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We present a simple general method for calculating the speed of sound in conjugated polymers, as modeled
by one-dimensional tight-binding Hamiltonians. We show how the elastic constants can easily be calculated by
imposing a uniform strain on the system. This in turn yields the speed of sound. To illustrate the method we
consider the Su-Schrieffer-Heeger model for polyacetylene. We compare our exact analytical expression for the
speed of sound as a function of the electron-phonon coupling strength to results obtained previously by other
authors, and we verify our results by means of numerical simulations. Most previous results grossly overesti-
mate the renormalization of the speed of sound.

Conjugated polymers such as polyacetylene can be under-
stood with concepts borrowed from the theory of one-
dimensional metals. For example, the alternation between
carbon single and double bonds is a consequence of the fact
that dimerizing the lattice lowers the electronic energy at the
Fermi level. This is the Peierls instability. Polyacetylene,
~CH!x, has as-bonded backbone and a valence band com-
prised ofp electrons. An important model for this system
was proposed by Su, Schrieffer, and Heeger.1–4 They model
these physical elements in a linear tight-binding Hamiltonian
in which thep electrons are treated quantum mechanically
but in which the atomic coordinates ands bonds are treated
classically. This theoretical framework simplifies calcula-
tions and exposes the basic physical mechanisms when the
molecule is excited from its ground state.

In addition to including dimerization, the extended
p-electron system provides a screening mechanism which
reduces the speed of sound.5 A simplified calculation of this
effect will be the subject of this paper. The sound velocity
and the optical frequency have previously been calculated
perturbatively using the dimensionlessp-electron–phonon
coupling constantl as the small parameter. These calcula-
tions lead to erroneous results which subsequently were of-
ten quoted in the literature.2,3 Here we will present a physi-
cally transparent andexactmethod of calculating the speed
of sound and the optical frequency for long wavelengths. The
calculation rests on elementary arguments that are borrowed
from continuum elastic theory and assumptions on which
models like the Su-Schrieffer-Heeger~SSH! model rest. Be-
low we will first give the general idea on which our method
is based, after which we will demonstrate the method by
applying it to the SSH model. It should be clear, however,
that the method is quite general in that it is applicable to a
wide class of tight-binding models, both in one and in higher
dimensions.

The basic idea underlying our approach is very simple.
Consider for example a one-dimensional elastic medium.
Long wavelength distortions in such a medium are governed
by the continuum Lagrangian

L5E dxF12 rS ]U

]t D
2

2
1

2
CS ]U

]x D 2G . ~1!

Here U(x,t) denotes the displacement of a small volume
with mass densityr, away from its position in the homoge-
neous, undistorted state, andC is an elastic coefficient. In the
more general three-dimensional formulation such coeffi-
cients are known as Lame´ coefficients.6 We now apply this
elastic theory to a solid with lattice parametera, by applying
a uniform stretchd, so that the lattice parametera of the
medium changes intoa1d. Thus,C(]U/]x)25C(d/a)2.
The second term in Eq.~1! then is nothing more than the
second-order change in energy density of the medium in the
presence of a uniform stretch. In terms of the energy per
lattice site« we therefore have

C5a«dd , ~2!

where«dd denotes the second derivative of« with respect to
a uniform stretchd. Since the wave equation associated with
Eq. ~1! is r(]2U/]t2)5C(]2U/]x2), we immediately have
for the speed of soundc
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whereM5ar is the mass per lattice site. That it is not nec-
essary to study finite wave vectorq oscillations and then take
the limit q→0 to calculate the speed of sound, can be un-
derstood as follows. Uniform stretch is in fact theq50 mode
when positions are expressed inrelative coordinates.

Our analysis will be based on the observation that the
energy density«, as a function of the stretch parameterd,
can be calculated nonperturbatively rather easily in one-
dimensional tight-binding models. Combined with Eq.~2!
this immediately gives the sound velocity. The only compli-
cation in applying this idea lies in the fact that as a result of
the electron-phonon interaction, changes in the stretchd are
accompanied by changes in the dimerization amplitudeu.
The exact generalization of Eq.~2! to this more general case
is given later in this paper@Eq. ~17! below#, and is based on
the fact that the optical frequencies are much higher than the
acoustical frequencies for long wavelengths, so that it is per-
missible to average over the fast optical modes in deriving
the effective elastic energy as a function of the stretchd. We
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note that this simple physical picture does not seem to have
been exploited before. For example, previous approaches for
the SSH model have usually been based on uncontrolled per-
turbation expansions.8

In this paper, we illustrate our approach by applying it to
the SSH model. This enables us to compare our results for
the sound velocity to those obtained with different methods.
This comparison will disprove the often quoted result, that
the suppression of the sound velocity islinear in the
electron-phonon coupling constantl for small coupling.2,3

Instead we find that this reduction isexponentially smallfor
weak coupling. The validity of our physically transparent
and technically efficient approach is further demonstrated, by
comparing it with numerical simulations.

The SSH Hamiltonian is given by

H5Hel1Hl , ~4!

with thep-electron–lattice coupling written as
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In Eqs. ~5! and ~6!, n numbers the~CH! groups 1 through
N, un is the displacement along the chain of thenth ~CH!
group relative to some reference positionna, cn,s

† (cn,s) cre-
ates~annihilates! an electron with spin projections at site
n. The model parameters aret the hopping parameter for
uniform spacinga between adjacent~CH! groups,a the
electron-phonon coupling constant,K the force constant for
bond length deviations from equal spacing of the
s-bonding backbone, andM the mass of a~CH! group. The
total chain lengthN will be assumed to be large enough to
justify the neglect of end effects.

Thep-electron–lattice part of the HamiltonianHel mod-
els the coupling of thep-electrons to the lattice degrees of
freedom, via a linear modulation with distance of the hop-
ping frequencyt. The first term in the lattice part of the
HamiltonianHl models a harmonic restoring force on the
s-bonded~CH! groups when displaced from equal spacing
a, and the second term is the kinetic energy.

An expression for the energy of the ground state with
uniform dimerization amplitudeu is usually obtained by
minimization of the energy after substituting the ansatz
un5(21)nu. Here we take a slightly different ansatz to
accommodate a uniform bond stretchingd:

un5~21!nu1nd. ~7!

Periodic boundary conditions are incompatible with this an-
satz, sinceuN5u1 can only be imposed ford50. To circum-
vent this technical problem, we envisage a long chain with
boundary conditions such, that there is no stretching in the
ground state. Details on how this can be implemented explic-

itly will be presented in a forthcoming paper,7 but we stress
that the results we derive here are insensitive to boundary
conditions.

Substitution of Eq.~7! in Eq. ~4! renders the Hamiltonian
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The procedure for diagonalizing the Hamiltonian@Eq. ~8!# is
straightforward and follows the standard procedure discussed
elsewhere.2–4,7 Here we note that the expression for the
ground-state energy-per-site withdÞ0 can be obtained from
the corresponding expression in the literature2,3 for d50, if
one replacest by t2ad in the latter and adds the elastic term
Kd2/2. The energy-per-site then becomes

«~u,d!5
24~ t2ad!
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where we have introduced the dimensionless variable
z[2au/(t2ad), and whereE is the complete elliptic func-
tion of the second kind.

As explained above, the sound velocity can be expressed
simply in terms of the second-derivatives«dd , etc., as these
play the role of elastic coefficients. Expanding the energy-
per-site «(u,d) about the equilibrium values (uI ,dI 50) to
second order, we have

D«~u,d!5 1
2«uu~Du!21«ud~Du!~Dd!1 1

2«dd~Dd!2,
~10!

where D«(u,d)[«(u,d)2«(uI ,dI ), Du[u2uI , etc. From
Eq. ~9! the second derivatives, evaluated atd50, are ob-
tained as

«uu5KF8l
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14G , ~11!

«dd5KF2l
2E2~11z2!K

~12z2!2
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«ud5KF4l
2E2~11z2!K

~12z2!2 G , ~13!

where l is the dimensionless electron-phonon coupling
strength defined throughl52a2/(pKt), K is the complete
elliptic function of the first kind, and where we have abbre-
viatedE(A12z2) andK (A12z2) asE andK .

Due to the coupling between the strain and the dimeriza-
tion amplitude, through the coefficient«ud5«du , the expres-
sion @Eq. ~3!# for the sound velocity in a simple medium is
not appropriate. An explicit derivation of the more general
expression@Eq. ~17!# below, will be given elsewhere;7 here
we content ourselves with a simple heuristic argument: due
to the arbitrarily large difference in the frequency of acoustic
(d) versus optical (u) modes in theq→0 limit, we may
approximate
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where the overbar indicates a time average on a time scale
short compared to acoustical periods but long compared to
optical periods. Put differently, the forces in the optical
modes average to zero on acoustic time scales. We can obtain
an expression for the value of the time averagedDu for a
given quasistatic stretchDd, by expanding Eq.~14!:

«uuDu1«udDd50 , ~15!

so that the optical modes fluctuate about
Du52(«ud /«uu)Dd for a given stretchDd. On substitution
in Eq. ~10! we arrive at an expansion for the effective energy
with respect to the stretchDd, valid on acoustic timescales

D«5
1

2 S «dd2
«ud
2

«uu
D ~Dd!2. ~16!

Along the same lines as above, we then obtain for the speed
of sound in the dimerized ground state

c5c0A«dd

K
2

«ud
2

K«uu
, ~17!

wherec05aAK/M is the bare speed of sound and where the
second derivatives given in Eqs.~11!–~13! are to be evalu-
ated at the equilibrium valuesuI and dI 50. We stress that,
within the adiabatic approximation for the electron dynam-
ics, Eq.~17! is exact. Figure 1~a! shows the reduction of the
sound velocity as a function of the coupling strengthl. Note
that, by expanding the coefficients in Eq.~17!, we find an
exponentially small renormalization of the sound velocity for
smalll:

c/c0;124S 1l 22De2~211/l!. ~18!

On the one hand, this contradicts the often quoted result2,3

that the sound velocity for small coupling is given by
c5c0A122l, and the dashed line in Fig. 1~a! shows this
behavior of the sound velocity as obtained by Riceet al.8 On
the other hand, Psaltakis and Papanicolaou9 used a 1/n ex-
pansion technique for calculating the phonon spectrum,
wheren is the degeneracy of thep-electron bands (n52 for
polyacetylene!, and their result for the suppression of the
sound velocity compares extremely well to our exact result.

To illustrate the validity of Eq.~17!, we have also per-
formed numerical simulations in which a sinusoidal modula-
tion was superimposed on the dimerized ground state. The
sound velocities were calculated by measuring the resulting
periods of oscillations for differentl. As is clear from Fig.
1~a!, where the diamonds represent the simulation results,
the agreement with Eq.~17! is excellent.

It is perhaps not surprising that the effect of the coupling
on the sound velocity is only exponentially small in the
weak-coupling limit, and roughly linear for larger couplings.
After all, the effect is a manifestation of the change in chain
stiffness which in turn is directly related to the electronic

gap. It is well known that the gap is exponentially small in
weak coupling, crossing over to linear inl behavior for
larger couplings.

Since optical frequencies are finite asq→0, the optical
frequency is given in terms of«uu only:

7

vopt
2

V0
2 5

«uu
4

52l
2E2~11z2!K

~12z2!2
11 , ~19!

whereV05A4K/M is the frequency at the band edge at
6p/a in the absence of dimerization. The solid line in Fig.
1~b! shows the behavior of this optical frequency as a func-
tion of l, while the dashed line depicts the weak-coupling
result

vopt5A2lV0 , ~20!

obtained from Eq.~19!. Note that, in contrast to the weak-
coupling behavior@Eq. ~18!# of the sound velocity, our weak-
coupling result for the optical frequency@Eq. ~20!# and the
result given in the literature2,3,8 agree.

The discrepancy between our exact result for the sound
velocity and the result8 obtained using perturbation theory in

FIG. 1. ~a! Suppression of the sound velocity as a function of
the coupling strengthl, defined after Eq.~13!. The solid line shows
our analytical result@Eq. ~17!#. The dashed line shows the result
obtained by Riceet al. ~Ref. 8!. The diamonds mark the points we
obtained by a numerical simulation~see text!, which unambigu-
ously show the validity of our approach.~b! Long wavelength op-
tical frequency as a function of the coupling strengthl. The solid
line depicts the exact result@Eq. ~19!#. The dashed line shows the
weak-coupling approximation@Eq. ~20!#.

R5988 53VOS, AALBERTS, AND van SAARLOOS



l, can be explained by noting that the weak-coupling behav-
ior @Eq. ~18!# shows an essential singularity atl50. This
behavior can therefore never be obtained using perturbation
theory in l. On the other hand, the analytic behavior for
small l of the optical frequency@Eq. ~20!# can be obtained
correctly using perturbation theory.

In summary, we have presented a technically simple and
physically transparent way of obtaining expressions for the

sound velocity and optical frequency which can easily be
applied to other models. These quantities may serve as a
guide to determine the validity of spectra calculated by other
means.

F.L.J.V. and D.P.A. were supported by Stichting voor Fun-
damenteel Onderzoek der Materie~FOM!, which is finan-
cially supported by the Nederlandse Organisatie voor Weten-
schappelijk Onderzoek~NWO!.

1W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev. Lett.42,
1698 ~1979!.

2Yu Lu, Solitons & Polarons in Conducting Polymers~World Sci-
entific, Singapore, 1988!.

3A.J. Heeger, S. Kivelson, J.R. Schrieffer, and W.P Su, Rev. Mod.
Phys.60, 781 ~1988!.

4D. Baeriswyl, inTheoretical Aspects of Band Structures and Elec-
tronic Properties of Pseudo-One-Dimensional Solids, edited by
H. Kamimura~Reidel, Dordrecht, 1985!.

5L. Salem,Molecular Orbital Theory of Conjugated Systems~Ben-
jamin, London, 1966!.

6See, e.g., L.D. Landau and E.M. Lifshitz,Theory of Elasticity
~Pergamon, New York, 1986!.

7F.L.J. Vos, D.P. Aalberts, and W. van Saarloos~unpublished!.
8M.J. Rice, S.R. Phillpot, A.R. Bishop, and D.K. Campbell, Phys.
Rev. B34, 4139~1986!.

9G.C. Psaltakis and N. Papanicolaou, inInteracting Electrons in
Reduced Dimensions, edited by D. Baeriswyl and D.K. Camp-
bell ~Plenum Press, New York, 1988!.

53 R5989SIMPLE METHOD FOR CALCULATING THE SPEED OF SOUND . . .


