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Fronts with a growth cutoff but with speed higher than the linear spreading speed
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Fronts, propagating into an unstable state 0, whose asymptotic speeqsis equal to the linear spreading
speedv* of infinitesimal perturbations about that stése-called pulled fronis are very sensitive to changes
in the growth ratef(¢) for ¢<<1. It was recently found that with a small cutoff(¢)=0 for ¢p<e, v,
converges tav* very slowly from below, as I e. Here we show that with such a cutadhd a small
enhancement of the growth rate for smalbehind it, one can hawe,s>v*, evenin the limite—0. The effect
is confirmed in a stochastic lattice model simulation where the growth rules for a few particles per site are
accordingly modified.
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Pulled fronts are those fronts that propagate into a linearlyglensity must be at least one “quantum” of particle density
unstable state, and whose asymptotic front spegeéquals  strong, and that this provides a natural lower cutoff for the
the linear spreading speed of infinitesimal perturbations growth that strongly affects the front speed. Indeed, to mimic
about the unstable staf&—3]. The name pulled front refers this effect, they considered a deterministic front of the type
to the picture that in the leading edge of these fronts, thén Eq. (1) with n=3, and by hand introduced a cutoff of the
perturbation about the unstable state grows and spreads withpe sketched in Fig. (&) in the growth function atp=¢
speedv*, while the rest of the front gets “pulled along” by <1. In this paper, we denote their growth function by
the leading edge. That this notion is not merely an intuitivef (¢,e)=[ ¢— ¢>]@(¢p—¢), where® is the unit step func-
picture but can be turned into a mathematically precisdion. For smalle, the asymptotic front speadd ) was then
analysis is illustrated by the recent derivation of exact result$ound to be[4]
for the general power law convergence of the front speed to
the asymptotic value* [3]. Fronts that propagate into a
linearly unstable state and whose asymptotic spegdv*
are referred to as pushed, as it is the nonlinear growth in the vad€)=0"
region behind the leading edge that pushes their front speed
to higher values. If the state is not linearly unstable, th&n
is tri\_/ially zero; in such_cases the fro_nt propagation_is a_lway%runet and Derrida subsequently identified with /N,
dominated by the nonlinear growth in the front region itself,\ here N is the average number of particles at the saturation
and hence fronts in this case are in a sense pushed” too. state of the front, corresponding to the stable stafe,t)

_ For the field¢(x,t), the dynamics of fronts that we con- _ 1 o the density field. The slow logarithmic convergence to
sider in this paper is given by the usual nonlinear diffusion, asymptotic front speed from below as a functionNof

’7T2

2

BTSN

equation implied by Eq.(2), has been confirmed in various studies of
stochastic lattice modelg4—9]. Note that for ¢<g, the
ap P growth functionf vanishes, and as a result, strictly speaking,
i~ o T ()
X
(a) (b)
In the standard case, the growth functit{@) has the form f(d,€) f(¢,e,7)

f(p)=d— ¢", with n>1. Equation(1) has two stationary
states for ¢(x,t): &(x,t)=0 and ¢(x,t)=1. Of these,

d(x,t)=1 is stable and¢(x,t)=0 is unstable. The o - :
asymptotic speed of(pulled fronts propagating from
¢(x,t)=1 into ¢(x,t)=0 in Eq.(1) isv* =2.

The sensitivity of pulled fronts to the precise dynamics
for small perturbations about the unstable state has recentl ,
surfaced in a remarkable wdy]. Often, in equations like 0 . % 0 sl/r %

Eq. (1), the field ¢(x,t) is the density of particles in a con-

tinuum description. If one then considers fronts in stochastic f|G, 1. () Shape of the functiori(,) used by Brunet and
particle model versions of Eq1), the linear growth term in  perrida to study the effect of a finite particle cutoff in the growth
f(¢) implies that for small particle density, the rate at which rate on the front speedb) The growth functionf(¢,e,r) (thick
new particles are created is proportional to the density itselfiine) we analyze in this paper. In both cases we have kept only the
Brunet and Derridd4] were the first to realize the fact that linear term off(¢) to plot the graphs, since<1, so that the

for new particles to be created in any given realization, thenonlinear terms irf are much smaller than the linear terms.
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the statep=0 is not linearly unstable; hence fronts in this 5
model are always weakly pushed for any nonzero value of
[10].

In this paper, we demonstrate an even more surprising

aspect of the sensitivity to small changes in the growth func- 39 |

tion f of the “pulled” fronts that we have at=0: if f is

sufficiently enhancedn a range of¢ of the order ofe, the v

asymptotic front speed . can become larger than* and

not converge t@* ase—0. For fluctuating fronts, this im- 28 I

plies that if the stochastic growth rates for small occupation ’

densitiesn; are somewhat enhanced over a linear behavior

~n;, then such stochastic fronts may move faster than .

and never converge to their naive mean field limit for N v

—o0. This effect may be of relevance for the coarse-grained L T o2 | o4 o6 o3 ]

field theory for diffusion-limited aggregation, as it is empiri- T )

cally known to be essential to modify the growth function for ¢

small cluster densitiefl1]. FIG. 2. Comparison of simulation data for{e,r) with the
We now discuss our results first, and then summarize theiinalytical predictior(7), which is plotted as the solid line. The solid

derivation. dots represent the numerical data for E8).with e=2x10"° and
To be specific, we consider the nonlinear diffusion equan=3. The crosses are the data points for fronts in the stochastic

tion (1) with the growth function sketched in Fig(l), growth model described in the text. Inset: illustration of the leading

order rate of convergence of thgde,r) curve to thee—0 limit,
f(p,e,r)=Ff(p,e) for ¢p<e and by means of the schematic dashed curve.

=elr for e<¢=elr, 3 from which the value of ., given by Eq.(6), follows.

These expressions show that the limits do not commute

with r<1. We show that while for any fixed value of for r<r.: taking the limite — 0 first in f yields a front speed

limf(,e,r)="F(¢), (4) v* but the.limitva5(8—>.C),r)>v.*. The reason is that for
60 <r. there is always a little tail of the front that runs faster
thanv* and makesp nonzero. Onceb is nonzero, growth
the asymptotic front speed.{e,r) has the property that continues and the region behind it just has to follow it with
the same asymptotic speed.
limv.de,r)=v* for r>rg, Our analysis is corroborated by numerical results obtained
60 by solving Eqg.(1) forward in time, (with Gaussian initial

conditions. The data fow vsr ate =2x10"° are shown as
solid dots in Fig. 2. Note that far<r, the solid dots fall on
top of our prediction(7) drawn with a solid line, while for
where r>r., they systematically fall below the solid line=v*.
The reason for it is the difference between the rates of con-
1+e (©*%-2) vergence ag— 0, which is illustrated in the inset of Fig. 2
re=—— - —=028383.... (6) by means of the schematically drawn dashed line. The ar-
v rows in the inset indicate the rate of convergence of the
dashed-v curve towards the limiting one, given by E).
Forr>r., the convergence is-In"2¢ as in the case for
=1, analyzed in Ref{4]; but for r<r. the convergence is
much fasterg" 1. This latter behavior is illustrated far
2 =0.2 andn=2,3 in Fig. 3—note the fine scale on the verti-
2 fv cal axis.
1—— ——1 . . .
v 4 The fact that the effect of increasing asymptotic speed
r=—| 1+ ——————— with decreasingr below r. is a real effect for stochastic
v? 2 [|v? fronts too is illustrated by the crosses in Fig. 2: these repre-
1+ " Z‘l sent the data for the average speed of fronts in a reaction-
diffusion systemX=2X, for discreteX particles on a lattice
with N=10" [12], where the growth rates have been modi-
fied when the number of particles on a lattice sité is less
% _ 2 2 7 than 1f. In accord with the shape of the growth functibn
exp v U illustrated in Fig. 1b), the rate at which particles are created
14+ —-\/——1 at a lattice siteé with 1<n;<1/r particles is simply taken to
v 4 be the same as the rate far=1/r (corresponding to the

limv,de,r)y>v* for r<rg, (5)

e—0

Hereafter, for simplicity, we denote.{e,r) simply by v.
For e—0, the asymptotic speed at a given value sfr in
our model is given by the relation
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FIG. 4. The potentiaV/(£) for v=v* and infinitesimally small
e in the Schrdinger operator that determines the temporal eigen-
2.236 ! ! o ; . ;
0 0.008 0.016 0.024 values of the stability analysig, marks the position of the region
€ of finite width where the potential crosses over from the asymptotic
value on the left whereb,~1 to the value in the well where ¢
FIG. 3. Numerical data fov,{e,r) as a function ofe for n <1, &, the position of the step ang) the position of theS-function
=2 and 3, ar =0.2. The graph demonstrates the insensitivity of term in the potential.
to £ for small values of (note the fine scale on the vertical gxis

as well as the convergencesls * to itse—0 value=2.246, given  \yhich converts Eq(8) to a one-dimensional Schdimger

by Eq. (7), for two different values oh. equation for a particle in a potential wifit/2m=1,
integral values ¥/=1, 2, 3, 4, 5, 7, and 10, due to the dis- @2 w2 5f(e)

creteness of particlesAs one can see from Fig. 2, already - Ye(&)=Eye(£). (10
whenr=0.5, i.e., when only the growth rate at lattice sites dg2 4 o¢ b=,

with one particle is increased by a factor 2, the asymptotic
growth speed is above the valu&=2. In Eq. (10), the quantity
In the remainder of this paper, we derive the analytical
results for the nonlinear diffusion equation with the growth
function (3). Our analysis is based on the following observa- V(E)= J
tion: for e=0, it is well known that the nonlinear diffusion b=,
equation allows a continuous family of front solutions with
va*.. When such fronts solutions are param_etrlzed by the”blays the role of the potential. It is easily obtained explicitly
velocity v, and when the growth rate is modified to allow a .o, the expressiof3) for f(¢,e,r) as
transition to a “pushed” front with velocitw ", it is also Y
known [2,3] that solutions withv<v' are unstable to a lo-
calized mode. In our analysis, we therefore consider a front /()=
with a given fixed velocityv and, for smalle, determine
when upon decreasing a localized mode of the stability 1
operator crosses the eigenvalue zero. In the limit0 this — —8(E— &), (12)
marks the selected pushed front in the diagram. rv
To carry out the linear stability analysis of the front solu-
tion, it is convenient to follow the standard route of trans-where ¢(&,) =¢ and ¢(&,) =e/r. The form of the potential
forming the linear eigenvalue equation into a Schinger for v>v* and smalle is sketched in Fig. 4. Keep in mind
eigenvalue problenj1,3]. We consider a functionp(x,t),  that ¢,{&) is a monotonically increasing function fromir
which is infinitesimally different from the asymptotic front at &; towards the leftand thatg,{ é— —)=1. As a result,
solution ¢,d§) in the comoving frameé=x—vt, i.e.,, in Fig. 4,V(£) also increases monotonically towards the left
d(x,t) = dd &)+ n(&,1). Upon linearizing Eq(1) in the co-  for é<&;. On the right of¢;, V(£) is constant ab?/4, and at
moving frame, one finds that the functiof(£,t) obeys the &j, there is an attractiveS-function potential of strength
following equation: (rv) "1 [13]. The crucial feature for the stability analysis
below is the fact thaV/(¢) stays remarkably flat at a value
5 2¢/r over a distanced; — &) =|In&/r| [10], and on the left
7 _ v In ., m  ol(¢) 7. (8)  of &, itincreases to the value of/4+n—1, over a distance
ot & gg2 9P |4, of order unity.
* If there exist negative eigenvalues of the Sclinger

. . o . , o equation(10), then according to Eq(9), 7(&,t) grows in
Since this equation is linear in, the question of stability can  ime in the comoving frame, i.e., the front solutidng ) is

be answered by studying the spectrum of the temporal eigenynstaple. For our purpose, therefore, we look for the value of

v’ 5f(9)

4 5p

2

v no1 v?
7 Lnel (9|0 -6+ 0 ¢)

values. To this end, we expregg¢,t) as r at which there is a bound state of E@0) with eigenvalue
E, such thaE— 0— for the potential sketched in Fig. 4. This
n(&)=e Fle vy (&), (9) is a problem in elementary quantum mechanics. &e10,
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the potentialV/(¢) is essentially constant in the left neighbor- of the n¢; 1(£) term of V(£) on the eigenfunctions and
hood ofé;, and hence fov>v* andE—0—, (&) can be  eigenvalues. Foo >v*, this term is simply a correction of
written as ordere"~! to the finite bottom value of the potential. This
_ Ay(E—E1) term can be included perturbatively, and accordingly it leads
Ye(§=A_es = for é<é&, to a shift of ordere"~?! in the critical value ofr. As Fig. 3
_ pgholE—£0) 4 geratéo illustrates, this prediction is confirmed numerically. The case
=AgZE =0+ BetR0 for & =é<é&, v=v* calls for a more detailed analysis, since the bottom
A (e E0) value of the potential vanishes in the limit—0. In this
=Age for &> £o, case, it is known[3,4] that ¢,{¢)~(Cé+D)e ¢, so
(12 V(&) =n(elr)"" (&l &)" e D174 in the leading order
where\ ;= \oZ4— 1 and\,=uv/2. The functiongg(&) must of £. In dominant order, we need to keep only the exponen-
be continuous ag, and &, while its slope is continuous at tial behavior, and the solution afg(¢) is then given by the
&,, but not at&,. Matching of these boundary conditions to Bessel functionA_Ky(2ne" e~ ("= HE=8/r"=1) in the
determine the value of where the bound state eigenvalfie left neighborhood of &. The |[In"le| scaling for the
crosses zero, also requires an expression for the distance asymptotic approach of the dashed curve to the solid one is
— &,. To this end, we divide the range ¢fvalues between 0 then easily obtained once the boundary condition$, &nd

and 1 into the three regions marked in Fig.(®:region |, &y are matched using Eq14).
where ¢,<e, (i) region ll, wheree<¢,<e/r, and (iii) The logarithmic convergence of to v* from below for
region I, where ¢,=¢/r. In the comoving frame, the r>r.can be understood from an argument along the lines of

asymptotic shapeb,{£) of the front is the solution of the that forr=1 [4]. Forv<uv*, the front profile¢,{ &) in re-
differential equation ¢+ v ¢t f(pas,e,r)=0, where a gion Il is of the form d.d &)~ C sink(é—&)+Ble . Forr

prime denotes a derivative with respecttdThe solutions of =1, region Il is absent; in that case, the matching to the
da{ £) in the regions | and Il that satisfy the continuity of profile in region | and the divergence of the width— &
Bad £) and ¢l (&) are, respectively, given by =|In¢| impliesk=|In&|~. Forr <r<1, the matching to
region Il will change the prefactor, bt will still scale as
Pod £)=ce V({40 and |In ¢| ! because the width of region Il still diverges logarith-
mically. As for r.<r<1, this translates into a scaling of
e L e(&—8 e v* —v as|Ing|~2, with a prefactor that depends onNote
Pad &)= e~ 2 e+ T 2 (13)  that this scaling is nicely consistent with the convergence of

ther-v curve towards the pointr{,v*) from the left, due to
The length &— ¢, of region Il is obtained by equating the fact that the slope of this curve vanishes at this point, and
b.{ &) from the second line of Eq13) to e/r. After divid-  the convergence from below to this point scales as the square

ing out a factor ofe/r, this condition becomes of the convergence from the left. _
We finally end this paper with the note that if threonne-

1 Eo—& 1 gative growth rate is bounded from above bf,<) in the
r—— e+ ——+t5=L (14)  interval ¢=<elr, but is equal tof (¢,£) for ¢p>¢/r, then as
v v £—0, the asymptotic front speed convergestowith the

samelogarithmic convergence of EQ) for any r. It simply
follows from the inequalityv {e/r)<v<uv,{e), where
vad€) is given by Eq.(2).

Thereafter, using Eq$12) and(13), one arrives at Eq(.7).

The above analysis yields the relation betweeand the
critical value ofr in the limite— 0. The convergence with,
i.e., the rate of approach with of the dashed curve to the D.P. wishes to acknowledge financial support from “Fun-
solid one in Fig. 2, can be obtained by considering the effectiamenteel Onderzoek der MateriFOM).
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