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Directional solidification cells with grooves for a small partition coefficient
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Using the asymptotic matching procedure of Dombre and Hakim, we determine properties of
the steady-state cellular structures with deep narrow grooves observed in directional solidification
experiments. The method is valid in the experimentally relevant region of small partition
coefficient and finite Peclet number. An extension of the Scheil equation for the grooves is given,
and the importance of conservation in determining the groove closing is pointed out.

[u; —k (u; —I ) ] cos8 = —lD (n Vu );,
u; =1 —z;/lT dpi''.

(2)

(3)

Here do is the chemical capillary length, lT the thermal
length, lD —=D/V a diffusion length, ~ the interface curva-

Recently there has been much progress in our under-
standing of the steady-state patterns formed in the direc-
tional solidification (DS) of a binary mixture. In this
technologically important process, solidification occurs
when a thin sample of melt is pulled at a velocity V
through a fixed temperature gradient. ' Small-amplitude
cellular patterns have sometimes been observed as V is in-
creased, but more commonly the liquid-solid interface
breaks up into deep fingerlike cells with narrow grooves
that are often terminated by a bubblelike closure.

In conceptually important work, Dombre and Hakim
(DH) showed analytically that the steady-state equations
for a simplified model of DS allowed a continuous band of
cellular wavelengths, even when surface-tension effects
are taken into account. In this Rapid Communication, we
make further analytic progress by exploiting the small
value of the partition (segregation) coefficient k usually
found in solidification experiments. This yields an analyt-
ic description of a class of small-amplitude cellular solu-
tions and also leads to a generalization of the DH match-
ing procedure for deep cells that holds for realistic values
of experimental parameters. (DH considered k =1 and
very small Peclet numbers. ) Again, we find a continuous
band of wavelengths. We also discuss some aspects of the
bubble closure. Since there is a large parameter space,
our work serves as a useful complement to recent numeri-
cal studies, ' where these issues are also being actively in-
vestigated.

In most of this work we use the one-sided model, ' where
impurity diffusion in the solid is neglected. Since the ratio
of diffusion constants in the solid and melt, P=D'/D, is
typically much smaller than 10, this is usually a good
approximation. However, for very deep grooves and in the
reentrant part of the bubble closure the approximation
must break down. This is discussed at the end of this pa-
per.

The steady-state equations for the one-sided model of
DS in two dimensions can be written '

V~ + 1 ju =0
lD t)z

ture, and 0 is the angle between the interface normal n
and the growth direction, taken parallel to the z axis. A
subscript i denotes a quantity evaluated at the interface,
and the superscript s denotes the solid phase. The dimen-
sionless field u = (c —c )/hcp measures the impurity con-
centration c in the liquid relative to that far from the in-
terface, c . It is normalized by the planar miscibility gap
Acp =cp(1 —k), with k the partition coefficient and cp the
concentration at the planar steady-state interface. Con-
servation requires that t." =kco.

Equation (3) takes account of surface-tension effects
and imposes local equilibrium at the interface. Equation
(2) expresses local conservation of impurities as the inter-
face advances. In the one-sided model, impurity atoms in-
corporated into the solid at the interface undergo no fur-

FIG. l. (a) Finite-amplitude solution of Eq. (8) for p=3,
v=2, k =0.1, and o. =0.29 with B chosen to satisfy conservation
condition (5). (b) The (outer) solution of Eq.

'

(8) for p=1,
=2, k =0.1, (7=0.78, and 1 —X =0.03 (solid line), and an asso-

ciated inner solution of Eq. (9) (dashed line), determined ap-
proxirnately by "patching" the function and its derivative to the
outer solution at the point indicated. As k 1, this is essentially
equivalent to the asymptotic matching procedure of DH.
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ther diffusion. Thus, in the steady state, the condition
c,'=kc; is equivalent to

u'(x, z) =k[u(x, z;) —1], (4)

where u(x, z;) =u; gives the concentration in the melt at
the interface position z;(x).

We are interested in periodic cellular solutions of
(1)-(3), with period 2a. It is customary to describe the
system by the dimensionless variables p =a/lo, where p is
the Peclet number, and v=lT/lo. The planar interface is
unstable for v& 1 and values of p of O(1) are often seen
in experiments. In what follows we take a as the unit of
length, and measure x from the center of the grooves.

For steady-state patterns, the integrated impurity flux
in the —z direction across any horizontal line segment ex-
tending from x =0 to x =1 must be a constant, indepen-
dent of segment position z, since no net flux can escape
through the vertical lines of symmetry at x =0, 1 (see Fig.

t X;

F(z) -0=, dx(u+p 'Bu/Bz)

+k „dx[u(x,z;) —1],
I

(5)

where we have used Eq. (4). Here x; =x; (z ) and
z; —=z;(x) give the interface positions as functions of z and
x, respectively. Differentiating (5), we have the exact re-
sult

1). For z & z„with zt the tip position of a pattern, a di-
mensionless measure of this flux is given by F(z)
—=fodx(u+p 'Bu/Bz), where the first term is the con-
vective flux arising from the transformation to the moving
frame used in (1)-(3), and the second is the flux due to
diff'usion, occurring by assumption only in the liquid. Far
from the interface we have u =Su/Bz =0, so global con-
servation of impurities requires that F=O everywhere.
For z & z„we have similarly

r x;
dx;/dz[u; +p '(Bu/r)z);1+„dx(8u/t)z+p 'r) u/Bz ) —kdx;/dz(u; —1) =0. (6)

=1 —pz;/v —(do/a) x', (8)

with B a constant, on using (3). This gives a differential
equation (8) for the interface shape z;(x), which should
be accurate if the right-hand side of (7) is, in fact, small.

We will show elsewhere that this approximation is the
leading-order term in a power-series expansion in k for a
class of finite-amplitude cellular solutions without grooves
of Eqs. (1)-(3). It is easy to see why this should be so,
since the one-dimensional field u =Bexp( —pz) provides
an exact solution of Eqs. (1) and (2) [or (7)] in the limit
k 0+. Thus, the above approximation becomes more
and more accurate for small k, which is the experimental-
ly relevant limit. In fact, the approximation may have a
wider range of validity than this argument suggests, since
Ungar and Brown found numerically very nearly one-
dimensional diffusion fields for finite-amplitude cellar
solutions of (1)-(3)even with k =0.4.

Equation (6) immediately suggests difl'erent approxi-
mations valid near the tip and deep in the grooves for the
shape of periodic cellular patterns. By use of the diff'usion

equation (1), Eq. (6) can be rewritten exactly as

u;+p '(Bu/Bz); —k(u; —1) =p '(Bu/Bx);(dz;/dx),

(7)

which is equivalent to Eq. (2). Since both dz;/dx and
(Bu/Bx ); must vanish by symmetry at x = 1, the right-
hand side of Eq. (7) is always small near the tip. This is
consistent with the (approximate) existence of a one
dimensional field u =u(z), which makes the right-hand
side of (7) vanish identically. When this approximation is

made, the solution to (7) can be written as

u; =(1 —k) '(Be ' —k)

Numerical solutions of (8), with B fixed by conserva-
tion requirements derived from Eq. (5), give a continuous
family of finite-amplitude cellular shapes. An example is
shown in Fig. 1(a). Anisotropic surface-tension effects
produce only small changes. Although our steady-state
analysis makes no predictions about the stability of these
solutions, we presume that the small-amplitude solutions
found for V very near threshold are unstable, since at
small k there is a subcritical bifurcation away from the
planar steady state. However, at larger V, Trivedi has
given experimental examples of apparently stable finite-
amplitude cells, which closely resemble that given in Fig.
1(a).

It is clear that Eq. (8) has no solutions with x small and
—z; large, as would be found in a deep groove. This is
consistent with its derivation from Eq. (7), since deep
grooves have dz;/dx very large, so that the right-hand side
of (7) could not be neglected. In order to describe solu-
tions with deep grooves, seen experimentally for small k
and v —1 of O(1), we generalize the asymptotic matching
procedure of DH. Equation (8) is our "outer" equation
for the tip region. It reduces to the "pendulum" equation
used by DH as k 1 and p 0 with proper rescalings.

To describe the deep narrow grooves, we return to Eq.
(6). Deep in the grooves, the slope dx;/dz is very small,
and a term such as (Bu/Bz); in Eq. (6) can be accurately
approximated by du;/dz, the z derivative of the Gibbs-
Thomson condition (3), since

du;/dz = (Bu/Bz), + (au/ax ), (dx, /dz) .

Further, for narrow grooves the terms under the integral
in (6) can be replaced by their values at the interface.
This yields our "inner" equation for the grooves, which
can be written

[g —(1 —k)pox —o dx/dz]dx;/dz —ox; d rc/dz —crpx; dx/dz =px;/(v —1) .
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This generalizes Eq. (33) of DH. Here g= 1 —(1
—k)pz/(v —1) is a measure of vertical distance that will
be used repeatedly in this paper, and a=—vdoln/a (v —1)
=(q„a), where q„, is the neutral stability wave vector
in the quasistationary approximation. Thus, for o of or-
der unity the scale of the pattern is of order the neutral
stability wavelength.

Very deep in the tails, terms involving the curvature can
be neglected and (9) reduces to (dx;/dz =px;/(v —1),
which has the solution

(10)

This result is due to Scheil and Hunt. ' Since (9) has a
wider range of validity, it would be interesting to compare
its solutions to experimental groove shapes.

Experimental patterns often have narro~ grooves even
near the tip. In that case, the approximations leading to
(9) remain valid within a "matching region, " a distance
O(1) behind the tip position z„where (8) also holds. DH
have shown how a globally acceptable finger solution can
then be obtained by an asymptotic matching of the outer
and inner solutions (8) and (9), the small parameter
(1 —k) being the width of the groove just below the
matching region. Since the technical details are virtually
identical to the work of DH, we can be brief in our discus-
sion here. Let z =z; (x =0), where z; (x ) is the (outer)
solution to Eq. (8). Introducing the sealed inner variables
x; and z in (9) with x;—= (1 —X)x; and z —z =[o. (1
—k)] ' z, where cr —= tr/g plays the role of a renormal-
ized surface-tension parameter, we obtain to lowest order
in 1

—X [at O(1 —X) i ], after an integration, the same
parameter-free inner matching equation analyzed by DH:
(1 —d x;/dz ) =1/x;. Matching its large z behavior to
the Taylor-series expansion of the outer solution (8) about
z when expressed in inner variables yields the matching
conditions tc =0, and cotO =y*(1 —X) (o )
Here y* =3.19~0.02 is determined numerically" from
the inner matching equation, as described by DH.

Once the matching conditions are known, the parame-
ter values at which cells with deep grooves exist can be ob-
tained from the outer equation (8), following DH. The
only practical diAerence with their work is that our outer
equation (8) has to be solved numerically. The parameter
B in (8) is determined by imposing conservation at z [cf.
(5)]. Like DH, we find that for fixed parameters p, a, v,

k, and a, there is a unique solution obtained by matching
the inner and outer solutions [see Fig. 1(b)]. Thus as a is
varied, a continuous family of solutions is generated.
Note that surface-tension anistropy is not required for
steady-state solutions to exist. Figure 2 gives cr as a func-
tion of 1 —k for diferent values of p and k. Conservation
requirements as given by Eq. (5) allow one to understand
most trends, such as the fact that with other parameters
held fixed, materials with smaller values of k have nar-
rower grooves (smaller 1

—k). A detailed analysis will be
presented elsewhere. Here we conclude by discussing
some properties of the groove closing at large g.

The matching conditions and the shape of the finger
near the tip are completely determined without any re-
quirement that the limiting Scheil shapes (10) hold for all

deep in the solid. In fact, diff'usion in the solid can-

0.025
I—

0.05

not be ignored when the grooves become sufficiently steep
and narrow, and the predictions of Eq. (10) must then be
modified. To estimate g„ the breakdown distance, note
that the term (D'/V)(ri Vu'); should be added to the
right-hand side of (2) to take account of diff'usion in the
solid. Using (4) to estimate Vu' (valid for g~g, and
p= D'/D small), we s—ee from Eq. (2) that an additional
term —(pk/p)(tlu/|)z);(dz;/dx), should then be added
to the right-hand side of Eq. (7). Since dz;/dx =tan8 be-
comes arbitrarily large as g ~ according to (10), even-
tually this term must become significant for any p) 0.
We thus expect a breakdown of the Scheil equation when
the neglected term becomes about equal to the left-hand
side of Eq. (7), i.e., the order of the terms kept in deriving
the Scheil equation. If we ignore small curvature correc-
tions, this criterion' gives Pk = (v —1)g,cot 8, . For
very small p, the grooves can be nearly vertical before the
assumptions of the one-sided model break down.

Experiments and computer simulations have shown that
the grooves often terminate at a finite /=gab with a small
bubblelike closure. We outline here an approximate
treatment of the closure, based on conservation require-
ments, that determines the order-of-magnitude scaling of
most features. We assume that p and k are small, and
that the maximum half width A of the bubble at gb is
small enough that ph«1 [see Fig. 2(b)]. It is then
reasonable to replace the diffusion equation by the La-
place equation in the lower part of the bubble and assume
the existence of a linear concentration gradient between b
and d, just as in the approach of DH. Combined with Eq.
(3), this gives the pendulum equation analyzed by DH.

FIG. 2. (a) Variation of o. with 1
—X. The solid line gives

p= 1, v=2, and k=0. 1. The chain-dashed line gives p=0.01,
v=2, k =0.95, and is essentially identical to that given by the
method of DH, where k = 1 and p 0. Data points represent a
numerical solution of the SaAman-Taylor equations by McLean
(Ref. 14), to which the DH method should also apply. The
dashed line gives p=0.01, v=2, and k=0. 1. {b) Schematic
drawing of the lower part of a groove with a bubble closure.
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Using the pendulum solutions, and equating the impurity
flux at b to that found in the solid at d then yields to
lowest order gb =cirr/6 +O(i), ), where ci is a constant of
O(1) whose value could, in principle, be determined by
matching. '

We can obtain anoth'er relation between gb and 5 by re-
quiring that x;(z, ) =5 and that the impurity flux across
the groove at z, equals that in the solid at zd [see Fig.
2(b)]. The latter gives to dominant order g, =kgb. Final-
ly, in the simplest case where 6~1 —

A., we can use the
Scheil equation (10) to give an order-of-magnitude
estimate of 6=x;((,). This yields d,/(I —X) =(g /
kgb)'/ ' ", where we have estimated the value of the
constant Ao by requiring that (10) gives 1 —X for (=g .
Combining these results, we find

A/(I —X) =[cika /(1 —X) 1'

Note also that (10) evaluated at (b provides an estimate
for the half width 6 of the narrow neck just above the bub-
ble. This gives 6/4 k'/ ' ". Thus we predict deeper
grooves with a smaller ratio of neck to maximum bubble
width as k is decreased. These simple expressions for 6, 8,
and gb have been derived relying mainly on conservation
requirements and the assumption of local equilibrium. A
quantitative analysis of experimental data could provide
an important test of this basic approach.

We are grateful to D. A. Kessler and H. Levine for a
helpful discussion on the breakdown of the one-sided mod-
el, to J. W. McLean for providing us with his unpublished
data on Saffman-Taylor fingers, and to V. Hakim for
helpful correspondence.
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