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Comment on "Absolute and Convective Instabilities
in Nonlinear Systems"

When a spatially extended system goes unstable, the
ensuing dynamics depends sensitively on whether the sys-
tem is convectively unstable [in which case perturbations
grow in time but are convected away fast enough that
they die at each fixed position in the (lab) frame con-
sidered] or absolutely unstable (in which case there exists
a perturbation and a location where the perturbation does
not decay). The distinction between the two cases for
infinitesimal disturbances is well understood; such a
linear stability analysis captures most of the essential
physics near a supercritical (continuous) bifurcation. Re-
cently, Chomaz [ I ] studied the nonlinear convective
(NLC) versus absolute (NLA) instability near a subcriti-
cal (discontinuous) bifurcation for a simple equation that
derives from a free-energy-like (Lyapunov) function.
The purpose of this Comment is to point out that the case
studied by Chomaz is quite restrictive, since it relies on
the existence of a unique front separating the basic state
from the bifurcating state. In the general case there is a
continuum of bifurcating states and an ensuing continu-
um of fronts, so the problem of selection must be faced.
The situation was discussed earlier by two of us [2] in a
general investigation of front and pulse propagation near
subcritical bifurcations. The extension to systems not
governed by a Lyapunov function is particularly relevant
for the study of nonlinear stability of open hydrodynamic
flows or of systems with traveling waves.

As a simple model for dynamics near a subcritical bi-
furcation, Chomaz [1] studied the real equation

8,A+ Up&, A =c) A+ pA+A

The nonlinear stability properties depend on the response
to disturbances of finite extent and amplitude. For

& p & 0 Eq. (1) admits two homogeneous stable
states, Ap =0 and 22&0. To study the nonlinear stability
of the Ap state it suffices to consider a front solution join-
ing the state A2 for x —~ with the state Ap for
x ~, in the symmetrical (Up =0) frame where the
UpB„A term is absent. If the front speed i of this solu-
tion is negative, an isolated droplet of the A~ state in a
background of the Ap state shrinks; hence the Ap state is
stable. If t. is positive, A2 droplets grow and the Ap state
is (nonlinearly) unstable. Since for Up=0, Eq. (1) is

governed by a Lyapunov function [B,A = —15K/&f,
X =fdx j(8„A) /2 —pA /2 —A /4+A /6]], the sign of
v depends on the relative magnitude of L(Ap) and
X(Az), and v =0 for p =pM = —

—,'6 where X(Ap)
=X(Az). In the unstable domain p & pM the instability
in the Up frame is convective (NLC) for v —Up &0, and
absolute (NLA) for v —Up) 0.

When a Hopf bifurcation to traveling waves occurs, the
amplitude dynamics near a subcritical bifurcation can be
modeled by an extension of (1), the complex Ginzburg-

Landau equation, which in the symmetrical (Up =0)
frame reads

B,A = (I +ic ) t)„A+pA+ (1+ic3)A ~A ~

+ ( —1+ic5)A ~A ~
(2)
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Here 2 is the complex valued amplitude, and the c's are
real parameters associated with the linear (ci) and non-
linear (c3,cs) dispersion. Equation (2) cannot be derived
from a Lyapunov function, and contrary to (1) has a con-
tinuum of bifurcating states.

The surprising finding of Ref. [2] is that the stability
properties of the state Ap are largely determined by the
existence or absence of an exact nonlinear front solution
with speed v (p, ci,c3,cs) that increases for increasing p
and is zero for p =p3(ci, c3,cs). It is found [2] that ei-
ther (a) this front solution exists and has positive v for
some range p & p3 with p3 & 0; (b) for all p & 0 the front
speed is negative (i.e., p3 & 0); or (c) for p & 0 no non-
linear front solution exists.

In case (a) the behavior for p & p3 is similar to that
found in the real equation when p & pM.. The state Ap is
unstable, and the instability is NLA for i t —Up~ 0 and
NLC for i ~ —Up &0. For p & p3, on the other hand,
typically stationary pulse solutions exist, over a range
p2 & p & p3 so although t. & 0, the state A p remains un-
stable. Since the pulse velocity is in general zero, the in-

stability is NLC for any Up) 0. For p & p2 the state Ap
is stable. In case (b) the pulse region extends up to p =0,
and for p ) 0 the stability properties are similar to those
of a supercritical bifurcation with a front velocity i cc Jp.
For case (c) less is known, but chaotically spreading front
solutions as well as pulses have been found [2]. In some
experiments [3], the latter structures help stabilize a sys-
tem by absorbing small perturbations that are convected
into them. It is an open question which regime is relevant
for planar Poiseuille I]ow, where cl ——0.4 and c3= 6 [4]
but e~ is not known.
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