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We show that the heat flow in the tail sections of needle-crystal solutions of dendritic growth
becomes increasingly anisotropic. As a result, the dominant behavior in an outer expansion for
the tails reduces to that of a very simple physical model which admits the exact Ivantsov solutions
as well as a continuous family of solutions for nonzero capillary length. The model provides a
useful testing ground for newly developed analytical and numerical methods for velocity selection.

Recent work!? has demonstrated that capillary forces
can play a crucial role in the steady-state propagation of
interfacial patterns. In the case of viscous fingering in a
Hele-Shaw cell, the surface tension o enters as a singular
perturbation in the equation for the finger width; it des-
troys the continuous family of solutions found for o=0
and allows only a discrete set of finger widths, one of
which can be identified with the unique value found in ex-
periments. 3~3

The existence of such a ““solvability condition™ is often
understood in terms of ideas that were first applied in nu-
merical studies of the Hele-Shaw equations, as well as to
simple local models for dendrite growth.»?¢ On relaxing
the boundary condition at the tip of the finger (the “inner
region”) in the steady-state equation, a continuous family
of physically acceptable solutions can be found in the tails
(the “outer region”). However, only for particular param-
eter values is there a smooth joining of the “outer solu-
tion” to an “inner solution” which meets the proper
boundary conditions at the tip; when this matching occurs,
there exists a globally acceptable solution.

While there are a number of indications®=® that a simi-
lar capillary-induced solvability condition could also apply
to the steady propagation of dendrite tips, there are some
important physical differences arising from the diffusive
dynamics of heat flow. In this paper we focus on these
differences and their possible consequences.

In the “matching picture,” based essentially on the re-
sults of the local models,'? a continuous family of solu-
tions can occur if the tails of the needles are very “forgiv-
ing,” i.e., can join up to almost any possible tip behavior.
Roughly speaking, in this case the behavior in the outer re-
gion (the tails) is analogous to that of a stable fixed point,
which is approached by many nearby trajectories.'® With

many “tails” to choose from, matching the tip and the tail
J

solutions in the region of overlap is then generally possible.

Below we will analyze the steady-state equations for
diffusion-controlled crystal growth and show nonperturba-
tively in the capillary length dg that the dominant behavior
in an outer expansion for the tails has precisely the above-
mentioned properties. The argument is based on the fact
that the equation for the outer region becomes exact
everywhere in the limit of extremely anisotropic diffusion.
This limit can be understood in very simple physical terms
and helps to illustrate how a continuous family of solutions
can arise; it should therefore serve as a useful testing
ground for numerical and analytical tools.

For concreteness, we study steady-state propagation in
two dimensions using the “symmetric model.”!! We im-
agine that anisotropic heat diffusion can occur, so that the
temperature diffusion equation in a frame moving with the
tip velocity V becomes

=0 . (1)

The usual case of isotropic heat diffusion corresponds to
e=1. The boundary conditions at the interface, in dimen-
sionless units, are

(V,)y=—DWNT,—VT,), ,
T,‘ =A_d0K' N (2)
V), =—e’D(VNT,—VT,), .

Here A is the dimensionless undercooling, dg the capillary
length, « the interface curvature, and V, its normal veloci-
ty.

As in the isotropic case £=1, Eqgs. (1) and (2) can be
written with the aid of Green’s-function techniques!!!2 as
an integro-differential equation for the interface z (x),

+ oo
A—yk(x) =-;:l’;f_w dxyexple "2[z(x)) —z(x) 3 Ko(e ~He?(x —x 1) 2+ [2(x) =z (x1)13 12) . 3)

Here all lengths are measured in units of 2D/V, the
diffusion length at the tip, Ko is the modified Bessel func-
tion of zeroth order, and y=doV/2D is the dimensionless
capillary parameter.

Before analyzing the case y0, we note that the
Ivantsov solutions!’"!> (y=0) are independent of &: One

3

f
can scale € out of the y=0 equation by defining Z

=g~ !z, =g~ 'x. Equation (3) then reduces to the in-
tegral equation for the isotropic case (¢=1), and thus has
Ivantsov solutions Z = — %2/2p, with the Péclet number

given by the usual expression for the symmetric model. !13
It follows that z = —x2/2p is also an Ivantsov solution of
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the original anisotropic equation.

At first glance, the above result may appear surprising,
since small ¢ suppresses heat flow in the z direction. As a
result, isotherms near the needle tip crowd close to one
another [see Fig. 1(a)]l. However, heat flow in the tails is
increasingly in the x direction, so the z dependence of the
temperature becomes dominanted by the convective V8T/
9z term in Eq. (1). This is true for all g, and it determines
the entire Ivantsov needle shape.

To make this more precise, we note that according to
(2), the relevant length scale for variations in the temper-
ature field is the diffusion length /=D/V,=D/V cosb,
where 6 is the angle the normal makes with the z direction.
Thus 87/8n=(VT),~1/l, so that VoT/0z =V cosé/l.
The derivative D327/8z 2 has two contributions, a term of
order D(cos6/!)? from taking the second derivative in the
normal direction, and a term resulting from the change in
the angle 6 with z ( related to the curvature of the inter-
face). It can be shown that the 6 dependence of this term
is of the same form as the first one, and thus we get

£2D3%T/9z?
VoT/d:z

where g(p) ~p ~! for small p. Clearly, the ratio R goes to
zero in the tails (6— = z/2), and so the third term in (1)
becomes negligible in that region for any value of ¢ and
p > 0. Note, however, that R— oo if the zero Péclet limit
is taken first, indicating that this limit must be taken with
care.

This idea also helps analyze the case y#0. Consider a
point in the tails for which x is large enough so that
e 12> 1; i.e., x>>gp, where z'=dz/dx. At these points,
the dominant contributions to the integral in Eq. (3) come
from these values of |x;| < |x| where the argument of
the Bessel function Ky is large; the integral from xI

R= =g2g(p)cos?e , 4)
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FIG. 1. (a) Isotherms near a dendrite tip for e=1 and ¢ 1.
(b) To understand the ¢ =0 limit, the needle is imagined to con-
sist of little layers of thickness d. The steady-state profile in the
limit d — O is the smooth interpolation of the pieces of interface
in the separate layers.

= x; < oo is negligible, since both the exponential factor
and the Bessel function drop rapidly for x| > x. Using the
asymptotic expansion Ko(w)~ (n/2w) "2 =* and ex-
panding the square root using the fact that e(x —x;)/
[z(x,) —z(x)]1 <1, we then get, for x> gp, the “outer ex-
pansion” result

+x — — 2 —
R 12 f_ Xmexp{ (x—=x)20z(x)—z(x DD
V4 x

N [z(x)—z(x)]12
The right-hand side of this equation is correct to terms of
order &/z'= gp/x. The appearance of this ratio is not
surprising, since the combination g2cos26 in (4) is of order
(ep/x)? in the tails. Because this ratio becomes small, the
physics in the tails for any ¢ is that of highly anisotropic
heat flow. If we consider &€ small we can extend the range
of x where this outer expansion holds true, and for £=0,
Eq. (5) is exact for all x. This corresponds to a model sys-
tem where heat exchange in the z direction is completely
suppressed. This limit allows us to interpret (5) physical-
ly; we call the model system with £ =0, defined by

+x

—x—x.)2
A—yk= dx, (x—x,)%27
-X

e ; )

2nt

t=z(x;)—z(x),all x ,

the outer expansion model (OEM).

Consider a thin slice of this ¢=0 system in the lab
frame, as sketched in Fig. 1(b). If the instantaneous inter-
face positions in this slice are =+ x¢, then the interface
temperature is determined solely by the heat released ear-
lier in this slice when the two interfaces were at positions

+ -, x>ep . (%)

I

| x| < xq. The right-hand side of Eq. (6) expresses the in-
terface temperature as the sum of all these contri-
butions—indeed the integral is the well-known Green’s
function of the one-dimensional temperature equation,
with 7 the time it took the interface to move from x; to x.
[In dimensional units, the steady-state interface must be at
the same position x in a slice a distance V7 higher, so that
Vi=z(x;) —z(x); in dimensionless units, this gives
1=2z(x;) —z(x)].

Since the ¢é— 0 limit is well defined, the e-independent
Ivantsov solution z=—x2/2p of (3) is also the Ivantsov
solution of the OEM (6). Moreover, a family of solutions
still exists in the OEM for y> 0. To understand this, let
us imagine the system to consist of thin layers of thickness
d [Fig. 1(b)] and construct a solution with a given velocity
V by letting new solid slices nucleate at x =0 in successive
layers every At =d/V seconds. Once formed, each solid
slice will grow out horizontally as long as the interface cur-
vature x, at the tip (obtained by smooth interpolation of
the profile) is well defined in the limit d— 0 (with
d/At =V fixed), and provided that A — yx, > 0 so that the
melt is undercooled with respect to the tip temperature.
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Once started, the physics of each layer is just that of an in-
terface in one dimension growing into an undercooled
melt: The buildup of the heat in front of each slice will
cause it to slow down for large times irrespective of the ini-
tial conditions (i.e., when each slice was part of the tip re-
gion) or of the presence of the coupling of the layers due to
the yx term. Thus, the OEM can “grow into the steady
state.” The tails do not constrain the growth in the tip re-
gion, but rather join smoothly onto the tip profile. As a re-
sult, the OEM has a continuous family of steady-state
solutions for y > 0 due to the very mechanism we argued
for earlier '° on physical grounds.

The condition for the existence of the limit d— 0 at the
tip, and hence for the existence of steady-state solutions,
can be worked out explicitly. Writing z = —x2/2p,+ SRR
with p, the Péclet number for ¥y > 0 and taking the limit
x— 0in Eq. (6), we get

A——pL =/np,ererfc(\/p,) . @)
14

This equation relates the dimensionless surface tension y
to the Péclet number p,, and hence allows a continuous
family of steady-state solutions, parametrized, e.g., by the
tip radius of curvature. In fact, Eq. (7) is identical to the

|

3/2 o
D f 1+v _— pv
YK e ir2 Jo dv e

1
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result found in the modified Ivantsov approximation,'! and

so in spite of the fact that the heat flow in the tip region is
unrealistic,'* the OEM still captures some essential
features of the effect of capillary corrections on the tip.

Let us now return to the full problem with isotropic heat
flow (¢=1). Before discussing the -implications for the
matching picture, we consider the tip and tail region in
more detail.

Equation (7) yields an upper bound for the values of y
for which solutions can exist in the full model (e=1)
without crystalline anisotropy. This is due to the fact that
the isotherms become spaced closer together for decreas-
ing ¢ [see Fig. 1(a)], so that a solution with small & does
not need to sharpen up as much in the tip region as an
€£=1 solution, in order to accommodate the same tempera-
ture depression dox in T;. Equation (7) is therefore useful
in analyzing numerical solutions of Eq. (3), which are
sometimes carried out using values of y above the upper
bound (7).

The asymptotic behavior for ¢=1 can also be studied
quantitatively with the aid of Eq. (5). Since z(x) ap-
proaches the Ivantsov solution z = — x2/2p for large x, we
can write z=—x2/2p+Az and linearize in Az. After
trarllgforming to the variable v=(x —x)/(x+x,), we
get

—Az(x) | . 8)

The « term on the left-hand side of this equation falls off as 1/x 3 for large x. Two cases have to be distinguished in dis-
cussing the leading behavior of Az: One possibility is that this term, when substituted in (8), gives rise to a contribution
of order x ~2 on the right-hand side; alternatively, the dominant term in Az could give a vanishing contribution to the
right-hand side of (8), in which case a subdominant term balances the O(x ~3) term on the left-hand side. We consider
the latter possibility first.

Because of the presence of the p —1/2v term, the integrand of (8) changes sign. Therefore, the integral can vanish
when p is not too small. Indeed, if we substitute Az =/Ax?, the integral on the right-hand side becomes proportional to
Af (p,B)xP~2, with

1+v
Vo

Here we have rewritten the integral from 1 to oo with the -
transformation v — 1/v. It is easy to see that the term be- o
tween the first square brackets changes sign for p > 1/2. -
Since the term between the second square brackets weights
different parts of the interval [0,1] differently depending
on B, it is possible to make f(p,B) vanish for some particu-
lar value of B for any p > %+. This implies that Az =Ax*
for p> &, with the exponent S determined by the require-
ment f(p,B) =0. As shown in the inset of Fig. 2, B ap- B
proaches —1 for p— 3, and increases rapidly toward 1 . : of
for large p. We indeed find this asymptotic behavior in nu- 7
merical solutions of the integral equations for £ =0 as well o - 1 L
as for ¢=1. Figure 2 shows the data for an undercooling ol 7 !
A=0.76(p==1) on a log-log plot. For values of x of about - 10° 10"
10, =1 is found numerically; '¢ for larger x the effective X
exponent continues to approach its predicted value of
about 0.2. Note that the data for the full problem follow
those of the OEM quite closely.

For p< %, f(p,B) is always nonzero; as explained

1
f(p.B) =J;) dv

B
le =P*(p — 1/20) +e ~P/°(p/v2 —1/20)] [ [IT:_—Z] —1} . )

L 1l

—A\Z

FIG. 2. Az vs x on a log-log scale at A=0.76(p=1), y=0.003
for =0 (dashed line) and =1 (dotted line). Inset: B(p) for
D> ;—
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above, the leading behavior of Az is now expected to give
rise to a contribution of order x ~3 in (8). In a paper by
Kotliar and the present authors,!® it will be shown that
terms of this order arise from all parts of the profile, and
that this implies that Az has to be integrable; the function-
al form of the behavior of Az for large x, however, is not
fixed by the asymptotic analysis. In numerical solutions, it
is found that Az ~x ~ ¢ with a a noninteger exponent.

How relevant are the results of the OEM to the real sys-
tem with ¢=1? By construction, the OEM captures the
essential physics of the full problem in the tails at dis-
tances greater than about a diffusion length D/V from the
tip, and thus provides evidence that there are many “flexi-
ble tails” available for matching in this region. In the sim-
plest matching picture, this hints at the existence of a fam-
ily of steady-state solutions.

However, at small Péclet numbers the diffusion length is
much larger than the radius of curvature of the experimen-
tally selected tip ps;, which scales!! as ps~~d,D/V.
While the local models!? suggest that a matching condi-
tion in the tails governs the steady-state properties, this is
not necessarily the case for the full nonlocal problem. The
dynamically important region, before sidebranching be-
comes significant, clearly is of order p;. If this physics
reflects itself in the steady-state problem, then a likely
scenario is that the selection can be thought of as arising
from a nontrivial matching condition in the intermediate
region of order p;. A final matching to the “flexible tails”
of the OEM, necessary to obtain a global solution, would
in this view then be easy to achieve and have no implica-
tions for the solvability condition.

This picture seems self-consistent provided the devia-
tions from the Ivantsov solution are very small in the tails.
However, the present analysis has shown that there is a
slow power-law approach to the Ivantsov solution in the
tails, in contrast to the fast exponential approach found in
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the Laplace limit for the Hele-Shaw cell. This difference
could affect the applicability of the solvability condition.
Thus, there is a need for a more general analysis that con-
siders explicitly both the intermediate region and the tails.
It seems to us possible, at least for large Péclet numbers
where the distinction between the two regions is much less
clear cut, that the physics in the tails given by the OEM
could dominate, and yield a family of solutions. If so, it
will be important to study the three-dimensional problem
in detail, since a given undercooling A corresponds to a
much larger Péclet number in three dimensions than in
two.

In mathematical studies of the full nonlocal problem, it
is not clear how relevant the matching picture is, and most
workers understand the solvability condition in terms of an
analysis near a pole in the complex plane associated with
the small argument logarithmic singularity of the modified
Bessel function Ko(w).?> From this perspective, the most
serious mathematical objection to the OEM, which focuses
on the /arge-argument behavior, is that the Inw singularity
is repaced by a w ~1/2 singularity. However, an important
assumption in the analysis, which is related to ideas from
the matching picture, is that there is at most one solution
of the integral equation. Again, it appears that a unified
treatment is called for, which takes account of both the
proper small argument singularity and the large argument
behavior as in the OEM.

Quite independent of these considerations, the OEM
can serve as a very useful testing ground for the newly
developed analytical methods, and as a check on the nu-
merical methods”® that have been applied to the full prob-
lem. It has already been argued!® that the method by
which integral equations like (3) are investigated might
fail to detect the existence of a family of solutions. Our
numerical results for the OEM support this idea and will
be reported in a future paper.
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