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Subdiffusive fluctuations of ‘‘pulled’’ fronts with multiplicative noise
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We study the propagation of a ‘‘pulled’’ front with multiplicative noise that is created by a local perturbation
of an unstable state. Unlike a front propagating into a metastable state, where a separation of time scales for
sufficiently larget creates a diffusive wandering of the front position about its mean, we predict that for
so-called pulled fronts, the fluctuations are subdiffusive with root mean square wanderingD(t);t1/4, not t1/2.
The subdiffusive behavior is confirmed by numerical simulations: Fort<600, these yield an effective expo-
nent slightly larger than 1/4.

PACS number~s!: 05.40.2a, 47.54.1r
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The
Since the late 1930s, when the concept of front propa
tion emerged in the field of population dynamics@1,2#, inter-
est in this type of problems has been growing steadily
chemistry@3#, physics@4#, and mathematics@5#. In physics,
the importance of the problem has become more and m
clear since it plays a role in a large variety of situation
ranging from reaction-diffusion systems to pattern formi
systems in general@6#.

Front propagation into unstable states is an interesting
namical problem by itself. For a front evolving from a loc
perturbation there are but two possible propagation mec
nisms that are determined by the nonlinearities in the eq
tion of motion: Either the nonlinearities determine the velo
ity of the front that then is called ‘‘pushed’’; or th
nonlinearities simply cause saturation and the velocity is
termined by a linearization about the unstable state. Fron
this type are called ‘‘pulled’’ because they are ‘‘pulle
along’’ by the spreading and growth of small perturbatio
about the unstable state@7#. Hence, pulled front propagatio
can occur only if the penetrated state is linearly unstable.
pushed and pulled regimes are also known as nonlinear
linear marginal stability@8#. For the discussion below, it i
important to realize that pushed fronts relax exponentially
time to their long time asymptotes, but that pulled fron
relax algebraically without characteristic time scale@7#.
Hence, an adiabatic decoupling of some outer dynamics f
the internal relaxation of a pulled front is not possible@9#,
and stochastic pulled fronts may show anomalous sca
@10#.

Generally, noise can affect the phenomenological desc
tion of a reaction-diffusion system in various ways. A fir
possibility is intrinsic noise modelled typically by additiv
thermal noise in a Langevin type equation. A second po
bility, on which the present paper is focused, is at theexter-
nal level, e.g., due to fluctuations of some control parame
An example are the fluctuations of the luminosity intensity
the photosensitive Belousov-Zhabotinsky reaction@11#. Such
fluctuations enter the dynamical equation as multiplicat
noise.

The multiplicative noise of the control parameter usua
results in a modification of the mean propagation velocity
the front and in a stochastic wandering of the front posit
PRE 621063-651X/2000/62~1!/13~4!/$15.00
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around its mean propagation. This means that the noisy f
can be thought of as a coherent structure whose motion
be decomposed into drift plus Brownian motion, very mu
like a particle sedimenting in a fluid. The drift compone
corresponds to an average front, with the average taken
the ensemble of all the realizations of the noise. It propaga
according to a deterministic equation of motion, whose d
namical parameters are in the simplest case just renorma
by the noise. Theoretically, the important question th
arises whether the effects of the fluctuations of the front
be understood in terms of a diffusive or subdiffusive wa
dering of some suitably defined front position.

The renormalization of the front velocity has been stud
in the pushed and pulled regime@12#, while the wandering
process is understood only in the pushed case@13#, where it
has been shown to be diffusive: the root mean square p
tion of the frontD grows with time asA2D ft. Actually, the
expression for the effective front diffusion coefficientD f de-
rived by Armeroet al. @13# was found to break down fo
pulled fronts, and it was suggested that the wandering
pulled fronts is subdiffusive.

In this Rapid Communication we take up the issue of
stochastic wandering of pulled fronts about their mean po
tion, and predict that in the presence of multiplicative no
pulled fronts behave subdiffusively, withD;t1/4. This pre-
diction is based on two different arguments. First of all, w
heuristically insert the leading edge asymptotics of the rel
ing pulled front into the expression for the diffusion coef
cientD f of pushed fronts, and immediately findD;t1/4. Our
second argument for the subdiffusiveD;t1/4 behavior comes
from mapping the dynamically important region onto t
KPZ equation. We finally also present data of extensive
merical simulations that support our analytical predicti
that the wandering is subdiffusive with exponent close
1/4.

The qualitative difference between pushed and pul
fronts results from the fact that the dynamically importa
region for pushedfronts is the interior front region, whos
extent is finite, while that ofpulled fronts is the leading edge
ahead of the front@7#. Starting from a local initial perturba
tion, the leading edge region grows without bound, and
we shall see, this causes the subdiffusive behavior.
R13 ©2000 The American Physical Society
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power law relaxation of deterministic pulled fronts is anoth
manifestation of the leading edge dominated dynamics
pulled fronts@7#.

For concreteness, we derive our results by including no
in the one-dimensional prototype front equation

]f

]t
5D

]2f

]x2
1 f ~f!, f ~f!5f~12f!~a1f!. ~1!

Here a is a parameter which plays the role of the cont
parameter. Equation~1! has a stable statef51 and a sta-
tionary statef50 whose relative stability can be tuned b
changing the value of the parametera. The case2 1

2 ,a
, 1

2 leads to pushed dynamics, while12 ,a,1 produces
pulled fronts@7#. For the casea51, which we will study, the
so-called Fisher-Kolmogoroff-Petrovsky-Piscounoff~FKPP!
equation@1,2# is recovered.

Let us assume now that the parametera is replaced by a
new fluctuating parametera(x,t) with average ā, a

→a(x,t)5ā1m(x,t), where m(x,t) is a Gaussian noise
with the moments

^m~x,t !&m50, ~2!

^m~x,t !m~x8,t8!&m52«C~lmux2x8u!d~ t2t8!, ~3!

with *dxC(lm ,uxu)51. We interpret the stochastic parti
differential equations~PDE! defined by Eqs.~1!–~3! in the
Stratonovich sense@14#. Notice that if 1/lm is much smaller
than any other length scale in the system, the noise defi
by the correlator~3! is effectively white in both time and
space.

Since according to Eq.~1! f converges to 1 and is noise
less behind the front, we can suitably define the posit
xf(t) of a noisy front propagating to the right into the u
stable statef50 by

xf~ t !5E
0

`

dxf~x,t !. ~4!

The displacementDxf(t)5xf(t)2xf(0) on average grows
with the noise renormalized mean velocityv̄R5^ẋf&m . The
fluctuations about the mean displacement^Dxf(t)&m5 v̄Rt
are measured by

D~ t !5A^@Dxf~ t !2^Dxf~ t !&m#2&m. ~5!

If we relateD(t) to a diffusion coefficientD f by writing

D2~ t !5E
0

t

dt82D f~ t8!, ~6!

then for pushed fronts the following expression for the d
fusion coefficientD f can be derived@13,15#:

D f5«

E
2`

`

dje2v̄Rj~df̄/dj!2g2~f̄ !

F E
2`

`

djev̄Rj~df̄/dj!2G2 . ~7!
r
f

e

l

ed

n

-

In this formula,f̄ is the deterministic field associated wit
the front moving with the renormalized pushed veloc

v̄R , g(f̄)5] f /]au ā is the derivative of the reaction term
with respect to the control parameter, andj5x2 v̄Rt is the
comoving coordinate.

For pushed fronts,D f given by Eq.~7! is finite and time-
independent, and hence this gives the diffusive beha
D2(t)52D ft. This means that on sufficiently long tim
scales the random displacement is approximately Markov
i.e., the sum of uncorrelated and equally distributed rand
displacements on shorter time scales.

As an example of a pulled front with multiplicative nois
we now study the caseā51:

]f

]t
5D

]2f

]x2
1f1mf2mf22f3. ~8!

The noise renormalized mean velocityv̄R* of the pulled front
can be calculated explicitly@12#:

v̄R* 5^ẋ~ t !&m52AD@11«C~0!#. ~9!

However, it is immediately clear that the fluctuation formu
~7! cannot naively be extended to the pulled regime.

First of all, for a pulled front the expression~7! simply
diverges. The divergence of solvability-type expressions
tually holds more generally for perturbative expansio
about a pulled front@9#. For a pulled front, the dynamically
important region is the leading edge defined as the reg
where linearization about the unstable state is a valid
proximation; the fact that solvability-type integrals like E
~7! diverge there reflects that the dynamically important
gion becomes semi-infinite.

Second, a pulled front has no characteristic relaxat
time @7#, so there is no reason for the Markovian approxim
tion underlying diffusive wandering. Rather the leading ed
relaxes asymptotically as@7#

f'ajRe2lR* jRe2jR
2 /4Dt/t3/2, lR* 5 v̄R* /2, ~10!

for jR5x2 v̄R* t@1 and t@1.

The presence of theajR /t3/2 term in front of the exponen-
tials is actually the fingerprint of the full equation being no
linear. The expression~10! defines a time-dependent Gaus
ian cutoff jc;A4Dt, which regularizes the integrals in Eq
~7!. In fact, the evaluation of Eq.~7! with Eq. ~10! yields

D f~ t !'
3«

~ v̄R* !2ApD

1

At
~ t@1!. ~11!

Notice that for large timesD f(t) vanishes, marking the non
diffusive wandering of pulled fronts. Insertion into Eq.~6!
yields

D~ t !5A2E
0

t

dt8D f~ t8!'S 12«

~ v̄R* !2ApD
D 1/2

t1/4, ~12!
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so the fluctuations are subdiffusive with exponent 1/4 rat
than 1/2.

Although the above argument does capture the esse
features of fluctuating pulled fronts, it is not entirely syste
atic, as it is based on the extrapolation of the solvabi
condition ~7! to the pulled regime.

In order to substantiate the scalingD(t);t1/4 for a relax-
ing pulled front with a time-dependent analysis, let us
back to Eq.~8!. The leading edge region can be studied
means of the leading edge transformation,

f~x,t !5c~j,t !e2l* j,
~13!

j5x2v* t, v* 52, l* 51.

Equation~8! can then be written as

]c

]t
5D

]2c

]j2
2c1ej@~11m!ce2j2mc2e22j2c3e23j#.

~14!

For j@1, the nonlinearities can be neglected,

]c

]t
5D

]2c

]j2
1mc, for j@1. ~15!

Notice that the noise in this ‘‘directed polymer’’ equatio
still is multiplicative. The Cole-Hopf transformation

c~j,t !5eh(j,t), ~16!

converts Eq.~15! into an equation with additive noise:

]h

]t
5D

]2h

]j2
1DS ]h

]j D 2

1m, for j@1. ~17!

Equation~17! is the celebrated one-dimensional Kardar P
risi Zhang~KPZ! interface equation@16#.

The essential difference between our problem and pr
ous studies of the KPZ equation are the initial and bound
conditions. After some temporal evolution, the nonlinearit
in the original f equation will lead to the fluctuationles
saturation off at the value of unity forj!21, which cor-
responds to the fluctuationless slopeh'l* j behind the
front: It is as if the KPZ equation has to be solved in t
positive half-space with~roughly! a fixed boundary. On the
other hand, by translating Eq.~10! back intoh, we see that
for largej and t, the average interface shapehav should be
given by

hav' ln~ajR /t3/2!1l* j2lR* jR2jR
2/4Dt. ~18!

Thus, apart from the logarithmic term the average interfac
essentially tilted but flat up to the time-dependent crosso
jc'A4Dt @17#, and beyondjc it has the shape of a down
ward curved parabola with time dependent curvature.
gether with the fact that the nonlinear term in Eq.~17! gives
an average nonzero growth velocity, this makes the prob
into a nonstandard fluctuating interface problem. Our cen
approximation is now to consider the relaxing front in t
essentially straight but fluctuating section between 0
A4Dt as a KPZ interface with time-dependent lengthL
r
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5O(jc). As the scaling exponents of the KPZ equation a
robust with respect to a geometric change of the fluctua
surface@18#, we use the KPZ scaling functions for the ro
mean square widthW of the interfaceh,

W~L,t !5tbYS t

LzD , b51/3, z53/2, ~19!

where W5A^h(x,t)2h̄(x,t)2&m, with the bar denoting a
spatial average. The scaling functionY(s) will depend on the
shape of the roughening surface, but always has the lim
Y(s)→s2b for s→`, Y(0)'const.

Inserting our approximationL;At, we get

W~L,t !;Lzb;~At !zb5t1/4. ~20!

The final step of our argument is to convert this result into
prediction for the fluctuations of the front position. If w
measure the position of the front by tracking a certain hei
c, f(xc ,t)5const5c, and use the relations~13! and ~16!,
we find

f~xc ,t !5e2lR* (xc2 v̄R* t)1h5const5c. ~21!

This implies that fluctuations inh are just identical with fluc-
tuations inxc . Therefore, we get

D~ t !;t1/4, ~22!

which reproduces the scaling of our previous result~12!.
We have also performed numerical simulations of t

noisy front equation~1! with a520.3 ~pushed! and a51
@pulled, FKPP equation~8!# following the lines of@13#. The
initial condition was taken as a step functionf(x,0)5u(x0
2x). The numerical integration has been performed usin
standard explicit Euler algorithm, in both cases the value
the noise was set to«50.5, and the zero value of the spati
noise correlatorC(0) was chosen as the inverse spatial in
gration mesh,C(0)51/Dx @13#. The result is shown in Fig
1, where the functionD(t) is plotted in both the pushed an

FIG. 1. Diffusive and subdiffusive spreading of the front po
tion. The dotted-dashed curve correponds to the pushed casa
520.3) and the solid one corresponds to the pulled case (a51).
The dashed straight line is the prediction~12!, while the dotted line
indicates a slope 1/2.



ob
er
i-

m

ol
t
th

e
to

on
b
ts
po
e
v

th
he

st
e
w
e
a
h

-
d
re

rals

al-

sent
y-
r
se
ed

er

in
on

y.
No.
ce

RAPID COMMUNICATIONS

R16 PRE 62ANDREA ROCCO, UTE EBERT, AND WIM van SAARLOOS
the pulled case.
The specific features of the pulled regime make the pr

lem quite delicate from the numerical point of view. In ord
to minimize finite size effects, which are particularly worr
some in this regime@7#, we have worked with a large syste
size (L53000) and gridsizeDx51 ~the change inv* andD
due to the finite gridsize effect was taken into account f
lowing the prescription of@7#!. This made sure that even a
time t5600, the leading edge of the front never reached
boundary of the system.

We have also checked our program and system size
tensively both for deterministic and noisy fronts, taking in
account grid and time step effects according to@7#.

Our final result, based on averaging over 10 000 fr
realizations, is shown in Fig. 1; it clearly confirms the su
diffusive behavior predicted by our analytical argumen
Quantitatively, when we associate a single effective ex
nent with the late time slope in the log-log plot of Fig. 1, w
get an effective exponent of about 0.29 rather than 1/4. O
the time interval we have studied, the actual value ofD(t) is
somewhat larger than an asymptotic prediction~12!, which is
indicated with a dashed line. This may be due to the fact
Eq. ~12! only gives the behavior for such long times that t
time integral is dominated by its larget behavior. The fact
that D is only of the order of 4 at our latest times sugge
that this asymptotic regime is only reached at very late tim
Indeed, assuming that finite size effects are negligible,
attribute the fact that the effective exponent is slightly larg
than 1/4 to the presence of slow crossovers, which surely
present in the system. Some of these can be estimated, w
.
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others are more difficult to trace.~i! We already noticed pre
viously that we are actually dealing with a slightly curve
KPZ interface, for which the crossover scaling functions a
not known, and that the way in which the cutoffjc

5O(At) enters the KPZ analysis requires further study.~ii !
The corrections to our asymptotic estimates for the integ
in Eq. ~7! are all of order 1/At, with possible logarithmic
corrections@7#. This indicates that the corrections to the sc
ing D;t1/4 are of ordert21/4, possibly with logarithmic cor-
rections.~iii ! If initially f falls off as exp(2lR*x), then the
associated KPZ interface remains straight towardsj5`. For
this case the KPZ scaling predictsD;t1/3. Presumably a
crossover between exponent 1/3 and 1/4 could be pre
when starting with an initial condition slightly faster deca
ing than exp(2lR*x). The identification of such a crossove
and the modification of the global exponent due to the
special initial conditions is an issue that will be address
elsewhere.

We finally stress that our results apply to a much larg
class of equations than nonlinear diffusion equations~1!. The
methods of generalization are analogous to those of@7,9#; a
closely related result is the general argument put forward
@10# that noisy pulled fronts in more than one dimensi
should not obey KPZ scaling.
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