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Front propagation and diffusion in the ApA¿A hard-core reaction on a chain
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We study front propagation and diffusion in the reaction-diffusion systemA�A1A on a lattice. On each
lattice site at most oneA particle is allowed at any time. In this paper, we analyze the problem in the full range
of parameter space, keeping the discrete nature of the lattice and the particles intact. Our analysis of the
stochastic dynamics of the foremost occupied lattice site yields simple expressions for the front speed and the
front diffusion coefficient which are in excellent agreement with simulation results.
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I. INTRODUCTION

In this paper, we study the propagation and diffusion o
front in the A�A1A reaction on a chain, in the case th
there cannot be more than oneA particle on each lattice site
~‘‘hard-core exclusion’’!. The front propagation problem w
consider is the following. We start from a situation illustrat
in Fig. 1~a! in which there are noA particles at all on the
right half of the system, while there is a nonzero density
particles on the left. The object of study is then t
asymptotic average speedv with which the region with a
nonzero density of particles expands to the right, as wel
the effective diffusion coefficientD f of this ‘‘front.’’ For the
hard-core exclusion problem, the front position is most c
veniently defined as the position of the foremost~rightmost!
particle, see Figs. 1~a,b!. The average front speed and fro
diffusion coefficient are then the average drift speedv and
the diffusive spreading;AD ft of the width of the probabil-
ity distribution Pkf

(t) for the locationkf of the foremost
occupied lattice site, as illustrated in Fig. 1~c!. One of the
main results of the paper is a simple expression forv and
D f , which is accurate in the range where the deviations fr
the mean-field theory are large. Our results reduce to an
act expressions derived before for the particular case
which the particle diffusion coefficientD and annihilation
rateW are equal@1# and our expression for the front speedv
reduces to the approximate expression obtained for the
cial caseW50 in Refs. @2–4#. In addition, we study the
average particle profile behind the foremost occupied lat
site and analyze how its behavior affects the average f
speed and diffusion.

The perspective of this work lies in the issues that ha
emerged from the surprising findings for fronts in th
reaction-diffusion system in the limit in whichN, the average
number of particles per lattice site in equilibrium, is large.
a lattice model, one can tuneN by allowing more than one
particle per site~no hard-core exclusion! and changing the
ratio kb /kd , wherekb is the reaction rate for birth process

*Present address: Institute for Theoretical Physics, Univers
van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, T
Netherlands.
1063-651X/2003/67~4!/046206~5!/$20.00 67 0462
a

f

s

-

x-
in

e-

e
nt

e

A→2A and kd the reaction rate for death processes, 2A
→A, as the average equilibrium number of particlesN
5kb /kd . In the limit N→`, the normalized particle densit
r i[Ni /N then obeys a mean-field equation which is a latt
analog of the continuum reaction-diffusion equation] tr
5D]x

2r1r2r2, whereD is the diffusion rate of individual
particles on the chain. The front problem mentioned abo
i.e., the propagation of a front into an empty region, th
corresponds in the mean-field limitN→` to a front propa-
gating into the linearly unstable stater50 ~the mean-field
behavior is also obtained in the limit in which the partic
diffusion coefficientD→` @2–4#, but we will focus on the
case in which the diffusion coefficient is finite and comp
rable to the growth and annihilation rates!. The behavior of
such fronts in deterministic continuum equations has b
studied since long and is very well understood~see, e.g.,
Refs. @5,6#!. Since the nonlinear front solutions are esse
tially ‘‘pulled along’’ by the growth of the leading edge
wherer!1, such fronts are often referred to aspulled fronts
@6#. The remarkable discovery of the last few years has b
that since the propagation is driven by the region wherer is
small, they are particularly sensitive to the discrete nature
the particles which manifests itself in changes in the dyna

it
e

FIG. 1. ~a! The type of initial condition we consider for ou
stochastic model.~b! Illustration of a typical snapshot of the state
the system at finite time. The foremost particle has advanced to
right relative to the one where it started att50. ~c! Qualitative
sketch of the probability distribution function for the foremost pa
ticle at t50 ~dashed line! at large timest; the center of the peak
drifts with speedv, while the peak widens proportional toAD ft.
©2003 The American Physical Society06-1
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PANJA, TRIPATHY, AND van SAARLOOS PHYSICAL REVIEW E67, 046206 ~2003!
ics whenr becomes of order 1/N. Indeed, Brunet, and Der
rida discovered that the convergence to the mean-field l
is extremely slow withN: the average front speedv con-
verges as 1/ln2N to the mean-field value@7#. This is in con-
trast to the fact that for pushed fronts, the convergence
asymptotic speed behaves as a power of 1/N. This slow con-
vergence has been confirmed for a variety of models@7–14#.
In addition, in a model that Brunet and Derrida studied
Ref. @8#, the front diffusion coefficientD f was numerically
shown to vanish only as 1/ln3N.

The dominant asymptotic correction to the mean-field
sult for the front speed in the limitN→` traces simply to the
change in the dynamics atr5O(1/N) @7#, and as a resul
appear to be universal. However, all corrections beyond
asymptotic one appear to dependnonuniversallyon the de-
tailed stochastic dynamics at the foremost occupied site
those closely behind it, where asymptotic techniques ar
no use since the number of particles involved in the dyna
ics is small@14#. Moreover, the stochastic dynamics in the
region even seems to be strongly nonlinearly coupled to
uniformly translating average front profile behind the tip.

For analyzing these effects for finite values of the parti
diffusion coefficientD and particle numberN, it is found to
be expedient to develop a stochastic front description by
cussing on the behavior of the foremost particle or the fo
most occupied bin@14#. As it turns out, this idea traces bac
to the earlier work by Kerstein@2,4#, and Bramson and co
workers@3#. These authors analyzed the average front sp
v for a special case of the model we investigate here, nam
the case in which the particle annihilation rateW50. In this
case, one can formulate a self-consistent dynamics for
two foremost particles@15#, but this important simplification
is lost whenWÞ0 @16#. Motivated by the desire to unde
stand the ingredients necessary to analyze the stochastic
behavior for finite values ofD, W, andN, we focus here on
analyzing bothv andD f in the case in which all the trans
tion rates are comparable; our analysis includes the spe
point D5W where an exact result was obtained by be
Avraham@1#.

II. THE MODEL, FRONT SPEED, AND FRONT
DIFFUSION

We now turn to the details of our model and our resu
for the stochastic fronts. We consider a chain on whichA
particles can undergo the following three basic mov
shown in Fig. 2:

~a! A particle can diffuse to any one of its neighbor latti
sites with a diffusion rateD, provided this neighboring site i
empty.

~b! Any particle can give birth to another one on any o
of its empty neighbor lattice sites with a birth rate«.

~c! Any one of two A particles belonging to two neighbo
ing filled lattice sites can get annihilated with a death rateW.

Note that in the above formulation, diffusive hops
neighboring sites which are occupied are not allowed.
can also think about these stochastic moves differently:
example, we can allow nearest neighbor diffusive hops t
site which is already occupied be followed by an instan
04620
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neous annihilation of one of the two particles. If we do s
then the diffusive process contributes to the annihilation
particles. However, in this paper we shall stick to the co
vention that diffusive hops are allowed only to empty site

As noted before, earlier work on models of this type i
cludes that of Kerstein@2,4# and Bramsonet al. @3# on the
caseW50 and that of ben-Avraham on the caseD5W @1#
~also, variants of this model have been analyzed in R
@17–19#!. Notice that in the general case there are essenti
only two nontrivial parameters in the model, e.g., the rat
D/« andD/W, since an overall multiplicative factor just se
the time scale. Our interest is in the parameter range wh
both of these ratios areO(1); when these ratios tend t
infinity, the front speed approaches the mean-field va
@2–4#.

For an ensemble of front realizations, let us denote
probability distribution for the foremost occupied lattice s
to be at lattice sitekf by Pkf

(t). The evolution ofPkf
(t) is

then described by

dPkf

dt
5~D1«!Pkf211@DPkf11

empty1WPkf11
occ #2~D1«!Pkf

2@DPkf

empty1WPkf

occ#. ~1!

Here,Pkf

occ(t) andPkf

empty(t) denote the joint probabilities tha

the foremost particle is at sitekf and that the sitekf21 is
occupied or empty, respectively. Clearly,Pkf

(t)5Pkf

occ(t)

1Pkf

empty(t), and (kf
Pkf

(t)51. The first term on the right-

hand side of Eq.~1! describes the increase inPkf
(t) due to

the advancement of a foremost occupied lattice site fr
positionkf21, while the second term describes the increa
in Pkf

(t) due to the retreat of a foremost occupied lattice s

from positionkf11. The third and the fourth terms, respe
tively, describe the decrease inPkf

(t) due to the advance
ment and retreat of a foremost occupied lattice site fr
positionkf .

FIG. 2. The microscopic processes that take place inside
system:~a! a diffusive hop with rateD to a neighboring empty site
~b! creation of a new particle on a site neighboring an occupied
with rate «; ~c! annihilation of a particle on a site adjacent to a
occupied site at a rateW.
6-2
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From the definition ofPkf
(t), the mean position and th

width of the distribution for the positions of the foremo
occupied lattice sites are defined asx(t)5(kf

kf Pkf
(t) and

^Dx2(t)&5(kf
@kf2x(t)#2Pkf

(t) @20#. The mean speed an
diffusion coefficient of the front are thus given in terms
these quantities as thet→` limit of v5dx(t)/dt and
^Dx2(t)&52D ft—see Fig. 1~c!. To obtain them, we need th
expressions ofPkf

occ(t) andPkf

empty(t). To start with, we have

Pkf

occ~ t !5rkf21Pkf
~ t !, ~2!

whererkf21 is the conditional probability of having the (kf

21)th lattice site occupied~the foremost particle is at th
kf th lattice site!. The set of conditional occupation densiti
rkf2m for m>1 can be thought of as determining the fro
profile in a frame moving with each front realization. F
obtainingv andD f , we simply need to know the asymptot
long-time limit rkf21(t→`), which from here on we will

denote simply asrkf21 . Given rkf21 , it is then straightfor-

ward to obtain from Eq.~1! and the conditionsPkf
(t)

5Pkf

occ(t)1Pkf

empty(t) and(kf
Pkf

(t)51,

v5
dx

dt
5«2rkf21~W2D !

and

d^Dx2&
dt

52D1«1rkf21~W2D !. ~3!

Of these, the second equation indicates that the front w
dering is diffusive, and an expression of the front diffusi
coefficientD f is therefore given by

D f5
1

2
@2D1«1rkf21~W2D !#. ~4!

As noted already by ben-Avraham@1# in a continuum formu-
lation of the present model, for the special caseD5W the
unknown quantityrkf21 drops out of Eq.~3!; it thus leads to

theexactresultsv5« andD f5D1«/2 as a special cases o
Eq. ~4! for D5W. We also note that if we use Eq.~2! in Eq.
~1!, the latter equation has the form of the master equa
for a single random walker on a chain. Thus, we can think
the foremost particle as executing a biased random walk,
D f as the effective diffusion coefficient of this walker. Mor
over, if we eliminaterkf21 from Eqs.~3! and~4!, we get the
following exactrelation:

v/21D f5D1«. ~5!

In order to obtain an explicit prediction forv andD f , we
need an expression forrkf21 . Far behind the front the par
ticle density will approach the homogeneous equilibriu
densityr̄: lim

m→`
rkf2m5 r̄. From the master equation it i

easy to show that the homogeneous equilibrium solution
04620
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the total probability is of product form~so that the probabil-
ity of having different sites is occupied is uncorrelated!, and
that the equilibrium occupation densityr̄ is simply given by
r̄5«/(«1W).

The crudest approximation for the front profilerkf2m ,

and, in particular, forrkf21 is to just takerkf21'r̄. Substi-
tution of this approximation into Eqs.~3! and ~4! immedi-
ately yields our main result,

v5
«~«1D !

«1W
and D f5

~«12W!~D1«!

2~«1W!
. ~6!

For W50, the expression forv reduces to the one obtaine
in Refs.@2–4#.

In what follows, we will first compare these approxima
expressions forv andD f to the results of computer simula
tion for the caseD/«51 @21#, and then investigate the ap
propriateness and shortcomings of the approximationrkf21

'r̄.
The comparison of Eq.~6! with stochastic simulation data

for D5«50.25 are presented in Figs. 3 and 4 as a funct

FIG. 3. Comparison of the expression ofv in Eq. ~6! ~solid line!
with stochastic simulation data~filled circles!, for D5«50.25. The
error in the data is of the order of the size of the symbols. T
corresponding data point forD5W, as analyzed in Ref.@1#, is
shown by the larger open circle.

FIG. 4. Comparison of the front diffusion coefficient accordin
to Eq. ~6! ~solid line! with stochastic spreading data~filled circles!
and with Eq.~5! ~open triangles!, for D5«50.25. The large open
circle once again corresponds to the direct measurement of th
fective front diffusion coefficient forD5W, as analyzed in Ref.
@1#.
6-3
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of W for D5«50.25. The simulation algorithm has bee
adopted from Ref.@14#, and is essentially the same one as
Ref. @9#. The speedv has been obtained directly from th
average position of the foremost occupied lattice site i
single long run according tov(t)5@x(t)2x(t0)#/(t2t0)
corresponding tox(t)2x(t0)515 000 consecutive forward
jumps. The diffusion coefficient has been determined b
from the speed measurements via Eq.~5! and from data for
the average diffusive spreading during 1000 time interv
Dt up to 500 taken from five long runs~of which the data
from the first 5000 consecutive forward jumps of the fo
most occupied lattice site were ignored, so as to elimin
initial transient effects!. For each of these runs, the me
square displacement^Dx2& was confirmed to grow linearly
with time. Figures 3 and 4 show that our approximate
pressions~6! for the speed and diffusion coefficient~solid
line! are quite accurate forD/«51 over the whole range o
values ofW where we have performed simulations; intere
ingly, the values ofD f obtained from the speed measur
ments via Eq.~5! are more accurate than those obtained
rectly from the diffusive spreading. The error bars in Fig
correspond to the standard deviations ofD f values obtained
from five long runs.

We now return to the issue of the appropriateness of

assumptionrkf215 r̄. While the agreement between the th

oretical prediction forv andD f gives empirical evidence tha
this assumption is a reasonably good one, we see from F
that although Eq.~6! agrees well with the simulation data
there are small but systematic deviations on both sides of
region. These deviations can be explained as follows: AsW

→0, r̄↑1; far behind the front all lattice sites are occupie
However, the density of particles just behind the forem
one is smaller, since it takes a finite time for the density
relax to the asymptotic one. For large values ofW, the effec-
tive diffusion rate is much larger than the drift rate, as Eq.~6!
shows. As a result, once again the density of particles
behind the foremost one also has relatively small time
relax to the asymptotic value. This is reflected in the diff

ence betweenrkf21 and r̄ in Fig. 5.

The above trends are borne out by the simulation res
of Fig. 5, where we plot the relative deviationd5(rk

2 r̄)/ r̄ for k5kf21, . . . ,kf26. First of all, the data confirm

that unless the valueW is too small,rkf215 r̄ is quite a good

approximation, and that the density behind the foremost
ticle is enhanced for largeW and reduced for smallW. We
also note that we have verified that if one substitutes
rkf21 values forW50 andW50.8 from Fig. 5 into Eq.~1!,
one does recover the corresponding measured speeds, a
should.
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III. CONCLUSION

In conclusion, this work clearly illustrates that the conce
of the dynamics of the foremost occupied lattice site, in Re
@2–4,14# and here, can be a viable route towards analyz
the front propagation and diffusion in stochastic lattice mo
els. In the presentN<1 model a simple approximation fo
the interaction of the foremost particle with the front regi
behind it already yields quite accurate results forv andD f .
We hope that this success provides new motivation and
spiration to tackle the complicated case in whichN is large
but finite.

In principle, it should be possible to extend the analysis
the spirit of the one developed by Kerstein@2,4# to get suc-
cessively more accurate expressions forrkf21 , and corre-
spondingly for the front speed and diffusion coefficient.
particular, such extensions might allow one to use the res
in a wider parameter range, such asD/W→` while D/«
;O(1), or D/«→` while W/«;O(1). However, inspec-
tion of the earlier analysis suggests that such higher o
analytical expressions ofrkf21 are less trivial to obtain than
one might expect at first sight. More precisely, in the light
Refs. @15,16#, it is clear that forWÞ0, the master equation
for the probability that the two foremost particles are se
rated byk lattice sites couples to probability distribution
involving particles that are further back. While it is certain
possible to solve the master equation numerically, it does
appear to lead one to an analytical expression ofrkf21 that
provides a better approximation than what we have use
this paper.

ACKNOWLEDGMENT

The work by D.P. and that of G.T. during an earlier stay
Universiteit Leiden was supported by the Foundation FO
~Fundamenteel Onderzoek der Materie!.

@4# A.R. Kerstein, J. Stat. Phys.53, 703 ~1988!.
@5# D.G. Aronson and H.F. Weinberger, Adv. Math.30, 33 ~1978!.
@6# U. Ebert and W. van Saarloos, Physica D146, 1 ~2000!.
@7# E. Brunet and B. Derrida, Phys. Rev. E56, 2597~1997!.

FIG. 5. Relative deviationd5(rk2 r̄)/ r̄ of the average density

from r̄5«/(«1W) for the first six lattice sites to the left of the
foremost occupied lattice sitekf for D5«50.25 and three different
values ofW.
6-4



et

e

ind

s
ob

o
d

th
r-
th

be-
res-
a

gher
e-
x-

:
ar-
es
the
s
er

at.

at.

r a
as
this

d so

FRONT PROPAGATION AND DIFFUSION IN THE . . . PHYSICAL REVIEW E 67, 046206 ~2003!
@8# E. Brunet and B. Derrida, J. Stat. Phys.103, 269 ~2001!.
@9# H.P. Breuer, W. Huber, and F. Petruccione, Physica D73, 259

~1994!.
@10# R. van Zon, H. van Beijeren, and Ch. Dellago, Phys. Rev. L

80, 2035~1998!.
@11# D.A. Kessler, Z. Ner, and L.M. Sander, Phys. Rev. E58, 107

~1998!.
@12# L. Pechenik and H. Levine, Phys. Rev. E59, 3893~1999!.
@13# D. Panja and W. van Saarloos, Phys. Rev. E65, 057202

~2002!; 66, 015206~2002!.
@14# D. Panja and W. van Saarloos, Phys. Rev. E66, 036206

~2002!.
@15# As can be seen from Eqs.~3!, to obtain the front speed and th

front diffusion coefficient, one needs the expression ofrkf21 ,
the probability of the occupancy of the lattice site just beh
the foremost particle. ForW50, the ‘‘two-particle self-
consistent’’ approach developed in Refs.@2,4# can obtain a
better approximation ofrkf21 than what we present in thi
paper, from the solution of the master equation for the pr
ability that the two foremost particles are separated byk lattice
sites.

@16# For W50, the master equation for the probability that the tw
foremost particles are separated byk lattice sites can be close
in a simple manner@2,4#. In this formalism, no particle gets
annihilated, and as a result, the hierarchy of equations for
joint probability density distribution of the two foremost pa
ticles can be closed easily at the simplest level, since in
04620
t.

-

e

e

absence of annihilation, the third foremost particle never
comes the second foremost particle. At this level, the exp
sion of rkf21 can then be analytically solved, leading to
better approximation than what we use in this paper forW
50. Of course, the master equation can be closed at a hi
level, by considering more than two foremost particles to d
terminerkf21 , but then one does not obtain an analytical e
pression ofrkf21 . As soon asWÞ0, this is not true anymore
consider the following situation where the two foremost p
ticles are next to each other. With annihilation of particl
allowed, one of them can annihilate the other, and then
probability distribution function of the two foremost particle
is crucially coupled to those which involve particles furth
back at the simplest level.

@17# D. ben-Avraham, M.A. Burschka, and C.R. Doering, J. St
Phys.60, 695 ~1990!.

@18# C.R. Doering, M.A. Burschka, and W. Horsthemke, J. St
Phys.65, 953 ~1991!.

@19# C.R. Doering, Physica A188, 386 ~1992!.
@20# One can also define the foremost occupied lattice site fo

realization as the one on the right of which no lattice site h
ever been occupied before, and obtain the front speed from
definition following @14#. Both of them, of course, yield the
same result due to thet→` limit.

@21# We note here that the choice ofD/«51 is only coincidental,
and the relative agreements in Figs. 3 and 4, are not affecte
long asD and« are of the same order of magnitudes.
6-5


