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Boundary-layer approaches to dendritic growth
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(Received 24 September 1986)

We analyze the derivation of boundary-layer models for dendritic growth and investigate the ex-
tent to which they yield information about the existence of a continuous family of steady-state nee-
dle crystal solutions. Although recent work has established that there exists only a discrete set of
solutions for viscous fingering in a Hele-Shaw cell, side walls play an important role in this system,
and we argue on physical grounds that the same mechanism may not apply to free dendrites. After
a discussion highlighting the physical differences in these two systems, we analyze the model equa-
tions for dendritic growth, which first suggested the breakup of the family. We develop a systemat-
ic, and in principle exact, boundary-layer formalism for diffusion-controlled dendritic growth start-
ing from the full heat-conduction equation. A consistent application of the formalism generates an
expansion of the smooth steady-state solutions in powers of (1 —6), where 6 is the dimensionless un-

dercooling, but gives no indication as to whether or not a family of such solutions exist. Different
physically motivated approximations yield different model equations, including the boundary-layer
model of Ben-Jacob and co-workers, with very different properties. Steady-state predictions of all
such models are arbitrary. We show that a proper phase-space description requires an infinite-
dimensional phase space, in which there are stable directions not found in the boundary-layer model.

I. INTRODUCTION

A. Heat-conduction equation

Recently there has been much interest in dendritic
growth, both as a challenging problem in material science
and crystal growth, and more generally as an important
example of pattern selection in nature. ' Experiments have
shown that the tip of a dendrite, freely growing into an
undercooled melt, advances uniformly with a fixed veloci-
ty V, . The tip curvature ~, and side-branch spacings
seem to be independent of initial transients in the growth
process, and depend only on the undercooling. ' Yet
theoretical understanding of even this basic fact is far
from complete.

The physics of dendritic growth is controlled by the
diffusion of the latent heat of crystallization away from
the interface. Let us consider the simplest case of a two-
dimensional one-component system in the "one-sided"
limit where we neglect heat diffusion in the solid. ' The
growth rate is determined by the dimensionless undercool-
ing 6, defined to be the difference between the bulk melt-
ing temperature and the temperature of the melt far in
front of the tip, measured in units of I./c, the ratio of the
latent heat to the specific heat. In most experiments, we
have 5&&1. If we consider dimensionless temperatures
measured relative to that of the melt (so that the bulk
melting temperature is b, ), the dimensionless temperature
field T(x,z, t) satisfies the heat-flow equation

at

together with appropriate boundary conditions. Here
(x,z) are Cartesian coordinates in the lab frame, t is the
time, and D is the thermal diffusivity. Far from the in-

Here d 0 is the capillary length, ordinarily of order
angstroms, which is proportional to the surface tension.
The last term on the right in (1.2) takes account of inter-
face kinetics and assumes a linear relationship between the
normal interface velocity V„and the effective interface
undercooling T —T;. Both p and do can depend on
crystalline orientation, ' frequently p is set equal to zero in
theoretica1 studies, and we will do so here unless otherwise
indicated. Finally, the release of latent heat at the inter-
face as the crystal grows is taken into account by the
heat-conservation relation

V„= D(n VT);, — (1.4)

where n is the unit normal pointing into the melt. Equa-
tion (1.4) equates the rate of heat production at the inter-
face to heat flow into the melt.

Before considering more complicated time-dependent
problems, it is natural to seek steady-state solutions of
(1.1)—(1.4). A growing dendrite, constantly emitting side
branches, clearly is not in a steady state, but such solu-
tions could have relevance for the motion of dendrite tips,
particularly if one assumes that only some time-averaged
shape is important in determining the temperature field
near the tip. See Fig. 1(a). However, it is not obvious that

terface we have T~O and at the interface, assuming only
small departures from local equilibrium, we required that
the interface temperature T; satisfy

(1.2)

The first two terms on the right give the equilibrium
melting temperature T of an interface with curvature K;,
given by the Gibbs- Thomson relation'

T "=6—do~; .
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FIG. 1. Dendrites and needle crystals. (a) The dendrite tip
viewed as a superposition of a steady-state needle solution (solid
line) and the side-branching instability (dashed lines). (b) A nee-

dle crystal (heavy line) and associated isotherms (light lines). A
tube normal to the interface as pictured in the BLM is indicated
by the dashed region.

this is the case, and we study the steady-state problem
only as the first step leading towards a fu11 dynamical
treatment.

Unfortunately, such is the complexity of the heat-flow
equations (1.1)—(1.4) that even in the steady state an exact
solution has been found only in the artificial "Ivantsov
limit, " where both do and p are set equal to zero in (1.2).
In this approximation the growing interface always main-
tains the bulk melting temperature. The Ivantsov solu-
tions ' are parabolas moving at a constant velocity V in
the z direction,

Kg
(z —Vt)+ —x =0,

2
(1.5)

where the growth velocity V and tip curvature K, are re-
lated to the undercooling by only a single equation of the
form

2DK,
p '= =f(&),

V
(1.6)

and f (b, ) is a known function of the undercooling b, .
Here p, the Peclet number, gives the radius of curvature of
the tip in units of the diffusion length 2D/V. Though
dendritic tips indeed appear parabolic and move at a con-
stant velocity, the Ivantsov result (1.6) predicts the ex-
istence of a continuous family of solutions, ranging from
fat slow-growing shapes to sharp rapidly growing ones, at
the same undercooling A. This disagrees with the experi-
mental result ' that tips with a single K, and V, are found
for a given A.

It was recognized long ago that this discrepancy could
arise from the Ivantsov boundary condition T; =A.
Indeed with do and p set equal to zero, there is only one
length D/V in the problem and a scaling like (1.6) must
be found. ' However, since the corrections to T; from do
and p in Eq. (1.2) are usually very small, it was generally
assumed that a family of steady-state "needle crystal"
solutions slightly perturbed from the Ivantsov family con-
tinued to exist, and that some kind of additional (dynami-
cal) selection mechanism was needed to pick out the solu-
tion actually observed in experiment. The most successful

approach based on this idea was the marginal-stability hy-
pothesis of Langer and Muller-Krumbhaar, ' which ac-
curately represented the experimental data, though funda-
mental justification was lacking.

Recently two groups ' proposed simple model equa-
tions for the motion of the interface that were designed to
mimic several features of the full problem (1.1)—(1.4),
while remaining simple enough to permit exact analysis
and numerical simulation. These models express the velo-
city at any point of the interface in terms of locally de-
fined quantities like the curvature, and we will refer to
them as local models. The model equations successfully
reproduced the existence of a family of needle crystal
solutions in the Ivantsov limit. Analysis showed that in
both the geometric madel (GM) of Brower et al. 9 and in
the boundary layer -model (BLM) of Ben-Jacob et al. ,

'

the do term in (1.2) and (1.3) is a singular perturbation, in
whose presence at most a discrete set of steady-state solu-
tions can survive. Indeed in the absence of crystalline an-
isotropy, no steady-state solutions at all exist with do
nonzero for these models. Of course, as all these workers
realized, the models results only indicated the possibility
that such behavior can occur in the full nonlocal problem.
Nevertheless, very recent analysis of the full problem (see
below) seems to be in agreement with these ideas.

As will be discussed in more detail below, the model
equations suggest that there is in general a problem in
finding solutions with smooth behavior at the tip of the
needle that also join onto the Ivantsov-like needle solu-

tions far down in the tails of the needle. Crystalline aniso-
tropy" is needed to provide a proper matching of physi-
cally acceptable tip and tail behavior; even then the result-
ing smooth needlelike solutions exist only at a discrete set
of velocities. In effect the steady-state problem itself with
the proper boundary condition (1.3) provides most of the
"selection, " with the discrete solution of maximum veloci-
ty actually being observed in numerical simulations. '
Since it is the capillary length that singles out particular
discrete solutions from a seemingly continuous family as
it shows up in a naive perturbation theory, this mecha-
nism is often termed microscopic solvability. "

This scenario has recently been shown to apply to the
problem of viscous fingering in a Hele-Shaw cell, '

whose mathematical description has several features in
common with dendritic growth, and methods similar to
those used to solve the viscous fingering problem seem to
confirm that microscopic solvability also applies to den-
dritic growth. ' Finally, there exist numerical simulations
of the full steady-state needle crystal problem that again
seem consistent with this scenario. ' '

Despite this, we believe that the steady-state equations
(1.1)—(1.4) for dendritic growth have a number of physi-
cal and mathematical properties that one could intuitively
associate with the general existence of a continuous family
of steady-state solutions. ' Although we can provide no
rigorous analysis of this delicate mathematical question,
these ideas are worth exploring to help determine what
physical properties decide between one scenario or the
other and to gain a physical understanding of the solvabil-
ity condition if it applies to dendrites.

In this paper we will confine ourselves to a critical as-
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sessment of the model equations, which first suggested the
possibility of the microscopic-solvability mechanism. A
full discussion of the more recent numerical and analyti-
cal work regarding this problem will be given in another
paper where we present other results of our own, ' but we
briefly summarize our views on some of these questions in
Sec. III. The main question we address in this paper is
the degree to which the model equations can be systemati-
cally derived from the full heat-flow equations (1.1)—(1.4).
In particular, how reliable are the predictions of a given
model equation concerning the existence of steady-state
solutions? The formalism we develop for treating the
moving interface and the associated temperature (and oth-
er) fields, while particularly incisive in assessing the
model equations, may also prove useful in other more gen-
eral applications to moving-boundary problems and in
determining the dynamic relevance of steady-state con-
siderations in general.

Although many of the issues raised in our study of the
model equations are of general interest and have broad
implications, some of the mathematics is rather technical.
For this reason we conclude this section with a physical
discussion of our viewpoint on dendritic growth, and in
Sec. II provide a general introduction to the main points
we will raise in the rest of the paper concerning the model
equations. Section III briefly discusses other numerical
and analytical work that appears to confirm the
microscopic-solvability scenario for dendritic growth and
our belief that some important questions may remain un-
settled. Sections IV—IX provide the details of our work
with most mathematical points contained in several ap-
pendixes.

B. Physical picture

Before beginning a detailed discussion of the models,
we first sketch our physical picture of diffusion controlled
growth. This picture, based in part on ideas introduced
by Ben-Jacob et al. ,

' underlies our reservations about the
microscopic-solvability scenario as applied to dendritic
growth. Growth of crystals at small undercoolings is
dominated by the necessity to transport the latent heat
produced at the interface into the cooler liquid by a slow
diffusion process. Since there are no sources of heat loss
(heat sinks) in Eqs. (1.1)—(1.4), the heat produced at the
moving interface is conserved and can be directly calculat-
ed from the temperature field. The heat content of a unit
volume of liquid relative to that of the unheated melt in
units of L is directly given by (the dimensionless quantity)
T.

A rough measure of the amount of heat in front of the
interface can be obtained from the boundary-layer thick-
ness 1, defined with the help of Eq. (1.4) as

(1.7)

Here / is the distance over which the temperature (heat
content) in front of the interface falls to its asymptotic
value as determined by a linear extrapolation of the nor-
mal temperature gradient at the interface. ' ' Then M,
the total heat content per unit length of interface con-

tained in a "tube" normal to the interface, is approximate-
ly given by H=T;/. 0 is a fundamental quantity in the
BLM of Ben-Jacob et al. ' and we will later give a precise
definition. See Fig. 1(b).

Consider first the growth of a planar interface. Only
the small fraction T; of the latent heat released when a
unit volume crystallizes could be accommodated by heat-
ing material ahead of the interface if the interface were to
advance with an undistorted temperature profile. There-
fore the remaining latent heat fraction (1 —T~), the heat
su~plus, must increase I and the heat content in the boun-
dary layer. From (1.7) this reduces the growth velocity
V„. The growth rate is limited by the rate at which the
heat surplus can diffuse away. The process is clearly non-
local in time; heat released at earlier times still affects the
present growth rate. Not surprisingly, there is a typical
diffusion relation between the growth velocity V„and the
time t: V„-t ' . At long times the growth rate of a
planar interface tends to zero as heat continually piles up
in front in the boundary layer. "

The physics is very different at undercooling 5 so large
that 6) 1. Then the heat surplus vanishes and steady-
state growth of a plane is possible when interface kinetics
is taken into account. ' ' For mathematical convenience
we will later examine large undercoolings 6—+1 for
which the heat surplus is nonzero but very small. This
limit preserves many features of the more physically
relevant small undercooling case (in particular, the r
behavior is still found), but it also permits expansions in
powers of (1—b, ) and is the most favorable limit for ex-
amining the use of local-model equations. However, we
should not forget the possibility that the physical
picture —and selection mechanism —appropriate for large
undercoolings could differ from that found at small un-
dercoolings.

When there is a nonzero heat surplus (i.e., b, & 1), more
rapid growth can occur only if the constraint of planarity
is relaxed. Indeed the planar interface is unstable. Part of
the heat surplus that is generated by an outward bulge of
the solidification front into the liquid can be diverted to
the sides. This permits a larger temperature gradient in
the forward direction and hence from (1.4) leads to more
rapid growth. This is the physical origin of the Mullins-
Sekerka instability, which underlies the complicated
solidification patterns formed by dendrites.

Just as is the case for the initial response leading to the
Mullins-Sekerka instability, a needlelike shape permits
more rapid long-time growth in the forward direction by
directing the heat surplus to the sides. The sharper the
curvature of the needle, the more effective is this diver-
sion, and the more rapidly can the needle grow. Of
course, growth along the sides of the needle must then
slow down. In this way we can understood the Ivantsov
result (1.5) for a steady-state family of moving parabolas.
At fixed z, the growth rate in the x direction (essentially
normal to the interface in the tails of the needle) slows
down as t ', just as for the gro~ing plane, as the heat
surplus piles up. The needle achieves a constant growth
rate in the z direction at the cost of slow growth in the x
direction. See Fig. 1(a). The redirected heat surplus in
the boundary layer causes a natural joining of the
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behavior near the tip to that in the tails.
More generally, we expect the tails to lock into the

asymptotic Ivantsov-like V„-t ' behavior, even in the
presence of (small) temperature perturbations near the tip;
the buildup of heat in the boundary layer makes it impos-
sible for the asymptotic behavior to be either faster or
slower, and serves to suppress any divergent response.
Thus crystalline anisotropy, kinetic undercooling, or
capillary corrections should not affect stability deep in the
tails. In effect, the Ivantsov-like behavior in the tails
resembles an attractive fixed point, towards which several
trajectories (generated by different perturbations at the
tip) flow. We have already given a local-model equation
that exhibits this behavior, ' and will discuss it in detai1
later in Sec. VII. Evidence for this behavior in the full
heat-flow equations at distances larger than the diffusion
length 2D/V from the tip will be presented elsewhere. '

This picture differs greatly from that predicted by the
BLM and GM equations. There the structure in the tails
is very "fragile, " and only a single trajectory flows into
the Ivantsov-like fixed point. This causes nontri vial
matching conditions between smooth behavior in the tip
and in the tails, and in general no steady-state solutions
exist. '

Of course, one should not forget that the physical prob-
lem concerns the motion of dendrite tips, and any such
matching should really be between the tip and some inter-
mediate region before which side branching becomes sig-
nificant. Experimentally, at small undercoolings, this
occurs in a region of order the radius of curvature of the
selected tip. ' It is here that the physical processes leading
to selection must occur. Although the model equations
suggest that a study of stability deep in the tails gives in-
formation relevant to the selection process, this may not
be the case for the full problem. A nonlocal analysis is
needed to resolve the remaining questions concerning the
validity of the matching picture for the full problem. If it
turns out that a family of solutions can be found in a cer-
tain parameter range, then an appropriate focus for selec-
tion is some dynamic mechanism involving the tip and the
intermediate region. Moreover, such an analysis would
probably still capture the essential physics in the event
that there do exist matching conditions, but which only
constrain behavior far down in the (physically irrelevant)
tails of the needle.

Our description of the tails relies heavily on the dynam-
ics of heat flow appropriate to a diffusion equation and
does not apply to the case of viscous fingering in a Hele-
Shaw cell, where the pressure field satisfies Laplace's
equation. Although the initial Mullins-Sekerka instabil-
ity is qualitatively the same when the diffusion equation is
replaced by Laplace's equation, the long time (steady--
state) behavior is very different. Indeed there are no non-
planar steady-state solutions at all in the absence of
sidewalls in the Hele-Shaw cell. The long-ranged Green's
function for the Laplace equation implies a sensitive and
instantaneous relationship between the pressure at the in-
terface and at the side walls. Thus it is not too surprising
that there could be a singular response to seemingly small
interface perturbations in such a system. In contrast, the
boundary condition the needle crystal temperature field

must satisfy at infinity (T ~0) is that naturally pro-
duced by the diffusive dynamics of heat flow, and it im-
poses no constraint.

These differences arise because the heat-flow equations
with the BT/Bt term describe the motion of a compressi-
ble "heat fluid" whose density is proportional to the tem-
perature. Since the fluid is compressible, the heat flux
produced at the interface will be absorbed by a change in
temperature (heat density) in front of the interface; at dis-
tances much larger than the boundary layer thickness l,
we find the undisturbed melt. On the other hand, the La-
place equation appropriate for the Hele-Shaw cell de-
scribes the flow of an incompressible fluid; fluid flow at
the interface implies an instantaneous response and flow
at the boundaries. This brings about a rigidity and hence
fragility to possible steady-state solutions not present in
the compressible and dissipative heat flow found in the
dendritic needle crystal problem.

Indeed, the mathematical analogy between viscous
fingering and dendrites is even closer if the finite value of
the compressibility modulus k of the viscous fluid in the
Hele-Shaw cell is taken into account, so that BP/Bt
= —kV'. V with P the pressure and V the fluid velocity.
Combining this with Darcy's law, we see that the pres-
sure fluid satisfies a diffusion equation dP/r)t =DHsV P,
where DHs ——kh /12p and h the cell height and p the
viscosity. However, using typical values for viscous fluids
used in the cell, we find DHs-100 m /sec. The diffusion
length 2DHs/Vf -200 km, for a typical finger velocity of
1 mm/sec, is so large that the cell side walls are always
well within the diffusion length, and the use of the La-
place equation is very well justified.

For typical dendrite tips, on the other hand, the dif-
fusion length is of order 0.1 mm, and while this is much
larger than the scale of the structure near the tip, it is not-
ably smaller than the cell size or the spacings of primary
tips. In a sense, then, viscous fingering is more local than
dendrites because of the close presence of the cell side
walls well within the diffusion length, and the elimination
of all temporal nonlocal effects. There is a considerable
physical difference between the small Peclet numbers ap-
propriate to dendrites and the "zero-Peclet-number limit"
that yields the Laplace equation. From this point of view,
directional solidification' represents an intermediate case
in which the temporal nonlocality implied by the time-
derivative term in the diffusion equation is not such an
essential feature as in the needle crystal problem.

II. GENERAL REMARKS ON THE MODEL
EQUATIONS

The local models introduced by Ben-Jacob et al. ' and
Brower et al. have been very important in suggesting
possible mathematical mechanisms that could operate in
the full problem, and in serving as a testing ground for
new numerica1 and analytical methods. In addition, the
BLM of Ben-Jacob et al. is very appealing in that it in-
corporates much of the physics of dendritic growth.
These aspects give the BLM a significance beyond a char-
acterization as just another model. A detailed study of its
properties is still the focus of current research and its
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predictions have influenced the interpretation of other nu-
merical and analytic studies. ' ' In addition to its physi-
cal underpinnings, the BLM is often said to have some
mathematical justification for large undercoolings as
b,~l, where the boundary layer thickness I in Eq. (1.7)
is small compared to the radius of curvature of the inter-
face, so that a local model makes good sense. Indeed the
BLM reproduces the exact Ivantsov parabola to first order
in (1 —b, ). '

For these reasons, we felt it worthwhile to take the
ideas behind the BLM seriously, and to see whether it (or
some modified version) could be systematically derived
from a study of the full heat-conduction equation. A key
idea in the BLM was to introduce a physically motivated
balance equation for the total heat content H in a tube
normal to the interface. Contributing to the dynamics of
H is the heat surplus released at the interface, and when
do is nonzero, a "heat-conduction" term describing heat
flow between adjacent tubes. This equation, together with
some exact geometric relations describing properties of
the growing interface, leads directly to the BLM.'

%'e have been able to generalize and justify many of
these ideas. ' In Sec. IV we introduce a set of time-
dependent curvilinear coordinates (u~, uq) that describe
properties of the growing interface and the associated
temperature field. Different coordinate systems imply
different shapes for the tubes normal to the interface and
we derive in Sec. V an exact equation of motion for H
that is valid for any (arbitrary) choice of coordinates.
Terms in the exact equation involves integrals over all
space of the temperature and other associated fields, and
have a physically suggestive interpretation. Indeed with
one important exception, discussed below, all the terms we
find have their counterpart in the BLM. We can repro-
duce the BI.M by choosing a particular coordinate system
and approximating some quantities in the integrals by
their values at the interface, which seems plausible for 6
near 1 where the boundary layer near the tip is "thin. "

Nevertheless, on closer inspection, the most dramatic
and celebrated result of the BLM—the breakup of the
Ivantsov family of solutions —turns out to depend on the
number of rather specific and arbitrary properties of the
model. The reasons for this are described in Secs. V—VII
below, and in the remainder of this section, we briefly out-
line some of these points.

A. Long-time versus short-time behavior

The BLM successfully reproduces the initial Mullins-
Sekerka instability, ' and as such appears to have all the
ingredients needed to describe the short-time behavior of a
pattern at high undercoolings. Moreover, it gives the
right qualitative long-time behavior of highly symmetric
shapes like planes, spheres, and cylinders. ' However, the
steady-state (long-time) growth of a needle crystal is more
subtle than these simple cases in that it involves nonlocal
effects associated with the V(dT/dz) term in the steady-
state temperature equation in the co-moving frame,

This term breaks the symmetry in the z direction and is
crucial for steady-state growth since it determines how the
heat released near the tip piles up in the tail region. As a
result, a perturbation at the tip has a much larger effect
on the tails than a perturbation in the tails would have on
the tip. One consequence of this term in the exact
boundary-layer formulation discussed in Sec. V is that the
tubes defining H change their shape as they move in time
towards the tails of the needle. This gives rise to a "heat-
convection" term J„„„,which was not included in the
BLM. While J„„„vanishes for symmetric solutions like
spheres, planes, and cylinders, it is clearly nonzero for
needle solutions even in the Ivantsov limit. As we will
discuss later, contributions from J„„,are indeed more
important for steady-state solutions than the heat-
conduction effects that dominate the structure of the
BLM with do &0.

B. Structure of phase space

„(3"]el

Bs
(2.2)

In the steady state, Eqs. (1.1)—(1.4) can be written using
Green s function techniques as an integro-differential
equation that incorporates the nonlocal spatial and tem-
poral dynamics of heat flow. ' The model equations re-
place this by a set low-order differential equations relating
the interface curvature ~ to the arc length s. In the
Ivantsov limit, both the BLM and the GM express sc as an
algebraic function of 8, the angle between the interface
normal and the z axis. Since ~=BO/Bs, this relation is a
differential equation (in a one-dimensional phase space)
that can be solved to determine the shape of the interface.
A family of solutions is found. With do nonzero, the
models predict that the dimension of the phase space
changes as higher derivatives B~/Bs (present only in the
BLM) and 8 ~/Bs appear, but all these are multiplied by
the small parameter do. It is well known that such terms
can lead to singular behavior. Steady-state solutions of
both models can be represented as a flow in a finite-
dimensional (O, x.,B~/Bs) phase space. It is found that in
the absence of crystalline anisotropy and with do nonzero,
there are no solutions with the proper smooth behavior at
the tip (B~/Os=0 at 9=0) that also flow to the physically
relevant (Ivantsov) fixed point z=Blr/Bs=0 representing
the tail of the needle at 8=m/2.

It is the very different phase-space structure for do
nonzero in the BLM and the GM that is mainly respon-
sible for the breakup of the Ivantsov family of solutions.
However, on expanding the integro-differential equation
for the interface temperature, or equivalently, using the
exact boundary-layer formation discussed in Secs. IV—VI
below, we find that in general there should be derivative
terms that survive in the limit do ——0. (Since the J„„„
term mentioned above is nonzero even for do ——0, it is one
source for such terms. See Sec. V for details. ) On dimen-
sional grounds, an Ivantsov derivative of order n in a lo-
cal approach has the form

V- +DV T=0.aT 2

Bz
(2.1) while other non-Ivantsov terms of the same order must be

of the form
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8"~l
doI „, 1&m &n

s
(2.3) (0)

Here l is the boundary-layer thickness (1.7), which
diverges in the tails. Thus, if we expand up to a given or-
der n, we expect the Ivantsov-like terms (2.2) always to
dominate over the non-Ivantsov-like terms (2.3), since
do/l &&1. This suggests that the structure of the flow in
phase space in the tails is actually governed by the
Ivantsov-like terms absent in the BLM (Ref. 30) and that
if a family of perturbed Ivantsov solutions exists, so does
a family of do&0 solutions.

(c)

C. Response to perturbations: A thought experiment

We argued in Sec. II B that the (one-dimensional)
phase-space structure of the BLM with do=0 is artificial.
Indeed, the absence of derivative terms causes the
Ivantsov solutions of the BLM to have an unphysical
response to perturbations, as the following thought experi-
ment illustrates.

Let us imagine two materials with different heats of
fusion L

&
and L z. Since a difference in the heat of fusion

L, corresponds to a difference in the dimensionless under-
cooling 6, the two Ivantsov solutions corresponding to the
cases 1 and 2 and moving at the same velocity V are the
two curves (in two dimensions)

L= Lp L= Lp

FICz. 2. (a) Steady-state needle solutions moving at the same
velocity Vfor two materials with heat of fusion L& and L& with
L» L2. (b) Hypothetical material has latent heat L =L

&
inside

fixed vertical lines and L2 outside. According to the BLM, the
steady-state solution for do ——0 (heavy line) is a superposition of
the two curves in (a). (c) In reality, the shape (heavy line) of any
possible steady-state solution will deviate from parabolic (dashed
lines) near the latent heat discontinuity in a finite region of or-
der the diffusion length.

1 q 1x andz= — x
2p& 2p2

(2.4)

D. Arbitrariness of the global flow in phase space

1 x for ~x
~

&xp,
2p i

z+co ——— x for
~

x
~
&xo,

1

2p

(2.5a)

(2.5b)

where co= —,'xo(1/p, —1/p2). This solution is sketched
in Fig. 2(b).

According to the BLM, the two parabolas join without
any distortions at x =+xo as shown in Fig. 2(b). Physi-
cally, however, it is clear that any possible steady-state
shape must significantly deviate from parabolic in a finite
region around xo of order of the diffusion length because
of heat flow in the boundary layer away from the
interface —see Fig. 2(c). Since the BLM has no flow
terms like B~/Bs, etc. , that survive for do ——0, the shape
cannot respond to the perturbation in a finite region about
xo, as is physically required. A model that had derivative
terms even in the Ivantsov limit would eliminate this ar-
tificial response.

Here we have written all lengths in units of the diffusion
length 2D/V, and p& and pq are the dimensionless Peclet
numbers [see Eq. (1.6)] corresponding to the undercool-
ings 6i and 62, respectively. These two solutions are
sketched in Fig. 2(a).

To discuss the response to perturbations in the BLM,
we now imagine a fictitious material whose latent heat of
fusion L is equal to L& for

~

x
~

&xo, and then jumps
discontinuously to a value L2 (&L&) for

~

x
~

&xo. For
this case, the BLM predicts that there still exists a family
of Ivantsov-like solutions, whose shape consists of the su-
perposition of the two curves in 2.4,

In a boundary-layer approach, one tries to take advan-
tage of the fact that for 1 —6 small, the steady-state inter-
faces are gently curved, so that the radius of curvature of
the interface is much larger than the boundary-layer
thickness l. [Recall that a plane with a.=0 grows for
6 & 1.] For b, close to 1, one has al =(1—A)f (8)
+ O(1 —6) . (See Sec. VIII.) Since jr=88/Bs, we have

1 BI~/Os =l Irdir/88=0(1 —6), etc. , and successive
derivatives l" +'8"~/Bs" of the smooth steady state solu-
tions order in powers of (1—b, ). This suggests that one
can make a local expansion as 6~1 and truncate it so
that only derivatives of relatively low order appear. In
this way, one can indeed formally compute the smooth
steady-state profiles in a power series in (1—b, ), assuming
such solutions exist, as shown in Sec. VIII.

Can one also use this expansion to establish the actual
existence of these smooth steady-state profiles? It turns
out that this is impossible for free dendritic growth. The
difficulty is related to a problem already apparent from
the inhomogeneous Ivantsov problem of Fig. 2. In the
matching region, x near xo, the interface curvature
changes rapidly over a distance of order of the thermal
diffusion length; hence there an expansion assuming slow
variations is inconsistent.

In mathematical terms, one can use the ordering prop-
erty for derivatives of smooth solutions to compute sys-
tematically a (1—5) expansion of a smooth solution, as-
suming it exists. However, the model differential equa-
tion generated by the truncation to a finite-dimensional
phase space by assuming smoothness does not in general
properly describe the behavior of neighboring trajectories
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ep'(x)+2p (x)=(1—e)e ", p (0)= 1 .

The solution of (2.7) is

(2.7)

that can rapidly flow towards, or away from, the smooth
solution. Yet it is precisely the global structure of phase
space around the smooth solution that determines whether
or not a family of such solutions exists in the model equa-
tions, as is seen most easily by an application of a "count-
ing argument" for the number of stable and unstable
directions at the fixed point in the tails. As a result, pre-
dictions about the existence of steady-state solutions given
by model equations for dendritic growth derived in this
way cannot be trusted.

To illustrate these points, we study a simple model in-
tegral equation

x
p(x)+e ' f dy e '" ~'~'p(y)=e

as a~0+. We can obtain the exact solution by differen-
tiation, yielding the differential equation

the form of the smooth solution will be reproduced
correctly, as in (2.11).

A consistent analysis of (2.9) can be carried out for the
smooth solution, assuming it exists. If we substitute the
power-series representation

p (x)=po(x)+epi(x)+e p2(x)+

into (2.9) and solve for the p;(x) recursively, we find

(2.12)

(2.13)

E. Alternative physical pictures

This reproduces exactly order by order the slow part of
(2.8). The analogous expansion for the needle crystal
problem is carried out in Sec. VIII. Of course, this
method yields only the expansion of the smooth solution,
with no information on its stability or existence. Howev-
er, to try for more from a local analysis is highly prob-
lematic, as (2.10) shows.

1 —e „ 1
e "+

2 —6 2 —6
e

—2Z /E (2.8)

There is stable "slow" asymptotic behavior going as e
with a very rapidly decaying transient.

We can also examine the slow solution of (2.6) by a lo-
cal analysis like that done in the BLM. Expanding p(y)
about p(x) in the integral in (2.6), we find, ignoring terms
of Q(e "

)

2p(x) —ep'(x)+e p"(x)—. =e (2.9)

There are two ways to analyze (2.9), both of which have
their direct counterparts in the exact boundary-layer for-
mulation discussed below in Secs. IV—VII. First, in the
spirit of the BLM, let us truncate (2.9) at (say) first order
in e to yield a local model equation

ep'(x)+2p(x) =e— (2.10)

The solution to Eq. (2.10) indeed has a slow asymptotic
part, which, to first order in e, is

p(x)= — 1 ——e
1

2 2
(2.11)

and which agrees with the exact solution (2.8) to first or-
der in e. However, noting that e is a singular perturbation
in (2.10), one might be tempted to conclude that the slow
asymptotic behavior is in general unstable, because the
solution to (2.10) also has a term of the form
p (x) -exp(2x /e) that diverges.

The local model (2.10) gives an incorrect assessment of
the structural stability of the slow behavior e because
the expansion (2.9) is not valid for p(x) (rapidly) varying
on the scale e '. The general phase-space structure of a
model derived in this way is quite arbitrary; indeed, the
phase-space structure of (2.7) and (2.10) is very different.

As we will see in Secs. IV—VII, the BLM can be ob-
tained by a local expansion essentially identical in spirit to
that yielding (2.10). Its predictions, for the stability of
slow (smooth) solutions, as well as that of any other
model obtained in this way, cannot be relied on, though

Since the various terms included in the BLM have an
intuitively clear origin, one might wonder whether, in
spite of the above objections, all physically reasonable
models could still lead to the same conclusions. We do
not believe this to be the case, and will illustrate this by
sketching a model with a slightly different but physically
motivated heat-flow term that turns out to have complete-
ly different behavior. The mathematical reason for the er-
ratic behavior of all such models was discussed in Sec.
II D.

As mentioned earlier, a convenient way to obtain a
local-interface model is to consider, following Ben-Jacob
et al. ,

' an equation for the total heat H contained in
some tube perpendicular to the interface (see Fig. 3). By
postulating a heat equation for H, one then arrives at a
particular model. However, the model one gets depends
both on the shape of the tube away from the interface and
on the approximate heat equation. We now briefly dis-
cuss two such choices.

(a) To arrive at the BLM, the tubes have to be chosen in
such a way that heat conduction J„„dnormal to the tube
edges vanishes for do ——0; in general it is proportional to
(see Sec. VII) J„„d= Dl(BT;/Bs). —In order to bring
about this simple result, however, the tubes must have ap-

FIG. 3. Different choices of the tubes suggest different
model equations. (a) Curved tubes appropriate for the BLM. (b)
Another choice (straight tubes) gives heat conduction even in the
Ivantsov limit and leads to a different model equation.
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preciable curvature near the interface. To make J„„d
vanish in the Ivantsov limit, the tube edges must be nor-
mal to the (parabolic) isotherms and follow the shape of
the constant g lines in the parabolic (g', g) coordinates of
Horvay and Cahn. See Fig. 3(a). By curving the tubes
away from the interface, the heat-conduction term in the
BLM by construction becomes very small, and actually
vanishes for dp ——0. Unfortunately a proper accounting of
this curvature is difficult to treat in a local picture (which
way should the tube bend?) and much of the interesting
physics is now hidden in other terms. For example, the
convective heat-flow term, J„„„mentioned before in Sec.
IIA and discussed in detail in Secs. V and VI, is then
much larger than J„„d—but J„„,is difficult to guess,
and was in fact neglected in the BLM.

(b) Perhaps a more natural way to draw the tubes in a
local picture is simply as straight lines normal to the inter-
face, as sketched in Fig. 3(b). In this case, however, one
will have heat conduction across the tube edges even when
dp ——0; indeed this is one way to see why in general there
should be derivative terms that persist in the Ivantsov
limit. Heat conduction with these tubes turns out to have
the simple form (see Sec. VII) J„„d——D(B/Bs)( T~l)

D(BH/B—s), where H is the total heat content per unit
length of interface.

If we replace J„„d in the BLM by this expression (still
unjustifiably ignoring J„„„),its behavior changes com-
pletely. At large undercoolings the new model for dp ——0
has a family of steady-state solutions that resemble the
needle solutions in the tip [and reproduce the Ivantsov
parabola to first order in (1—b, )) but which cross over to
flat cigar-shaped behavior in the tails, similar to the
behavior in the tails of the GM. A family of such solu-
tions survives for dp )0.

The point of this discussion is not to suggest that this
new model is superior to the BLM; in fact the behavior in
the tails is physically incorrect and there are other unsa-
tisfactory features. Rather we want to emphasize that
underlying the physically pleasing structure of the BLM
are implicit and uncontrolled mathematical assumptions
that cannot be justified from a strictly local picture, but
whose details determine the steady-state predictions of the
model.

In the systematic formulation of the boundary-layer ap-
proach discussed below in Secs. IV—VIII, the different
tubes correspond to choosing different curvilinear coordi-
nate systems away from the interface. We derive an exact
equation of motion for H in a tube that is correct for any
(arbitrary) choice of curvilinear coordinates, as is physi-
cally required. However, different physically motivated
approximations to these equations in the spirit of the
BLM give completely different results, for the mathemati-
cal reasons discussed in Secs. II C and II D.

In Sec. VII we discuss in detail a different model that
treats J„„d and J„„„exactly like the BLM, while adding
a physically motivated first-derivative term B~/Bs that
survives in the Ivantsov limit. The predictions of this new
model seem quite satisfactory: for dp ——0, there is a fami-
ly of solutions that become parabolic in the tails for all 6,
and also reproduce the exact Ivantsov parabola to first or-
der in (1 —6). Contrary to the BLM, however, now a

family of solutions is also found for dp nonzero, even
though the highest derivative has exactly the same form
as in the BLM: dpi' ~/Bs . Nevertheless, as argued in
Sec. IID, all such predictions are arbitrary and we must
look elsewhere for a convincing demonstration of the
selection mechanism. We do believe this model is of some
mathematical interest for testing the new solvability
methods that have been applied to the Hele-Shaw prob-
lem' ' and to dendritic growth, ' since the existence of
the family can be demonstrated by elementary means. It
would also be interesting to study the evolution in time of
this model and examine possible dynamical implications
of its different steady-state structure.

III. OPEN QUESTIONS CONCERNING
OTHER APPROACHES

Although it is often felt that other numerical and
analytical work on dendritic growth has convincingly vin-
dicated the microscopic-solvability scenario, we briefly
touch in this section on some open questions we believe
still may exist about this issue.

Barbieri, Hong, and Langer' have applied methods
developed and successfully employed in the viscous
fingering problem' ' to a dendritic growth model in the
limit that the Peclet number tends to zero. Although one
might think of the Laplace equation as the zero-Peclet-
number limit of the diffusion equation, ' it is important
to remember that the two equations have very different
asymptotic properties (cf. the discussion in Sec. I). For
dendritic growth (not constrained by walls), the zero-
Peclet-number limit is quite singular —the very existence
of Ivantsov solutions is a consequence of the physical ef-
fects that are responsible for the difference between the
two equations. In the approach of Barbieri, Hong, and
Langer' perturbations away from the Ivantsov solution
for small do are described by the Laplace equation. They
justify it, following Pelce and Pomeau, by noting that
the integral operator for the difference between the
Ivantsov and non-Ivantsov solution has a well-defined
limit. However, since neither solution exists for p=0 and
since the physics of steady-state solutions goes beyond the
Laplace equation, it is not clear that this procedure has re-
moved all problems with this very singular limit. We
note, e.g. , that their final equation appears to have elim-
inated the asymmetry between response to perturbations
in the tip and tail region discussed in Sec. II A, which is a
consequence of the V "r)T/dz term in Eq. (2.1). It is there-
fore unclear to us how much their analysis reveals about
the full problem with V small but nonzero. However, the
consensus of most workers is that much of the structure
of the results of Barbieri, Hong, and Langer can be car-
ried over to finite Peclet numbers, so our concerns on this
point may well be unfounded. See Sec. X for further dis-
cussion.

Numerical work on the fu11 problem by Meiron' and
by Kessler et al. ' has also been interpreted as consistent
with the breakup of a family of solutions. Aside from
some technical issues, which will be detailed in future
work, ' our main reservation with the numerical work
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(a) (b)
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FIG. 4. Particle on hill analogy. (a) Hill structure illustrating
microscopic-solvability picture. (b) Hill structure for "attractive
tails" as in the contractive flow model, discussed in Sec. VII.

concerns the method and its interpretation. In both inves-
tigations, a method suggested by the local models was
used: rather than imposing z'(x=O)=0 in the program
used to compute a two-dimensional symmetric steady-
state solution z(x) [ =z( —x)], this derivative was left un-
specified. For a smooth profile, z'=dz/dx should, of
course, vanish at x=O. In general, then, z'(x=O) was
found to be small but nonzero; if this value should pass
through zero upon varying the velocity at fixed do (de-
pending on the crystalline anisotropy imposed), this was
interpreted as a signal of the existence of a solution at that
particular value.

We believe it is difficult to interpret the results of this
method. To see this, we have illustrated in Fig. 4 the two
scenarios discussed in Sec. I with the analogy of a ball
subject to friction y rolling down a hill. The top of the
hill corresponds to the tip of the dendrite, and we will
think of y as the analogue of the velocity V of a dendrite.
In the analogy, the microscopic-solvability picture likens
the tail to a local maximum on the right [Fig. 4(a)], so
that for arbitrary values of the friction the ball will not
roll from the top ("tip"), with initial momentum P=O, to
the tail.

The P-x phase space corresponding to this situation is
sketched in Figs. 5(a) and 5(b). For an arbitrary value of
y, only one trajectory flows into the tail and there is no
trajectory going from the fixed point corresponding to the
tip to the tail [Fig. 5(a)]; only for a particular value y* of
the friction does such a trajectory exist [Fig. 5(b)]. This
corresponds to those special situations in which a steady-
state solution is found.

A good way to find numerically the values y* at which
a smooth trajectory connecting the two fixed points exists
is to integrate the equation in phase space backwards. In
general, one will then find P (x =0)&0; if P (x =0)
changes sign upon varying y, this signals the value y' at
which a trajectory exists. Note that in this scenario neigh-
boring trajectories diverge near the "tail" fixed point;
upon integrating backwards they therefore converge so
that the method is numerically stable. The special values
of the velocity at which solutions exist in the local models
were indeed determined in this way; ' the approach em-
ployed to study the full equations is also based on this
idea. ' '

However the disadvantage is that this approach may
well give similar results for other scenarios. In the analo-

gy, our picture views the tail as the attractive fixed point

of Fig. 5(c) corresponding to the minimum of the poten-
tial of Fig. 4. Indeed, for any arbitrary values of y there
is now a trajectory with P=O at the tip that flows to the
tail. However, this trajectory will in general not be found
upon integrating backwards from the tail to the tip as
described above, because this approach is now numerically
unstable due to the different nature of the fixed point. In-
stead, one expects to find one of the many well-defined
trajectories that have P (x =0)&0. As a result, one
might erroneously conclude that no "smooth" solution
with P(0) =0 exists for general y.

This description applies to the local models, whose
structure differs from the exact integro-differential equa-
tions for the interface shape. Hence numerical studies of
the full problem do not proceed in quite the way described
above; rather they employ Newton's method to determine
the whole shape at once. Nevertheless, similar conceptual
difficulties appear to exist in that method. If the tails
have the properties we argued for physically, it is possible
that after relaxing the boundary condition at the tip, both
a solution with dz/dx=O and one with dz/dx&0 could
exist. In the case of multiple solutions, Newton's method
might find only the solution with the largest basin of at-
traction. A similar question of uniqueness of the solu-
tions of the integral equation may also arise in the analyt-
ic methods.

These considerations and preliminary numerical work
suggest that it might be worthwhile to perform additional
tests to interpret the earlier numerical results. Such tests
will be reported in a future publication. '

IV. SETTING UP A BOUNDARY-LAYER APPROACH

A. Time-dependent curvilinear coordinates

We now discuss in detail our generalized boundary-
layer approach. In this section we set up a formalism that
will allow us to describe the moving interface and the as-
sociated temperature field. The analysis is restricted to
the case of two dimensions. Let r;(u2, t) be the position
vector at time t from a space fixed origin to a point on the
moving interface, parametrized by the value of some arbi-
trary coordinate u2 expressing displacement along the in-
terface. Intrinsic properties of the curve at that point,
such as the curvature ~; or arc length s measured along
the interface from some fixed line, are independent of the
particular choice of coordinate u 2, which itself could vary
in time. A very useful choice for u2 when thinking about
local properties of models of interface evolution was sug-
gested by Ben-Jacob et al. ' and Brower et aI. ; u2 is
chosen so that the velocity (Br;/Bt)„has only a normal"2
component V„. Thus derivatives at constant uz corre-
spond to the normal derivatives of Ben-Jacob et al. and
Brower et al. If we picture growth as occurring by infini-
tesimal displacements normal to the interface, then the
point with constant u2 follows this local motion directly.
However, regardless of how the interface actually moves,
we can always make such a choice for uz (Brower et al.
term this a "gauge freedom") and it seems most natural
for leading to a local description of interface motion.

Here we embed this physically suggestive choice of in-
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(a)

x (c)
P

(b)

FIG. 5. Phase-space analysis of particle on hill analogy. (a) With fixed hill structure as in Fig. 4(a) and arbitrary friction y, the
ball cannot roll down the hill with initial momentum P=O and come to rest in the tail. (b) For a particular friction y, the ball rolls
from the tip to the tail. (c) With hill structure as in Fig. 4(b), for any y, there always is a trajectory connecting tip and tail.

terface coordinates into a general set of time-dependent
curvilinear coordinates u~, uz capable of describing not
only the interface but also the temperature field and other
properties away from the interface. We let u

&

——0 give the
interface position at all times with u

& ~ 0 indicating
points in the liquid phase, while uz at the interface is
chosen as indicated above. We require that the coordi-
nates u&, uz away from the interface form an orthogonal
system, i.e., the constant u& and uz curves intersecting at
each point in space are perpendicular. A physical dis-
placement ds2 along some curve defined by u i ——const (re-
ferred to hereafter as a u

&
curve) is given in terms of the

sca1e factor h 2(u i, u2, t) as dsz ——h z du 2. Similarly for dis-
placement along the orthogonal u z curves we have
ds& ——h~ du~.

Of course, there is a great deal of freedom left in the
choice of the coordinates away from the interface. How-
ever, physical properties and exact relations are invariant
to all such choices. We derive in Appendices A—C and in
Secs. V and VI below a number of exact relations that
hold for any set of orthogonal time-dependent curvilinear
coordinates.

Associated with the u&, uz and h&, hz fields are
several other fields with useful properties. As shown in
Appendix A, the curvatures i'. of the u~ lines (j=1,2)
are given by a'i ——(hih2) 'Bh2/Bui ——BO/Bsq and
Kp

——(h i h2 ) 'Bh
i /Bu2 ———BO/ Bs i. Here O is the angle

between the (space-fixed) z axis and the unit normal ai to
the u, lines (see Fig. 6), and is defined by cosO=z ai.
The arc length s2(u, , u2, t) is measured from the intersec-
tion of the u& curve with the z axis, while s& is measured
from the interface u

&
——0. When referring to values at the

interface u
&

——0, we add a subscriPt i, e.g. , K&;,0;, and sz;,
and when no confusion will result, we will write K~;=—K

and sz;=—s.

Other fields describe the time-dependence of our coordi-
nates. As shown in Fig. 6, we introduce velocity fields
V& and Vz giving the normal velocities in the fixed lab
frame of the u& and uz lines. In terms of the position
vector r from some fixed origin in the lab frame, these
satisfy

= V)a)+ Vzaz, (4.1)

where aj is the unit normal vector to the lines u~ =const.
Here the notation ( )„ indicates a derivative at constant u

~

and uz. At the interface u& ——0 we have the boundary
conditions

Vi =Vn

Vz; ——0,
(4.2)

(4.3)

B. Choice of coordinates away from the interface

When we wish to consider a specific coordinate system,
it is convenient to define it implicitly by requiring that the
exact temperature field T(ui, u2, t) have some particular

where V„ is the normal interface velocity appearing in Eq.
(1.4). Equation (4.3) insures that the interface velocity at
fixed uz has only a normal component. However, it is
important to note that in general away from the interface
we must have Vz&0, since the behavior of the Vz field is
coupled to that of the hi, lr~, and Vi fields (see below).

In Appendix A we give a detailed mathematical discus-
sion of our time-dependent curvilinear coordinate system
and derive a number of exact geometric relations between
the h&, hz and V&, Vz fields in terms of the curvatures
K),Kz. These relations hold for any choice of orthogonal
curvilinear coordinates away from the interface.
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Here hi; is the value of hi at the interface. Thus the
coordinate system implied by Eq. (4.4) has

by (4.4) or (4.6) show up immediately as different boun
dary conditions that the hi field must satisfy at the inter-
face u

&

——0. Imposing the heat-conservation condition
(1.4) at the interface we have with the definition (1.7) for
l,

FIG. 6. Interface and the associated curvilinear coordinate
fields u 1 and uq. The interface position at all times is given by
u&

——0 (heavy line). The total heat content in the tube bounded
by lines of constant u~ and uq+du2 is H ds; V~ and Vq are the
normal velocities of the constant ul and u2 lines. Since Vq&0
for u 1 & 0, the tube deforms as a function of time, giving rise to
J„„,as illustrated in (b).

T(u „u2, t) = T;(u2, t)e (4.4)

The interface temperature T; satisfies the Gibbs-Thomson
boundary condition

T; =5—dpK, (4.5)

where v (=xi;) is the interface curvature. (For simplicity
we neglect interface kinetics. ) Note that when do ——0,
lines of constant u i in (4.4) are isotherms. This is also the
case for the constant g curves in the steady-state needle
crystal solution of Horvay and Cahn, which uses parabol-
ic coordinates (g, il). Thus in this special case there is a
particularly simple relationship between the ( u i, u 2) coor-
dinates implicitly defined by (4.4) and the parabolic (g, g)
set. In Appendix D we give the equation that results
when (4.4) is required to be an exact solution of the tem-
perature equation.

Another choice, equally valid for exact work but sug-
gesting different approximations, is to require

T(u „u2,t)= T;e (4.6)

where the boundary-layer thickness l(u2, t) is defined in
Eq. (1.7). The form of Eq. (4.6) is suggested from the ex-
ponential decay on the length scale l of the temperature
field in front of a moving plane with 6=1. We might
hope that a steady-state needle crystal solution for 6 near
1 could be put into the form (4.6) with a scale factor
hi(ui, u2, t) that does not vary significantly from unity,
its value for the moving plane.

The different choices of coordinate system exemplified

form when expressed in terms of the u
&

and u z coordi-
nates. In effect, the heat-conduction equation for the
temperature field then becomes an equation for the ap-
propriate scale factors hi(ui, u2, t) and h2(ui, u2, t) that
permit a solution of the desired form.

A particularly useful choice, both for algebraic conveni-
ence in carrying out the series expansions discussed in Sec.
VIII and because it suggests approximations leading to
the BLM equation of Ben-Jacob et al. ,

' arises when we
require

hi; ——l,
while that generated by (4.6) has

hi; ——1.

(4.8)

(4.9)

Perhaps the difference between these coordinate sys-
tems is most apparent when one examines the curvature
K2; of the u2 lines intersecting the interface. Using Eq.
(A4), we see that Eq. (4.8) gives in general a nonzero cur-
vature

1 Bl
K2]. =

l Bs
(4.10)

to the u2 lines, while the alternate coordinate system im-
plied by (4.6) has

K2;
——0. (4.11)

V. BALANCE EQUATION FOR HEAT CONTENT
IN THE BOUNDARY LAYER

As pointed out by Ben-Jacob et al. ,
' it useful to exam-

ine the behavior in time of H, the total heat content per
unit arc length of the interface. In this section we derive
an exact result for (BH/Bt)„, which is easily related toQ2~

approximations introduced by Ben-Jacob et al. %'e de-
fine H as

oo

H(u2, t)—: du, h, (u„u2, t)' =h.;

Xh2(ui, Q2, t)T(ai, a2, t),

where h2; ——h2 (u i ——0, u2, t). Note that H ds2; =Hh2; du2
is the total heat content in the tube between lines of con-
stant u 2 and u 2+du 2, as illustrated in Fig. 6, and that in-
tegrating H ds2; over all tubes along the interface indeed

Thus this latter coordinate system is more nearly rec-
tangular (at the interface) than is that given by (4.4), and
indeed might seem more "natural" in a local picture of in-
terface evolution. Figure 3 shows qualitatively these two
choices for an Ivantsov needle. However, the coordinate
system generated by (4.4) turns out to be the one that
naturally leads to the BLM equation, and it is also easier
to use in most algebraic work because of its simple form
in the Ivantsov limit. Hence we use it for most of the rest
of this paper when a specific choice is required, and re-
turn to the alternate (4.6) only in Sec. VII where model
equations are discussed. Most results, including the dif-
fusion of the heat content in the boundary layer given in
Sec. V, hold whatever choice we make.
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(aH/at)„, = V„(1 r, ) aJ—,.„,/a—s

—aJ,.„,gas —aV„~, (5.2)

where

aTJ„„d=——D dui
0 hp Buq

00= —D dsi
Bsz

gives the total heat content.
It is clear physically that three effects can contribute to

the change in time of the heat content in a tube: (i) the
"heat surplus" generated at the interface, (ii) heat dif-
fusion across the constant-u2 lines, and (iii) the motion of
the tubes with respect to the lab frame. This effect is il-
lustrated in Fig. 6(b); it can be seen that the tube boun-
daries will in general move in time because of deforma-
tions in shape (e.g. , the stretching sketched in the figure)
as well as due to the normal motion of the interface.
(Even if a curved tube does not deform, displacement of
the tube normal to the interface still causes motion of the
tube boundaries away from the interface. ) In the lab
frame, the tube boundaries thus move with a velocity V2
normal to themselves, with Vz ——0 at the interface. Alter-
natively, when following a tube, points in the lab frame
move with a velocity —V2 across the tube boundaries,
and the resulting term in the heat-balance equation can be
viewed as a "convective" heat flow.

In Appendix 8 we calculate (BH/Bt)„, using (5.1) and

the kinematic equations in Appendix A and find the exact
result

II D and amplified below.

VI. EXACT STEADY-STATE EQUATIONS

aa
VsinO;+HVcosO; ~

Bs

=(1—T;)VcosO; — J„„,— J„„d,
Bs ds

or, since ~=BO;/Bs,

(6.1)

(H sin8;+ J„„,+J„„d)=(1—T; )cosH;,
s

(6.2)

where J=—J/V. Equation (6.2) is exact, holds for any
choice of coordinates away from the interface, and is the
starting point for all of our analysis in the steady state.

As shown in Appendix C, Eq. (C9), we can also rewrite
(6.2) exactly in terms of the simpler but less physically
transparent quantity

M= f du~ h~sinOT, (6.3)

In the steady state we follow Ben-Jacob et al. and reex-
press the time derivative (BH/Bt)„ in terms of a spatialQ2

derivative, using the steady-state chain rule given in Eq.
(C7). Appendix C discusses in some detail the steady-
state simplifications of the results of Appendix A. In par-
ticular, the normal interface velocity satisfies V„= Vcos8;. Thus (5.2) becomes, on using (4.2), (4.3), and
(C7),

(5.3) as

Jconv du ) h ) V2 T ds ) V2 T
0 0

(5.4) (M+J„„~)=(1—T;)c soO; .
9s

(6.4)

Again these equations hold for any choice of coordinate
system away from the interface.

The first three terms on the right-hand of (5.2) are the
contributions (i)—(iii) discussed above. The fourth term
takes account of the fact that the interface arc length ds2;
of the constant- u 2 tube increases during growth of a posi-
tively curved interface since constant- u 2 points grow
apart in time. Thus H, the heat content per unit length of
interface, decreases. Equation (5.2) is one of the basic re-
sults of this paper.

All the terms in (5.2) except the J„„,term had been an-
ticipated in the physical arguments that lead Ben-Jacob
et al. ' to the BLM equation. Indeed, as we show below,
simple approximations to (5.2) yield directly the BLM.
Furthermore, the J,o„, term omitted in the BLM plays no
essential role in the Mullins-Sekerka instability and it van-
ishes identically by symmetry for a growing plane or
sphere, all these being cases where the BLM was found to
capture the crucial physics. ' However, as we now show,
for the steady-state needle crystal problem there is an inti-
mate connection between heat conduction expressed in
J, „d and "heat convection" given by J„„„,which de-
pends on the (arbitrary) choice of coordinates away from
the interface, and both terms must be considered. Unfor-
tunately, even when this is done, one still cannot rely on
the steady-state predictions of the resulting model equa-
tions because of the general objections discussed in Sec.

Thus the effect of the J„„„term in (6.2) is implicitly and
exactly taken into account if we consider M rather than
H sinO;. This simplification holds only in the steady
state. The compact form of Eq. (6.4) is useful in the alge-
braic manipulations leading to the (1—b, ) expansion given
in Sec. VIII, but for the discussion of model equations, it
seems more profitable to use (6.2), and deal with the same
quantities H, J, „„and J„„d,that also occur in the time-
dependent problem (5.2).

There are at least two ways we can exploit (6.2) or (6.4).
The first is to use it to generate an expansion of those
physically relevant steady-state solutions that join
smoothly onto the Ivantsov parabola far from the tip. As
discussed in Sec. II D, successive derivatives of such
smooth solutions can be ordered in powers of (1—6).
This expansion is carried out in Sec. VIII and is directly
analogous to the expansion (2.12) of the solution to the
model equation (2.6) discussed in Sec. II D. However, this
method gives no information about whether there exists a
continuous family, a discrete set, or even no such solu-
tions with the assumed smoothness properties. Further-
more the (1—5) expansion is asymptotic (even for the
Ivantsov solution) and so could miss some important
features of the true smooth steady-state solutions, assum-
ing they do exist. Thus, the results of the (1—b, ) expan-
sion have at best only a qualitative validity.
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The second way to exploit (6.2) leads directly to the
model equations, but the justification is much less ap-
parent. The idea is to try to express H, J„„„,and J„„din
terms of 8;, x (=BO;/Bs), B~/Bs, . . . . If this is possible,
then (6.2) becomes a differential equation for v as a func-
tion of 0;, which could in principle be solved to obtain the
steady-state profile. Further, one could hope to use the
differential equation to determine whether the physically
relevant smooth solutions actually exist. This is the basic
idea of the BLM of Ben-Jacob et al. '

Of course, determining the functional dependence
H(6;, ~l, l Bir/Bs, . . . ), etc. , is very difficult. Indeed from
(5.1), (5.3), and (5.4) we see that H, J„„„andJ„„dinvolve
integrals over all space. Thus a representation in terms of
the interface values of x. and its derivatives must, formally
speaking at least, involve derivatives of arbitrarily high
order (generated, say, from terms in the Taylor expansions
of the h &, hz, and V2 fields about u ~

——0). Further, since
we wish to determine the conditions under which smooth
physical solutions exist, we can use no smoothness as-
sumption to eliminate the higher-order derivatives
8"~/Bs". Indeed, since the driving force is large near
b, = 1 we expect on physical grounds (see Sec. II C) that an
arbitrary trajectory could vary appreciably on the short
length scale l.

An analysis of the general problem thus must take ac-
count of possibly singular solutions with K varying rapidly
with respect to s, so that 1 Bv/Bs =O(vl), etc. A proper
description of such solutions requires an essentially
infinite-dimensional phase space (O, ~l, l Ba/Bs, . . . ). An
arbitrary truncation to (say) a three-dimensional phase
space as in the BLM cannot be relied on to reproduce the
proper stability, or lack thereof, of the smooth solution.
This was illustrated in Sec. IID for the local approxima-
tion (2.10) to the integral equation (2.6). The higher-order
derivative terms 1"+'8"~/Bs", n &3, while small [of the
order of 0 (1—b, )"] for smooth solutions, play an impor-
tant role in describing the behavior of an arbitrary trajec-
tory where 1 Bv/Bs =O(vl), etc. , and hence in determin-
ing if a smooth solution actually exists. As we will now
see, this leads to great variability in the predictions of dif-
ferent model equations obtained by such truncations.

VII. MODEL EQUATIONS

To obtain model equations from Eq. (6.2), we pick a
particular coordinate system away from the interface and
approximate h&, h2, and V2 in the integrals defining H,
J„„„,and J„„d in terms of their values at the interface.
Although (6.2) is exact and holds for any choice of coordi-
nate system, different choices of coordinates away from
the interface turn out to suggest different models, with
very different properties. Similarly for a given coordinate
system, we can obtain different results depending on how
we approximate h&, hz, and Vz in Eq. (6.2). This, of
course, suggests that the results of any model we obtain in
this way should be viewed with considerable skepticism.

Since we have argued that there is no mathematically

justified procedure for deriving model equations, we will
first consider some physically motivated approximations
in the spirit of the BLM and briefly discuss the models
that result. Mathematical details are given in Appendix
E. The first truncation leads immediately to the BLM
equation of Ben-Jacob et al. ' Let us use the coordinate
system generated by (4.4) and approximate h &, h2, and V2

by their values at the interface in the integrals (5.1), (5.2),
and (5.4). This may seem very plausible for b, ~ 1 where
there is a thin boundary layer. This approximation
represents the first term in the Taylor-series expansion of
these quantities about their interface values and is the
starting point for the systematic expansion in Sec. VIII.
We immediately obtain the approximations used by Ben-
Jacob et al.

H=T;l,
J„„=—(D /V)1 8 T; /Bs = (D /V)ld Bv/Bs, (7.1)

c}T;/Bs =A, ,

2VsinO; '
A+T;

D ' DcosO;
ax/as =

cos 0;( I —T; )

D T;

x2

T

—~ tanO;A. , (7.2)

where for do&0 we have v=(b, —T; )/do from Eq. (4.5).
For do ——0, we have T; =b„A.=O, and (7.2) reduces to

Da(1 —b ).
g2

cos 0; . (7.3)

This is an equation for a family of parabolas; to first or-
der in (1—6), Eq. (7.3) agrees with the exact Ivantsov ex-
pression (1.6) relating the tip curvature to the undercool-
ing. We see directly from the Ivantsov solution that
el =(1—b, )f(0;)+O(1—6}, and the same must hold
true for any physical smooth solution (7.2) might possess
when do&0.

Note from (5.3) that with this choice of coordinate sys-
tem, J„„d vanishes identically in the Ivantsov limit, in
agreement with the BLM approximation (7.1), and that
J„„d is generally of O((l —b, ) ) for smooth solutions.
[From (7.1), it follows that J„„d (D/V}(do/——
1)1 ~(Bx/BH)=O((al) )=O((1—b. ) ). ] On the other
hand, the J„„,term set equal to zero in the BLM is actu-
ally O(1 —5) for smooth solutions (it is nonzero even in
the Ivantsov limit). Indeed, from (5.4) we get to lowest
order J„„„=—T;1 BV2/Bu~, and according to Eq. (A14)
evaluated at the interface, we have
BV2/Bu~ ——2D tan0~+ -. . . Hence J, „,= —2D~l tanO
= O(1 —b, ), and the J„„„term is much larger than the
J„„d term kept in the BLM equation. Thus the BLM
with do & 0 is never exact, even in the limit 6~1

Jconv =0 ~

and Eq. (5.2) reduces to the time-dependent BLM equa-
tion studied by Ben-Jacob et al. Substituting (7.1) into
(6.2) yields the steady-state BLM equation. It is most
conveniently written as a set of three coupled equations,

BO;/Bs —=~,
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We have already discussed the main prediction of the
BLM: the nonexistence of smooth steady-state solutions
to Eq. (7.2) for do &0 in the absence of anisotropy. ' This
result is rederived in the more general mathematical treat-
ment of local models given in Appendix E. In Sec. IIC
we argued that the absence of derivative terms in the
BLM equation (7.3) for do ——0 is a crucial element in this
predictions, and one that can be questioned on both physi-
cal and mathematical grounds. The following model ex-
tends the phase space in the Ivantsov limit and indeed
turns out to give very different predictions.

Let us examine the BLM approximation to H =T;l.
This is the dominant term and is valid for a plane, but it
is clear physically that for fixed boundary-layer thickness
l, the heat content per unit length of interface is larger for
a positively curved interface than for a plane, since the
normals to the interface diverge apart. Indeed, this effect
underlies the Mullins-Sekerka instability. Thus we ex-
pect on very general grounds an expression for H of the
form

H =T;l(1+a~1+ . ), (7.4)

where a is some positive coefficient of order unity. [For
dp ——0, the exact Ivantsov solution ' can be put into the
form (7.4) with a=2.] We can obtain this ~l correction
term mathematically by taking the next term in
the Taylor-series expansion of h&h2 about u& ——0 in the
definition of H, Eq. (3.1), noting that
= ( h

&
h z ) '(c)h z /Bu

& ); and that according to Eq. (D10)
Blnh, /c)u, =el —(1—b ); this gives Eq. (7.4) with a=2.
Of course, as argued before we have no real argument for
stopping this expansion at first order. Thus we can give
no systematic mathematical justification and we suggest
strictly as a new physically motivated model equation the
use of (7.4) for H with J„„„and J„„d as given by the
BLM. For reasons that wi11 become immediately ap-
parent, we call the resulting model the contractive flow
model (CFM).

The CFM is analyzed in Appendix E. For dp ——0 there
is a family of solutions that agree with the exact Ivantsov
solutions to O(1 —b, ); there are nonparabolic corrections
but these are higher order in (1—6). In the tails the
shape becomes parabolic for all A. The Ivantsov-like nee-
dle solution for 6=0.95 and a=2 is represented in Fig. 7
by the solid line and other trajectories in the two-
dimensional (O, v) phase space by the dashed lines. Note
that the fixed point at 0=~/2 is stable and all trajectories
flow towards it. There is indeed "contractive flow" on
following trajectories from the tip region to the tails.

This can perhaps be seen more dramatically for dp )0.
The family of solutions persists —indeed numerical calcu-
lations and analytical considerations agree that there is
now a "family of families, " where needlelike solutions
with a range of ~, but satisfying ~,'=0 are found. Figure
8 shows how trajectories that initially lie within the
square box for 0=0 are confined to smaller and smaller
rectangles as 0 increases, with all trajectories flowing to
the Ivantsov fixed point in the tail.

While we doubt that this prediction of "superstable
tails" will turn out to be correct for the full problem, the
model does show that it is a mathematical possibility, and
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FIG. 7. Trajectories in CFM in the Ivantsov limit. Only one
trajectory connects the tip with B~/BO=O to the tail at O=m. /2
but all trajectories flow into the tail.
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FIG. 8. Contractive flow for do )0 illustrated. Poincare sec-
tions with successive ~, da. /dO planes are shown for trajectories
starting in the initial square at O=O. The shrinking of the area
with increasing O illustrates the contraction of the flow, while
the side drawn with a heavy line illustrates its rotation. Eventu-
ally, all trajectories flow into the fixed point at O=~/2.

that adding a higher-derivative term can actually increase
rather than decrease the number of solutions. ' It also il-
lustrates how the predictions of all such models depend on
details of the phase-space structure.

Yet another model with different properties arises if we
return to the basic BLM approximation of taking only the
interface values of h &, h2, and V2 in (3.1), (3.3), and (3.4)
but consider a different coordinate system away from the
interface. Clearly this choice can have no effect on any
physical property, and indeed the exact expansion in

powers of (1—b, ) discussed in Sec. VIII is unchanged.
However, let us choose the coordinate system implied by
Eq. (2.6) and evaluate H, J„„„,and J„„dby approximat-
ing h&, hz, and Vz by their values at the interface. We
find H=T;l and J, „,=0 just as in the BLM but now
J„„d———D(B/Bs)(T;1) = D(BH/Bs). Wi—th this model
we have heat conduction even in the Ivantsov limit and
here we again find a two-dimensional phase space. The
properties of this model can be analyzed by the methods
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of Appendix E, and we have also performed some numeri-
cal calculation. Some of the results were briefly men-
tioned in Sec. IIE, and we will not discuss them further
here.

Finally we analyze in Appendix E a model with a
three-dimensional (H, v, B~/Bs) phase space in the Ivantsov
limit, obtained by keeping terms up to 0((1—6) ) for
smooth solutions in the exact (1—b, ) expansion for M in
Eq. (6.4), as described in detail in Sec. VIII. The phase
space for this model has two stable and one unstable
directions in the tail at 0=~/2, consistent with the ex-
istence of a family of solutions, while not yielding the
superstability of the tails as does the CFM. Thus we have
a host of models with different stability properties in the
tails, and generating different predictions about the ex-
istence of a family of solutions for dp &0. We conclude
that none of these predictions can be relied on, for the
mathematical reasons discussed in Sec. II D.

of the (1 b,—) expansion. We have verified that this pro-
cedure reproduces the exact Ivantsov solution through
0((1—5) ). Similarly we find for do&0 to 0((l —b, ) )

DK
V

(1—b)C
(1 —doC')

3C+(1—b, )~ [1—doC (4—3C )

(1—doC )

+d OC (1—4C +3C )] .

(8.2)

Here C=cosO;. This equation is consistent with the ex-
istence of a family of solutions, parametrized, e.g. , by V.
Of course, we cannot conclude that such a family actually
exists since we have assumed the smoothness property in
the derivation of (8.2).

VIII. (1—6) EXPANSION OF SMOOTH SOLUTIONS

Consistent results, that do not depend on choice of
coordinate system away from the interface, can be ob-
tained if we carry out an expansion in powers of (1 —5)
of the smooth solutions of (6.2) or (6.4), assuming that
such solutions exist. For this purpose it is simplest to use
(6.4). Our basic strategy is to expand h &, h2, and sin9 in a
Taylor series about u&

——0 and thus evaluate the integrals
in (6.3) or (5.3) and (5.4). We make use of the ordering
property for smooth solutions l" + '0 "I~/Bs "=0 (( 1

—b, )"+') to help determine the order in (1 —5) of the re-
sulting terms. For algebraic simplicity we use the coordi-
nate system (4.4), but it is easy to verify that the different
coordinate system (4.6) gives the same results.

The expansion begins by noting that to 0(l —b, ) we
can neglect J„„q [it is 0((1—b, ) } for smooth solutions]
and replace h

&
and sinH in (6.3) by their values at the in-

terface. This yields M = T;I sin9; =(D/V)tanO;, since
T; = b, —dox = 1+0(1—b ). [For estimating order in
(1—b, ), it is safe to treat do as 0(l), although in fact
do &&I in all physical applications. ] Equation (6.4) then
yields ( D/V)x/cos 8; = (1—b, +do~)cos8;, or

(1 —b )cos 0; +0((1—b, )'},
1 —d pcos 0&

(8.1)

where dp=dpV/D. The next correction term from the
Taylor series involves Bsin0/c)u

&
( =cos8 h

~ v2) and
BhI/0u& evaluated at the interface. These can be ob-
tained from results shown in Appendix D, Eqs. (D6) and
(Dl 1). Equation (D6) holds in general and hence it can be
differentiated again with respect to u, to yield higher
derivatives in the Taylor series. Its structure is such that
a derivative 8"/cIu ] generates at most a term of the form
8/Bu& (8" '/Bu

~

'
) and hence it can be evaluated at the

interface in terms of the lower-order quantities already
calculated. We anticipate, and find for smooth solutions,
that each differentiation generates terms of successively
higher order in powers of (1—b, ). See Appendix D for
more details.

In this way we can calculate as many terms as we desire

IX. TEMPERATURE EQUATION TO 0 (1—6)

As Sec. VII demonstrated, the possible existence of
solutions for which the derivatives of K do not order
makes the analysis of truncated differential equations de-
rived from an integrated quantity such as H inconclusive.
We therefore return to an analysis of the full steady-state
temperature equation, and the only simplification left to
us is to assume that 5 is close enough to 1 that terms of
0((1—b, ) } can be ignored. However, we assume no
smoothness properties for a general trajectory and take K

and its derivatives as being of the same order in (1—b, ).
We use the coordinate system implied by Eq. (4.4).

We assume that we are close enough to the Ivantsov
solution that we can linearize around it and write

Kr =K) + 6Kr
r.

l
(9.1)

with similar definitions for perturbation of h~", K2', etc.
Here the superscript Iv refers to the Ivantsov solution.
We choose the prefactor I in (9.1) and related definitions
so the perturbations are dimensionless, and derive rela-
tions linear in the perturbations and valid to 0(1—b, ).
These relations come from the exact kinematic equations
discussed in Appendixes A and C and the full temperature
equation in Appendix D, where we use the coordinate sys-
tem implied by Eq. (4.4).

In particular, if we consider variations of (D8),
equivalent to the full temperature equation, we find

06h ) (36 8 6K—6K~ —6h ~+tanO;60=dp — tanO;+I
Bu) Bs ps 2

+0((1—&)') . (9.2)

06K, 06K= —1 +0((1—6)') .
Bu

& Bs2
(9.3}

Note that the non-Ivantsov terms enter as a constant
boundary term in (9.2). We shall also need variations of
Eq. (A5), which can be written
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These equations must be satisfied subject to the boundary
conditions h1; ——l or

5h );——tanO;5O; (—d() /1)5K,

or, taking the derivative with respect to s,

a6K
6K2; ——6K tanO; —dp

3s

(9.4)

(9.5)

where 5K=—5K&; and 5K2 ——l(85h ~ /Bsq)+O((1 —b ) ).
We anticipate from the form of the equations that solu-

tions involve exponentials and can be written in a product
form f( u&)g(u 2). In particular, we will verify that ap-
proximate solutions can be found whose u2 dependence
for all 6h~ and 6K& can be written in the convenient form

—As& /I
e (9.6)

where A (O;) is a smooth function of O;, the sign of whose
real part determines whether perturbations approach the
Ivantsov solution in the tails as s2~oo. For simplicity
we restrict the analysis to A real. Note that a factor like
(9.6) in 5K produces precisely the behavior discussed in

Sec. VI where lB5K/Bs2 ——O(5K), etc. , so that derivatives
Of 6K dO nOt Order.

Since the right side of (9.2) is independent of u &, it is
convenient to first differentiate (9.2) with respect to u

~

and find

This corresponds to a perturbation that blows up on ap-
proaching the tails. Since the temperature field in (4.4)
goes as e ', 5h

&
in (9.10) then increases so fast that the

heat content in the boundary layer becomes infinite. It
thus seems reasonable to exclude these types of perturba-
tions.

On the other hand, all perturbations with A & 0 (which
decay towards the tail) behave in a consistent and physi-
cally reasonable fashion, while the only allowed solutions
with A negative (i.e., increasing towards the tail) are those
with

~

A
~

&tanO;. Intuitively, this seems to confirm the
idea that the tails become more and more stable, but un-
fortunately this idea cannot be made more precise within
the present approach. For ( —1 —sinO; )/(2 cosO; ) & A

& (1—sinO; )/(2cosO;), the A+ are real.
The constants b and c in (9.10) and (9.13) must be

chosen so that Eq. (9.2) and (9.4) or (9.5) are satisfied at
the interface. Using (9.6), Eqs. (9.4) and (9.5) imply
5O; = —5K/A so that (9.2) at the interface can be written

a6h, —(5h I ); —5K(1+tanO;/A )
Bu1

=(dq/l)5K(A tanO;+A ) . (9.14)

Evaluating (9.10) and (9.13) for ul ——0 and using (9.11) we
find

0 6h1

Bu1

86K1

Bu1

06h1 —tanO;6K2 ——0,
Bu1

(9.7)

where we note 5K2 ———c}5O/Oui+0((1 —6) ). Further
using (9.6) we have 5K2=l (a5h, /as2) = —A 5h,
+ O((1 —b, ) ). Thus (9.3) can be written

80
l

A (c+1)

clap

1+
l

(9.15)

c)6K1
6h1 .

Bu1
(9.8) Note that b=0 in the Ivantsov limit. Finally, from (9.5)

we get

Finally, then we have in (9.7)

0 6h1

Bu1

06h1 +(A'+A tanO, )5h, =0 .
Bu1

(9.9)
where

(A. D)—
(k+ D)— (9.16)

(9.10)

One integration constant determines the arbitrary overall
normalization in (9.10) and c is the other constant. Here
A. + satisfy the equation derived from (9.9) by assuming a

A, Q)
trial solution e

k' —k+(A'+ A tanO, ) =0,
and are given by

k+ ———, I 1+[I—4(A +A tanO;)]'~2j .

(9.1 1)

(9.12)

The particular form (9.10) allows the solution of (9.8) to
be written as

—(3 /l)S2 A. uI k. u I5K, =A e '(ce + '+e '+b), (9.13)

where b is another integration constant.
Equation (9.12) shows that Rek+ & 1 if —tanO; & A &0.

Recalling (9.6), the solution to (9.9) can be written in the
form tanO; A+ A

GQ 2

001+
l

(9.17)

Thus we are able to satisfy the linearized equations and
boundary conditions for any value of A. There are stable
(A &0) and unstable (A &0) directions in an essentially
infinite-dimensional phase space. The exponential
behavior of the perturbations again illustrates why the
simple truncations discussed in Sec. VII yield inconsistent
and indeed contradictory results.

Finally, note that perturbatipns both to the Ivantsov
and the non-Ivantsov solution behave in a similar manner.
The non-Ivantsov term in the temperature equation adds a
simple constant boundary term to Eq. (9.2). However, the
additional integration constant b in (9.13) allows (9.2) to
be satisfied for nonzero dp with b chosen as in (9.15).
The overall description and flow in phase space is virtual-
ly identical for the two cases.
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X. FINAL REMARKS

Our analysis of the mode1 equations has touched on
several more general issues. We have argued on physical
grounds that the tails of the steady-state needle crystal
solutions can accommodate themselves to a variety of
small perturbations near the tip. We will indeed show
elsewhere' by a mathematical analysis of the full problem
that the dominant term in the tails has this property for
distances larger than a diffusion length from the tip. In
other words, the motion of the tip is not affected by
asymptotic properties of the tails. Certainly it is hard to
believe that features that manifest themselves only deep in
the tails can be relevant for dendrite tip motion. Our
discomfort with the microscopic-solvability scenario as
applied to dendrites stems in part from the fact that the
nontrivial "matching conditions" may be (and for the lo-
cal models are) sensitive to just such details in the tails.

The above-mentioned asymptotic results for the "stabil-
ity" of the tails for distances larger than the diffusion
length 1, go against the sensitivity seen in the local
models. It is quite conceivable, though, that this result
may be relevant only for relatively large Peclet numbers
where the tip radius of curvature of the dendrite is of the
same order as the diffusion length, since for small Peclet
numbers such considerations would apply only very deep
in the tails.

There are a number of physical effects that can change
the asymptotic properties of needle solutions. For exam-
ple, one can show that in the absence of interface kinetics
[@=0 in Eq. (1.2)] the asymptotic shape for Peclet num-
ber p & —, goes as z(x)= —x /2p+a0/x with a& 1. On
the other hand, for any nonzero p we have z(x)
= —x /2p +a]x asymptotically. We believe asymptot-
ic differences such as these have no physical significance,
but they might affect the matching conditions.

An even more dramatic effect on the asymptotic
steady-state shape is found if we add a phenomenological
heat-loss term —I T to the right-hand side of the heat-
conduction equation (1.1). This could be of some experi-
mental relevance for crystal growth between two parallel
plates as carried out by Honjo, Ohta, and Sawada, where
I takes account of heat loss to the plates. Very roughly
speaking, a larger I acts like a larger 5; both changes
reduce the heat surplus. However, many features of
steady-state propagation are very sensitive to I . For ex-
ample, for I & 0 and any 6, steady-state growth of a plane
can occur at some (sufficiently small) velocity V0, since
the heat surplus can now be balanced by the heat-loss
term. Presumably there also exist needlelike steady-state
solutions moving at a larger velocity V (depending on
the curvature); for I very small the shape must be essen-
tially parabolic near the tip. However, deep in the tails,
we no longer find O~m/2 as before. Rather the shape
must approach that of a wedge, with a nonvertical angle
00 satisfying Vcos00 ——VD. It is important to see how the
microscopic-solvability predictions are affected by
changes such as these.

All this assumes we are in the regime of free dendritic
growth, where side walls play no role, as is the case in
most experiments. In the limit that the Peclet number
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APPENDIX A: TREATMENT
OF TIME-DEPENDENT CURVILINEAR

COORDINATES

In this appendix we discuss various definitions, identi-
ties, and kinematic relationships satisfied by our time-
dependent 2d curvilinear coordinate system. Consider
first a point on an arbitrary curve in the x-z plane, speci-
fied by a position vector r from a space-fixed origin. The
curvature K describes the rate of change of 0, the angle be-
tween the normal to the curve and the (space-fixed) z axis,
with respect to a displacement s along the curve. Our
starting point is the geometrically obvious Frenet formu-
las4'

0Il 87
KTj KIl

Bs Bs
(A 1)

where n and w are unit normal and tangent vectors to the
curve.

Applying these to the uz curves (j= 1,2) in our orthogo-
nal curvilinear coordinate system (u&, u2), we have

aa
BSz

Kl ai (A2)

for (i,j)=(1,2) with (i&j) Here aj is. the unit normal

p~0+, the diffusion 1ength becomes larger and larger
and eventually effects of side walls must be taken into ac-
count. This is always the case for the Laplace (Hele-
Shaw) limit. In the steady state, this implies an exponen-
tial approach of perturbations of the finger to its asymp-
totic shape, in contrast to the power-law behavior seen for
a needle crystal. We have argued, mainly on physical
grounds, that this difference may be crucial for a proper
understanding of the needle crystal problem, at least at
large Peclet numbers, and have shown that indications to
the contrary from the model equations cannot be trusted.
We hope that future analytical work will lead to a critical
assessment of these ideas.

As presently formulated, the solvability condition seems
open to such questions because of its close association
with the physically unrealizable steady-state problem. A
study of steady states certainly provides a great
mathematical simplification, and it has demonstrated how
subtle the mathematical mechanism that leads to selection
could be. However, it seems to us that a deeper, and more
physically accessible, understanding of dendritic growth is
likely to be found in a dynamical study that deals directly
with the physical entities, the dendrite tip, and the side
branches, that are seen in the experiments. This may pro-
vide the needed matching of an intuitive picture with the
new mathematical ideas. Since there have been so many
revisions in our theoretical understanding of dendritic
growth, we should be prepared for still more surprises to
come.
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ahj

h;hj au;

alnh j (t&j) .
a

(A4)

A relationship between these curvatures follows from the
equality of cross derivatives of aj using (A2) and (A4),

vector to the uj curve, Kj Is the curvature, and the dis-
placement ds =hindu~ normal to the u~ curve involves the
scale factor h~(u&, uz, t). Since Bsj./Buj ——hj we have

Bf/Bsj. ——( I/hj )(Bf/Buj ). Note that the equality of cross
derivatives 8 f/Bu ~ cruz =8 f/BuzBu &

does not imply that
a'f /as, asz =a'f /a. zas, .

We have chosen sign conventions in defining the curva-
tures in (Al) and (A2) so that the curvature x&; of a con-
vex protrusion of the solid into the liquid is positive. The
arc length sz is measured from the z axis along a u

&
curve

while s& is measured from the interface along a uz curve.
Finally, we define 8 as the angle between the (outward)
normal a

&
and the z axis, and note that it satisfies

cosO=z. a~. See Fig. 6(b). It follows that 1~& ——BO/Bsz and
K = —aO/as, .

In terms of the position vector r, we have

ar =hjaj, (A3)
auj

and the equality of cross derivatives a r/au
&
au z

=8 r/BuzBu &, along with (A2) and (A3), yields the result

av,
aSp

= a'2.- =—vK, = a, =— ae
at

(A I 1)

av, + V,K,=
aSI

alnh (

at
(A12)

av, + V)K( ——

aSp

alnh p

at
(A13)

a
auI hp

h&+
2

a
aup

=0, (A14)

and adding (A12) to (A13), giving

a a a
(h )hp)„= (hz V) )+ (h ( Vz) .

at auI aup
(A15)

Many other exact results can be found. Here we men-
tion only the equation for the rate of change of K&, ob-
tained by differentiating (All) with respect to uz and us-

ing (A13),

Only two of these, say (A10) and (A12), are independent
since equality of the further cross derivatives with respect
to u; or uj has already been assured by the symmetry
leading to Eq. (A4). Two such independent equations can
be found by adding (A10) to (Al 1), yielding

a aKz
+ = —K( —Kp

as, as
(A5)

a" = — ' a' aKI
K(+ p VI+ Vp

asp asp
(A16)

n n
at

=—W = V( a)+ Vpaz . (A6)

Next consider the time dependence of the coordinates.
The normal velocities Vj of the uj curves in the laborato-
ry frame satisfy

At the interface, using boundary conditions (4.2) and (4.3),
this reduces to results given by Ben-Jacob et al. ' and
Brower et al.

If we consider a derivative at constant arc length sz and
u

&
of the position vector r, we find from the chain rule

and (A3) and (A6)

af af af
at, =

at „+ au,

(A7)

Applying this to f=r we find from (A6) and (A3),

Here the notation ( )„ indicates a derivative at constant u
&

and uz. At constant r (i.e., a fixed point in the laboratory
frame) we have the general chain-rule relation

()f+at, au at
and

ar
V) ——

at s
a1

asz

at
auz= —hp
a

ar= Vz —az at

(A17)

(A18)

auj
Vj ———hj at

(A8)

and we note that (A7) can be rewritten in the compact
form

+W Vf (A9)
at .= at,

Using the equality of cross derivatives a r/
r)t Buz ——d r/du~dt, and (A3) and (A6), we find on taking
components

asp $2

at „0= Vz —Vz (sz ——0)+ dsz V, x&, (A19)

In general, evaluating (A17) and (A18) requires nonlocal
information since (Br/Bt), can be determined only if the

2

behavior of the entire curve from the origin where sz ——0
is known. This can be seen explicitly by noting that the
differential arc length dsz ——hzduz for fixed duz varies in
time because of the time dependence of hz, so that
B(ds )z/dt =(dlnhz/Bt)„dsz. Integrating over arc length
and using (A13) we find the nonlocal representation

av, aa, „—V)Kp —— .ap ——

as, at
a6 (A10)

which reduces at the interface to results found by Brower
et al. and Ben-Jacob et al. ' As shown in Appendix C,
these results simplify considerably in the steady state.
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APPENDIX B: EVALUATION OF (BH/Bt)„

The temperature equation in the laboratory frame is

This will be useful in computing the derivative of H,
given in Eq. (5.1) as

DV T= (81)
oo

H = dui hihpT .
0

(83)

hh BT
i 2

Q

aT aT
=h2Vi +hi V2

u& Bu2

Using (A9) and expressing the Laplacian in curvilinear
coordinates we find

Then

BH
at

Blnh 2;

at

oo c}TH+ f dui hihqh„

a h2 a a ~i a+D +
a , ~, a , a , h, a ,

I a+ dui Alh2 uT .h„o Bt
(84)

(82) Using (82) and (A15), we have

I

aa
at

Blnh2; oo () oo

H+ f dui (h2ViT)+ f dui (hiVpT)
Bt „h2; o Oui h2; o Bu2

D a h2 aT D a hi aT
dui + du(h; o Bu, h, Bu, h; 0 Bu h (3u

(85)

Making use of the boundary conditions (4.2), (4.3), and
(4.7), and using (A13), the first, second, and fourth terms
on the right can be evaluated immediately and we find

T

aH a= V„(1—T;) HV„ai;+ —f dsi V2T

BT+D f dsiBs; o mls
(86)

which is Eq. (5.2).
Note that (86) and all the other results in Appendixes

A and 8 hold true independent of the particular choice we
take for the coordinate system describing the temperature
field away from the interface.

APPENDIX C: STEADY-STATE RELATIONS

Many results of Appendix A simplify greatly in the
steady state, where we consider a needle in uniform
translation for which (iver;/Bt), = Vz. Here z is the unit
vector in the z direction. A position vector R whose ori-
gin moves with the tip of the needle satisfies
R =r —Vtz =r Vt (aicos8 ——a2sin8). From the chain
rule relating (dr/dt)It to (Br/Bt)„we find using (A8)

and

Oui

R

V& —VcosO

hi
(Cl)

Bu2

R

V2+ VsinO

h2
(C2)

In the steady state, physical quantities f moving with
the needle (e.g. , the temperature field T) satisfy
(Bf/Bt)R ——0. Further, for steady states we can choose a

V&
——VcosO,

V2+ V sinO V sinO;

hp h2;

(C3)

(C4)

where the right-hand side of (C4) is the value at the inter-
face. Equations (C3) and (C4) give the steady-state in-
tegration of the general equations (A10)—(A13). Note
that requiring (Bu i /Bt)a ——0 for all u i implies that
(iver/Bt), = Vz. Thus (A17) is equivalent to (C3) and

(A18) becomes in the steady state

(3s2

at
= Vz+ VsinO . (C5)

Since (BR/Bt)„=(Br/Bt)„—Vz we have, using (C3) and
(C5),

I

coordinate system so that in the moving frame (i.e., at
constant R) the ui curves do not vary with time. This is
obviously the case for the steady-state interface at u

&

——0
and we use the freedom of choice of coordinates away
from the interface to require it for all u& curves. The
shape of all the orthogonal u2 curves is then determined
and the only time dependence left is the time-dependent
value u2(t) we associate with each fixed u2 curve. This
remaining time dependence arises from the requirement
that at the interface V2; ——0. [Note from (C2) that to have
no time dependence of the u2 coordinates in the moving
frame, as is the case for the moving parabolic coordinates
(g, q) of Horvay and Cahn, requires that V2;
= —Vsin8;. ] Thus we can choose (Oui/Bt)R ——0 for all
u, and R and require that (Bu2/Bt)R be independent of
u& for all R along a given uq curve. We note in particu-
lar that both coordinate systems (4.4) and (4.6) defined in
terms of the temperature field are consistent with these
choices. Equations (Cl) and (C2) then reduce to
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aR
Bt

8$2—a2
at

(C6)
Blnh ) h) V)—h)K)+1-
Bu) D

In the moving frame the velocity of a constant ( u ~, u 2 )

point given in (C6) is always tangential to the u& curve
and has magnitude V2+ VsinO. This contrasts to the
laboratory-frame velocity (Br/Bt)„, which at the interface
is normal to the u I curve and which in general contains
only the small V2 tangential component.

Since physical quantities f moving with the needle
satisfy (Bf/Bt)R ——0, we have using (C5) the steady-state
chain-rule result

( V2+ Vsin8)df
0$2

h (dp

T

r

1 BK

D 0t

T

V2 h2; aK

D h2 Bs

h2; ()2K gK g h2;+ 2+
h2 gs2 Bs ds h

(DS)

The (Ba/Bt)„ term can be found from Eq. (A16) evaluated
at the interface. Note that the right-hand side of (D5)
vanishes in the Ivantsov limit.

In the steady state (DS) becomes

Blnh ) h i VcosL9—h)K)+1-
Bu) D

Bf
Bu2

VsinO;

h2;
(C8)

h idp

T
OK V. h2 V2 aK

H sinO; =M —J„„,, (C9)

where we have used (C4).
We can use these results to simplify Eq. (6.2). Using

(C4) to obtain an expression for hz/h2; and substituting
into (5.1) we see that in the steady state

h2;

h2

VsinO; =1+0(1—6) .
V2+ VsinO

h2; O'K aK () h2;+ 2+ as as,

where from (C4)

(D6)

(D7)

where M is given in (6.3) and J„„„=—J„„„/Vis given in
(5.4). In this way we obtain (6.4).

APPENDIX D: CURVILINEAR COORDINATE
RELATIONS FROM THE TEMPERATURE

EQUATION

The right side of (D6) is O((1 —b, ) ) for smooth solutions.
If we make no smoothness assumptions about K deriva-
tives and instead assume only that l(BI~/Bs) =O(~l), etc. ,
then to lowest order in (1—6), Eq. (D6) becomes

alnh, —h
&
a &+ 1 —( V/D)h

&
cos8

Bu)

T=T;e (D 1)

In this appendix we examine the equation relating the
hj K'j and Vj fields that resul t when we choose a particu-
lar coordinate system so that the exact temperature field
is given by

=d, —l tan9, +l' +O((1—6, )') .
as '

ps 2
(D8)

Equation (D8) is used in Sec. IX. Note that to O(1 —6)
the right side of (D8) is independent of u &.

For simplicity, consider the Ivantsov limit, where (D8)
becomes

as in (4.4). A similar analysis can be carried out for the
choice (4.6). As discussed in Sec. IV B, Blnh ) Vh)—h )K)+ 1 — cos6I =0 .

D
(D9)

T; =6—dpK,

hi; ——l,
(D2)

(D3)
At the interface we have h &;

——l =Db, /( Vcos9;) and (D9)
yields

(Blnh ~ /Bu ~ ); = el —(1—b, ) . (D10)
where we recall the notation K=K~ and s —=s2;. As in Eq.
(B2) we note that that the temperature equation can be
written as (31nl =K tanO; .

ao
= (D 1 1)

Further, we note that since K2 ——Blnh &/Bs2, we can write

aT aT aT
1 + 2a . 'a 'a"

+D Ki +K2 + 2+ 2 T .
Bs, Bs Bs, Bs

(D4) Bu', h, Bu,

Bh)
+ K)

Equation (D9) can be differentiated with respect to u
&

to yield the higher-order derivatives at the interface need-
ed in the Taylor-series expansion. Thus the second-order
term is

Substituting (Dl) and multiplying by h
&
/DT we find our

basic result
aKi V a

+h& +— (h &cos8) .
Bu) D Bu)

(D12)
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C)K i+l +b[KI/cos 8—(1—b, )] .

(D13)
When ~l in the last term is expressed in terms of 0 as in
Eq. (8.1), we note the last term is indeed O((1 —b, ) } for
the smooth Ivantsov solution. Higher-order derivatives of
the h icosg term in (D9) behave in a similar manner.

We note that the B~&/Bu
&

term can be evaluated at the in-
terface using Eq. (A5). This term is clearly O((1 —5) )
for smooth solutions as are all other terms on the right-
hand side of (D12) with the exception of the last term,
which may appear only first order in (1—b, ). However,
working out the derivatives and evaluating at the interface
we find

a'a,
=[Kl —(1—b )][2Kl —(1—b, )]l

There is a power-series solution K of (E3) flowing into the
fixed point co =0 satisfying

K=co (1—b)/5 +O(co ), (E4)

K=K+@ (E5)

and linearizing in e. We find from (E3) to lowest order

—a (1 —b )co Be/Bco= —e, (E6)

and a recursion relation can be derived for the higher-
order terms. Note that K becomes parabolic for small co

and that the coefficient of the co term agrees with the ex-
act Ivantsov parabola to first order in (1—b, ). However,
~ does not necessarily satisfy the smoothness condition at
the tip B~/00=0. To obtain an acceptable needle crystal
solution we examine the phase-space structure around ~ in
the tails by writing

APPENDIX E: MODEL EQUATIONS E' exp[ —1/[2a ( 1 —b. )co ] J (E7)

We analyze the CFM where

H = T;l(1+aKl), (El)

with a )0, and J„„d and J„„,as in the BLM, as dis-
cussed in Sec. VII. For a=O, we have the BLM of Ben-
Jacob et al. '

We first consider the Ivantsov limit where T; =A. It is
clear from (6.2) that with a) 0 in (El) there is a two-
dimensional (8,K) phase space. To obtain the phase flow,
we consider ~ as a function of 0, noting that
B/Bs =KB/Bg, and (6.2) becomes

BK
a sin0;v

cos3g, (1—b, ) 1+sin 8;—~ —ah~
Q2 cos0;

(E2)

X(1 b, )/b K 2ahK /co . — ——(E3)

where K =D~/V.
First consider behavior in the tails near the (Ivantsov)

fixed point K=BKIB8=0 at 8;=sr/2. Let co—:m. /2 —8;,
and keep low-order terms in co in (E2),

—aK(BK/Bco) =(co + co + ' ' '

Thus the fixed point in the tails is stable and we should be
able to use a component of the latter solution to satisfy
both BK/B8=0 at the tip and still flow to the Ivantsov
fixed point in the tails. We can verify that there is only
one trajectory satisfying B~/80=0 at the tip. This condi-
tion implies that the right-hand side of (E2) must vanish
for 0=0 and uniquely fixes the tip curvature as

K, = [ —1+V 1 +4(1—b, )a /b, ]/2a b,

=(1—b, )+O((1—6) }, (E9)

which agrees with the exact Ivantsov result to O(1 —6).
Note that in Eqs. (E2) and (E6), one can consider a as a
"singular perturbation. "

The results of this counting argument are fully con-
firmed by a numerical solution of (E2). The CFM has a
family of solutions in the Ivantsov limit for all 6 and
reduces to a parabolic shape in the tails. It reproduces the
exact Ivantsov parabola to first order in (1—b ). A flow
diagram is given in Fig. 7.

Next consider the general case with dp&0. There now
is a three-dimensional phase space and (6.2) becomes for K

as a function of 0;,

d p T;cosg;K K "=cos 8;(1—T; ) —T; K aK T; (1+sing;—)/cosg;

—KK 'sing; T; [aT; dp(3T;aK+2 cos—g; K}]+dpK (K—') cosg; dpT cosg;K(K ')— (E10)

ac
dp(1 —A)co dp(1 —6) co

(El 1)

where ~'=8~/80, etc. , and dp=d0V/D. For a=O this
reduces to the BLM, Eq. (7.2).

We analyze (E10) to lowest order in (1—b, ) noting that
T;:—1+0(l—b, ). As before, linearizing about the
smooth solution K that satisfies (E10) in the tails, with
~/2 —0;=co, and keeping the most significant terms, we
find

(E12)

Ignoring the result A" term (which will turn out to be
consistent as co~0), we obtain from (Ell) a quadratic
equation for A', whose solutions as co~0 yield

(E13)
3dp(1 —b, )co

where e'=Be/Bco, etc. Here co=0 is an irregular singular
point, and as usual we can obtain the controlling factor
by the substitution

e=—e~.
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—1

2a (1—b, )co
(E14)

(E15)

The second root (E14) is independent of do and indeed is
the Ivantsov-like solution (E7). Both trajectories very rap-
idly approach ~; the tails in this model are completely at-
tractive. We thus expect and do find numerically a family
of solutions —indeed we find a "family of families" since
there is a range of ~, with ~', =0 for which solutions can
be found. The flow in phase space is very contractive, as
illustrated in Fig. 8 and discussed in Sec. VII.

It is instructive to contrast this behavior with that of
the BLM with a=0. Then the equivalent of Eq. (El 1) be-
comes

(6.4), to O((l —6) ) as in Sec. IX, using the results in Ap-
pendix D. Of course, the expansion makes sense only for
the smooth solutions, so the approach is not really sys-
tematic in general, and cannot serve as a controlled way to
derive models. We find that the first-order ~l correction
to H mentioned in Sec. VII is canceled by a term from
J„„„butthat a similar term along with a B~/Bs term is
found at O{(1—b, ) ) for dz ——0. Thus we can provide no
systematic mathematical justification for the CFM but
derivative terms do appear at every order.

If we restrict ourselves to models in a three-dimensional
phase space, then it turns out, as argued in Sec. II 8, that
the Ivantsov derivative terms dominate all others. Thus
we can simply consider the Ivantsov limit do ——0. The re-
sulting second-order equation is most compactly written
in terms of the variable a =~/cos 0 as

The sign of the e' term has changed and there is no do
factor. Solutions of the form of (E12) as co~0 are

—2 2
~ —5/2

2(1 —&) 5~do
(E16)

Both these trajectories oscillate and spiral away from ~ as
co~0, and in general we expect a solvability condition.
Equation (E16) is consistent with the WKB analysis of
the BLM given by Langer.

Finally, we mention an attempt to somewhat systemati-
cally generate a model equation. The J„„d term in the
BLM is O((1 —b, ) ) for smooth solutions using the coor-
dinate system (4.4). This suggests that we should expand
the (H sinH;+ I„„„)terms in (6.2) or, equivalently, M in

Pk+k +sin0cosl9k
BK

ao

Bk 2 (1—b)—cos t% K cos 0
g4

(E17)
E

where P = 1+( 1 —b, ) /b, . The exact Ivantsov solution
has 2=const and (E17) has a solution a that tends to this
in the tails. Analysis like that done before shows there are
one stable and one unstable additional direction, appropri-
ate for the existence of a (simple) family of solutions. The
structure of this equation is unchanged if a second deriva-
tive term from J„„d is also considered. In fact, we find
that the most important non-Ivantsov corrections come
from H, rather than from J„„d.
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