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Simple method for calculating the speed of sound in tight-binding models:
Application to the Su-Schrieffer-Heeger model
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We present a simple general method for calculating the speed of sound in conjugated polymers, as modeled
by one-dimensional tight-binding Hamiltonians. We show how the elastic constants can easily be calculated by
imposing a uniform strain on the system. This in turn yields the speed of sound. To illustrate the method we
consider the Su-Schrieffer-Heeger model for polyacetylene. We compare our exact analytical expression for the
speed of sound as a function of the electron-phonon coupling strength to results obtained previously by other
authors, and we verify our results by means of numerical simulations. Most previous results grossly overesti-
mate the renormalization of the speed of sound.

Conjugated polymers such as polyacetylene can be undeiere U(x,t) denotes the displacement of a small volume
stood with concepts borrowed from the theory of one-with mass density, away from its position in the homoge-
dimensional metals. For example, the alternation betweeneous, undistorted state, a@ds an elastic coefficient. In the
carbon single and double bonds is a consequence of the fagtore general three-dimensional formulation such coeffi-
that dimerizing the lattice lowers the electronic energy at thecients are known as Lamepefficients® We now apply this
Fermi level. This is the Peierls instability. Polyacetylene,elastic theory to a solid with lattice paramegerby applying
(CH)y, has ac-bonded backbone and a valence band coma uniform stretchs, so that the lattice parametar of the
prised of 7 electrons. An important model for this system medium changes inta+ 8. Thus, C(dU/dx)?=C(s/a)?.
was proposed by Su, Schrieffer, and HeégéThey model The second term in Eql) then is nothing more than the
these physical elements in a linear tight-binding Hamiltoniarsecond-order change in energy density of the medium in the
in which the 7 electrons are treated quantum mechanicallypresence of a uniform stretch. In terms of the energy per
but in which the atomic coordinates andbonds are treated lattice sitee we therefore have
classically. This theoretical framework simplifies calcula-
tions and exposes the basic physical mechanisms when the C=aseys, 2
molecule is excited from its ground state. o _

In addition to including dimerization, the extended Wheree ;s denotes the second derivativesofuith respect to
m-electron system provides a screening mechanism which uniform stretchs. Since the wave equation associated with
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reduces the speed of sound.simplified calculation of this  EQ. (1) is p(d°U/dt%) =C(5°U/x7), we immediately have
effect will be the subject of this paper. The sound velocityfor the speed of sound
and the optical frequency have previously been calculated
perturbatively using the dimensionlesselectron—phonon _ \F_ €55 3
coupling constanh as the small parameter. These calcula- €= ;—a E ®
tions lead to erroneous results which subsequently were of-
ten quoted in the literature® Here we will present a physi- WhereM =ap is the mass per lattice site. That it is not nec-
cally transparent andxactmethod of calculating the speed essary to study finite wave vectgroscillations and then take
of sound and the optical frequency for long wavelengths. Théhe limit g—0 to calculate the speed of sound, can be un-
calculation rests on elementary arguments that are borrowe@rstood as follows. Uniform stretch is in fact the 0 mode
from continuum elastic theory and assumptions on whichvhen positions are expressedréiative coordinates.
models like the Su-Schrieffer-Heeg@SH model rest. Be- Our analysis will be based on the observation that the
low we will first give the general idea on which our method energy densitye, as a function of the stretch parametgr
is based, after which we will demonstrate the method bycan be calculated nonperturbatively rather easily in one-
applying it to the SSH model. It should be clear, howeverdimensional tight-binding models. Combined with Eg)
that the method is quite general in that it is applicable to ghis immediately gives the sound velocity. The only compli-
wide class of tight-binding models, both in one and in highercation in applying this idea lies in the fact that as a result of
dimensions. the electron-phonon interaction, changes in the strétehe

The basic idea underlying our approach is very simpleaccompanied by changes in the dimerization amplitude
Consider for example a one-dimensional elastic mediumThe exact generalization of E(®) to this more general case
Long wavelength distortions in such a medium are governeds given later in this papdiEqg. (17) below], and is based on
by the continuum Lagrangian the fact that the optical frequencies are much higher than the

acoustical frequencies for long wavelengths, so that it is per-
L—Jd 1 (9U\? 1Cau2
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(1) missible to average over the fast optical modes in deriving
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the effective elastic energy as a function of the streickive
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note that this simple physical picture does not seem to havitly will be presented in a forthcoming papehut we stress
been exploited before. For example, previous approaches fohat the results we derive here are insensitive to boundary
the SSH model have usually been based on uncontrolled peconditions.
turbation expansiorfs. Substitution of Eq(7) in Eq. (4) renders the Hamiltonian
In this paper, we illustrate our approach by applying it to
the SSH model. This enables us to compare our results for N _—
the sound velocity to those obtained with different methods. H(U:9)=— nZS [t+2a(=1)"u—ad]lcyCniystH.Cl
This comparison will disprove the often quoted result, that '
the suppression of the sound velocity ligear in the 5 )
electron-phonon coupling constantfor small coupling®® +2NKu+ 5 NKF~ ®)
Instead we find that this reduction éxponentially smalfor
weak coupling. The validity of our physically transparent The procedure for diagonalizing the Hamiltonidy. (8)] is
and technically efficient approach is further demonstrated, bgtraightforward and follows the standard procedure discussed

comparing it with numerical simulations. elsewheré~*’ Here we note that the expression for the
The SSH Hamiltonian is given by ground-state energy-per-site wid¥ 0 can be obtained from
the corresponding expression in the literafdréor =0, if
H=Hg+H,, (4)  one replacesbyt— a8 in the latter and adds the elastic term

. . , ) K 56%/2. The energy-per-site then becomes
with the mr-electron—lattice coupling written as

N-1 o(u,8)= 27X T okt Sk (9)
Ho==2 2 [t=a(Up.1=uy)] W 2
" where we have introduced the dimensionless variable
X[cpCn+1st H.Cl, () z=2qul(t—ad), and where” is the complete elliptic func-
tion of the second kind.
As explained above, the sound velocity can be expressed
N—1 N simply in terms of the second-derivatives;, etc., as these
H 25 z (Ups 1—U)2+ M E 02 6) play the role of elastic coefficients. Expanding the energy-
2 &y ot Tl g e e per-site (u,8) about the equilibrium valuesu(6=0) to
second order, we have

and the lattice part

In Egs. (5) and (6), n numbers thgCH) groups 1 through

N, u, is th_e displacement along the _c.hain of thi (CH) Ae(u,8)=3}e (Au)2+ e, 5(AU)(AS) + te 55(AS)2,
group relative to some reference positioa, cﬁys(cn,s) cre- (10
ates(annihilateg an electron with spin projection at site

n. The model parameters atethe hopping parameter for Where Ae(u,d)=e&(u,6)—«(u,9), Au=u—u, etc. From
uniform spacinga between adjacentCH) groups, @ the Eq. (9) the second derivatives, evaluated &t 0, are ob-
electron-phonon coupling constatt, the force constant for tained as

bond length deviations from equal spacing of the

o-bonding backbone, anldl the mass of 4CH) group. The . =K 25—(1+22)%‘+4 11
total chain lengthN will be assumed to be large enough to uu (1—2%)? '
justify the neglect of end effects.
The m-electron—lattice part of the Hamiltoniatl,; mod- 20— (1+ 2%
els the coupling of ther-electrons to the lattice degrees of ess=K 2)\W+ 1, (12
freedom, via a linear modulation with distance of the hop-
ping frequencyt. The first term in the lattice part of the _ o )
Hamiltonian H; models a harmonic restoring force on the _ 20-(1+2)7
. . Eus— K 4)\ Vi y (13)
o-bonded(CH) groups when displaced from equal spacing (1—-2°)

a, and the second term is the kinetic energy. ] . ] )

An expression for the energy of the ground state withWhere X is the dimensionless electron-phonon coupling
uniform dimerization amplitudes is usually obtained by strength defined through=2a?/(mKt), .7 is the complete
minimization of the energy after substituting the ansatzelliptic function of the first kind, and where we have abbre-
u,=(—1)"u. Here we take a slightly different ansatz to Viated #(y1-z°) and.Z(y1-2°) as# and 7.

accommodate a uniform bond stretchifig Due to the coupling between the strain and the dimeriza-
tion amplitude, through the coefficieat s=¢ s, , the expres-
u,=(—1)"u+ns. (7)  sion[Eg. (3)] for the sound velocity in a simple medium is

not appropriate. An explicit derivation of the more general
Periodic boundary conditions are incompatible with this an-expressior{Eq. (17)] below, will be given elsewheréhere
satz, sincaiy=u; can only be imposed fof=0. To circum-  we content ourselves with a simple heuristic argument: due
vent this technical problem, we envisage a long chain witho the arbitrarily large difference in the frequency of acoustic
boundary conditions such, that there is no stretching in th¢5) versus optical ) modes in theq—0 limit, we may
ground state. Details on how this can be implemented explicapproximate
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(U, ) 0. (14 M
M lumy 1.0
where the overbar indicates a time average on a time scale 0.9 I
short compared to acoustical periods but long compared to c/c, |
optical periods. Put differently, the forces in the optical 0.8
modes average to zero on acoustic time scales. We can obtain - . .
an expression for the value of the time averadad for a 0.7 | (a) ~
given quasistatic stretch s, by expanding Eq(14): 06 I . . Lo 1
N 00 01 02 03 04 05 06
eylAu+e, sA6=0, (15 A
so that the optical modes fluctuate about
Au=—(g,s/e ) A6 for a given stretchA 5. On substitution 07 o ]
in Eq. (10) we arrive at an expansion for the effective energy 06 7
with respect to the stretch §, valid on acoustic timescales 05 - .
2 2 0-4 : /// _-
1 855 O)opt /QO 1 7 ]
Ae==|g55— — | (A5 (16) 0.3 ]
2 Euy 02 [ ]
Along the same lines as above, we then obtain for the speed 01 (b)y
of sound in the dimerized ground state oo VLo v vy
00 01 02 03 04 05 06
€55 825 A
u
c=c - = , 1
0 K Ksuu ( 7)

FIG. 1. (a) Suppression of the sound velocity as a function of

wherecy=a 'K/M is the bare speed of sound and where thdhe couplir_lg strength, defined after Eq(13). T_he solid line shows
second derivatives given in Eq&1)—(13) are to be evalu- ©°Ur gnalytlcal .resuI[Eq. (17]. The dgshed line shows thg result
ated at the equilibrium values and 5=0. We stress that, °Ptained by Ricet al. (Ref. 8. The diamonds mark the points we
within the adiabatic approximation for the electron dynam-Obt"’lIneOI by a nurr_le_ncal simulatiofsee text, which unambigu-
ics, Eq.(17) is exact. Figure (&) shows the reduction of the ously show the validity of our approacth) Long wavelength op-
! d ’ locit f " fth i t tHNot tical frequency as a function of the coupling strengythThe solid
fr?;[n b)\//ee?(gla);]g;g tﬁgcc!ggf(f)icier?tsccmplzl(&%)s rxg%in doai line depicts the exact resylEq. (19)]. The dashed line shows the
! . . ! ) weak-coupling approximatiofEq. (20)].
exponentially small renormalization of the sound velocity for ping app [Eq. (20]

small\: gap. It is well known that the gap is exponentially small in

weak coupling, crossing over to linear i behavior for
}_2 o (2+10) (18) larger couplings.
A ' Since optical frequencies are finite gs-0, the optical

frequency is given in terms af,, only:’
On the one hand, this contradicts the often quoted rebult
that the sound velocity for small coupling is given by 2

clcg~1-4

w &
c=coV1-2X, and the dashed line in Fig(d shows this 2 =4
behavior of the sound velocity as obtained by Rital® On 0
the other hand, Psaltakis and Papanicolamed a It ex- 20— 1+ 22 H
pansion technique for calculating the phonon spectrum, =2AW+ 1, (19

wheren is the degeneracy of the-electron bandsn(=2 for
polyacetylen}: and their result for the suppression of the where (= \4K/M is the frequency at the band edge at
sound velocity compares extremely well to our exact result+ /4 in the absence of dimerization. The solid line in Fig.

To illustrate the validity of Eq(17), we have also per- 1(b) shows the behavior of this optical frequency as a func-
formed numerical simulations in which a sinusoidal modula-tion of \, while the dashed line depicts the weak-coupling

tion was superimposed on the dimerized ground state. Thgsyit
sound velocities were calculated by measuring the resulting

periods of oscillations for different. As is clear from Fig. ®opi= 27Q,, (20)
1(a), where the diamonds represent the simulation results,
the agreement with Eq17) is excellent. obtained from Eq(19). Note that, in contrast to the weak-

It is perhaps not surprising that the effect of the couplingcoupling behaviofEq. (18)] of the sound velocity, our weak-
on the sound velocity is only exponentially small in the coupling result for the optical frequendfq. (20)] and the
weak-coupling limit, and roughly linear for larger couplings. result given in the literatufe*® agree.

After all, the effect is a manifestation of the change in chain The discrepancy between our exact result for the sound
stiffness which in turn is directly related to the electronic velocity and the resuftobtained using perturbation theory in



53 SIMPLE METHOD FOR CALCULATING THE SPEED OF SOUND ... R5989

\, can be explained by noting that the weak-coupling behavsound velocity and optical frequency which can easily be

ior [Eq. (18)] shows an essential singularity at=0. This applied to othe_r models. .T_hese guantities may serve as a
behavior can therefore never be obtained using perturbatioguide to determine the validity of spectra calculated by other

theory in\. On the other hand, the analytic behavior for Means.

small A of the optical frequencyEq. (20)] can be obtained £ jv. and D.P.A. were supported by Stichting voor Fun-
correctly using perturbation theory. damenteel Onderzoek der MateiEOM), which is finan-

In summary, we have presented a technically simple andially supported by the Nederlandse Organisatie voor Weten-
physically transparent way of obtaining expressions for theschappelijk OnderzoelNWO).
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