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Su-Schrieffer-Heeger model applied to chains of finite length
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We discuss both the ground-state properties and the kink-antikink dynamics of finite conjugated chains,
using the Su-Schrieffer-Heeger Hamiltonian with a boundary term added. We establish a clear relationship
between model parameters for the case of infinite chains or rings, where one uses periodic boundary condi-
tions, and the case of finite chains for which open boundary conditions are employed. Furthermore, we derive
the exact expression for the sound velocity renormalization due tartblectron-phonon coupling, arrived at
earlier heuristically. The suppression of the sound velocity is only exponentially small in the weak-coupling
limit. Some numerical studies of the influence of finite chain length and end effects on kink-antikink dynamics
are also presentefiS0163-18206)03921-3

[. INTRODUCTION therefore appears to be isolated from many of the other bio-
physical processes that play a role in vision, and presents a
The Su-Schrieffer-HeegéSSH Hamiltonian has proven challenge to our understanding. Besides being extremely fast
to be a successful theoretical framework for understanding— the fastest photochemical reaction — the first step is also
conjugated polymer chairs® In this tight-binding model found to have a high quantum yield of about 65%, meaning
one focuses on the coupling between theelectrons that that for every 100 photons supplied, 65 bathorhodopsin mol-
constitute the valence band and the ionic motions along thecules are formed. These two remarkable facts, the speed and
one-dimensional polymeric chain. As is well known, this the efficiency of the first step in vision, lead us to believe that
model exhibits a rich variety of nonlinear phenomena andhe physical principles involved are due to classical-coherent
topological excitations coupling the two possible and equivaimotion of the elementary excitations.
lent configurations of bond-length alternation in the Peierls To study this system theoretically, one has to come up
distorted ground-state. with a definite model. Because of the fact that many details
The semiclassical dynamics following the excitation of aof the structure and function of rhodopsin are not yet known
7 electron from the top of the valence band into the bottomand that it is unclear precisely which details are relevant to
of the conduction band in the dimerized ground state haghe functioning of rhodopsin, a complete model obviously is
been the subject of a number of pap&iHowever, in these asking too much. It does seem clear, however, that an exten
works kink-antikink generation and their dynamics weresion of the SSH modeftaking into consideration torsional
considered on chains of effectively infinite length only, usingdegrees of freedojis well suited because of the fact thhe
periodic boundary conditions; therefore, little is known aboutchromophore itself is a small conjugated molecilee SSH
finite-size effectg? model is also a model of intrinsic simplicity and one in
Our motivation for studying these kink-antikink excita- which kink-antikink excitations are consistent with both the
tions on chains of finite length comes from a somewhat unshort time scale and the high quantum yield. In fact there are
expected corner. In biochemistry one encounters small lightexperimental indications that the charge distributions in the
harvesting molecules or “chromophores” that triggefn@t  neighborhood of a charged nitrogen group on the retinal are
yet fully determinegl sequence of steps after photoexcitation.described quite well by the SSH Hamiltonian with Coulomb
A specific example of such a chromophore is the relativelycorrections-? In our opinion, studying the effects of finite
small conjugated molecule 11-cis-retinal that has a carboohain lengths on the kink-antikink dynamics within the SSH
backbone of five C—C=C) units, and which is bound in- model is a modest but logical first step towards the under-
side the protein opsin to form the light-sensitive rhodopsinstanding of the first step in vision.
Rhodopsin is present in membranes of the rod cells of ver- Before we can turn our attention to the dynamics of the
tebrate retina, thereby enabling perhaps the most importanintwisting of the retinal, it is necessary to formulate more
sense: vision. precisely how to study chains of finite length within the
In recent yeargbio)chemists have been slowly uncover- framework of a SSH-type model. It is this issue which is the
ing the secrets of vision and now some aspects of the firstubject of this article. In order to study chains of finite length
steps in vision seem well established. To be more specifiayithout periodic boundary conditions, the question arises as
photoexcitation of this chromophore leads to an intermediatéo which boundary condition to use, e.g., whether to leave
state(which is called bathorhodopsimn an extremely short the chain ends open or to use a potential at the outer ends to
time scale, of the order of 200 4.0n this time scale the regulate the chain length. Although this question has arisen
chromophore undergoes a cis-to-trans isomerization; albefore, it has, to our knowledge, not been addressed system-
other processes, which eventually lead to the triggering of atically. We do so in this paper, and in particular we calcu-
nerve signal, happen on much longer time scales. The firdate the value of the stretching force which facilitates com-
step in vision, the cis-to-trans isomerization of the retinal,parison between long chains with nonperiodic boundary
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conditions and those with periodic boundary conditions.  In Egs.(3) and (4), n numbers thgCH) groups,u, is the
Our analysis relies on a general expression that we deriveisplacement along the chain of théh (CH) group relative
for the energy per site(u, 5) of the SSH model, for uniform to some reference positioma, andc;s (cns) createsanni-
but arbitrary values of the dimerization amplitudeand hilateg an electron with spin projectios at siten. The
bond stretchings. We show that a careful but relatively model parameters are the hopping paramettar uniform
straightforward evaluation of(u, ) for a finite and open spacinga between adjacenfCH) groups, the electron-
SSH chain allows one to determine the proper boundary corphonon coupling constant, the force constari for bond-
ditions such that the bulk properti¢ground-state dimeriza- |ength deviations from equal spacing of tlrebonding back-
tion amplitudeu and stretchings) of long but open SSH bhone, and the mass of @H) group M. The harmonic
chains are the same as those of periodic chains for the sams@retching forcd™ will be discussed below.
parameter sets. This facilitates comparison of results for the The 7r-electron-lattice part of the Hamiltoniat, models

two types of boundary conditions. the coupling of ther electrons to the lattice degrees of free-
In fact, the central role played byg(u,é) for long-  dom via a lineandistancé modulation of the bare hopping
wavelength properties was already demonstrated byras  frequencyt. The first term in the lattice part of the Hamil-
cently in another context: In the SSH model, a long-tonian H, models a harmonic restoring force on the
wavelength acoustic mode corresponds to a gradual changgponded(CH) groups when displaced from equal spacing
in &, and the optical mode to one in so the second deriva- 3, and the second term is the kinetic energy. Up to the last
tives 55, etc., play the roles of elastic coefficients. This term in Eq.(4) the three equations constitute the familiar
allows one to derive a compact exact expression for th&gsH Hamiltoniart:2
sound velocity in the SSH model, The last term in Eq(4) gives a constant stretching force
I on a finite chain. A&N"*(u,,, 1 —u,)=(uy—u;) denotes
(1) the change of length of the chain, it corresponds to a poten-
tial term which is linear in the total chain length. Usually, the
SSH model is studied with periodic boundary conditions, as
these are most convenient to model long, essentially infinite
chains. As already recognized by Vanderbilt and Nfetnd
by Su®® however, for finiteopenchains, which are our in-
terest here, the electronic energy decreases with an overall
contraction of the chain due to the linear coupling term pro-

this paper. For a discussion of the implications of &, in Sportional toa in Hg. Following these authors, a constant
. . . . . el: y
particular the fact that the sound velocity renormalization i stretching forcd” is introduced in the Hamiltonian to coun-

E);r;oggntlally small for weak coupling, we refer the reader ©terbalance this compression. With this procedure, one can

In Sec. Il we present the SSH model, discuss the bound=>% the same parameteisk, anda as in the model with

arv conditions. and show which choice of a stretchin fc)rc(:'periodic boundary conditions. Note that for periodic bound-
y ' 9 ary conditions this term automatically vanishes, since then

is most convenient to compare various boundary conditions(u “u)=0
We then derive Eq(1) in Sec. lll. In Sec. IV we briefly N oot :

) : . . At this point, we note that for finite chains without peri-
discuss the generation and subsequent dynamics of kink- . s L
o ; - . ' odic boundary conditions, two types of boundary conditions
antikink pairs on finite chains, and compare it to the the cas

of these excitations on a chain of infinite length or eriodic‘ﬁawe been used: so-called "pressure boundary conditions
9 P with '+ 0 and “open boundary conditions” with =0.1° It

chains. Finally, in Sec. V, we summarize our findings and__". ; . .
. is important to realize, however, that from the point of view
pose some questions for future study.

of using the SSH model Hamiltonian as an effective model,
both cases describe the same physics: The “pressure bound-
ary conditions” can be transformed into “open boundary

The one-dimensional tight-binding Hamiltonian we use toconditions” by a redefinition of the variablesi,} and the
describe the physics of the Conjugated po'ymmns_ pal’ameter'ét_ aﬂd I. Indeed, Und.er the Un|f0rm Stretch|ng
polyacetylengCH) , is given by transformatioru,=u,—nI'/K, we find from Eqs(2) and(4)

that to within a constant term

c=c €55 Eus
°V K Key,

where ¢, is the sound velocity in the absence of
mr-electron-phonon coupling, ari€l the bare elastic constant
[defined in Eq.(4) below]. As we only gave a physically
motivated but heuristic derivation of E¢l) in Ref. 13, we
give its explicit derivation from the equations of motion in

II. MODEL HAMILTONIAN FOR FINITE CHAINS

H=HgtH,, 2
with the 7r-electron-lattice coupling written as H{u,b:t,K,T)=H{T,}:t— al/K,K,0). (5)
N—-1
Hei= _ES: n§=:1 [t=a(Un. 1= Un)[ChCnr 15 H-C] Hence, contrary to what is sometimes suggested in the

(3) literaturel® the dynamics of a chain with pressure boundary
conditions is completely equivalent to that of a chain with

and a lattice part open boundary conditions, provided we use the renormalized
K N1 m N N—1 hoppi_ng féesquencytz_t—al“/K and unifqrmly scaled

_ U2 — 2 _ coordinates: Th_e_ pract_lcal advantage of using the pressure
Hi=3 ngl (Un -1~ Un) 2,121 Un Fn; (Uns1=Un) boundary condition withI'#0, however, is that with a

(4)  proper choice of’, we may use the same parameter sets and
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lattice spacing as those used in the literature for periodiavith the energy gap parametdr=4ausinka) and unper-
chains. These sets were obtained by comparison with expetitrbed band energy in the reduced zone defined by
mental data on polyacetylene.

Following Vanderbilt and Melé? the valuel' =4a/ has €=2(t—ad)cogka). (10
often been used in the literature. This is the value deriveq:ina"y H
assuming the ground state usdimerized but in practice a ’
somewhat different value fof must be used to obtain the
proper dimerized ground state. For small coupling, when th
changes in the electronic energies due to the dimerization are

is diagonalized by the transformations

8ys— = BkCks— ~ YiCks+ aNdaks = BiCxs—t YCks+ » WhoOSE
énverses, on substitution in E€P), give

exponentially small, the correction 10=4«/7 is also expo- H(U,5):k2 Er(Nist — Nis—) + 2NKU?
nentially small. s
In this section, we shall determine the valuelbfself- +1 NK&?—NT' 6, (11)

consistently for the dimerized ground state of long chains; as o -

we shall see, for the standard parameter sets, the correctiohdth the quasiparticle energy of the familiar form
are non-negligible. In addition, the analysis given below will Ex= Veg+ Af and nys. = afq. axs. . Note that since the,
allow us to determine the ground-state energy perssitey) ~ and henceEy depend on the bond stretchidgaccording to
as a function of the uniform dimerization amplitudeand  EQ. (10), the first term of the right-hand side of E(L1)
the uniform bond stretching. In Sec. Ill we show that the depends or as well.

optical frequency and sound velocity can be expressed sim- For the half-filled band of CH)y, the energy per site
ply in terms of derivatives of (u,8). As noted beforéthis  &(u, ) for a given dimerization amplitude and stretchs is
yields a physically transparent and technically efficient wayobtained by setting,, =1 andny, =0 in Eq. (11), and

of calculating the sound velocity exactly. replacing the sum by an integral:
To obtain the approximate ground state we takdo be
of the form —2 (2 1
e(u,8)= 7J Erd(ka)+2Ku?+ §K62—F5
0
N
= _ n _ _—
u,=(—=1)" (2 n)5, (6) —4(t—ad) .
=—4(J1-29)
whereN is the total number ofCH) groups. On substitution ™
of Eq. (6) and neglecting nonextensive terms, the Hamil- 1
tonian Eq.(2) become¥ +2KUu?+ §K52—F5, (12)
H(u,8)=— >, [t+2a(—1)"u—ad][c! Cns1stH.C] where we have introduced the dimensionless variahle
n.s ’ ’ given by
+2NKu?+ 1 NK8%—NT' 6. (7) 2au
Z=1 5 (13

The diagonalization of E(.7) can be done in analogy with
the usual case of periodic boundary conditidres)d so we  and where” is the complete elliptic function of the second
will only give some of the essential steps. Since we negleckind:
end effects, our results give the dominant term Forand
g(u,d) in the limit N— . _ 2 .

For a=0, H(u, 8) can be brought to diagonal form by the F(N1-2%)= fo J1—(1-ZD)sird(¢p)d¢.  (14)
Bloch operators,;=N"122e k"3 _in the extended zone
— m<ka<r. For a#0, when the dimerization doubles the From Eq.(12) we can determine the ground-state dimeriza-
unit cell, it is convenient to fold the zone into the half zonetion amplitude and uniform stretch for our chains by mini-
— ml2<ka< /2, with valence ¢) and conduction ) mization of the energy. Taking first derivatives with respect

band operators defined as to u and é yields
de(u,8) 8a z )
o — 1S iknag 83 (U.0) 8 2 ' s1+aku, (15)
ks— \/ﬁ =~ nss Ju T 1-2
i feluo)_da 1 i e ueks-T, (18
—i . =— S22 -T,
G- =52 © "M Dens. (8b) 96 ml-z l

where. 77" is the complete elliptic integral of the first kind,

In terms of these operators the Hamiltonian is written as
1

/2
H(1-2%)=

2\ o} d
H(u,8)= ; [ €x(Clss Cks — Chis_Cks—) + Ak(Clig Cys 0 1-(1-2%)sir(¢)

and where we have begun to abbreviafey1—z%) and
+Cls Chsi)]+2NKU2+ §NKS?—NI's,  (9) . #(V1-27%) as# and. 7.

¢, (17
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FIG. 1. The uniform stretch per bontlas a function of coupling
strengthn, for I'/(4a/7)=0.8, 1.0, and 1.2.

By differentiating Eqs(15) and (16) once more, we get
for the second derivatives af with respect tau and §

_ 16a® 20-(1+P)T aK 18

8uu_7T(t—a’5) (1_22)2 + ' ( )

_ 4a?7 2‘5—(1+22)%'+K 19

CO0T a(t—ad)  (1-27 ! 19
8a’z 28—-(1+Z2)H

(20

FusT L t—as) (1-22)2

FIG. 2. Value ofl’ that renderss=0 in the ground state versus
coupling strength\.

As we mentioned previously, we want to tune the param-
eterl” in such a way that there is no stretching<0) in the
ground-state, as in the case of periodic boundary conditions.
This value ofl’, where no stretching occurs, is obtained by
solving the set of coupled equations

1 - -

12 (233
bha £—22H

F‘S:O:?—l—zz (23b

Figure 2 depicts the dependence®F ;- /4« on the cou-

Together with Eq(1), these equations give the explicit ex- pling strength\. The weak-coupling correction tB5_g is

pressions for the speed of sound.

only exponentially small; for smalk, we obtain from Eqs.

The ground-state configuration can now be determined by23)

setting the first derivatives Eq$15) and (16) to zero and

solving foru and § as a function of the model parameters. It

—[1+1/2\)]

(249

z~4e

is convenient to introduce a dimensionless electron-lattice

coupling strength\, which is defined here &

B 2a?

A= KU (21

ml5-0

da ~i-4

(24b)

1
2 q|e-2rn)
N )e

The actual values of the parameters for polyacetylene depend
on the type of experiment from which they are extracted.

For the stretch per bondlin the ground-state and the param- For the different parameter sets used the literature, however,

eterz defined in Eq(13), we obtain from Eqgs(15) and(16)
the two coupled equations

K1 -
a2 (223
1 = 26—+ x%
= (22b

2N da 1-72 '

\ lies in the range between 0.2 and 0.4, so that the correction
is non-negligible.

IIl. SOUND VELOCITY DERIVATION

As noted beforé? the sound velocite can be expressed
simply in terms of the second derivatives«fu, §) through
Eqg. (1). For the undimerized chain, this result follows
straightforwardly from the observation thags; plays the role

These coupled equations can be solved numerically; i.eqf the elastic constant that gives the energy change associ-

givenI" and\ one determineg from Eq.(22b), thus giving
the (scaled stretch wK 6/4a on substitution in Eq(223.
Figure 1 showsS as a function of the coupling strengthfor
different values ofl".

ated with a small uniform stress. The general fornmita.

(1)] was derived heuristically in Ref. 13, but here we show
that this result can be obtained directly from the equations of
motion as well.
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As a starting point we take the classical equation of mo-
tion for the jth (CH) group, expressed in external coordi-
nates:

. —dE
MXj— (9_)(j' (25)

whereE=E({x;}) is the total energy which, in the adiabatic

approximation, depends on the nuclear coordinates only.

Changing to internal coordinates with two atoms per unit
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600

time (fs)

bond nhumber n

cell,
8on=17 (Xan+3+ Xon+ 2~ Xon+1— Xon), (26)
U2n=Xon+1~ Xon (27)
we obtain the two coupled equations of motion

JE JE 1 JE

FIG. 3. The kink-antikink dynamics onM=50 chain, with the
parameters given in the text. The heavy line denotes the zero cross-
ings of s(n) and shows how a kink, initially moving towards the
chain end with an approximately uniform speed, is reflected on
approaching the end at a distanée It moves back again with
approximately uniform speed.

One final change of coordinates to account for the dimeriza-
tion amplitudeu,,, is defined fromv,,= &,,+ 2uU,,, which

~A4Mopm="3 FE * 382 2 I0ansso’ (28 means that the derivatives with respectut@at constants)
are given by
Mv,,=2 ok (29 d 1 9
— MU= .
" "9uan == (36)
&vzh 2 aUZn
On introducing the Fourier transforms
g Thus finally we have
N/2
=S, e (30 3| _[3A@E  FAW@E) [
TN ’ Mw?| ' | = - T Y, (37)
Uq 2ey5 €uu Uq
P N/2 P . .
2= gipcan) (31) where we have introduced the notation
36y n=1 30"

. d%e
and expanding around the first derivatives in E@8) and Exy= == (39
(29), the equations of motion become IX—q9¥q
. A P2E PE Therefore, in the long-wavelength limit where
—MS.= S +7 | (32 limg_.0exy=€xy, We find for the acoustic frequency
a” 2N % [ P35_qi0,  Pdo_qivy 3
ess—E5,l€
. Ao [~ PE _  PE w=qay\/ W (39
_quzﬁzp [%aiqa&pﬂpa’ﬁqa’ﬁp - 39

with A(q)=1-cos(ja). Defining the energy per site
e=E/N, substituting (-iw,) for a time derivative, and tak-
ing advantage of translational invariance in the ground state,

we find
A ~_ d%e - 9%
MoZ5,=2 D5, g, (3)
2 96_qd8q IS _qivg
M 025y 2] By e 5 (35)
CalaT T g 38, 9 _qdvg)

from which we obtain the sound velocity as

2
less— &5 /e
c=c, 60 K&u uu, (40)

with co= VK/M, which reproduces Edl). Theq—0 opti-
cal frequency becomes, according to Egj7),

&
op= \ 3/ (42)

We stress that within the adiabatic approximation Eg§)
and (41) are exact. They can be calculated explicitly using
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Egs. (18—(20) evaluated at the equilibrium values and  conditions in the first instants. After about 100 fs a kink-
6. For a full discussion of these results we refer to Ref. 13antikink pair is clearly formed, moving apart with approxi-
here we just note that by expanding these equations for smathately uniform speedheavy ling. As in periodic chains, a
A, we find an exponentially small renormalization of the spatially localized oscillating mode or “breather” is left be-

sound velocity for smalk: hind because, as pointed out by Bisteiml,?%?! the energy
of the two moving kinks is less than the energy injected by
cleg~1—4 E _ 2) e (2+10) (42) creating the electron-hole pair. The surplus energy is radiated
A backwards by the moving kink and antikink and forms the

which invalidates the often quoted reddithat the sound breather. The kink and antikink continue to move apart with

velocity for smallx is given bve=c-J1—2x and also the approximately uniform velocity, until they are at a distance
result gbtained by Ricget alt® y 0 of the order¢ from the end. There they bounce back because

The optical frequency can also be explicitly calculategsolitons are repelled from the erfdsind move towards the

from Eqs.(41) and(18). For weak coupling we obtain center, again with an approximately uniform speed. Finally,
the kink and antikink interact with each other and with the
Wopt™ \/ﬁgo, (43 breather in a complicated way; they then reemerge from this

) zone after about 600 fs. Coulomb interaction of the charged
where{)o=y4K/M would be the g=0) optical frequency kink and antikink may be important in understanding the
in the absence ofr-electron-phonon coupling. This result eyentual relaxation of the molecule to its final state.

and that given in the literature agree. For different parameters the length scales and time scales
are of course different, but we have found the dynamics de-
IV. DYNAMICS scribed above to be generic. We leave a more systematic

Since, as explained in the Introduction, our interest ulti-Study of finite chain dynamics to the future.

mately lies in exploring the dynamical pathway to conforma-

tional changes in rhodopsin as it adsorbs a photon, we con-

clude this paper by briefly discussing dynamical simulations V. SUMMARY AND OUTLOOK
of photoexcitations for finite chains.

Our chief aim here is to investigate the effect of thed f freed it bond stretch bl i
stretching forcd™ (pressure boundary conditionsn the dy- egree of freedom, a unitorm bond Stretch, enables us 1o
namics of a kink-antikink pair formed when an electron isapply the SSH _model to finite open chains. The advantage of
excited from the top of the valence band into the bottom oiih's approach lies in t_he_z fact that one can use tr_\e_ same pa-
the conduction band. In particular, since these solitons arfAMeter sets for our finite chains as used for infinite chains
repelled from the ends of a chaifipne expects that dynami- With periodic boundary conditions. o
cally generated solitons will be reflected by the chain ends. Both these results and those for the renormalization of the
The results presented below confirm this expectation, angound velocity are given in terms of the energy per site
show that solitons and breath&#4 are still recognizable €(u,d). Our method is, in fact, completely general in that it

We have shown how the introduction of an additional

entities on small chain®. can be applied to any model in which an effective energy for
Our simulation technique is based on the adiabatic apthe long-wavelength modes can be written don.
proximation using the Feynman_He”mann theo®mn The initial (adiabati¢ dynamlcs, fO”OWIng the excitation

short, the procedure is to diagonalize the electronic Hamilof an electron from the top of the valence band into the
tonian at every time step, and to calculate the electroni®ottom of the conduction band, is qualitatively the same as
forces on the(CH) groups using the Feynman-Hellmann the dynamics on periodic chains, and confirm that solitons
theorem. are reflected at the chain ends.

To illustrate the generic dynamics on an open chain of The insights we have obtained in studying the SSH model
finite length, we present the results we obtained for a chai@n finite chains will help us to move on to a more elaborate
of N=50 sites and parameter values séltt=2.5 ey, model for the conformational changes in rhodopsin after
a=4.8 eV/A, andK =17.3 eV/A2. These parameters imply photpexcitation. To_thi_s end_,_torsional degrees of freedo_m
a coupling strengtt =0.34 from the definition ok in Eq.  @nd ionic or other site impurities may each play a part. It is
(21). For the value of 5_,, needed to obtain a ground state OUr belief that the same classical c_oherent. dynarmcs as seen
with zero bond stretch, we finfls_,=5.648 eV/A from N t'he SSH mode! play§ an e_sse_ntlal role in the flrst step of
Egs. (239 and (23b). Furthermore, the electronic length Vision, and_ prehmmary investigations along these lines seem
scale¢, which determines the width of a kink, is found to be VEry promising.
éla=(2t/A)~2.5.

Figure 3 shows a three-dimensional representation of the
dynamips. Along _the verticgl axis we have plotted the bpnd ACKNOWLEDGMENTS
elongation relative to its ground-state value, i.e.,
s(nN)=(uU,+1— U/ (uy.1—Uuy). With the heavy line we We are grateful to Huub de Groot, Jan Zaanen, and Jan-
show thes(n)=0 crossing(shifted upwards for better vis- Adriaan Leegwater for their interest and many stimulating
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