which are our in-
terest here, the electronic energy decreases with an overall
contraction of the chain due to the linear coupling term pro-
portional toa in Hel . Following these authors, a constant
stretching forceG is introduced in the Hamiltonian to coun-
terbalance this compression. With this procedure, one can
use the same parameterst, K, anda as in the model with
periodic boundary conditions. Note that for periodic bound-
ary conditions this term automatically vanishes, since then
(uN2u1)50.

At this point, we note that for finite chains without peri-
odic boundary conditions, two types of boundary conditions
have been used: so-called ‘‘pressure boundary conditions’’
with GÞ0 and ‘‘open boundary conditions’’ withG50.16 It
is important to realize, however, that from the point of view
of using the SSH model Hamiltonian as an effective model,
both cases describe the same physics: The ‘‘pressure bound-
ary conditions’’ can be transformed into ‘‘open boundary
conditions’’ by a redefinition of the variables$un% and the
parameterst and G. Indeed, under the uniform stretching
transformationũn5un2nG/K, we find from Eqs.~2! and~4!
that to within a constant term

H~$un%;t,K,G!5H~$ũn%;t2aG/K,K,0!. ~5!

Hence, contrary to what is sometimes suggested in the
literature,16 the dynamics of a chain with pressure boundary
conditions is completely equivalent to that of a chain with
open boundary conditions, provided we use the renormalized
hopping frequency t̃5t2aG/K and uniformly scaled
coordinates.15 The practical advantage of using the pressure
boundary condition withGÞ0, however, is that with a
proper choice ofG, we may use the same parameter sets and
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lattice spacing as those used in the literature for periodic
chains. These sets were obtained by comparison with experi-
mental data on polyacetylene.

Following Vanderbilt and Mele,14 the valueG54a/p has
often been used in the literature. This is the value derived
assuming the ground state isundimerized, but in practice a
somewhat different value forG must be used to obtain the
proper dimerized ground state. For small coupling, when the
changes in the electronic energies due to the dimerization are
exponentially small, the correction toG54a/p is also expo-
nentially small.

In this section, we shall determine the value ofG self-
consistently for the dimerized ground state of long chains; as
we shall see, for the standard parameter sets, the corrections
are non-negligible. In addition, the analysis given below will
allow us to determine the ground-state energy per site«~u,d!
as a function of the uniform dimerization amplitudeu and
the uniform bond stretchingd. In Sec. III we show that the
optical frequency and sound velocity can be expressed sim-
ply in terms of derivatives of«(u,d). As noted before,13 this
yields a physically transparent and technically efficient way
of calculating the sound velocity exactly.

To obtain the approximate ground state we takeun to be
of the form

un5~21!nu2SN2 2nD d, ~6!

whereN is the total number of~CH! groups. On substitution
of Eq. ~6! and neglecting nonextensive terms, the Hamil-
tonian Eq.~2! becomes17

H~u,d!52(
n,s

@ t12a~21!nu2ad#@cn,s
† cn11,s1H.c.#

12NKu21 1
2 NKd22NGd. ~7!

The diagonalization of Eq.~7! can be done in analogy with
the usual case of periodic boundary conditions,3 and so we
will only give some of the essential steps. Since we neglect
end effects, our results give the dominant term forG and
«(u,d) in the limit N→`.

Fora50,H(u,d) can be brought to diagonal form by the
Bloch operatorscks5N21/2(e2 iknacns in the extended zone
2p,ka,p. For aÞ0, when the dimerization doubles the
unit cell, it is convenient to fold the zone into the half zone
2p/2,ka,p/2, with valence (2) and conduction (1)
band operators defined as

cks25
1

AN(
n

e2 iknacns , ~8a!

cks15
2 i

AN(
n

e2 ikna~21!ncns . ~8b!

In terms of these operators the Hamiltonian is written as

H~u,d!5 (
ks

@ek~cks1
† cks12cks2

† cks2!1Dk~cks1
† cks2

1cks2
† cks1!#12NKu21 1

2 NKd22NGd, ~9!

with the energy gap parameterDk54ausin(ka) and unper-
turbed band energy in the reduced zone defined by

ek52~ t2ad!cos~ka!. ~10!

Finally, H is diagonalized by the transformations
aks25bkcks22gkcks1 andaks15bkcks21gkcks1 , whose
inverses, on substitution in Eq.~9!, give

H~u,d!5(
ks

Ek~nks12nks2!12NKu2

1 1
2 NKd22NGd, ~11!

with the quasiparticle energy of the familiar form
Ek5Aek

21Dk
2 andnks65aks6

† aks6 . Note that since theek
and henceEk depend on the bond stretchingd according to
Eq. ~10!, the first term of the right-hand side of Eq.~11!
depends ond as well.

For the half-filled band of~CH!N , the energy per site
«(u,d) for a given dimerization amplitudeu and stretchd is
obtained by settingnks251 andnks150 in Eq. ~11!, and
replacing the sum by an integral:

«~u,d!5
22

p E
0

p/2

Ek d~ka!12Ku21
1

2
Kd22Gd

5
24~ t2ad!

p
E~A12z2!

12Ku21
1

2
Kd22Gd, ~12!

where we have introduced the dimensionless variablez,
given by

z5
2au

t2ad
, ~13!

and whereE is the complete elliptic function of the second
kind:

E~A12z2!5E
0

p/2
A12~12z2!sin2~f! df. ~14!

From Eq.~12! we can determine the ground-state dimeriza-
tion amplitude and uniform stretch for our chains by mini-
mization of the energy. Taking first derivatives with respect
to u andd yields

]«~u,d!

]u
5
8a

p

z

12z2
@E2K #14Ku, ~15!

]«~u,d!

]d
5
4a

p

1

12z2
@E2z2K #1Kd2G, ~16!

whereK is the complete elliptic integral of the first kind,

K ~A12z2!5E
0

p/2 1

A12~12z2!sin2~f!
df, ~17!

and where we have begun to abbreviateE(A12z2) and
K (A12z2) asE andK .
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By differentiating Eqs.~15! and ~16! once more, we get
for the second derivatives of« with respect tou andd

«uu5
16a2

p~ t2ad!

2E2~11z2!K

~12z2!2
14K, ~18!

«dd5
4a2z2

p~ t2ad!

2E2~11z2!K

~12z2!2
1K, ~19!

«ud5
8a2z

p~ t2ad!

2E2~11z2!K

~12z2!2
. ~20!

Together with Eq.~1!, these equations give the explicit ex-
pressions for the speed of sound.

The ground-state configuration can now be determined by
setting the first derivatives Eqs.~15! and ~16! to zero and
solving foru andd as a function of the model parameters. It
is convenient to introduce a dimensionless electron-lattice
coupling strengthl, which is defined here as18

l5
2a2

pKt
. ~21!

For the stretch per bondd in the ground-state and the param-
eterz defined in Eq.~13!, we obtain from Eqs.~15! and~16!
the two coupled equations

pK

4a
d5

1

2l
1
E2K

12z2
, ~22a!

1

2l
5

pG

4a
2
2E2~11z2!K

12z2
. ~22b!

These coupled equations can be solved numerically; i.e.,
givenG andl one determinesz from Eq. ~22b!, thus giving
the ~scaled! stretchpKd/4a on substitution in Eq.~22a!.
Figure 1 showsd as a function of the coupling strengthl for
different values ofG.

As we mentioned previously, we want to tune the param-
eterG in such a way that there is no stretching (d50) in the
ground-state, as in the case of periodic boundary conditions.
This value ofG, where no stretching occurs, is obtained by
solving the set of coupled equations

1

2l
5
K2E

12z2
, ~23a!

Gd505
4a

p

E2z2K

12z2
. ~23b!

Figure 2 depicts the dependence ofpGd50/4a on the cou-
pling strengthl. The weak-coupling correction toGd50 is
only exponentially small; for smalll, we obtain from Eqs.
~23!

z;4e2@111/~2l!#, ~24a!

pGd50

4a
;124S 1l 21De2~211/l!. ~24b!

The actual values of the parameters for polyacetylene depend
on the type of experiment from which they are extracted.5

For the different parameter sets used the literature, however,
l lies in the range between 0.2 and 0.4, so that the correction
is non-negligible.

III. SOUND VELOCITY DERIVATION

As noted before,13 the sound velocityc can be expressed
simply in terms of the second derivatives of«(u,d) through
Eq. ~1!. For the undimerized chain, this result follows
straightforwardly from the observation that«dd plays the role
of the elastic constant that gives the energy change associ-
ated with a small uniform stress. The general formula@Eq.
~1!# was derived heuristically in Ref. 13, but here we show
that this result can be obtained directly from the equations of
motion as well.

FIG. 1. The uniform stretch per bondd as a function of coupling
strengthl, for G/(4a/p)50.8, 1.0, and 1.2.

FIG. 2. Value ofG that rendersd50 in the ground state versus
coupling strengthl.

53 14 925SU-SCHRIEFFER-HEEGER MODEL APPLIED TO FINITE CHAINS



As a starting point we take the classical equation of mo-
tion for the j th ~CH! group, expressed in external coordi-
nates:

Mẍj5
2]E

]xj
, ~25!

whereE5E($xi%) is the total energy which, in the adiabatic
approximation, depends on the nuclear coordinates only.
Changing to internal coordinates with two atoms per unit
cell,

d2n5
1
4 ~x2n131x2n122x2n112x2n!, ~26!

v2n5x2n112x2n , ~27!

we obtain the two coupled equations of motion

24M d̈2n52
1

2

]E

]d2n22
1

]E

]d2n
2
1

2

]E

]d2n12
, ~28!

2M v̈2n52
]E

]v2n
. ~29!

On introducing the Fourier transforms

d̃q5
2

N(
n51

N/2

d2ne
iq~2an!, ~30!

]

]d̃p
5 (

n51

N/2

e2 ip~2an!
]

]d2n
, ~31!

and expanding around the first derivatives in Eqs.~28! and
~29!, the equations of motion become

2M d̈̃q5
A~q!

2N (
p

F d̃p

]2E

]d̃2q]d̃p
1 ṽp

]2E

]d̃2q] ṽp
G , ~32!

2M v̈̃q5
4

N(
p

F d̃p

]2E

] ṽ2q]d̃p
1 ṽp

]2E

] ṽ2q] ṽp
G , ~33!

with A(q)512cos(2qa). Defining the energy per site
«[E/N, substituting (2 ivq) for a time derivative, and tak-
ing advantage of translational invariance in the ground state,
we find

Mvq
2d̃q5

A~q!

2 F d̃q

]2«

]d̃2q]d̃q
1 ṽq

]2«

]d̃2q] ṽq
G , ~34!

Mvq
2ṽq54F d̃q

]2«

] ṽ2q]d̃q
1 ṽq

]2«

] ṽ2q] ṽq
G . ~35!

One final change of coordinates to account for the dimeriza-
tion amplitudeu2n is defined fromv2n5d2n12u2n , which
means that the derivatives with respect tou ~at constantd)
are given by

]

]v2n
5
1

2

]

]u2n
. ~36!

Thus finally we have

Mvq
2S d̃q

ṽq
D 5S 1

2 A~q!«̃dd
1
4 A~q!«̃du

2«̃ud «̃uu
D S d̃q

ṽq
D , ~37!

where we have introduced the notation

«̃xy[
]2«

] x̃2q] ỹq
. ~38!

Therefore, in the long-wavelength limit where
limq→0«̃xy5«xy , we find for the acoustic frequency

v5qaA«dd2«du
2 /«uu

M
, ~39!

from which we obtain the sound velocity as

c5c0A«dd2«du
2 /«uu
K

, ~40!

with c05AK/M , which reproduces Eq.~1!. Theq→0 opti-
cal frequency becomes, according to Eq.~37!,

vopt5A«uu
M
. ~41!

We stress that within the adiabatic approximation Eqs.~40!
and ~41! are exact. They can be calculated explicitly using

FIG. 3. The kink-antikink dynamics on aN550 chain, with the
parameters given in the text. The heavy line denotes the zero cross-
ings of s(n) and shows how a kink, initially moving towards the
chain end with an approximately uniform speed, is reflected on
approaching the end at a distancej. It moves back again with
approximately uniform speed.
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Eqs. ~18!–~20! evaluated at the equilibrium valuesu and
d. For a full discussion of these results we refer to Ref. 13;
here we just note that by expanding these equations for small
l, we find an exponentially small renormalization of the
sound velocity for smalll:

c/c0'124S 1l 22De2~211/l!, ~42!

which invalidates the often quoted result3,4 that the sound
velocity for smalll is given byc5c0A122l and also the
result obtained by Riceet al.19

The optical frequency can also be explicitly calculated
from Eqs.~41! and ~18!. For weak coupling we obtain

vopt'A2lV0 , ~43!

whereV05A4K/M would be the (q50) optical frequency
in the absence ofp-electron-phonon coupling. This result
and that given in the literature agree.13

IV. DYNAMICS

Since, as explained in the Introduction, our interest ulti-
mately lies in exploring the dynamical pathway to conforma-
tional changes in rhodopsin as it adsorbs a photon, we con-
clude this paper by briefly discussing dynamical simulations
of photoexcitations for finite chains.

Our chief aim here is to investigate the effect of the
stretching forceG ~pressure boundary conditions! on the dy-
namics of a kink-antikink pair formed when an electron is
excited from the top of the valence band into the bottom of
the conduction band. In particular, since these solitons are
repelled from the ends of a chain,15 one expects that dynami-
cally generated solitons will be reflected by the chain ends.
The results presented below confirm this expectation, and
show that solitons and breathers20,21 are still recognizable
entities on small chains.10

Our simulation technique is based on the adiabatic ap-
proximation using the Feynman-Hellmann theorem.22 In
short, the procedure is to diagonalize the electronic Hamil-
tonian at every time step, and to calculate the electronic
forces on the~CH! groups using the Feynman-Hellmann
theorem.

To illustrate the generic dynamics on an open chain of
finite length, we present the results we obtained for a chain
of N550 sites and parameter values set to20,21 t52.5 eV,
a54.8 eV/Å, andK517.3 eV/Å2. These parameters imply
a coupling strengthl50.34 from the definition ofl in Eq.
~21!. For the value ofGd50 , needed to obtain a ground state
with zero bond stretch, we findGd5055.648 eV/Å from
Eqs. ~23a! and ~23b!. Furthermore, the electronic length
scalej, which determines the width of a kink, is found to be
j/a5(2t/D)'2.5.

Figure 3 shows a three-dimensional representation of the
dynamics. Along the vertical axis we have plotted the bond
elongation relative to its ground-state value, i.e.,
s(n)[(un112un)/(un112un). With the heavy line we
show thes(n)50 crossing~shifted upwards for better vis-
ibility !.

Obviously the dynamics on this open chain very much
resembles the dynamics on chains with periodic boundary

conditions in the first instants. After about 100 fs a kink-
antikink pair is clearly formed, moving apart with approxi-
mately uniform speed~heavy line!. As in periodic chains, a
spatially localized oscillating mode or ‘‘breather’’ is left be-
hind because, as pointed out by Bishopet al.,20,21 the energy
of the two moving kinks is less than the energy injected by
creating the electron-hole pair. The surplus energy is radiated
backwards by the moving kink and antikink and forms the
breather. The kink and antikink continue to move apart with
approximately uniform velocity, until they are at a distance
of the orderj from the end. There they bounce back because
solitons are repelled from the ends15 and move towards the
center, again with an approximately uniform speed. Finally,
the kink and antikink interact with each other and with the
breather in a complicated way; they then reemerge from this
zone after about 600 fs. Coulomb interaction of the charged
kink and antikink may be important in understanding the
eventual relaxation of the molecule to its final state.

For different parameters the length scales and time scales
are of course different, but we have found the dynamics de-
scribed above to be generic. We leave a more systematic
study of finite chain dynamics to the future.

V. SUMMARY AND OUTLOOK

We have shown how the introduction of an additional
degree of freedom, a uniform bond stretch, enables us to
apply the SSH model to finite open chains. The advantage of
this approach lies in the fact that one can use the same pa-
rameter sets for our finite chains as used for infinite chains
with periodic boundary conditions.

Both these results and those for the renormalization of the
sound velocity are given in terms of the energy per site
«(u,d). Our method is, in fact, completely general in that it
can be applied to any model in which an effective energy for
the long-wavelength modes can be written down.13

The initial ~adiabatic! dynamics, following the excitation
of an electron from the top of the valence band into the
bottom of the conduction band, is qualitatively the same as
the dynamics on periodic chains, and confirm that solitons
are reflected at the chain ends.

The insights we have obtained in studying the SSH model
on finite chains will help us to move on to a more elaborate
model for the conformational changes in rhodopsin after
photoexcitation. To this end, torsional degrees of freedom
and ionic or other site impurities may each play a part. It is
our belief that the same classical coherent dynamics as seen
in the SSH model plays an essential role in the first step of
vision, and preliminary investigations along these lines seem
very promising.
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