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Fluctuating pulled fronts: The origin and the effects of a finite particle cutoff
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Recently, it has been shown that when an equation that allows the so-called pulled fronts in the mean-field
limit is modeled with a stochastic model with a finite numberN of particles per correlation volume, the
convergence to the speedv* for N→` is extremely slow—going only as ln22N. Pulled fronts are fronts that
propagate into an unstable state, and the asymptotic front speed is equal to the linear spreading speedv* of
small linear perturbations about the unstable state. In this paper, we study the front propagation in a simple
stochastic lattice model. A detailed analysis of the microscopic picture of the front dynamics shows that for the
description of the far tip of the front, one has to abandon the idea of a uniformly translating front solution. The
lattice and finite particle effects lead to a ‘‘stop-and-go’’ type dynamics at the far tip of the front, while the
average front behind it ‘‘crosses over’’ to a uniformly translating solution. In this formulation, the effect of
stochasticity on the asymptotic front speed is coded in the probability distribution of the times required for the
advancement of the ‘‘foremost bin.’’ We derive expressions of these probability distributions by matching the
solution of the far tip with the uniformly translating solution behind. This matching includes various correla-
tion effects in a mean-field type approximation. Our results for the probability distributions compare well to the
results of stochastic numerical simulations. This approach also allows us to deal with much smaller values of
N than it is required to have the ln22N asymptotics to be valid. Furthermore, we show that if one insists on
using a uniformly translating solution for the entire front ignoring its breakdown at the far tip, then one can
obtain a simple expression for the corrections to the front speed for finite values ofN, in which various
subdominant contributions have a clear physical interpretation.

DOI: 10.1103/PhysRevE.66.036206 PACS number~s!: 82.40.Bj, 05.10.Gg, 05.40.2a, 05.70.Ln
cu
ep
d

nt
ab
th
s

un
in
ro
fo
o

ys
o

e
o

fir
ic
i

of

on
n
he

f
s
re

ere-
n of
in
de-
de-

rise
per-
ed,

of

vior

le
that
ng
ich

-

r-

to

u-

-
tate
can
r in
I. INTRODUCTION

A. Fronts and fluctuation effects

In pattern forming systems, quite often, situations oc
where patches of different bulk phases occur which are s
rated by fronts or interfaces. In such cases, the relevant
namics is usually dominated by the dynamics of these fro
When the interface separates two thermodynamically st
phases, as in crystal-melt interfacial growth problems,
width of the interfacial zone is usually of atomic dimension
For such systems, one often has to resort to a moving bo
ary description in which the boundary conditions at the
terface are determined phenomenologically or by mic
scopic considerations. A question that naturally arises
such interfaces is the influence of stochastic fluctuations
the motion and scaling properties of such interfaces.

At the other extreme is a class of fronts that arise in s
tems that form patterns, and in which the occurrence
fronts or transition zones is fundamentally related to th
nonequilibrium nature, as they do not connect two therm
dynamic equilibrium phases which are separated by a
order phase transition. In such cases—for example, chem
fronts @1#, the temperature and density transition zones
thermal plumes@2#, the domain walls separating domains
different orientation in in rotating Rayleigh-Be´nard convec-
tion @3#, or streamer fronts in discharges@4#—the fronts are
relatively wide and therefore described by the same c
tinuum equations that describe nonequilibrium bulk patter
The lore in nonequilibrium pattern formation is that when t
relevant length scales are large,~thermal! fluctuation effects
are relatively small@5#. For this reason, the dynamics o
many pattern forming systems can be understood in term
the deterministic dynamics of the basic patterns and cohe
1063-651X/2002/66~3!/036206~24!/$20.00 66 0362
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structures. For fronts, the first questions to study are th
fore properties such as existence and speed of propagatio
the front solutions of the deterministic equations, which
most cases are partial differential equations. In the last
cades, the fundamental propagation mechanism of such
terministic fronts has become relatively well understood.

From the above perspective, it is may be less of a surp
that the detailed questions concerning the stochastic pro
ties of inherently nonequilibrium fronts have been address
to some extent, only relatively recently@6–13#, and that it
has taken a while for researchers to become fully aware
the fact that the so-called pulled fronts@14–17# which propa-
gate into an unstable state, donot fit into the common mold:
they have anomalous sensitivity to particle effects@9–11#,
and have been argued to display uncommon scaling beha
@13,18–20#.

Pulled frontsare fronts which propagate into an unstab
state, and whose propagation dynamics is essentially
they are being ‘‘pulled along’’ by the growth and spreadi
of the small perturbations about the unstable state into wh
the front propagates—their asymptotic speedvas is equal to
the linear spreading speedv* of perturbations about the un
stable state:vas5v* @14–17#. This contrasts with thepushed
fronts, for which vas.v* , and whose dynamics is dete
mined by the nonlinearities in the dynamical equations@15–
17#. The behavior of pushed fronts is essentially similar
fronts between two~meta!stable states.

The concept of a pulled front most naturally fits a form
lation of the dynamical equations in terms ofcontinuum vari-
ables, for by ‘‘small perturbations’’ we mean that the devia
tions of the field values from the values in the unstable s
are small enough that nonlinear terms in the deviations
be neglected. From various directions, it has become clea
©2002 The American Physical Society06-1
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DEBABRATA PANJA AND WIM van SAARLOOS PHYSICAL REVIEW E66, 036206 ~2002!
the last few years that such pulled fronts do show very
usual behavior and response to perturbations. First of
Brunet and Derrida have shown that when the continu
field equations are used for a finite particle model so as
have a growth cutoff at the field value 1/N, whereN is the
typical number of particles in the bulk phase behind
front, the deviation from the continuum valuev* of the front
speed is often large, and it vanishes only as 1/ln2N ~with a
known prefactor which they calculated! @9#. On the other
hand, we recently found that with an infinitesimal grow
cutoff and a similarly infinitesimal growthenhancementbe-
hind it, one can have a much higher front speed thanv* @21#.
Furthermore, the scaling properties of pulled fronts in s
chastic field equations with a particular type of multiplicati
noise have been found to be anomalous: in one dimens
they are predicted to exhibit subdiffusive wandering@18#, but
in higher dimensions their scaling behavior is given by
KPZ equation@22# in one dimension higher than one wou
naively expect@19,20# ~the question to what extent thes
results are applicable to lattice models, where the finite p
ticle effects always make the fronts weakly pushed, is sti
matter of debate@23,24#!. Moreover, even without fluctua
tions, pulled fronts respond differently to coupling to oth
fields, e.g., they never reduce to standard moving bound
problems, even if they are thin@25#.

All these effects have one origin in common, namely,
fact that the dynamics of pulled fronts, by its very nature
not determined by the nonlinear front region itself, but by t
regionat the leading edge of the front, where deviations from
the unstable state are small. To a large degree, this s
infinite region alone determines the universal relaxation
the speed of a deterministic pulled front to its asympto
value@9,16,17#, as well as the anomalous scaling behavior
stochastic fronts@18–20,23,24# in continuum equations with
multiplicative noise. As realized by Brunet and Derrida@9#,
the crucial importance of the region, where the deviatio
from the unstable state are small, also implies that if o
builds a lattice model version of a front propagating into
unstable state, the front speed is surprisingly sensitive to
dynamics of the tip~the far end! of the front where only one
or a few particles per lattice site are present. It is this eff
which is the main subject of this paper.

B. Open questions

If we study fronts for a field describing the number de
sity f of particles, and normalize the field in such a way th
its average value behind the front, where there areN particles
per unit of length, is 1, then at the very far end of the lead
edge, where the discrete particle nature of the actual m
becomes most noticeable, the value of the normalized n
ber density field is of order 1/N. Brunet and Derrida@9#
therefore modeled the effect of the particle cutoff in th
lattice model by studying a deterministic continuum fro
equation, in which the growth term was set to zero for valu
of f less than 1/N. They showed that this led to a correctio
to the asymptotic front speed of the order of 1/ln2N with a
prefactor, which is given in terms of the linear growth pro
erties of the equation without a cutoff. Because of the lo
03620
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rithmic term, in the dominant order, it does not matt
whether the actual cutoff should really be exactly 1/N ~cor-
responding to exactly one particle!, or whether the growth is
just suppressed at values off of order 1/N, since 1/ln2(cN)
'1/ln2N in dominant order. Simulations of two different la
tice models by Brunet and Derrida@9# and by van Zonet al.
@26# gave strong support for the essential correctness of
procedure for sufficiently largeN, but showed that there ca
be significant deviations from the asymptotic result for lar
but not extremely largeN. Moreover, for a different lattice
model, Kessleret al. @10# did observe a correction to th
average front speed of order 1/ln2N but with a prefactor
which they claimed was a factor of order two different fro
the prediction of Brunet and Derrida.

There are hence several questions that lead us to re
sider the finite particle effects on the average front speed
pulled stochastic fronts.

~i! Why is it that a simple cutoff of order 1/N in a deter-
ministic equation for a continuum (mean-field type) equat
apparently leads to the proper asymptotic correction to
average speed of astochasticfront?

~ii ! Can we get a more microscopic picture of the stoch
tic behavior at the far end of the front, where there are o
a few particles per lattice site?

~iii ! Can we go beyond the largeN asymptotic result of
Brunet and Derrida, e.g., can we calculate the correc
term for large but not extremely large values ofN or even for
arbitraryN? After all, one mighta priori expect correlation
effects to be very important for fronts whose propagat
speed is strongly affected by the region where there are o
a few particles per site.

~iv! What is the role of correlation effects?
~v! To what extent do the specific details of the particu

stochastic model play a role?
~vi! Can one resolve the discrepancy noted by Kes

et al. @10#?

C. Summary of the main results

In this paper, we address these questions and answe
majority of them for a specific model for which Breueret al.
@6# already studied the asymptotic speeds of stochastic fr
numerically some years ago. The model consists of parti
making diffusive hops on a one-dimensional lattice, and
ing subject to growth and death on each lattice site. It is v
close to the one also studied by Kessleret al. @10#, the only
difference being that their model includes a correlation te
which is small and irrelevant for largeN. The absence of
such correlations makes the model studied by Breueret al.
easier to analyze. Moreover, an examination of the numer
results therein shows that the deviation of the asympt
front speed from its pulled front value indeed behaves
1/ln2N ~although it was not realized in Ref.@6#!, with a pref-
actor that, over the range ofN values studied, is differen
from the one predicted later by Brunet and Derrida@9#, but
not as much different as Kessleret al. claimed it to be for
their own model@10#. For each stochastic realization of
front, which moves into a region where no particles a
present, one can always identify a foremost occupied lat
6-2
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FLUCTUATING PULLED FRONTS: THE ORIGIN AND . . . PHYSICAL REVIEW E66, 036206 ~2002!
site or ‘‘the foremost bin.’’ In the region near this one, flu
tuations are large and the discreteness of the lattice an
the particle number occupation is extremely important:
standard description, which assumes that the average pa
density is uniformly translating, breaks down in this regio
Moreover, since the particle occupation numbers are sma
the tip, essentially all known methods fail, based as they
on large-N expansions.

With a finite particle cutoff, fronts are never really pulle
but instead are weakly pushed@27#. Even for the simplest
case of a pushed front in a second order nonlinear pa
differential equation, in general, the speed cannot be ca
lated explicitly. It should therefore come as no surprise t
with the various additional complications described abo
we do not have a full first principles theory that gives th
front speed for finite values ofN for the model we study.
However, in this paperwe do obtaina number of important
results for the behavior in the far tip of the front as well
for the effect of the region behind the tip on the finite-N
corrections. These results can be tested independently
our numerical simulations largely support the picture t
emerges from this approach. In terms of short answers to
questions raised above in Sec. I B, we find that

~i! For extremely largeN, the asymptotic results of Brune
and Derrida based on a simple cutoff of order 1/N in a de-
terministic equation for a continuum (mean-field type) eq
tion become essentially correct because all the esse
changes are all limited to a few bins behind the forem
one, where the particle numbers are finite and small; toge
with the fact that 1/ln2(cN)'1/ln2(N) to dominant order, this
ensures the correctness of the asymptotic expression foN
→`.

~ii ! Yes, one can get a more microscopic picture of w
happens near the foremost bin of the front; we deve
mean-field type expressions for the probability distributi
that describes the ‘‘stop-and-go’’ type behavior there~Sec.
IV !, and show that the results compare well with numeri
simulation results, Sec. V.

~iii ! A first-principles theory for the stochastic front spe
for arbitraryN seems virtually impossible, except possibly
some special limits, as in principle, it will involve matchin
the approximatelyuniformly translatingaverage profile be-
hind the tip of the front to thenonuniformly translatingpro-
file near the foremost bin, where standard methods do
seem to apply.

~iv! Correlation effects are very important near the tip;
identify two of them and model one: rapid successive f
ward hops of the foremost particle, Sec. IV C 1, and jump
back of the foremost particle, Sec. IV C 2.

~v! The details of the particular stochastic model play
role for the corrections in the asymptotic front speed throu
the global average front profile~quantified byA of Secs. III
and IV! and through the effective profile near the tip, b
their effects are truly minute. We demonstrate this by me
of a mean-field theory that tries to extend the uniform
translating front solution all the way to the far tip of the fro
~described in Sec. III C!. In this theory, there is a quantitya
associated with the effective profile at the tip, and we sh
that these two quantities,A anda, provide only subdominan
03620
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corrections to the asymptotic largeN result.
~vi! The model considered by Kessleret al. @10# is

slightly different from the one considered by Breueret al., in
the sense that number of particles of each species is fi
However,a priori, one expects that this difference in the tw
models would not affect the speed corrections for largeN.
Our own simulations confirm this, and show no sign of
discrepancy between the asymptotic large-N speed correc-
tions obtained from the two models~Sec. VI!.

We finally note that in this paper, we will focus on th
case where the growth and hopping terms for a few partic
are the same as those for a small but finite density of p
ticles. In such cases, the front speed converges forN→` to
the pulled front speedv* of the corresponding mean-fiel
equation. As we will discuss elsewhere@21#, with only slight
modifications of the stochastic rules for few particles, o
can also arrive at situations where the limits do not commu
i.e., where the stochastic front speed converges to a sp
larger thenv* as N→`, even though the stochastic mod
would converge to the mean-field equation with pulled fro
in this limit.

D. Complications associated with discreteness of the lattice
and particle numbers

The challenge of understanding the propagation of a
one of these fronts lies in the fact that as a consequenc
the discrete nature of the particle events and of the part
number realizations, the natural description of the far tip
not in terms of a uniformly translating solution for the ave
age number of particles in the bins~we call each lattice site
a ‘‘bin’’ !, but is in terms ofdiscrete notions such as th
foremost bin, individual jumps, etc. An additional complica-
tion is that in the presence of fluctuations, the front posit
exhibits diffusionlike wandering behavior, which have to
taken out in order to study the intrinsic stochastic front d
namics, just like capillary waves beset analyzing the intrin
structure of a fluid interface~Sec. III B!. The implication of
all this is that~i! in the presence of an underlying lattic
instead of being uniformly translating, the position of th
foremost occupied bin advances in a discrete manner, and~ii !
due to the discrete nature of the constituent particles,
position of the foremost bin advances probabilistically, as
movement is controlled by diffusion.

Based on these ingredients and observations, the ce
theme in this paper revolves around a picture of the tip of
front that istotally different from the conventional picture o
a pulled front. We present the picture here in terms of
simplified essence, as it is helpful for the reader to bear it i
mind throughout this paper: we call the foremost occup
lattice site at the far end of the tip of the front ‘‘the foremo
bin.’’ Therefore, the very definition of theforemost binon a
lattice site means that it is occupied by at least one part
and that all the lattice sites on the right of it are emp
Naturally, an empty lattice site~all the lattice sites on the
right of which are also empty! attains the status of the fore
most bin as soon as one particle hops into it from the left
reference to the lattice, the position of the foremost bin
mains fixed at this site for some time, i.e., after its creati
6-3
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DEBABRATA PANJA AND WIM van SAARLOOS PHYSICAL REVIEW E66, 036206 ~2002!
a foremost bin remains the foremost bin for some time. D
ing this time, however, the number of particles in and beh
the foremost bin continues to grow. As the number of p
ticles grows in the foremost bin, the chance of one of th
making a diffusive hop on to the right also increases.
some instant, a particle from the foremost bin hops ove
the right: as a result of this hop, the position of the forem
bin advances by one unit on the lattice, or, viewed fro
another angle, a new foremost bin is created which is
lattice distance away on the right of the previous one. M
croscopically, the selection process for the length of the t
span between two consecutive foremost bin creations is
chastic, and the inverse of the long time average of this t
span defines the front speed. Simultaneously, the amou
growth of particle numbers in and behind the foremost
itself depends on the time span between two consecu
foremost bin creations~the longer the time span, the long
the amount of growth!. As a consequence, on average, t
selection mechanism for the length of the time span betw
two consecutive foremost bin creations, which determi
the asymptotic front speed, is nonlinear.

This inherent nonlinearity makes the prediction of t
asymptotic front speed difficult. One might recall the dif
culties associated with the prediction of pushed fronts du
nonlinear terms in this context, although the nature of
nonlinearities in these two cases iscompletely different. In
the case of pushed fronts, the asymptotic front speed is
termined by the mean-field dynamics of the fronts, and
nonlinearties originate from thenonlinear growth terms in
the partial differential equationsthat describe the mean-fiel
dynamics~as we discuss in Sec. III B, if one does not ta
out the wandering of the front positions, then the nonlin
growth terms actually do affect the stochastic front dynam
in a subtle way too!. On the other hand, for fronts consistin
of discrete particles on a discrete lattice, the correspond
mean-field growth terms arelinear, but since the asymptotic
front speed is determined from the probability distribution
the time span between two consecutive foremost bin
ations, on average, it is the relation between this probab
distribution and the effect of the linear growth terms that
nonlinearities stem from.

Our approach is to develop a separate probabilistic the
for the hops to create the new foremost bins, and then
show that by matching the description of the behavior in t
region to the more standard one~of growth and roughly
speaking, uniform translation! behind it, one obtains a con
sistent and more complete description of the stochastic
discreteness effects on the front propagation. In the simp
approximation, the theory provides a very good fit to t
data, but our approach can be systematically improved
incorporating the effect of fluctuations as well. Besides p
viding insight into how a stochastic front propagates at
far tip of the leading edge, our analysis naturally leads t
more complete description that allows one to interp
~though not predict! the finite N corrections to the front
speed for much smaller values ofN than that are necessary
see the asymptotic result of Brunet and Derrida@9#. As one
might expect, for values ofN where deviations from this
03620
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asymptotic result are important, model-specific effects
play a role.

For the major part of our analysis, we focus on the m
relevant and illuminating case in whichthe diffusion and
growth rates of the model are both of the same order. This
regime is the most illustrative as it displays all the aspects
finite particle and lattice effects most clearly. We also inve
tigate the case when the diffusion rate is much smaller t
the growth rate to illustrate the correlation effects. For all
these cases, the matching between the behavior of the t
the front and the standard description of a uniformly tra
lating solution behind it is a complicated process, for the la
of a proper small parameter that allows one to do pertur
tion theory.

The paper is organized in the following manner, in Sec.
we describe our model~which is the same as in Ref.@6#! and
define the dynamics of the front. The crux of the paper
presented in Sec. IV, where we present a detailed analys
the microscopic picture of the front dynamics and show t
for the description of the far tip of the front, one has
abandon the idea of a uniformly translating front solutio
The lattice and finite particle effects lead to a ‘‘stop-and-g
type dynamics at the far tip of the front, while the avera
front behind it ‘‘crosses over’’ to a uniformly translating so
lution. In this formulation, the effect of stochasticity on th
asymptotic front speed is coded in the probability distrib
tion of the times required for the advancement of the fo
most bin. We derive expressions of these probability dis
butions by matching the solution of the far tip with th
uniformly translating solution behind. This matching in
cludes various correlation effects in a mean-field type
proximation. In Sec. V, we compare our theoretical pred
tions of Sec. IV with the stochastic simulation results.
addition to that, in Sec. III, we argue that the correspond
front solution is a case of a weakly pushed front and anal
an effective mean-field solution that extends all the way
the foremost bin~thereby ignoring its breakdown near th
foremost bin!. This allows us to rederive the asymptotic v
locity expression of Brunet and Derrida@9# and obtain the
further subdominant finite-N corrections to it. In Sec. VI, we
carry out the full stochastic simulation for the model cons
ered by Kessleret al., and finally, we conclude the pape
with a discussion and outlook in Sec. VII.

II. THE REACTION-DIFFUSION PROCESS X¿Yr2X
ON A LATTICE

We consider the following reaction-diffusion processX
1Y
2X on a lattice in the following formulation: at eac
lattice position, there exists a bin. We label the bins by th
serial indicesk, k51,2,3, . . . ,M , placed from left to right.
Each bin has aninfinite supply ofY particles. AnX particle in
thekth bin can undergo three basic processes:~i! diffusion to
the (k21)th or the (k11)th bin with a rate of diffusiong. If
anX particle in bin 1 jumps towards the left, or anX particle
in the M th bin jumps to the right, then they are immediate
replaced,~ii ! forward reaction to produce anextra Xparticle
having annihilated aY particle (X1Y→2X), with a rategg ,
6-4
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and~iii ! if there are at least twoX particles present in thekth
bin, then any two of theX particles can react with each oth
and annihilate oneX particle to produce aY particle (2X
→X1Y), with a reaction rategd . The state of the system a
time t is given by the numbers ofX particles in the bins,
denoted as$N1 ,N2 , . . . ,NM ;t%.

In the context of front propagation, the above model w
first studied by Breueret al. @6#. Up to Sec. V of this paper
we will confine ourselves to this model only. In Sec. VI, w
will consider a slightly modified version of this model, nu
merically studied by Kessler and coauthors@10#, in which
the number ofY particles in any bin is finite, and theY
1
e
th

is
r

f

03620
s

particles can diffuse from any bin to its nearest neighbor b
with the same diffusion rateg.

A. The master equation

The discrete, microscopic description of the abo
reaction-diffusion process inherently introduces fluctuatio
in the number ofX particles present in any particular bin
This necessitates a suitable multivariate probabilistic
scription of the system. Let us denote the probability o
certain configuration$N1 ,N2 , . . . ,NM ;t% at time t by
P(N1 ,N2 , . . . ,NM ;t). The dynamics of
P(N1 ,N2 , . . . ,NM ;t) is given by the following master
equation:
]

]t
P~N1 ,N2 , . . . ,NM ;t !5(

k
H g@~Nk1111!P~N1 ,N2 , . . . ,Nk21,Nk1111, . . . ,NM ;t !

1~Nk2111!P~N1 ,N2 , . . . ,Nk2111,Nk21, . . . ,NM ;t !

22 Nk P~N1 ,N2 , . . . ,Nk21 ,Nk ,Nk11 , . . . ,NM ;t !#

1gg@~Nk21!P~N1 ,N2 , . . . ,Nk21 ,Nk21,Nk11 , . . . ,NM ;t !

2Nk P~N1 ,N2 , . . . ,Nk21 ,Nk ,Nk11 , . . . ,NM ;t !#

1
gd

2
@Nk~Nk11!P~N1 ,N2 , . . . ,Nk21 ,Nk11,Nk11 , . . . ,NM ;t !

2Nk~Nk21!P~N1 ,N2 , . . . ,Nk21 ,Nk ,Nk11 , . . . ,NM ;t !#J . ~2.1!
q.

n

v

The above equation is actually not quite accurate at the
andM th boundary bins, but we refrain from writing out th
correction terms explicitly, as they are not needed in
analysis below.

B. The macroscopic density field and the Fisher-Kolmogorov
equation

If the forward reaction rate,gg , is much larger than the
annihilation rategd , an initial conglomeration ofX particles
will start to grow in size as well as in numbers. To study th
growth phenomena, we define^Nk(t)&, the average numbe
of X particles in thekth bin at timet, as

^Nk~ t !&5 (
$Nk8%k851•••N

Nk P~N1 ,N2 , . . . ,NM ;t !. ~2.2!

Using Eq. ~2.1!, it is easy to obtain the time dynamics o
^Nk(t)&, given by

]

]t
^Nk~ t !&5g@^Nk11~ t !&1^Nk21~ t !&22^Nk~ t !&#

1gg^Nk~ t !&2
gd

2
@^Nk

2~ t !&2^Nk~ t !&#,

~2.3!
st

e

with

^Nk
2~ t !&5 (

$Nk8%k851•••N

Nk
2 P~N1 ,N2 , . . . ,NM ;t !. ~2.4!

For the sake of simplicity, we defineg̃5g/gg , t85ggt, and
N52gg /gd , and reduce the number of parameters in E
~2.3!, to have@6#

]

]t8
^Nk~ t8!&5g̃@^Nk11~ t8!&1^Nk21~ t8!&22^Nk~ t8!&#

1^Nk~ t8!&2
1

N
@^Nk

2~ t8!&2^Nk~ t8!&#.

~2.5!

Following the procedure in Ref.@6#, if one replaces
the (1/N)@^Nk

2(t)&2^Nk(t)&# term in Eq. ~2.5! by
(1/N)^Nk(t)&

2 and further defines a mean ‘‘concentratio
field’’ on the kth bin by introducing the variablefk
5^Nk&/N, then from Eq.~2.5!, one arrives at the following
difference-differential version of the Fisher-Kolmogoro
equation for the reaction-diffusion processX1Y
2X on a
lattice, given by@6#
6-5
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]

]t
fk~ t !5g̃@fk11~ t !1fk21~ t !22 fk~ t !#1fk~ t !2fk

2~ t !.

~2.6!

The original Fisher-Kolmogorov or FKPP equation@28,29# is
a partial differential equation in continuous space and tim
Notice that in these variables, the properties of the propa
ing front depend only on two parameters,N and g̃.

III. MEAN-FIELD APPROXIMATIONS TO THE
PROPAGATING FRONT SOLUTION

As mentioned earlier, in this section we do not consid
the proper stop-and-go type dynamics of the tip; instead,
continuation of mean-field equation~2.6! above, we describe
the entire front by the uniformly translating profile. We the
make a number of general observations concerning the
formly translating front solutions in mean-field type equ
tions for the average profile, from the perspective of
questions raised in the Introduction. A central result of
discussion will be an expression for the finite-N value of the
velocity, which allows us to interpret deviations from th
asymptotic results of Ref.@9# in terms of physical propertie
of stochastic fronts.

A. Front propagation in the dynamical equation for fk„t…

From the point of view of average number ofX particles
in the bins, Eq.~2.5! has two stationary states. One of the
for which ^Nk&5N, ; k, is stable. The other, for which
^Nk&50, ; k, is unstable. This means that any perturbat
around the unstable state grows in time until it saturate
the stable state value. In particular, if in a certain configu
tion of the system, the stable and the unstable regions c
ist, i.e., ^Nk&5N, ; k,k0 and ^Nk&50, ; k.k1, with k1
.k0, then the stable region invades the unstable region
propagates into it. In other words, in due course of time,
boundary between these two regions, having a finite wid
moves further and further inside the unstable region. Fo
wide range of initial conditions, the speed, with which th
boundary moves into the unstable region, approaches a fi
asymptotic value,vas . Simultaneously, the shape of th
boundary between the two regions, determined by the a
age number ofX particles,^Nk&, plotted against the corre
sponding bin indicesk, also approaches an asymptotic sha
This asymptotic shape, therefore, becomes a function ok
2vas t) for long times, and this well-known phenomenon
known as the front propagation. In the present context, E
~2.5!–~2.6! provide us with an example of front propagatio
into unstable states. We will follow the usual convention th
the front propagates to the right in the direction of increas
bin numbers.

In the mean-field approximation~2.6!, the average par
ticle density fieldfk(t) obeys a difference-differential equa
tion. The asymptotic speed selection mechanism for pro
gating fronts into unstable states has been a well-unders
phenomenon for a number of years, and it has been rea
by various authors@9–11,17# that the calculation of the
asymptotic front speed on a lattice for the type of Eqs.~2.5!–
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~2.6! proceeds along similar lines as it does for partial d
ferential equations. It is well-known that for Eqs.~2.5!–~2.6!,
the selection mechanism forvas depends entirely on the re
gion, where the nonlinear saturation terms„@^Nk

2(t)&
2^Nk(t)&#/N or fk

2(t)… are much smaller in magnitude tha
the corresponding linear growth terms@^Nk(t)& or fk(t)],
i.e., the leading edge of the front, where the value offk(t) is
very small, such thatfk

2(t)!fk(t). In this region, the non-
linear terms can be neglected, and after having usedfk(t)
[f(k2vas t)[f(j), where j5k2vas t is the comoving
coordinate, Eq. ~2.6! reduces to a linear difference
differential equation, given by

2vas

]

]j
f~j!5g̃@f~j11!1f~j21!22 f~j!#1f~j!.

~3.1!

If one neglectsthe fact that the microscopicX particles are
discrete andassumesthatf(j) goes to zero continuously fo
j→`, then a natural candidate for the solution off(j) in
the linear difference-differential equation, Eq.~3.1! above, is
f(j)[A exp@2zj#, wherez is a real and positivequantity.
With this solution off(j) in the so-called leading edge o
the front, one arrives at the dispersion relation

vas[vas~z!5
2 g̃@cosh~z!21#11

z
. ~3.2!

Like the other examples of fronts propagating into unsta
states, Eq.~3.2! allows an uncountably infinite number o
asymptotic velocities depending on the selected value of
continuousparameterz. However, for a steep enough initia
condition that decays faster than exp(2zj) in j for any
z.z0 determined below~hence, a unit step function obey
this condition!, the observed asymptotic speed equals the
called linear spreading speedv* , given by v* [v* (z0),
wherez0 is the value ofz, for which the dispersion relation
vas(z) vs z has a minimum.

The fact thatv* defined in this way is nothing but th
linear spreading speed, i.e., the spreading speed of small
turbations whose dynamics is given by the linearized eq
tion ~3.2!, follows from a saddle point analysis of th
asymptotic behavior of the Green’s function for the line
equation~3.2!, see, e.g., Ref.@17#. The name pulled fronts
stems from the fact that this linear spreading almost litera
‘‘pulls’’ the nonlinear front with it, the nonlinear terms jus
giving rise to saturation behind the front.

B. The deceptive subtlety of the mean-field approximation

As we discussed above, in the pulled front regime,
front speed of a given problem is determined completely
the linear term in the dynamical equation. In going from t
exact equation~2.5! to the mean-field approximation~2.6!,
we appear, at first sight, to have ignored only a term linea
fk of order 1/N @the second term between square bracket
Eq. ~2.5!#. Hence, naively one might expect the front spe
to converge as 1/N to the asymptotic valuev* (z0). We al-
ready know from the work of Brunet and Derrida@9#, how-
6-6
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ever, that the convergence is much slower, namely, as 1/l2N.
How can the two results be reconciled?

The resolution of the paradox lies in the fact that in t
mean-field approximation we completely ignore the diffus
wandering of fronts. If we follow the evolution of an en
semble of fronts, their positions@defined, e.g., by Eq.~4.1!
below# will fluctuate: the root mean square wandering of t
fronts grows asAt as for any one-dimensional rando
walker @6,12#. This means thatin reality the ensemble aver
age ^Nk(t)& does not acquire a fixed shape in the fram
moving with the average speed. Instead, the average pr
^Nk(t)& continues to broaden in time, although the fro
shapes for the individual realizations reach an asympto
shape~see Fig. 5 of Ref.@6# for an illustration!. This has a
severe consequence: we cannot simply assume that
^Nk

2(t)& term is small in the leading edge of the profile whe
^Nk(t)& is small, and replace it bŷNk(t)&

2—few members
of the ensemble, which are relatively further ahead, do g
significant contributions through this term in regions whe
^Nk(t)& is small. Thus, while Eq.~2.5! is exact and contains
the fluctuation effects due to the root mean square wande
of the front, the mean-field approximation~2.6! throws out
such effects completely.

If, on the other hand, we look at the shape of a particu
front realization in the appropriate position, so that the fro
wandering is taken out, the mean-field equation does yie
reasonably good description of this~conditionally averaged!
front profile in the range where the particle occupation nu
bers are large and~hence! where fluctuation effects are sma
Additional information is needed, however, to calculate
front speed.

In passing, we note that the situation is somewhat sim
to the theory of fluid interfaces: capillary wave fluctuatio
wash out the average interface profile completely, but
scales of the order of the capillary length, the mean-fi
theory for the so-called intrinsic interface profile works qu
well.

C. The front speed correction for largeN

The above observations already allow us to arrive at
extend the results of Brunet and Derrida@9# from a slightly
different angle than in their original work as follows. First
all, from the discussion above, we notice that even thoug
mean-field approximation~2.6! does not work for the
ensemble-averaged front profile, but for a given stocha
front realization, the mean-field theory does apply to a go
approximation in the bins, where the number ofX particles
are relatively large. These are essentially the bins that
sufficiently behind theforemost bin, the rightmost bin in the
given stochastic realization, on the right of which all bins a
completely empty. Nevertheless, as mentioned in the be
ning paragraph of this section, we assume that the unifor
translating front solution of Eq.~2.6! holds for the descrip-
tion of the front profile all the way up to the foremost bin f
a given realization. Second, the actual front solution of E
~2.6! is a case of aweakly pushedfront as opposed to bein
a truly pulled front@27,30#. This can be understood in th
following manner: notice that in any bin the forward reacti
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X1Y→2X does not proceed unless there is at least onX
particle in that bin to start with. As for any given realizatio
of the stochastic front, the front propagation on a lattice
tantamount to the discrete forward movement of the fo
most bin by units of 1~which can happen only through th
diffusion of anX particle from the foremost bin towards th
right!, in the uniformly translating front solution of Eq.~2.6!,
the dynamics of the tip of the front is diffusion dominate
This makes any given realization of the front weakly push
as opposed to being truly pulled, and moreover,
asymptotic speedvN is expected to be,v* for a finite N.
This indicates that if we want to build all these in the sam
frame as in the velocity selection mechanism for a pul
front, one has to allow complex values of the parametez
@see Eq.~3.2! and the discussion thereabove#. Furthermore,
the existence of a foremost bin requires that the front pro
must have a zeroa bin ahead of the foremost bin. Having
combined all these together, and without any loss of gen
ality, we now require that the front profile in the linear regio
of Eq. ~2.6! is given by@9–11,16,17# for f(j) for vN,v* ,

f~j!5A sin@zi j1b#exp~2zr j!, ~3.3!

such thatf(j) has a node at the coordinate of the bin ju
ahead of the foremost bin. In Appendix A, we show how E
~3.3! can be used to determine the complex decay ratez in
terms ofN and other parameters, and from that we obtain
deviation of the front speedvN from v* . The front speedvN
is given by

vN5v* 2
d2vas

dz2 U
z0

zi
21O~zi

4!'v* 2
d2vas

dz2 U
z0

3
p2 z0

2

F ln N1z01 ln
A

a
1 lnH sin

p z0

ln N11 J G2 , ~3.4!

where, according to Eq.~3.2!,

d2vas

dz2 U
z0

5
g̃coshz0

z0
. ~3.5!

In the limit of largeN, the above result~3.4! reduces to

vN'v* 2
d2vas

dz2 U
z0

p2 z0
2

ln2N
, ~3.6!

which is nothing but the asymptotic expression for the v
locity correction derived by Brunet and Derrida@9#. Their
approach is based on thepartial differential equationanalog
of the mean-field dynamical equation~2.6!, in that they in-
troduced an artificial cutoff for the growth term for values
f(j),«, where«'1/N, to mimic the dominant role played
by diffusion at the tip of the front as opposed to the grow
term.
6-7
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D. Implications and discussion

The above expressions for the speed corrections are
ready quite instructive. First of all, as we pointed out, for t
speed differencev* 2vN , Eq.~3.5! reduces to the expressio
of Eq. ~3.6! of Brunet and Derrida@9# at the dominant orde
in the limit of very largeN. To this order, the speed change
given explicitly in terms ofN. The more general expressio
Eq. ~3.5!, however, contains the factorsA anda; these affect
the subdominant behavior, i.e., the corrections to t
asymptotic largeN expression. For realistic values ofN, the
corrections to the asymptotic behavior can be quite sign
cant @9#. As we shall show in Sec. V B,A depends on the
global behavior of the average front solution, including t
behavior in the region where nonlinearities are importa
This makes its value vary from model to model and it is
this place where the specific details of the model affect
speed differencev* 2vN . On the other hand,a is only a
parameter that originates through the extrapolation of
mean-field profile~3.3! to the foremost bin region. We wil
show in the following section that the quantitya is a ficti-
tious quantity, as the average front profile deviates sign
cantly from the one in Eq.~3.3! near the foremost bin: as w
shall see, unlike the mean-field solution, it is not even u
formly translating.This is the reason that an explicit gener
prediction for the front speed beyond the asymptotic re
obtained by Brunet and Derrida@9# is hard, if not impos-
sible, to come by.

In passing, we note the following. It is well known from
the analysis of uniformly translating front solutions of th
Fisher-Kolmogorov partial differential equation that front s
lutions with v,v* are asymptotically given by an expre
sion like Eq.~3.3!, and that these front solutions with nod
are unstable. This does not mean, however, that the ab
~crude! analysis is based on an unstable solution~3.3! and
therefore inconsistent. The point is that the expression~3.3!
is only an intermediate asymptotic solution, valid over so
finite range of bins; just as in the analysis of the slow tim
relaxation of pulled fronts in partial differential equation
@17#, where such solutions also play a role as intermed
asymptotics, but they do not make the full solution unstab

IV. THE PROBABILISTIC DYNAMICS OF THE TIP:
BREAKDOWN OF THE DEFINITION OF THE COMOVING

COORDINATE j

We now turn to the analysis of the stochastic dynam
near the foremost bin, which is the region which determin
most of the front dynamics. In the light of the discussion
Sec. III B, from here onwards, we confine ourselves to
study ofone single front realization.

Let us assume that as the front moves in time from the
to the right, at some timet5t0, the bink0 is deep inside the
saturation phase of the front. At timet>t0, the total number
of particles on the right of thek0th bin is given by

Ntot~ t !5 (
k.k0

Nk~ t !. ~4.1!
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For larget2t0 , Ntot(t) grows linearly and one may defin
the asymptotic front speedvN as

vN5
1

N
lim
t→`

Ntot~ t !2Ntot~ t0!

t2t0
. ~4.2!

Simultaneously, the position of the foremost bin also sh
towards the right. For long times, the average rate at wh
the position of the foremost bin shifts towards the right is t
same as the front speed measured according to the defin
Eq. ~4.2!, as otherwise, an individual front realization wi
never reach an asymptotic shape.

Let us now examine the dynamics of the foremost bin
one particular realization. In Sec. III. The foremost b
moves towards the right by means of hops of theX particles.
The way this diffusion takes place is as follows: let us ima
ine that in one particular realization, at a certain timet8, the
index for the foremost bin isk1, i.e., at timet8, all the bins
on the right of thek1th bin in that realization are not occu
pied by theX particles@see Fig. 1~a!#. The diffusion of theX
particles from thek1th bin to the (k111)th bin is not a
continuous process. As a result, it takes some more t
before the firstX particle diffuses from thek1th bin to the
(k111)th bin. Let us denote, byt2, the time instant at which
this diffusion takes place@see Fig. 1~b!#. Clearly, there is no
exchange ofX particles between thek1th bin and the (k1
11)th bin in the time intervalt8<t,t2. During this time,

FIG. 1. Snapshots of one particular realization at timest8, t2,
andt1. The filled circles denote theX particles in different bins. At
time t2 , the (k111)th bin becomes the new foremost bin. In
similar manner, thek1th bin became the new foremost bin at tim
t1.
6-8
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however, there can be time spans, where the number of tX
particles in thek1th bin may drop down to zero, since in th
time intervalt8<t,t2, the diffusion of theX particles out of
the k1th bin towards its left is an allowed process. By de
nition, at timet2, the (k111)th bin becomes the ‘‘new fore
most bin.’’ Let us now denote, byt1, the time instant when
the k1th bin became the ‘‘new foremost bin’’ due to the di
fusion of anX particle from the (k121)th bin in exactly the
same manner@see Fig. 1~c!#. In this notation, therefore,t2
.t1, and we say thatk1th bin remains the foremost bin fo
the time intervalDt5t22t1. If we now have a series of suc
Dt values in sequence, i.e., a sequence of time value
Dt1 ,Dt2 , . . . ,Dt j , for which a bin remains the foremos
bin, then it is easily seen that the asymptotic front spee
also given by

vN5 lim
j→`

j F (
j 851

j

Dt j 8G21

. ~4.3!

Put in a different way, if we denote the probability that
foremost bin remains the foremost bin for timeDt by P(Dt),
the asymptotic front speed, according to Eq.~4.3!, is given
by

vN5F E
0

`

d~Dt !Dt P~Dt !G21

. ~4.4!

Henceforth, our goal is to obtain a theoretical express
for P(Dt), for given parameter valuesN and g̃. As a first
approach, we will make an attempt to devise a mean-fi
theory for this purpose. It is precisely at this place that
need to study the origin and the consequences of the br
down of the definition of the comoving coordinate,j.

A. The stalling phenomenon: Lowest order approach

The origin of the breakdown of the definition of the c
moving coordinate,j, in a mean-field description is quit
easy to understand. As can be seen from the discussion i
paragraph above Eq.~4.3!, the key lies in the fact that for the
time a foremost bin remains the foremost bin, the front in
tip region does not move at all. We refer to this as the ‘‘sta
ing phenomenon.’’ During such stalling periods, all the d
namics is confined within the left of~including! the foremost
bin. It is this stalling phenomenon that is responsible for
breakdown of the definition of the comoving coordinatej
@31#.

Our first step in analyzing the stalling phenomenon is
get back to thek and thet coordinates, but in a different wa
than we have used them so far: the foremost bin, for
entire duration it remains the foremost bin, is indexed byan
arbitrary fixed integer kf in this new scheme of relabelin
the bin indices. The rest of the bins are accordingly inde
by their positions with respect to thekf th bin. Moreover, we
start to count time~i.e., set the clock att50) as soon as an
X particle diffuses into thekf th bin from the left and stop the
clock just when anX particle diffuses from thekf th bin to the
right. This relabeling strongly resembles the system of
moving coordinates, hence we call it the ‘‘quasi-comovi
03620
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coordinates.’’ In this formulation,the clock stops at timeDt
and resets itself to zero. In this manner,the propagation of
the front is a repetitive process of creating new foremost b
in intervals ofDt. Of course, it is a probabilistic process,
which the value ofDt is not fixed.

Our mean-field theory essentially mimics the stalling ph
nomenon just as we see it in a computer simulation. In t
theory, we also have a foremost bin, which we index by
fixed integerkm in the quasi-comoving frame. In these coo
dinates, we describe the dynamics of the front by the aver
number ofX particles in the bins. Between the timest50
and t5Dt, all the dynamics of the front is confined to th
left of ~including! thekmth bin. For the benefit of the reade
we summarize the various coordinatesk used in this paper in
Table I.

The equations of motion in this quasi-comoving fram
analogous to Eq.~2.5!, in terms of the bin indicesk are
therefore given by

]

]t
^Nk~ t !&5g̃@^Nk11~ t !&1^Nk21~ t !&22^Nk~ t !&#

1^Nk~ t !&2
1

N
@^Nk

2~ t !&2^Nk~ t !&#,

; k,km ,

]

]t
^Nk~ t !&5g̃@^Nk21~ t !&2^Nk~ t !&#1^Nk~ t !&

2
1

N
@^Nk

2~ t !&2^Nk~ t !&# for k5km ,

and

^Nk&50, ; k.km , ~4.5!

TABLE I. Summary of the various coordinate labels used in t
paper.

kf The label of the foremost bin between time
t50 andt5Dt in an actual realization,

e.g., in a computer simulation.
km The label of the bin that attains the status of

the foremost bin at timet50 in the mean-field
theory that we describe in this section.

Naturally, att50, the density ofX particles
in it is equal to 1/N.

km0
The label of the bin, where the average front

profile f (0), extrapolated from behind, is
equal to 1/N.

kb The label of the bin behind the tip, from
which point on corrections to the profilef (0)

are neglected.
kn The bin wheref (0) becomes zero, i.e., the

value ofk where the argument of the sin function
of f (0) becomesp.
6-9
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for 0,t,Dt, with the initial condition that^Nkm
&5Nkm

51 at timet50. The angular brackets above denote qu
tities averaged over many snapshots of one single front r
ization at timet. We focus our attention to the region at th
leading edge of the front~up to thekmth bin!, where the
nonlinearities can be neglected so that the dynamics is g
by

]

]t
fk~ t !5g̃@fk11~ t !1fk21~ t !22 fk~ t !#1fk~ t !,

; k,km ,

]

]t
fk~ t !5g̃@fk21~ t !2fk~ t !#1fk~ t ! for k5km ,

~4.6!

with fk(t)5^Nk(t)&/N, 0,t,Dt and fkm
51/N at time t

50. Equation~4.5! explicitly illustrates that the growth o
the probability ahead of the foremost bin is somewhat diff
ent from that behind the foremost bin as a result of the st
ing.

Before, we already introduced the probabilityP(Dt) that
the foremost bin remains the foremost one between the ti
t50 and t5Dt. Since the foremost bin ceases to be t
foremost one when a particle jumps out of it to the neighb
ing empty one on the right,P(t) obeys the equation

P~Dt !5g̃^Nkm
~Dt !&expF2g̃ E

0

Dt

dt^Nkm
~ t !&G , ~4.7!

satisfying the normalization condition. Clearly, as one c
see from Eqs.~4.4! and~4.7!, the proper asymptotic speed
determined bŷ Nkm

(t)&, which in turn must come out of the
solution of Eq.~4.6!, i.e., from the effect of the stalling phe
nomenon on the leading edge of the front.

The dynamics of the leading edge of the front, describ
by our mean-field theory in the preceding two paragraphs
a clear oversimplification. In an actual realization, the d
namics of the tip that governs the probability distributi
P(Dt) in the quasi-comoving frame, is quite complicate
The foremost bin has only a few particles, and as a con
quence, the fluctuation in the number of particles in it pla
a very significant role in deciding the nature of the probab
ity distribution P(Dt). Arising out of the fluctuations, ther
are two noteworthy events that have serious conseque
for the behavior ofP(Dt).

~i! The creation of the new foremost bins is a probabilis
process, for which the time scale is characterized by 1/vN .
However, if several foremost bins are createdin a sequence
relatively fast compared to the time scale set by 1/vN , then
one naturally expects that soon there would be a case w
the new foremost bin would be created at an unusually la
value ofDt.

~ii ! According to our definition, in the actual realization
the system, thekf th bin remains the foremost bin betwee
time t50 andt5Dt. However, it may so happen that durin
this time, all theX particles in thekf th bin diffuse back to the
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left, leaving it empty for some time, until some otherX par-
ticle hops into it, making it nonempty back again at a tim
0,t,Dt.

By the nature of construction, no mean-field theory c
ever hope to capture the fullest extent of these fluctuatio
and the one that we just presented above@that represents the
effect of the stalling phenomenon on the asymptotic sp
selection mechanism for the front by consideringP(Dt)], is
no exception. Therefore, in this mean-field theory that
described in this section, such fluctuation effects are co
pletely suppressed. We will return to these fluctuation effe
in Sec. IV C below, where we will make an attempt to es
mate the effects of these fluctuations onP(Dt). The corre-
sponding estimates will then be used to improve the theo
ical prediction ofP(Dt) as well as to draw limits on the
validity of our mean-field theory.

B. Effect of the stalling phenomenon on the front shape near
the foremost bin

In the preceding subsection, we obtained a mean-fi
type expression forP(Dt) in terms of^Nkm

(t)&. A first ap-

proximation for^Nkm
(t)& would be obtained from the solu

tion of Eq. ~4.5! above. However, in practice, the avera
occupation^Nkm

(t)& is affected by the stalling effect itself
We now account for this effect in a self-consistent way
calculating the corrections to the front shape near the fo
most bin. We start with Eq.~4.6!, and subsequently build
upon the considerations of Sec. III, where we derived
solutionf(j)5A sin@zij#exp(2zrj) at the leading edge of the
front.

A naive approach would be to claim that the shape of
leading edge of the front, described by the set of equati
~4.6!, is given by fk(t)5A sin@zi(k2vNt)1b#exp@2zr(k
2vNt)# for 0,t,Dt in the quasi-comoving frame. Notic
that we have reintroduced the phase factorb inside the ar-
gument of the sine function, in view of the fact thatk can
only take integral values. This solution offk(t) would once
again generate the same dispersion relation as in Eq.~A2!.
However, it is intuitively quite clear that this solution o
fk(t) cannot hold all the way uptok5km , since the equa-
tions of motion fork,km are different from the equation o
motion for k5km . First of all, fkm

(t50)51/N, which may
not necessarily be equal to the value of the funct
A sin@zi(km2vNt)1b#exp@2zr(km2vNt)# at time t50. Sec-
ond, for the entire duration of 0,t,Dt, the tip of the front
is stationary atkm , and as a result, the flow of particles fro
the left starts to accumulate in thekmth ~foremost! bin. With
increasing value oft, bins on the left of the foremost bin ge
to know that the tip of the front has stalled, and the corre
tion among different bins starts to develop on the left of t
foremost bin. As a result, an excess of particle density
yond the corresponding ‘‘normal solution’’ valuesA sin@zi(k
2vNt)1b#exp@2zr(k2vNt)# builds up on the left of~includ-
ing! the foremost bin over time. This is demonstrated in F
2.

To deal with the effect of stalling phenomenon on t
density ofX particles in the bins at the tip of the front, whic
6-10
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is very crucial to calculatêNkm
(t)&, let us expressfk(t) as

fk~ t !5fk
(0)~ t !1dfk~ t !, ~4.8!

where fk
(0)(t)5A sin@zi(k2vNt)1b#exp@2zr(k2vNt)#. The

quantitydfk(t) then denotes the deviation of the density
the X particles in thekth bin from the ‘‘normal solution’’
fk

(0)(t). It takes time for the deviation to develop in any bi
and moreover, since such correlation effects spread d
sively, the information that the tip of the front has stalled
the foremost bin does not affect too many bins behind
foremost bin. Thus, it is reasonable to assume that on the
of the foremost bin, there exists a bin, henceforth indexed
kb in this quasi-comoving coordinate~i.e., kb,km), where
the magnitude ofdfk(t) is so small that we can impose th
condition thatdfkb

(t)50. We then substitute Eq.~4.8! in
Eq. ~4.6! and without having to worry about the equation
motion fordfkb

(t), we obtain the equations of motion of th

quantitiesdfk(t) for kb,k<km as

]

]t
dfk~ t !5g̃@dfk11~ t !22 dfk~ t !#1dfk~ t !

for k5kb11,

]

]t
dfk~ t !5g̃@dfk11~ t !1dfk21~ t !22 dfk~ t !#

1dfk~ t !, ; ~kb11!,k,km ,

]

]t
dfk~ t !5g̃@dfk21~ t !2dfk~ t !#1dfk~ t !

2g̃@fk11
(0) 2fk

(0)#

for k5km . ~4.9!

If we now denote the (km2kb)-dimensional column vecto
@dfkm

(t),dfkm21(t), . . . ,dfkb11(t)# by dF(t), then Eq.
~4.9! becomes an inhomogeneous linear differential equa
in dF(t), given by

FIG. 2. Snapshot of the tip of the front in a mean-field descr
tion at time 0,t,Dt, showing density buildup ofX particles on
and behind the foremost bin for a large enough value oft. The
dotted curve is for the ‘‘normal solution,’’fk

(0)(t)5A sin@zi(k
2vNt)1b#exp@2zr(k2vNt)#. The solid curve is for the actual func
tion fk(t). Even though bothfk

(0)(t) andfk(t) are discrete func-
tions of k, we have drawn continuous curves for clarity.
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dt
dF~ t !5M dF~ t !1dFp , ~4.10!

whereM is the (km2kb)3(km2kb)-dimensional tridiagonal
symmetric matrix,

M53
12g̃ g̃ 0 . . . 0 0

g̃ 122g̃ g̃ 0 . . . 0

0 g̃ 122g̃ g̃ . . . 0

• • • • • •

0 . . . 0 g̃ 122g̃ g̃

0 . . . 0 0 g̃ 122g̃

4 ,

~4.11!

and dFp5@ g̃(fkm

(0)2fkm11
(0) ),0, . . . ,0#. The solution of the

linear inhomogeneous differential equation, Eq.~4.10!, is
straightforwardly obtained as

dF~ t !5exp@M t#dF~ t50!

1E
0

t

dt8exp@M ~ t2t8!#dFp~ t8!. ~4.12!

To obtain the expression of^Nkm
(t)&, which is our final goal,

we have to determine the unknownsdF(t50). Of these, the
expression ofdfkm

(t50) is already known from the fac

that at timet50, there is exactly oneX particle in thekmth
bin, i.e.,

dfkm
~ t50!5

1

N
2fkm

(0)~ t50!. ~4.13!

The values ofdfk(t50) for kb,k,km are also quite easily
determined when we notice that at timet5Dt, the values of
dfk(t5Dt) must reach the corresponding values
dfk21(t50), because the average shape of the front rep
itself once everyDt time ~note here that the repetitive cha
acter of foremost bin creation in the quasi-comoving frame
built in!. This leads us to the following set ofkm2kb21
consistency conditions:

dfkb11~ t50!5E
0

`

d~Dt !P~Dt !dfkb12~Dt !,

A

dfkm22~ t50!5E
0

`

d~Dt !P~Dt !dfkm21~Dt !,

dfkm21~ t50!5E
0

`

d~Dt !P~Dt !dfkm
~Dt !2

1

N
.

~4.14!

The equation fordfkm21(Dt) is different from the other

ones in Eq.~4.14!, as it has an extra21/N on its right-hand

-

6-11
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side~rhs!. This is so, because the oneX particle that hopped
over to thekmth bin at t50, came from the (km21)th bin.

In actuality, Eq.~4.14! should be written in terms offk’s.
If we do so, then on the rhs of the corresponding equatio
we have integrals of the form*0

`d(Dt)P(Dt)fk
(0)(Dt). We

have replaced these integrals byfk21
(0) (t50). This is consis-

tent with the fact that in an average sense, the underly
particle density fieldfk

(0)(t) has a uniformly translating so
lution. The leftoverdfk terms then yield Eq.~4.14!.

In terms of this formulation, the leading edge of the fro
whose equation of motion is governed by the lineariz
equation, Eq.~4.6!, is divided into two parts@32#. In the first
part, which lies on the left of~including! the kbth bin, the
solution is given by the formfk(t)5A sin@zi(km2vNt)
1b#exp@2zr(km2vNt)# for 0,t,Dt. In the second part
constituted by the bins indexed byk, such thatkb,k<km ,
the shape of front is given by Eqs.~4.7!–~4.14!. The first part
yields the linear dispersion relation, Eq.~A2!, while the sec-
ond part yields more complicated and nonlinear relations
tweenvN , zr , andzi involving several other unknown quan
tities as a self-consistent set of equations. With the value
A, kb , andkm externally determined, if one counts the num
ber of equations and the number of unknowns that are av
able at this juncture for the selected asymptotic speedvN ,
then, from Eqs.~A2!, ~4.4!, ~4.8!, and ~4.12!–~4.14!, it is
easy to see that they involve as many unknowns as the n
ber of equations. The value ofA is obtained by matching the
mean-field solution of the bulk of the front, where the no
linearities of Eq.~4.5! play a significant role, with the solu
tion of the leading edge of the front described by the lin
equations@i.e., Eq.~4.6!#. On the other hand, obtaining th
value ofkb andkm , for a given set of parametersN andg̃, is
a more complicated process and now we address it in
next few paragraphs. We will take up these issues in furt
detail in Sec. V D as well, when we compare our theoreti
results with the results obtained from the computer simu
tion.

While it is easy to determine the foremost bin and hen
definekf for any given realization in a computer simulatio
the question how to obtain the values ofkm , b, andkb for a
given set of values ofN andg̃, still remains to be answered
As a first step to answer this question, we redefineA and
absorb the quantityb in k by a change of variable,zik1b
→zik, such that in the quasi-comoving frame,fk

(0)(t) re-
duces toA sin@zi(k2vNt)#exp@2zr(k2vNt)#. First, this makes
k a continuous variable as opposed to a discrete integral
Second, the number of unknown quantities is also redu
from three to two, namely, tokm andkb .

If we now look back at Fig. 2, and recapitulate the stru
ture of the mean-field theory we presented in this section,
realize that the buildup of particles in the bins at the tip
the front due to the stalling phenomenon always makes
curvefk(t50) lie abovefk

(0)(t50), when they are plotted
against the continuous variablek. In our mean-field theory
fkm

(t50)51/N, which clearly means thatfkm

(0)(t50)

,1/N and sincefk
(0)(t50) is a monotonically decreasin

function of k, this further implies thatkm.km0
, where

fkm

(0) (t50)51/N.

0
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In our mean-field theory, what is the numerical value
(km2km0

), the distance between the bin, where the low

order approximationf (0) reaches the values 1/N and the bin,
where the actual average profilef reaches this value? Fo
arbitrary values ofN and g̃, this is not an easy question t
answer.

To check our theory, in this paper we confine ourselv
mostly to the case ofg̃5(growth rate)51, as it is the most
illustrative case to demonstrates the multiple facets of fl
tuating front propagation. For a part of the analysis, we a
consider theg̃50.1 case. For such values ofg, i.e., if g̃ is
too small (g̃!1), or not too large (g̃;1), the only informa-
tion that we have at our disposal to obtain the value of
continuous parameterkm , is the fact thatkm.km0

. For such

values ofg̃, therefore, the only remaining way to genera
theP(Dt) curve is to use trial values ofkm , for km.km0

in

an iterative manner@33# @recall that the value ofkm is needed
for the initial condition, Eq.~4.13!#. For such values ofg̃,
the use of the trial values ofkm to generateP(Dt) also re-
quires the value ofkm2kb as an external parameter, whic
can be chosen to be a few, say;4 @of course, this number
can be increased to obtain higher degree of accuracy for
dfk(t50) values#. We will take up further details about it in
Sec. V. However, before that, we next discuss two additio
fluctuation effects that have important consequences on
P(Dt) curve. We also mention here that we have explo
the possibility of a relation betweenkf , obtained from com-
puter simulation results, andkm , but due to the fact thatkf
has stochastic fluctuations in time, such a relation does
exist.

C. Additional fluctuation effects

Having described the mean-field theory, we are now i
position to assess its accuracy or validity for the probabi
distributionP(Dt) that it generates, before we start to loo
for numerical confirmation. At the end of Sec. IV A, we hav
mentioned that the fluctuation of the number ofX particles in
the foremost bin plays a very significant role in deciding t
nature ofP(Dt). Such fluctuations are not captured in o
mean-field theory, which simply assumes that the numbe
X particles in the foremost bin att50 is 1 and afterwards the
number of theX particles in it increases through the proce
of a mean growth. In particular, at the end of Sec. IV A w
have described two kinds of events that, we now argue,
fect the nature ofP(Dt) for large values ofDt, compared to
the time scale set by 1/vN .

1. Few foremost bins are created too fast in a sequence

The first of these events is that if a few of the new for
most bins are created relatively fast in a row, then soon th
would be a case of a new foremost bin creation that take
unusually long time. Naturally, this givesP(Dt) a higher
value than what our mean-field theory does for large val
of Dt. The reason for this is quite simple: the mean grow
of the number ofX particles in the foremost bin is exponen
tial in time, which would indicate that if one describes th
6-12
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growth of the number ofX particles in the foremost bin sim
ply by mean growth, then the probability distributionP(Dt)
decreases very rapidly for largeDt, and clearly that fails to
describe the slow decay ofP(Dt) for largeDt arising out of
this event.

Unfortunately, there is no way to estimate the effect
this event within the scope ofanymean-field theory, since by
its sheer nature, it can only be described by the multiti
correlation functions of the times required for sequential c
ations of new foremost bins. For this reason, we call t
event ‘‘correlated diffusion event’’ for later reference. B
the physical effect of it can be expressed in a slightly diff
ent manner which is more conducive for understanding
conditions of applicability of our mean-field theory. In ou
mean-field theoretical description, before a new foremost
is created, the shape of the front is always thesamemean
shape, described by Eqs.~4.5!. On the other hand, if a few o
the new foremost bins are created relatively fast in a row,
leading edge of the front gets more and more elonga
while the number of particles inside the bins in the lead
edge does not get a chance to grow accordingly. Thus,
event creates significant deviation for the actual front sh
from the front shape described by our mean-field theory. T
magnitude of this deviation, measured by subtracting
mean-field density of theX particles from the actual densit
of X particles inside the bins at the leading edge of the fro
is obviouslynegative. If we combine this argument with th
fact that on an average, the probability of a new foremost
creation increases with the increasing number ofX particles
in the foremost bin, then it is easy to realize that afte
sequence of such fast creations of new foremost bins,
front needs to replenish the number ofX particles in the
leading edge before another new foremost bin is created.
this replenishing process which is responsible for the n
new foremost bin creation at a relatively long time.

It is now intuitively clear that in terms of the front shap
the larger the deviation such an event causes, the m
P(Dt) will be affected for large values ofDt. Based on this,
we now argue that for a fixed value ofN, such an event doe
not affect the largeDt behavior ofP(Dt) curve for large
values of g̃ as much as it does for small values ofg̃. To
reach this conclusion, one simply needs to observe the
lowing: the mean shape and the corresponding density o
X particles in the bins at the leading edge of the front
characterized byzr andzi , and for smallg̃, the values ofzr

and zi is large and vice versa@as zi;zr;g̃21/2, see Eq.
~A9!#. For largeg̃, therefore, for the mean shape of the fro
the leading edge is already quite elongated and the densi
theX particles at the tip of the front is quite small, compar
to their smallg̃ values. As a result, for smallg̃, the magni-
tude of the deviation from the mean front shape, caused
such an event is much larger, and since the growth rat
always unity for allg̃, it takes a much longer time to replen
ish the density ofX particles for smallg̃ than for largeg̃
values.

2. Particles in the foremost bin jump back

The other kind of fluctuation effect has to do with the fa
that albeit according to our definition, the foremost bin
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mains the foremost one until timet5Dt, it may so happen
that at some nonzero value oft, all the X particles diffuse
back to the left leaving the foremost bin empty for some tim
and then anotherX particle diffuses into the foremost bi
from the left, making it nonempty again at a finite value oft,
say att5t0. Clearly, this event is much more unlikely to tak
place once the number ofX particles in the foremost bin ha
grown, since in that case, all theX particles in the foremos
bin have to diffuse back to the left. Essentially, this even
therefore restricted to the following sequence:~a! starting t
50, the foremost bin remains occupied by a singleX particle
for some time,~b! this X particle then diffuses back to th
left leaving the foremost bin empty, until~c! anotherX par-
ticle diffuses into the foremost bin, making it nonemp
again att5t0. Of course, the value oft0 is not fixed and it is
chosen probabilistically. For later reference, we call this ‘‘t
vacant foremost bin event,’’ and this event is much mo

likely to take place for large diffusion coefficientg̃.
Based on the picture described in~a!–~c! in the preceding

paragraph, we can now make a quantitative estimate of
particular event and accordingly correct the expression
P(Dt). One simply has to realize that if this event tak
place, then the time at which the theory for mean growth
X particles in the foremost bin~with exactly oneX particle to
start with! can be applied in this quasi-comoving fram
shifts from t50 to t5t0. However, we also need to obtai
an estimate for the value oft0. This can be obtained usin
the following argument: if in step~b!, the onlyX particle in
the foremost bin had diffused to the right, instead of diffu
ing to the left, it would have been a case of a new forem
bin creation, the time scale for which is set by 1/vN . Since
the probability of this singleX particle in the foremost bin to
jump to the right is the same as the probability of it to jum
to the left, we can also say that the time it takes for theX
particle in the foremost bin to diffuse back to the left tak
approximately a time 1/vN starting t50. Similarly, step~c!
is exactly the same step as a ‘‘new foremost bin creatio
Hence, after step~b! is over, it takes a further 1/vN time @34#
for anotherX particle to diffuse from the left into the fore
most bin. Together, these two events maket0'2/vN @35#,
and this argument illustrates that this event affects the beh
ior of P(Dt) only for Dt*2/vN . Having neglected the effec
of the correlated diffusion events on theP(Dt) curve for t
.2/vN ~for which we have no theoretical estimate anywa!,
if we now claim that forall Dt values greater than 2/vN , the
population of theX particles in the foremost bin is describe
by Eqs. ~4.5!, but with the condition that̂ Nkm

(t5t0)&
5Nkm

(t5t0)51/N, as opposed to havinĝNkm
(t50)&

5Nkm
(t50)51/N, then we can still incorporate the effect o

this event~that arises out of fluctuations! within the scope of
the mean-field theory that we described in this section. If t
procedure is correct, then while comparing the theoret
P(Dt) curve with theP(Dt) curve obtained from the simu
lations, one would notice that for large values ofDt, this
procedure underestimates the magnitude ofP(Dt). Hitherto,
this underestimation then would be an indication of the eff
of the correlated diffusion events onP(Dt). We will return
6-13
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to these points once again in the following section, where
seek numerical confirmation of our theory@36#.

D. Summary of the status of the present approach
and additional observations

The discussion above completes the theoretical form
tion for the asymptotic speed selection of the front. Befo
we discuss how given values ofN andg̃ would generate the
corresponding values ofvN from our mean-field theory de
scribed in this section, we summarize our claims here
make a number of additional observations.

~1! Based upon the microscopic description of the fro
movement, we have formulated a mean-field theory that
scribes, on a lattice, the front propagation as a sequenc
‘‘halt-and-go’’ process. In this way of looking at the fron
propagation, essentially the number ofX particles at the tip
of the front determines the asymptotic speed of the fro
Since the number ofX particles at the tip of the front ar
rather few, the fluctuations in the number ofX particles at the
tip of the front affects the asymptotic speed of the front in
strong manner. Part of the fluctuation effects can be e
mated within the scope of this mean-field theory itself. T
other part, for which the fluctuations can only be studied
means of a multitime correlation functions, is expected
affect the accuracy of our theory much more for smallg̃ than
for large g̃ values. Therefore, overall, in terms of numeric
confirmation, one can expect to find a greater accuracy
large values ofg̃.

Moreover, for largeg̃, the discreteness of the lattice e
fects are suppressed, and therefore, for a given value oN,
one would expect that the relative correction for t
asymptotic front speed, (v* 2vN)/v* , must become small.

~2! There are two important aspects that one must t
notice of. First, in a mean-field description that incorpora
the effect of the stalling phenomenon, we have demonstr
from the microscopic dynamics that thereexists a cutoff of
particle density, which is expressed by the fact that in th
mean-field description,fk(t)50 for k.km against a finite
value atk5km . Second, we have also demonstrated that
quantitya in Sec. III is indeed an effective quantity only, a
the solution of the linearized equation of the front, given
Eq. ~3.3!, is not valid near the foremost bin, and the fact th
the asymptotic speed selection mechanism arises fro
proper probabilistic description of the tip of the front.

~3! For very small values ofg̃, we have previously no-
ticed that the correlated diffusion event plays a very do
nant role that no mean-field theory can ever generate, so
should leave theg̃!1 case outside the purview of our mea
field theory~we will demonstrate this in the following sec
tion!.

~4! To judge the appropriateness of our mean-field the
as far as the generation of the numerical value of
asymptotic front speed for given values ofN and g̃ is con-
cerned, we make the following observations:~i! the case of
g̃!1 cannot be studied in terms of a mean-field theory,~ii !
the case ofg̃;1 needs a trial value ofkm.km0

and the use
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of a recursive feedback mechanism to generate theP(Dt)
curve, and~iii ! we still need the values ofA, zr , and zi ,
which can be obtained only from the simulation data

given values ofN and g̃. In view of these points, it is clea
that this theory is unable to make a definitive prediction
vN , without any assistance from the computer simulatio
whatsoever. Moreover, the Eqs.~4.4!–~4.14!, which one
needs to solve to generate theP(Dt) curve, are highly non-
linear equations, hence, this theory can only hope toshow
consistencywith the results of the computer simulations,
opposed to produce a numerical value ofvN which is then
subsequently confirmed by the computer simulations.

~5! Finally, we note that unlike Eq.~3.4!, this theory does
not make the effect of the value ofN on the asymptotic front
speed explicit. However, it is natural to expect that the eff
of stalling of the front and the associated particle dens
buildup at the tip of the front on the front shape and spe
would become less and less for increasingN. This would
reflect in the comparison of thedfk(t50) values against the
correspondingfk

(0)(t50) values in the bins at the very tip o
the front. We would return to this point in Sec. V D 2.

V. TEST OF THE THEORY AGAINST COMPUTER
SIMULATIONS

We now check our theory, as it has been presented
Secs. III and IV, against the results of the computer simu
tions. There have been quite a few aspects of the theory
we have presented in Secs. III and IV; and for a given se

values ofN and g̃, testing all these aspects of our theory
not a short and easy process. To explain how we do
simulations, obtainvN andA, and check the front shape, w

choose one particular set ofN and g̃ values, namely,N

5104 and g̃51. We then use these methods to obtain
simulation data for three other values ofN, namely, N

5102, N5103, andN5105, keeping the value ofg̃ fixed at
1. Based on this scheme, this section is divided into fi
subsections. In Sec. V A, we present the simulation al

rithm and obtainvN for g̃51 andN5104. In Sec. V B, we
summarize the method to calculateA, and subsequently ob

tain its value forg̃51 andN5104 using the results of Sec
V A. In the Sec. V C, we contrast the simulation results
Secs. V A and V B with the theory of Sec. III. In Sec. V D
we test our theoretical predictions forP(Dt) against the
computer simulation results forN5104 102, 103, and 105,

and g̃51 ~in that order!. Moreover, in Sec. IV, we have
conjectured that the mean-field theory mimicking the stall

phenomenon would be less successful for small values og̃.
We verify this conjecture in Sec. V D 2 by means of a re
tive comparison of the theoretical and simulationP(Dt)

curves forg̃50.1 andN5104. We also remind the reade
that in Secs. V A–V C,k andt, respectively, denote the labo
ratory bin coordinate and actual physical time~and therefore
they donot relate to the quasi-comoving coordinates or t
resetting of clocks that requires 0,t,Dt).
6-14
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FLUCTUATING PULLED FRONTS: THE ORIGIN AND . . . PHYSICAL REVIEW E66, 036206 ~2002!
A. Computer simulation algorithm

Our algorithm for carrying out the computer simulatio
is the same as it has been described in Ref.@6#. The starting
density profile of theX particles is a step function, given b
fk(t50)5@12Q(k2k0)#, for somek0. The simulation al-
gorithm consists of repetitive iterations of two basic step

~i! Let us assume that at any timet, the configuration of
the system is given by (N1 ,N2 , . . . ,Nk8), for somek8. The
total rate of possible transitions,Wk , for theNk number ofX
particles in thekth bin are the sum of 2Nk diffusions, cre-
ation of Nk new X particles, and annihilation ofNk(Nk
21)/N number ofX particles, i.e.,

Wk52g̃Nk1Nk1
Nk~Nk21!

N
. ~5.1!

The total rate of transition,Wtot , for all the bins is therefore

Wtot5 (
k51

k8

Wk . ~5.2!

Starting at timet, the probability of no transition happenin
for an intervalt is given by

`~t!5exp~2Wtot t!. ~5.3!

Before any transition takes place, a random numberr 0 is
chosen within the interval@0,1). The timet that one needs to
wait before any transition happens is then determined as

t52
1

Wtot
lnr 0 . ~5.4!

~ii ! With the timet for a transition at our disposal, the bi
where the transition takes place and the specific transitio
that bin must also be determined. To do so, we choose
other set of two random numbers,r 1 andr 2, in @0,1). From
the numerical value ofr 1 and the fact that the probability o
a transition taking place in thekth bin is given byWk /Wtot ,
we determine the index of the bin where the transition ta
place. Similarly, the particular transition in thekth bin is
determined from the numerical value ofr 2 and considering
the probabilities of different kinds of transitions in thekth
bin,

~probability of a diffusion to the right!5
g̃ Nk

Wk
,

~probability of a diffusion to the left!5
g̃ Nk

Wk
,

~probability of breeding a newX particle!5
Nk

Wk
,

~probability of annihilating anX particle!5
Nk~Nk21!

NWk
.

~5.5!
03620
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Once the transition is determined, the configuration of
system is subsequently updated. However, anyX particle dif-
fusing from the first bin~i.e., k51) towards the left is im-
mediately replaced.

In this subsection, we focus on one particular set of val
of g̃ andN, namely,g̃51 andN5104. The value ofk0 for
the initial density profile of theX particles is chosen to be 50
Starting att50, we let this initial profile evolve in time. To
obtain the random numbers, we use the random number
erator drand48 provided in the standard C library functio
with the initial seed@37# s5123 456. It turns out that to a
very good approximation, the front shape reaches a ste
state somewhere beforet5200. The front shapes fromt
5200 to t5400 is shown in Fig. 3 as an illustration. Fo
measurement of the asymptotic quantities, therefore, we
t5200 as our starting point.

To calculate the asymptotic speed of the front, we m
sure theDt values for creating new foremost bins aftert
5200 till t5700. We find that altogether there are 980 d
ferentDt values in this time interval. Assuming that thej th
value ofDt takes place at timet j ( j 51,2, . . .,980), we de-
fine the j th cumulative average of theDt values as

^Dt& j5
1

j (
j 851

j

Dt j 8 , ~5.6!

which subsequently allows us to define the speed at timt j
as

vN~ t j !5
1

^Dt& j
. ~5.7!

Naturally, for small values ofj, the values ofvN(t j ) fluctu-
ate, but asj becomes large, the fluctuations die out a
vN(t j ) approachesvN . The plot ofvN(t j ) vs t j is shown in
Fig. 4 for j 51,2, . . .,980, t15200.562 andt9805699.271.
We notice from the plot that the fluctuations invN(t j ) are
really small for t j.500. The vN(t j ) values for t j.500,

FIG. 3. To illustrate that the front reaches its steady state sh
before t5200, the plot offk(t) vs t for five different values oft
spaced at regular intervals,t5200,t5250,t5300,t5350, andt
5400, are shown above.
6-15
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DEBABRATA PANJA AND WIM van SAARLOOS PHYSICAL REVIEW E66, 036206 ~2002!
therefore, allow us to set the error bar on the measureme
vN in Eq. ~5.8!, and we obtain

vN51.96460.006. ~5.8!

B. The coefficientA as a reflection of the nonlinear front
behavior

The quantityA has been introduced to solve for the line
difference-differential equation, Eq.~3.1!. Its numerical
value, however, cannot be determined from the linear eq
tion, sinceanyvalue ofA satisfies it. To determine the valu
of A, therefore, one needs to solve the fullnonlinear
difference-differential equation, Eq.~2.6!, expressed in terms
of the comoving coordinate,j. This is done, together with
the associated values of the real and imaginary part ofz, in
Appendix B; for g̃51 andN5104, we find

A50.96160.012. ~5.9!

C. Numerical test of the predictions for consistency of front
shape and speed

Equipped with the value ofA and the simulation data, w
are now in a position to contrast the result of Sec. III with t
simulation results. The purpose of this subsection is twofo
first, we demonstrate that the theoretical shape of the f
generated in Sec. V B forg̃51 andN5104 agrees very well
with the shape of the front obtained from the simulation d
by taking snapshots at arbitrary times. Second, we dem
strate that there aresignificantdifferences in the two value
of v* 2vN , one obtained from Eq.~3.6!, and the other from
Eq. ~5.8!.

To compare the shapes of the front obtained from
theory and the simulations, we choose to take snapsho
three discrete times,t5200, t5280, andt5360. In Fig. 5
we present the plot that contains the front shapes for th
times obtained from the simulations and the theory. The
moving coordinatej for the bins is chosen in a way such th
it coincides with the laboratory frame position of the front
t5200. As we can see from the graph below, the collaps
the data fort5200, t5280, andt5360 is very good and the
solid line representing the theoretical prediction is alm

FIG. 4. Values of vN(t j ) for 200,t j,700 and j
51,2, . . .,980. As expected, the fluctuations invN(t j ) die out for
large values ofj.
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indistinguishable from the simulation data. The theoreti
curve is first generated using the method described in S
V B with vN(t980) as the asymptotic front speed, the corr
sponding values ofzl , zr , zi andA of Eqs. ~B6! and ~5.9!,
and then having it shifted to coincide with the laborato
frame position of the front att5200.

We now return to the result of Sec. III, and denotev*
2vN obtained from Eq.~3.6! by Dvasymp. For g̃51, Eq.
~3.2! yields z050.907 103 2 . . . andv* 52.073 44. Using
these values forN5104, we obtain

Dvasymp50.152 024 . . . . ~5.10!

On the other hand, usingvN(t980) for vN , the valueDvsim
5v* 2vN comes out to be

Dvsim[v* 2vN~ t980!'0.11, ~5.11!

which implies that the asymptotic estimateDvasymp is about
38% larger thanDvsym from the computer simulations.

These results clearly indicate that for large but not e
tremely large values ofN (N5104 here!, there is much more
to the story thanv* 2vN being simply} ln22N. The theory
presented in Sec. III does capture the essentials, and it w
have been good enough to generate appropriate number
v* 2vN , if one could obtain the value ofa externally. How-
ever, in view of the fact that the uniformly translating sol
tion of Eq. ~2.6! cannot be extended all the way up to th
foremost bin, the quantitya is fictitious and simply an effec-
tive quantity~already mentioned in Sec. III!. Therefore, it is
not possible to obtain the numerical value ofa from com-
puter simulation results or from any theoretical estimate. B
sides, the theory of Sec. III completely overlooks the mic
scopic intricacies at the tip of the front, and hence, it sho
be regarded as an effective theory.

D. Numerical test of the theory forP„Dt…

In this subsection, we seek the numerical test of o
theory presented in Sec. IV. We carry out this task in t
steps. In the first step, we check most of the aspects of

FIG. 5. Theoretical shape of the front represented by the s
line and the shape of the front obtained from computer simulati
at three discrete times,t5200, t5280, andt5360, represented by
three different symbols.
6-16
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FLUCTUATING PULLED FRONTS: THE ORIGIN AND . . . PHYSICAL REVIEW E66, 036206 ~2002!
theory forN5104 andg̃51, where we describe the metho
for obtainingP(Dt). Subsequently, in the second step, w
check the predictions of our theory forN5102, 103, and
105, keeping the value ofg̃ fixed at 1.Notice that compar-
ing probability distributions allows us to verify more detaile
representations of the actual forward movements of the f
most bin against comparing only the asymptotic front sp
vN , which is the inverse of the first moment ofP(Dt) @see
Eq. ~4.4!#. We should note that in view of the strong nonli
earity of the self-consistent theory of Sec. IV, we will have
use the values ofA, zr , vN , andzi obtained from compute
simulations to generate theP(Dt) curve, and then obtain th
theoretical value ofvN . This process therefore becomes
self-consistency check of our theory of Sec. IV, as oppo
to a verification of its predictions. Moreover, we do not co
pare theP(Dt) curves directly. This is for a very simpl
reason: namely, that the expression forP(Dt) in Eq. ~4.7!
involves ^Nkm

(Dt)& as a coefficient. In an actual comput
simulation, this quantity fluctuates wildly, and hence, gen
ating a histogram to obtain the probability distributionP(Dt)
from computer simulations proves to be difficult. Instead,
compare the ‘‘cumulative probability distribution’’ curve
P(Dt), which is defined as the probability of a new foremo
bin creation happening at timet>Dt. From a theoretical
point of view, the expression ofP(Dt) can be found easily
from Eq. ~4.7! as

P~Dt !5E
Dt

`

dt8 P~ t8!5expF2g̃E
0

Dt

dt^Nkm
~ t !&G .

~5.12!

It turns out that theP(Dt) histogram generated from th
computer simulation results is not noticeably affected
fluctuations, which makes its comparison with theP(Dt)
curve generated from our theory much simpler.

1. The case ofg̃Ä1 and NÄ104

The P(Dt) curve from the computer simulations are ge
erated in the following way: by definitionP(0)51. For N

5104 and g̃51, there are 980 values ofDt. First, these are
arranged in an increasing order of magnitud
Dt1 ,Dt2 , . . . ,Dt980, and then in the corresponding valu
of P(Dt) are obtained as

P~Dt j 11!5P~Dt j !2
1

980
~5.13!

for j 52,3, . . . ,980with the initial condition thatP(Dt1)
5121/980. The correspondingP(Dt) vs Dt plot is shown
in Fig. 6 by open circles.

To generate the corresponding theoretical cumula
probability distribution, we proceed in the following way.In
a coordinate system, where the functionfk

(0)(t50)50 at k
5p/zi @which allows us to use the values ofA, zr , vN , and
zi of Eq. ~B6!#, we work out the whole machinery describe
by Eqs. ~4.5!–~4.14! neglecting the fluctuation effects d
scribed inSec. IV C. This process requires the value ofkm
2kb , i.e., the number of bins at the tip of the front where t
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buildup of particle density is significant, as well as the val
of km2km0

as external inputs, and we choosekm2kb54 for

this purpose@38# ~we refer back to Table I for the definition
of km0

, etc.!. The calculation of the value ofkm2km0
and the

generation of theP(Dt) curve are carried out self
consistently and hence by iteration, using the recursive fe
back method@33#. However, to generate theP(Dt) curve for
any guess value ofkm2km0

, one still needs to have the va

ues ofdF(t50) for thekm2kb bins at the tip as a starting
point @see Eq.~4.12!#. At the same time, we notice tha
dF(t50) can only be determined once the probability d
tribution P(Dt) is obtained. We choose to address this pro
lem the following way: for any guess value ofkm2km0

, we

start with Eq.~4.13! and dfk(t50)50 for the rest of the
km2kb bins. Keepingkm2km0

fixed, we then generate th

correspondingP(Dt) curve and obtain thedfk(t50) values
for the rest of thekm2kb bins using Eq.~4.14!. We keep
repeating this process until we converge in terms of
dfk(t50) values, i.e., when the recursive correction to t
values ofdfk(t50) becomes less than 10% of thedfk(t
50) values at the previous step in the recursion. Once
point is reached for a value ofkm2km0

, we then compare the

theoretical cumulative probability distributionP(Dt) with
Fig. 6 above to decide upon the next guess value ofkm

2km0
in the recursive feedback method.

For N5104 and g̃51, the value ofkm2km0
turns out to

be km2km0
51.1431. We present the corresponding theor

ical cumulative probability curves in Fig. 6. The solid line
Fig. 6 represents thefully consistentsolution of Eqs.~4.5!–
~4.14!, while the dashed line represents the theoretical cum
lative probability curve obtained by solving Eqs.~4.5!–
~4.14! with dfk(t50)50 for kÞkm . The fact that the fully
consistent solution curve matches the computer simula
one much better than the naive approximation where all
dfk corrections behind the foremost bin are ignored is
strong indication of how significantly the buildup of partic
densities in the binsbehind the foremost oneaffects the prop-
erty of P(Dt).

FIG. 6. The cumulative probability distributionP(Dt) as a func-

tion of Dt for N5104 and g̃51.
6-17
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DEBABRATA PANJA AND WIM van SAARLOOS PHYSICAL REVIEW E66, 036206 ~2002!
An examination of Fig. 6 immediately reveals that t
agreement between theP(Dt) curve generated by the fully
consistent theory of Sec. IV and the computer simulation
extremely accurate up to aboutDt50.9. However, the theory
is unable to capture the ‘‘tail’’ of theP(Dt) curve for large
Dt. Analysis of our data shows that this is due to the flu
tuation effects discussed in Sec. IV C. As mentioned the
correlated diffusion events are not captured in this the
However, we can follow the argument of Sec. IV C 2 to ta
into account the effect of the vacant foremost bin events
the P(Dt) curve for largeDt values: we assume that a
cases ofDt.t0'2/vN are due to the vacant foremost b
events. This means that forDt,t0, theP(Dt) curve is given
by the solid line in Fig. 6, but fromt0 onwards, theP(Dt)
curve must be generated from the mean-field dynamics of
tip described in Sec. IV, with the same value ofkm , but with
the initial condition^Nkm

(t5t0)&5Nkm
(t5t0)51/N, as op-

posed to^Nkm
(t50)&5Nkm

(t50)51/N. With the value of

km already determined in this subsection, the correspond
equations, Eqs.~4.5!–~4.14!, are easy to solve self
consistently as before. From this analysis, we obtain the
havior of P(Dt) for Dt.t0, having noticed thatP(Dt→t0
1) must be the same as the value obtained from the s
line in Fig. 6 atDt5t0, i.e., 0.060 34. We present the fin
theoreticalP(Dt) curve together with the simulation data
Fig. 7. Notice that this process introduces a finite disco
nuity in the density of theX particles inside the foremost bi
at Dt5t0, since forDt,t0, the density of theX particles in
the foremost bin is obtained from a fully consistent theory

FIG. 7. The theoretical curve, which includes the effect of t
vacant foremost bin events, and the simulation data for the cu
lative probability distributionP(Dt) are presented above forN

5104 and g̃51.
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Sec. IV, whileat Dt5t0, it is set equal to 1/N manually. As
a consequence, the theoreticalP(Dt) curve in Fig. 7 has a
slope discontinuity atDt5t0.

In Fig. 7, the improved theoretical curve follows the cur
reasonably well, but it still liesbelow the simulation data
points forDt*2/vN , as it should be. This discrepancy give
us an idea about the effect of the correlated diffusion eve
on the P(Dt) curve that we could not estimate. Using E
~5.7! to calculate the front speed from the theoretical curve
Fig. 7, we obtain

vN~ theoretical!51.988 82. ~5.14!

This is about 0.024 higher than the asymptotic front spe
measured by the computer simulation@see Eq.~5.8!#, in
agreement with the fact that the theoretical curve forP(Dt)
slightly underestimates the simulation one forDt*2/vN .

2. The cases of NÄ102, 103, and 105, with g̃Ä1

We now further test our theory forN5102, 103, and 105,
keeping the value of g̃ fixed at 1. The values of
vN~simulation!, zr , zi , andA in Table II below. The corre-
spondingP(Dt) vs Dt graphs, which are the analogs of th
graph in Fig. 7, have been plotted together in Fig. 8. Tabl
presents the theoretical values ofvN that are calculated using
theseP(Dt) vs Dt graphs, and predictedvN from Eq. ~3.6!.

Notice that asN decreases, according to Table II, th
value ofzr decreases more and more from itsN→` limit z0,
while zi increases. This is an illustration of how the no
mean-field effects become increasingly important behind

u-

FIG. 8. The combined theoretical curve and the simulation d
for the cumulative probability distributionsP(Dt) vs Dt for N

5102, 103, and 105, and g̃51. The curves for the latter two ar
shifted upwards for clarity.
TABLE II. The vN ~simulation!, zr , zi , A, vN ~theoretical!, andvN @Eq. ~3.6!# values forg̃51, andN
5102, 103, and 105. ThevN ~theoretical! values are calculated from the theoretical curves of Fig. 8.

N vN ~simulation! zr zi A vN ~theoretical! vN @Eq. ~3.6!#

102 1.778 0.8217 0.436 0.8836 1.808 1.465
103 1.901 0.8586 0.3313 0.9042 1.899 1.803
105 2.001 0.8885 0.2654 1.0714 2.057 1.976
6-18
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FIG. 9. Comparison between
the ^dNk&(t50) and the^Nk

(0)&(t
50) values for the four foremos
bins and for N5102, 103, 104,
and 105. The angular brackets fo
the notations have been omitted
the figure for clarity. Note that as
N increases, the correction
^dNk&(t50) compared to the
^Nk

(0)&(t50) profile become less
and less important.
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tip region. We should also note two more points about Fig
~i! in the absence of any estimate of the correlated diffus
events forDt*2/vN , the theoretical curves lie below th
simulation data~although forN5102 and 103, it is not so
clearly discernible!, and~ii ! the agreement between the th
oreticalP(Dt) curve and the simulation one forN5105 may
appear to be worse than the corresponding ones foN
5102, 103, and 104, but this may be due to the fact that w
have had to continuously cut off particles from the saturat
region of the front on the left to obtain the stochastic sim
lation data forN5105 within a reasonable computer time
We have found that the shape of theP(Dt) histogram ob-
tained from the simulation gets slightly modified depend
on how this subtraction in carried out, specially in theDt
*2/vN region.

We now return to@the issue raised in point~5! of Sec.
IV D # the increased importance of the stalling effects and
deviations from theN→` asymptotic theory for decreasin
values ofN. Figure 9 shows the comparison between
actual particle numbers, ^dNk&(t50)5Ndfk(t50) and the
^Nk

(0)&(t50)5Nfk
(0)(t50) values for four foremost bins

i.e., for k5km , km21 , km22, and km23 ~note that for the
sake of clarity, we have omitted the angular brackets
notations in Fig. 9!. These values have been obtained se
consistently, while generating the theoretical curves of F
7 and 8. As expected, it is clear that thedNk(t50) values are
playing less and less role for increasing value ofN. There are
couple of more points that one must take notice of. First
can be seen from Table II,A increases withN, but only by a
small amount. Second, it is also clear from Fig. 9 that w
respect to theknth bin @where^N(0)& vanishes#, the position
of the kmth bin ~where^N(0)1dN&(t50)51) shifts gradu-
ally towards the left for increasingN ~see Table I for the
definition of kn). All these together elucidate that for no
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very large values ofN, the actualN dependence of the fron
speedvN is a much more complicated story than simply t
1/ln2N relaxation tov* of vN . From the trend of the gradua
left shifting of km ~with respect tokn) and the gradual unim-
portance of the role ofdNk(t50) values compared to thei
Nk(t50), it is conceivable that for extremely large values
N, km→km0

, anddNk(t50)→0, and it is this limit where

the cutoff ~at f (0)51/N) picture in Ref.@9# becomes appli-
cable. In this sense, the theory of Sec. IV is complement
to that of Ref.@9#, as together they span the whole range oN
values, from reasonably small to very large.

E. The case ofg̃Ä0.1 andNÄ104

We now investigate the claim made in Sec. IV that t
correlated diffusion events affect theP(Dt) curve so se-
verely for low diffusion coefficients that our approach fa
badly, by comparing the theoreticalP(Dt) curve with the
simulation one, forg̃50.1 andN5104.

We present the two curves in Fig. 10. The asympto
speed for the corresponding pulled front,v* , for this set of
parameter values is given byv* 50.7754 and the simulation
results yieldvN50.698.

The theoretical curve of Fig. 10 is analogous to that
Fig. 6 represented by the solid line, and it is obtained
means of a fully consistent theory of Sec. IV. Notice that t
agreement between the theory and the computer simula
results is not good beyondDt'1/vN . It is also obvious that
an attempt to incorporate the effect of the vacant forem
bin events does not do any improvements in this case, s
the value ofP(Dt) is almost zero forDt*2/vN . This is very
much expected and a careful examination of the simula
data also reveals that the vacant foremost events do not o
at all during the front speed measurement times betweet
6-19
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5200 andt5700 @see Eq.~5.6! and the paragraph above it#.
Altogether, this fits very nicely in the consistent picture th
we have put forward so far, which simply indicates that t
entire discrepancy between the theory and the comp
simulation in Fig. 10 is solely due to the correlated diffusi
events.

VI. THE CASE OF A FINITE NUMBER OF Y PARTICLES
ON THE LATTICE SITES

We now briefly turn our attention to the followin
reaction-diffusion processX1Y→2X on a lattice: at each
lattice position, there exists a bin. Once again, we label
bins by their serial indicesk, k51,2,3, . . . ,M , placed from
left to right. In thekth bin, there are a certain number ofX
particles, denoted byNX,k and a certain number ofY par-
ticles, denoted byNY,k . Both NX,k and NY,k are finite. The
dynamics of the system is described by three basic proce

~i! Diffusion of the X particles in thekth bin to the (k
21)th or the (k11)th bin with a rate of diffusiong̃. If an X
particle in bin 1 jumps towards the left, or anX particle in
the M th bin jumps to the right, then they are immediate
replaced.

~ii ! Likewise, diffusion of theY particles in thekth bin to
the (k21)th or the (k11)th bin with a rate of diffusiong̃. If
anX particle in bin 1 jumps towards the left, or anX particle
in the M th bin jumps to the right, then they are immediate
replaced.

~iii ! Reaction to produce anextra Xparticle having anni-
hilated aY particle (X1Y→2X), with a rate 1/N.

To study the phenomenon of front propagation for t
model, the initial configuration of the system is taken
NX,k5N@12Q(k2k0)# andNY,k5NQ(k2k0) ~a step func-
tion in the density of theX particles!. Because of the reactio
process~iii !, the number ofX particles in any bin keeps
increasing, until the supply ofY particles in that bin runs out
As a result, the region that is full ofX particles slowly in-
vades the region that is full ofY particles, and this constitute
a propagating front.

The corresponding equation of the front that is analog

FIG. 10. The cumulative probability distributionP(Dt) as a

function of Dt for N5104 and g̃50.1.
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to Eq. ~2.5!, is slightly more complicated, and it is given b

]

]t
^NX,k~ t !&5g̃@^NX,k11~ t !&1^NX,k21~ t !&22^NX,k~ t !&#

1
1

N
@^Nk~ t !NX,k~ t !&2^NX,k

2 ~ t !&#, ~6.1!

whereNk(t) is the total number of particles in thekth bin at
time t. In Eq. ~6.1!, if we replace ^Nk(t)NX,k(t)& by
^Nk(t)&^NX,k(t)&5N^NX,k(t)&, then one retrieves Eq.~2.5!.
In this section, therefore, our purpose is to investigate if
correlation term̂ Nk(t)NX,k(t)& has any bearing on the cor
rections of the asymptotic front speed over its correspond
value obtained from the model analyzed so far.

Front propagation in this model has been studied num
cally by Kessler and coauthors@10#. Our interest in this
model is motivated by the following observation: in terms
the average number ofX particles in a bin, an appropriat
reaction rate yields an equation, which is similar to Eq.~2.5!.
However, the linear growth term of Eq.~2.5! is replaced by a
more complicated correlation function between the num
of X and Y particles in thekth bin. Nevertheless, near th
foremost bin of theX particles, the number ofY particles is
so large that the fluctuations in their number remains sm
Upon neglecting these fluctuations, the linear growth te
for the X particles becomes the same as the one before,
one therefore expects the speed correction to stay unaffe
Our purpose is to check this expectationnumerically, by
comparing data for the front speed in this model with tho
given in Eq.~5.8! for Eq. ~2.5!. The algorithm that we use in
our simulation is similar to that of Sec. V A. The value ofM
is taken to be 1500 and for the starting configuration of
system, we usek0550.

The asymptotic front speed is calculated using Eqs.~5.6!
and ~5.7!. The measurement of the front speed starts at
5200 and stops att5700. There are 985Dt values in this
time interval. The correspondingvN(t j ) vs t j graph is shown
below in Fig. 11. Using the same method of calculation as
Sec. V A, the asymptotic front speed forN5104 and g̃51
comes out of the computer simulation as

FIG. 11. Values of vN(t j ) for 200,t j,700 and j
51,2, . . .,980. As expected, the fluctuations invN(t j ) die out for
large values ofj.
6-20
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vN51.97460.009. ~6.2!

We notice that the error bars of Eqs.~5.8! and ~6.2! overlap
with each other, and we conclude that the correlations
tween the total number of particles and the number oX
particles in the bins@the ^Nk(t)NX,k(t)& term in Eq.~6.1!#
indeed do not affect the asymptotic front speed, as we
expected.

As noted before, Kessleret al. @10# claimed that the pref-
actor of the speed correction was about a factor 2 differ
from the value expected from the asymptotic formula~3.6!
of Brunet and Derrida. Whether this is due to the values oN
not being large enough, or due to their particular way
implementing the stochastic simulations, is unclear to
From our data, there is no reason to believe that for largN
there is an essential difference between the model with fi
number ofY particles and the earlier model with an infini
supply of Y particles, otherwise the asymptotic formu
would be incorrect asN→`.

VII. CONCLUSION AND OUTLOOK

In this paper we have identified a large number of effe
that play a role in the tip region of fluctuating fronts which
the mean-field limit reduce to pulled fronts. While a fu
theory from first principles, which yields explicit prediction
for the front speed for finiteN will be hard to come by, we
believe that any such theory will incorporate most of t
effects we have analyzed and studied with computer sim
tions. One important conclusion from our studies is th
while the asymptotic large-N correction derived by Brune
and Derrida is universal~in the sense of being independe
of the details of the model! the corrections to this expressio
do depend on many details of the model. In most ca
deviations from the asymptotic results are significant for v
ues ofN that can realistically be studied.

The message of this paper is as follows: the bulk o
fluctuating front can still be considered a uniformly transl
ing one and one can properly define a comoving coordin
system, in which the shape of the bulk remains unchang
on the other hand, the position of the tip of the front in su
a comoving coordinate system fluctuates, and only on a
age the tip becomes stationary in this comoving coordin
system. From the mean-field limit of this fluctuating fron
we know that the tip region is very important for its dynam
ics; as a result, the fluctuating tip plays a very significant r
in deciding the asymptotic front speed, in which two ve
important aspects come to play a role—discrete nature
particles and discrete nature of the bin indices. In this pa
we have tried to formulate a theory to model this fluctuat
tip. This theory is still a mean-field type theory. More sp
cifically, at t50, the shape of the tip is always the sam
mean shape, and hence this theory is unable to capture
correlated diffusion events or the vacant foremost bin eve
~although we can estimate the effect of the latter!. Any alter-
native theory, that one might think at this point, must be a
to take into account these fluctuation effects, which, as p
viously explained, must be able to study multitime corre
tion functions for correlated jumps at the tip.
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The prospect of such a theory, however, looks grim at t
point. Not only the problem becomes highly nonlinear, b
also one must realize that the fluctuations in the number oX
particles in the bins near the tip is of the same order as
number ofX particles in them (;1), and there does not exis
any small parameter that one can do perturbation the
with.

Finally, we note here that we have confined our analy
to cases in which the growth and hopping terms for f
particles per site or bin are the same as those for a fi
density of particles. In such cases the front speed conve
to v* asN→`. One should keep in mind, though, that the
are also cases where with minor modifications of the stoch
tic rules for few particles, one can arrive at a situation
which the speed does not converge to the pulled speedv* as
N→`, even though in the mean-field limit one obtains
dynamical equation that admits pulled fronts. We have d
cussed this in more detail elsewhere@27#.
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APPENDIX A: SUMMARY OF THE DERIVATION OF THE
GENERALIZED VELOCITY CORRECTION FORMULA

In this appendix, we derive the generalized velocity c
rection formula, Eq.~3.4!, and its interpretation. Without an
loss of generality, we can express the front solutionf(j) for
vN,v* by ~cf. Refs.@9–11,16,17#!

f~j!5A sin@zij1b#exp~2zrj! ~A1!

at the leading edge of the front, wherezr5Re(z) and zi
5Im(z). The corresponding dispersion relation is then giv
by

zrvN52g̃~coshzr coszi21!11 and

zivN52g̃ sinhzr sinzi . ~A2!

The additive phaseb in Eq. ~3.3! can be scaled away b
redefiningA and the position of the origin from wherej is
measured. We therefore dropb in this appendix. Since the
scaled particle density has to be positive, i.e.,f(j)>0, the
physical linear solution regime must be confined within t
range where 0,zij<p. We now make a notational choic
to denote the comoving coordinate corresponding to the n
of the sine function in Eq.~3.3!, by jc11, i.e.,

zi~jc11!5p. ~A3!

One should understand at this point that although Eq. (A
suggests that there is a second node off(j), where the
argument of the sin function becomes zero, such a node
6-21
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not exists. Much before the argument of thesinfunction be-
comes zero, the nonlinear saturation term becomes im
tant and the solution (A1) for the linearized equation do
not hold any longer. In this overly simplified mean-field de
scription,jc plays the role of the comoving coordinate of th
foremost bin. The mean-field description of the front is th
completed by claiming thatf(j)50 for j>jc11. Let us
also denote the density of theX particles in the ‘‘foremost
bin,’’ which in this approximation is atjc , by a/N, to have

A sin@zijc#exp~2zrjc!5
a

N
. ~A4!

Once the parametersA and a are known, Eqs.~A2!–~A4!
form a set of four equations for four unknowns,zr , zi , jc ,
and vN , which we can then solve numerically for th
asymptotic front speedvN .

In order to put our results in a particular form that faci
tates comparison with the earlier results in literature@9#, we
analyze Eqs.~A2!–~A4! for large N. First, with the help of
the Eq.~A3!, we reduce Eq.~A4! to

A sinzi exp~2zr jc!5
a

N
. ~A5!

Next, having introduced a new variablem, such that

jc5
ln N

zr
1m, ~A6!

and using Eq.~A3!, Eq.~A5! is further reduced to an implici
equation inm,

zrm5F ln
A

a
1 lnH sin

pzr

ln N111mJ G . ~A7!

SinceN is large, one can solve this implicit equationm by
means of a simple successive approximation procedure
the lowest order, one can drop them term in the denominato
of the argument of the sine function in Eq.~A7! and obtain

m'
1

zr
F ln

A

a
1 ln H sin

pzr

ln N11J G . ~A8!

Finally, zi can be obtained from Eqs.~A3!, ~A6!, and~A8! as

zi'
pzr

ln N1zr1 ln
A

a
1 lnFsin

pzr

ln N11G . ~A9!

By now, we have eliminated the unknownjc and reduced the
problem to solving three unknowns,zr , zi , and vN from
three equations, Eqs.~A2! and~A9!. From Eq.~A9!, one can
see that for largeN, the approach ofzi to zero is extremely
slow, going only as ln21N and also the fact that for the stric
limit of infinite N, zi50, which reduces Eq.~A2! to Eq.
~3.2!, as it should. For largeN, therefore, one expects tha
zr'z0 and zi!1, and one can expandvN around its value
for z5z0. Upon expandingvN aroundv* , and using the
03620
r-
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n
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solution ofzi from Eq. ~A9! with zr replaced byz0, we then
find that the asymptotic speedvN is given by Eq.~3.4!.

APPENDIX B: DETERMINATION OF A

Solving the full nonlinear difference-differential equatio
Eq. ~2.6!, is not an easy task. For a given set of values og̃
and N, there are essentially two methods to determine
value ofA. The first one is to obtain the solution close to t
saturation valuef51 and thereafter iterate the solution un
one reachesf'0. Close to the saturation valuef51, one
can defineh(j)512f(j), which reduces Eq.~2.6! to an
equation inh(j), given by

2vN

dh

dj
5g̃@h~j11!1h~j21!22h~j!#2h~j!1h2~j!.

~B1!

For h values close to zero, the solution of Eq.~5.7! is given
by the linearized equation

2vN

dh

dj
5g̃@h~j11!1h~j21!22h~j!#2h~j!,

~B2!

with the corresponding solutionh(j)5B1exp@zl(j2j0)#.
Substitution of this solution in Eq.~B2! yields the dispersion
relation betweenvN andzl ,

2vNzl52g@coshzl21#21. ~B3!

One can then iterate this solution towardsf50. The full
solution of Eq.~B1! can be written as

h~j!5 (
n51

`

Bn exp@nzl~j2j0!#, ~B4!

where the correspondingBn values are obtained from th
recursion relation

Bn5
B1Bn211B2Bn221•••1Bn21B1

12nvNzl22g̃~coshnzl21!
. ~B5!

As a starting point for constructing the solution nearf51,
one can choose arbitrary values ofj0 andB1, so long as the
value ofB1 is sufficiently small. At small values ofB1, any
scaling of B1 amounts to a simple shift of the originj0.
Finally, one can then match the solution, thus obtained, to
form f(j)5A sin@zi(j2j1)#exp@zr(j2j1)# nearf50 and de-
termine the value ofA.

The second method to obtain the numerical value ofA is
to assume a certain value ofA close tof50 with the func-
tional form f(j)5A sin@zi(j2j1)#exp@zr(j2j1)# and then
continue to iterate the corresponding solution in the direct
of f51 in a similar manner. This time, if the assumed val
of A is correct, then close tof51, one must recover the
exponential behavior off(j), as in Eq.~B4!. However, we
have found that the first method is stable under sm
6-22



of
ic
rg

a

re

ei

,

the
r-

in

FLUCTUATING PULLED FRONTS: THE ORIGIN AND . . . PHYSICAL REVIEW E66, 036206 ~2002!
changes in the starting value ofB1, while the second method
is not stable under small changes in the assumed valueA.

The first method should therefore be the natural cho
albeit from a practical point of view, one needs a very la
number ofBn values to extend the solution off(j) all the
way up to f50. In practice, we have therefore used
‘‘double shooting’’ method@39#, in which the functions are
calculated from both sides, and then matched somewhe
the middle.

The matching of the values of the functions and th
derivatives atf0 requires the values ofzl , zr , andzi to be
determined externally. Forg̃51 andN5104, the values of
zl , zr , zi , andA are numerically obtained from Eqs.~5.8!,
~A2!, and~B3! as
L

-

ev

ge

o

in
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zl50.418770.0008,

zr50.87760.002,

zi50.26470.007,

A50.96160.012. ~B6!

Of course, the numerical value ofA depends on the origin
where fromj is measured for the form in Eq.~3.3!. In Eq.
~B6! above, the value ofA is determined withb50, i.e., the
solution of the linearized equation at the leading edge of
front is zero atj5p/zi . We mention here that the unce
tainty in these numbers is determined by the uncertainty
vN , not by the inaccuracy of the numerical method.
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theoreticalP(Dt) curve, compare it with theP(Dt) curve ob-
tained from the computer simulations, and use the nature
discrepancy to make the next guess value ofkm . This process
is repeated until one converges to the value ofkm , for which
the best agreement between the theoretical and the simul
P(Dt) curves is achieved. In this recursive feedback meth

specifically forg̃'1 andg̃!1, one should remember to com
pare the theoretical and the simulationP(Dt) curves for 0
,Dt&1/vN while obtaining the numerical value ofkm , since
for Dt;2/vN , there are other complications that come to pl
a very significant role. These effects are discussed in S
IV C.

@34# In actuality, at the instant step~b! is over, the population of the
(km21)th bin has grown to a value bigger than 1. As a res
the diffusion of anX particle from the (km21)th bin to the
kmth bin takes slightly smaller time than the time scale fo
new foremost bin creation 1/vN . A 1/vN time scale would be
applicable if the population of the (km21)th bin is exactly 1 at
the instant step~b! is over. We choose to ignore this, and b
choosing to do so, we overestimate the value oft0 by a small
amount.

@35# Of course, in an actual process,t0 is determined probabilisti-
cally and not in such a sharp manner. However, we sho
remember that this is only an estimate, and we will show la
that it works reasonably well.
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@36# For large values ofg̃, there can be another kind of even
where the vacant foremost bin event takes place more t
once for the same foremost bin. This is more likely for lar

values ofg̃, since the hops from the foremost bin towards t
left is much more likely before the number ofX particles gets
a chance to grow in the foremost bin. In that case, one
simply extend this existing way of estimatingt0 to t0'4/vN ,
t0'6/vN , . . . , etc.

@37# The sequence of random numbers generated by drand4
random enough for our purposes so long as we useany large
enough (;106) initial seed. There is nothing special abo
choosing 123 456, it is as arbitrarily chosen as any other ini
seed;106. We have also run the simulations forN5104 and

g̃51 with two other random seeds, namely,s5106 and s
5107. For both of these two cases, the average speeds ca
lated by means of Eq.~5.7! fell within the error bars of Eq.
~5.8!. Thus, the chance of our results being affected by inh
ent correlations of the random number generator provided
the standard C library is ruled out.

@38# We have verified that atkb , the front shape is still given by the
solution of the linear equation, Eq.~4.6!.

@39# W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Veterlin
Numerical Recipes~Cambridge University Press, Cambridg
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