
Novel functions of MDMX and innovative therapeutic strategies for
melanoma
Heijkants, R.C.

Citation
Heijkants, R. C. (2018, October 18). Novel functions of MDMX and innovative therapeutic
strategies for melanoma. Retrieved from https://hdl.handle.net/1887/66268
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/66268
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/66268


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/66268 holds various files of this Leiden University 
dissertation. 
 
Author: Heijkants, R.C. 
Title: Novel functions of MDMX and innovative therapeutic strategies for melanoma 
Issue Date: 2018-10-18 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/66268
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 1

General introduction





11

General introduction

Ch
ap

te
r 1

1. THE P53 PROTEIN AND ITS REGULATORS MDM2 AND MDMX

1.1 p53
The p53 protein was originally discovered in 1979 as a target of the SV40 oncogenic 
DNA virus Large T-antigen [1, 2]. More than 3 decades later and over 92.000 scientific 
papers published mentioning p53, the p53 protein is recognized as a central node in 
cellular stress responses. The p53 protein functions as a transcription factor, which 
upon activation and stabilization controls the expression of many genes involved in 
multiple pathways including cell cycle, metabolism, apoptosis and angiogenesis [3-
5]. Despite its central role in cellular responses to stress, p53-deficient mice develop 
almost normal, but are prone to develop malignancies of which lymphomas are most 
frequent [6, 7]. Mutations in the p53 gene are found in proximally 50% of all human 
cancers, emphasizing the importance of the tumor suppressor function of p53 [8, 9]. 
A more detailed analysis shows that 95% of p53 mutations are found in the exons 
encoding DNA binding domain, underlining its tumor suppressor function as tran-
scription factor [10]. A mutation in the DNA binding domain renders p53 incapable 
of binding to its consensus DNA recognition sequence, losing its transcription regula-
tory function, rendering a cell sensitive for a malignant transformation and relatively 
resistant to stress induced apoptosis, cell cycle arrest or senescence, e.g. induced by 
chemotherapeutics, radiation or hypoxia.

Despite this high mutation frequency, incidence of p53 mutations differs considerably 
between cancer types. P53 mutations are found rarely (<1%) in, for example, uveal 
melanoma (UM) and thyroid cancer, while mutations are found commonly (>90%) in 
ovarian cancer and lung squamous cell carcinoma (Figure 1) [11]. It is believed that 
in tumors expressing wild-type p53 the tumor suppressor pathway of p53 is inhibited 
either upstream or downstream, implicating that all cancers have an attenuated p53 
pathway [4].

1.2 Regulation of p53 by MDM2 and MDMX
The central and important functions of p53 in cell-fate determination imply that p53 
activity should be tightly controlled, in which ubiquitin ligase mouse double minute 
(MDM) 2 and the structurally related MDMX play a pivotal role. The importance of 
the MDM2 and MDMX proteins for p53 regulation is best illustrated by the mouse 
KO models. Knockout of either MDM2 or MDMX is embryonic lethal in a fully p53-
dependent manner [12-14]. Whereas MDM2 transgenic mice can rescue the MDMX 
knockout phenotype, high MDMX levels in MDMX transgenic mice cannot rescue the 
MDM2 knockout [15, 16]. Although both MDM2 and MDMX are crucial for embry-
onic development, in adult cells and tissues MDM2 loss is still always lethal whereas 
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Figure 1. Genomic alterations affecting p53, MDM2 or MDMX in different cancers. Frequency 
of mutations (green), amplifications (red), deed deletions (blue) and multiple alterations (gray) 
are given per cancer. Data depicted is derived from www.cbioportal.org and only shows TGCA 
provisional data sets.
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MDMX loss can be compatible with life, probably because in most adult tissues MDMX 
protein is not or hardly detectable anyway [17-23]. MDM2 is an E3 ubiquitin ligase 
and has been shown to directly bind p53 [24]. MDM2 activity results in lysine-48 
poly-ubiquitination of p53, which is consequently degraded by the proteasome [25]. 
Thereby MDM2 effectively keeps the basal levels of p53 low and thus promotes cell 
proliferation and survival. Both the RING finger domain and the central acidic domain 
of MDM2 are essential for the p53 ubiquitination [26, 27]. Although MDM2 during 
animal development is mainly acting through the repression of p53, MDM2 has been 
reported to have p53-independent functions and ubiquitination targets [28-31].

The essential p53 inhibitor MDMX was initially discovered as a novel p53 interac-
tor with high sequence homology with MDM2 [32]. MDM2 and MDMX have great 
structural similarities of which the N-terminal hydrophobic pocket that binds the 
N-terminal alpha helix of p53, shielding the p53 transactivation domain, is best 
conserved [33, 34]. Despite the high conservation of the RING finger domain and 
the central acidic domain MDMX does not have any E3 ubiquitin ligase activity and 
its main p53 inhibitory function is shielding the p53 transactivation domain [26, 
27]. Despite the lack of intrinsic E3 ligase activity MDMX forms a heterodimer with 
MDM2 [35], which is thought to promote MDM2 E3 activity by providing a better 
scaffold for E2-enzyme binding, thus resulting in faster degradation of p53 [36, 37]. 
Considering that the levels of MDM2 and MDMX are crucial for cellular activity of 
p53, expression of these proteins should also be tightly controlled. P53 has to be 
liberated from MDM2 and MDMX to exert is function upon certain stress, for example 
in response to DNA damage. Several phosphorylation events on MDM2, mediated 
by serine/threonine kinase ATM, inhibit its ubiquitin ligase activity towards p53 [38]. 
Upon stresses, MDM2 both auto-ubiquitinates [38, 39] and ubiquitinates MDMX [40-
42] sending both for proteasomal degradation. This cellular depletion of inhibitory 
proteins results in a feed forward loop in which p53 is stabilized and activated. After 
cellular stress, for example induced by DNA damage, during the recovery phase a 
cell needs to re-constrain p53. It has been shown that both MDM2 and MDMX are 
transcriptional targets of p53 providing a negative feedback loop and thus re-establish 
p53 inhibition [43, 44].

1.3 Reactivating p53 in cancer
In order to become malignant cells need to lose or at least attenuate p53 activity, for 
example by direct gene mutation [8, 9]. Therefore, specifically targeting p53 mutated 
cancer cells would provide a very interesting therapeutic intervention, potentially 
benefitting half of all cancer patients. It was reasoned that cancer cells with mutated 
p53 would remain sensitive for p53-induced apoptosis, since the downstream path-



14

General introduction

way remains intact [45]. Therefore, various approaches were designed to reactivate 
mutant p53 [46]. One compound discovered to reactivate mutant p53 was named p53 
reactivation and induction of massive apoptosis (PRIMA) [45], which binds the core 
domain the DNA binding domain of p53 and changes the conformation from mutant 
to wild-type, resulting in the induction of apoptosis [47, 48]. This biological effect 
induced by PRIMA has been suggested to be specific for p53 mutant cell lines [49]. 
However, evidence is accumulating that PRIMA induces anti-cancer effects regardless 
of the presence of p53 mutations [50, 51]. This could be explained, at least in part, 
by the observation that PRIMA also targets other p53 family members such as p63 
and p73 [51-53]. Other approaches found to target p53 mutated cells include the 
cholesterol lowering drugs, the statins [54, 55]. Depletion of cells from mevalonate-
5-phosphate by treatment with statins resulted in impairment of the mutant-p53 
interaction with the chaperone protein DNAJA1/hsp40 which caused ubiquitin E3 
ligase CHIP-mediated degradation of mutant p53 [55]. These studies have provided 
new insights with potential new strategies to specifically target mutant p53 cells.

Despite the frequent occurrence of p53 mutations, the remaining half of human can-
cers had to find alternative mechanisms to attenuate p53 signaling [4]. Amplifications 
of the MDM2 gene are frequently found in sarcoma [56-58] and esophageal cancer 
[59] (Figure 1). Similarly to MDM2, MDMX amplifications and overexpression are 
found in various cancers including glioblastoma [60], retinoblastoma [61] and breast 
cancer [62], in most cases correlating with wild-type p53 status (Figure 1). The MDM2 
interaction with the p53 transactivation domain is well defined by crystal structures 
[63]. These structures show that the hydrophobic pocket of MDM2 interacts with 3 
side chains from a peptide derived from the p53 transactivation domain. This clearly 
defined pocket and interaction between MDM2 and p53 allowed for effective drug 
development. The first small molecule compound described to bind MDM2 in its 
p53-binding pocket was Nutlin-3 [64]. Antagonizing the MDM2-p53 interaction us-
ing Nutlin-3 resulted in stabilization of p53 in an MDM2-amplified osteosarcoma cell 
line, leading in cell cycle arrest and apoptosis, both in vitro and in vivo. Importantly, 
the p53 activation by Nutlin-3 was not due to DNA damage signaling [65, 66]. This 
mode of action resulted in the observation that mice treated with Nutlin-3 did not 
lose weight while p53 was being activated, indeed separating Nutlin-3 from DNA 
damaging agents and their associated adverse clinical effects [64]. This approach 
has spurred the development of various small molecule compounds targeting the 
MDM2-p53 interaction such as 1, 4-benzodiazepin-2, 5-dione [67], spiro-oxindoles 
[68] and RITA [69], all resulting in p53 stabilization and inducing cell cycle arrest and 
apoptosis. Although found in a screen to identify p53 re-activating compounds and 
thought originally to block the MDM2-p53 interaction, RITA elicits a DNA damage 



15

General introduction

Ch
ap

te
r 1

response, rendering the anti-cancer effects not exclusive to the MDM2-p53 inhibition 
[70-72]. Furthermore, some evidence exists indicating that RITA does not block the 
MDM2-p53 interaction [73], implying that RITA targets cells expressing p53, but not 
by directly binding to p53.

Based on these promising results in vitro and in pre-clinical mouse models, a number 
of clinical trials were initiated using various compounds targeting the MDM2-p53 in-
teraction [74]. RG7112, a Nutlin-3 analog, was initially tested in liposarcoma patients 
with MDM2 amplifications. Of the 20 patients in this clinical trial 14 had stable disease 
and 1 patient had a partial response [75]. Besides its therapeutic potential RG7112 
treatment elicited severe neutropenia and thrombocytopenia in these patients. In 
a phase 1 clinical trial assessing RG7112 in 116 patients with various hematological 
malignancies, similar to the sarcoma trial, 22% of the patients showed severe neu-
tropenia [76]. Although MDM2 inhibition has a clinical benefit for these patients, the 
strong, on target, adverse effects need to be managed in order to continue long-term 
MDM2 inhibition [77]. In addition, resistance to MDM2 inhibition has been shown to 
occur via specific point mutations in p53 [78, 79].

Antagonists for the MDMX-p53 interaction have been in development since MDMX 
amplification and/or overexpression in p53 wildtype tumors was discovered. Despite 
the overall structural similarity between MDM2 and MDMX, some important differ-
ences were found in their p53 binding pocket [34, 80]. These slight changes in the 
p53-binding hydrophobic cleft reduce the binding capabilities of Nutlin-3 to MDMX 
approximately 40 fold, although Nutlin-3 can still clearly antagonize the interaction 
between MDMX and p53 [61]. The reduced efficacy of MDM2 inhibitors for MDMX 
suggested a window of specificity, which led to the pursue of an MDMX-specific in-
hibitor. SJ172550 was the first described small molecule specifically designed to block 
the MDMX-p53 interaction [81]. However, it has been described later that SJ172550 
is not a simple inhibitor between MDMX and p53, but locks MDMX in a conforma-
tional state by covalent interaction that is unable to bind p53 [82]. Unfortunately, this 
conformational state change is dependent on many factors including the reducing 
potential of the media, hindering the further clinical development of SJ172550 [82]. 
Another study described molecules inhibiting MDMX transcription, e.g. XI-006 and 
XI-011 [83]. These compounds resulted in the cellular depletion of MDMX promoting 
p53 activation, reportedly without induction of double strands DNA breaks, provid-
ing treatment options for various cancers [84-86]. However, this MDMX depletion 
effect by XI-011 was later shown to be partly due to increased DNA damage signaling 
resulting in MDMX degradation and subsequent p53 activation [86, 87] and apoptosis 
induced by XI-006 in Ewing Sarcoma was even shown to be p53 independent [85]. It 
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thus appears that the design of small molecules specifically targeting MDMX without 
inducing DNA damage signaling is a difficult task. It could be that dual inhibitors of 
MDM2 and MDMX provide a solution [88]. By simultaneously inhibiting MDM2 and 
MDMX p53 activation is boosted, meaning that less MDM2 inhibition (and therefore 
less adverse effects) might be needed to achieve functional p53 activation.

Alternative approaches to target MDMX could involve other pathways, which have 
shown to play a role in overexpression of MDMX. It has been demonstrated that the 
receptor tyrosine kinases Her4 (also known as Erbb4) and AXL are capable of stabiliz-
ing MDMX in order to suppress p53 [89, 90]. Targeting these signaling pathways might 
be a potent way to destabilize MDMX, thus releasing p53 activity, possibly without 
inducing DNA damage signaling. However, these kinases have multiple targets and 
downstream effects independently of MDMX, which will make the analysis of these 
inhibitors on MDMX function especially difficult.

Alternative splicing is yet another mechanism by which the abundance of MDMX is 
reduced upon DNA damage [91]. The short isoform of MDMX, missing exon 6, is a 
naturally occurring transcript, which results in a short protein due to an early stop 
[92]. Mice that are lacking exon 6 are embryonic lethal in a p53-dependent manner 
[93]. By promoting the skipping of exon 6 using anti-sense oligonucleotides the splic-
ing ratio could be altered favoring the short over the full length isoform, resulting in 
decreased MDMX protein levels [94]. MDMX has been shown to be a potent target 
in both melanoma [95] and wildtype p53 breast cancer [96]. Depletion of MDMX 
resulted in a cell cycle arrest and apoptosis in a partly p53-independent manner [87, 
95]. The p53-independent cell cycle arrest could be explained, at least in part, by 
the p53-independent upregulation of the cyclin dependent kinase (CDK)-inhibitor 
p27 upon MDMX depletion [87]. These results suggest that MDMX might not only 
to be a therapeutic target in wildtype p53 tumors, but also in p53 mutated tumor 
cells. Indeed, p53 mutated breast cancer cell lines expressing high levels of MDMX are 
dependent on continuous MDMX expression for proliferation [97].

2. MELANOMA

To study the functions of p53 and especially of MDMX, this thesis focusses on mela-
noma, a malignancy arising from melanocytes. In cutaneous melanoma p53 mutation 
frequency is low (10-20%) and UM cells essentially lack p53 mutations [98, 99]. Despite 
the absence of MDM2 or MDMX amplification, melanoma cells frequently overex-
press one or both of these p53 inhibitors, especially MDMX [87, 95]. Since melanoma 
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patients with distant metastases respond poorly to classical chemotherapy and, there-
fore, have a short overall survival, studying melanoma with a focus on the MDMX/p53 
complex is highly clinically relevant [100]. Although melanoma encompasses only a 
low percentage of skin cancer, melanoma is a deadly form of cancer causing most of 
the skin cancer-associated deaths. The increased melanoma incidence found over the 
last decades emphasizes the importance of finding an effective cure for melanoma 
[101]. Due to advances in early detection of melanoma the primary tumors can be 
efficiently resected resulting in high survival rates. However, prognosis significantly 
worsens upon metastasis. Improvements have been made during the past decades in 
understanding melanoma and how to use this knowledge to target this malignancy. 
The main current treatments for melanoma are briefly discussed below.

2.1 Cutaneous melanoma
2.1.1 Targeted therapy
Previous studies have already reported that the MAPK signaling pathway is ac-
tivated in various cancer types including melanoma [102]. The most frequent and 
well described melanoma driver is an activating mutation in the serine/threonine 
kinase BRAF gene in up to 50% of melanomas. Most common mutation is the valine 
(V) substitution for glutamic acid (E) of codon 600 (V600E), feeding into the MAPK 
pathway and driving melanomagenesis [102]. Mutations upstream of BRAF, mainly 
in NRAS, are found in 10-25% of all cutaneous melanoma cases [103]. The most com-
mon activating NRAS mutation occurs at the codon for glutamine (Q) 61 [104]. These 
hotspot mutations in BRAF and NRAS rendering the proteins permanently active, and 
continuously stimulate the pro-proliferation MAPK pathway. Additionally, in 14% of 
cutaneous melanoma samples inactivating mutations are found in NF1, a GTPase-
activating protein. By losing NF1 expression RAS-GTP is much slower converted to its 
inactive GDP form, resulting in increased RAS activation and consequently an overac-
tive MAPK pathway. Therefore, loss of NF1 (14%), activating mutation in NRAS (28%) 
or in BRAF (52%) explains the activated MAPK signaling in 94% of all melanoma cases 
(Figure 2A) [104].

Recently, a novel classification was presented identifying four major subtypes of 
cutaneous melanoma; BRAF, NRAS, NF1 and the so called triple-negative [104]. In-
terestingly, mutations in the gene encoding the receptor tyrosine kinase (RTK) KIT are 
enriched in the triple-negative subgroup. Although only 3% of all melanoma have KIT 
mutations or amplifications, these mutations are more commonly found in melanoma 
originating from mucosal, acral a chronically sun-damaged surface [105]. Like BRAF 
and NRAS, mutations in KIT focus on a ‘hot-spot’ with 30% of KIT mutations showing 
an activating L576P substitution, suggesting a potential therapeutic benefit of the 
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Figure 2. Melanoma signaling and therapeuti c interventi ons. A) Cutaneous melanoma signal-
ing driven by acti vati ng mutati ons in BRAF/NRAS or inacti vati ng mutati ons in NF1. Therapeuti c 
interventi ons consist of BRAF and MEK inhibiti on via Vemurafi nib/Dabrafi nib and Binimeti nib/
Trameti nib respecti vely. B) Oncogenic mutati ons driving signaling in uveal melanoma. Acti vat-
ing mutati ons in PLB4, GNAQ/11 and CYSLTR2 drive the PI3K/AKT/MTOR, PKC/MEK and the YAP 
pathway. Therapeuti c interventi ons in uveal melanoma therefore consist of PI3K, AKT, MTOR, 
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use of RTK inhibitors in these patients [106]. When patients carrying a KIT mutation 
were treated with RTK inhibitory molecules, these cancer patients develop therapy 
resistance by acquiring secondary NRAS mutations [107].

Knowledge about BRAF and NRAS mutations have led to the development of mutant 
specific BRAFV600E inhibitors and MEK inhibitors, blocking the oncogenic MAPK path-
way [108]. Despite single agent success to BRAF and MEK inhibition, most patients 
develop disease progression after 6 to 7 months and only a small portion remain 
disease free [109-112]. The major factor contributing to BRAF and MEK inhibitor 
resistance found was the reactivation of the same MEK/ERK pathway via alternative 
means, such as activation of other receptor tyrosine kinases or NRAS upregulation 
[113-119]. MEK inhibition and NRAS depletion both trigger an apoptotic program in 
NRAS mutated melanoma, whereas only NRAS depletion additionally resulted in a 
CDK inhibitory effect. Indeed combined MEK and CDK4 inhibition resulted in syner-
gistic therapeutic effect [120]. These results suggest that CDK4 inhibition might result 
in increased patient survival in combination with MEK inhibition, which is currently 
being investigated in an ongoing clinical trial (identifier: NCT01781572).

2.1.2 Immunotherapy
In addition to BRAF- and MEK inhibitors [109, 121, 122] the FDA has also approved 
immunotherapies for melanoma treatment [123, 124]. The first immune checkpoint 
which could be effectively targeted and inhibited was cytotoxic T-lymphocyte anti-
gen-4 (CTLA-4) [125]. The response of a T lymphocyte, upon binding of the T cell 
receptor to a peptide presenting MHC molecule, is the result of a balance of both 
stimulatory and inhibitory signals (reviewed by [126]). This balance consists of the 
stimulatory interaction between CD80/86 (on the antigen presenting cell) and CD28 
and the inhibitory signals residing from an interaction between CD80/86 and CTLA-4. 
Cancer cells take advantage of these inhibitory signals by hiding them from tumor 
antigen-specific T-lymphocytes. Tumor-specific antigens arise as a consequence of 
genomic mutations. By blocking the inhibitory signals with CTLA-4 with monoclonal 
antibody Ipilimumab the T-lymphocytes are unleashed and shows convincing clini-
cal efficacy [123, 127]. Moreover, Ipilimumab was the first treatment to prolong the 
survival of advanced melanoma patients, highlighting the clinical importance of these 
therapies [123, 127].

Another effective immunotherapeutic approach is by blocking PD-1 and/or PD-1L us-
ing monoclonal antibodies. PD1 is a receptor expressed on various activated immune 
cells such as T-, B-, natural killer- cells and T- regulatory cells [128]. When PD1 binds to 
its ligand PD-1L, presented by an antigen presenting cell, the efficacy of the activated 
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immune cell is attenuated [129]. Like CTLA-4, PD-1/PD-1L blocking results in increased 
progression free- and overall survival, with a manageable toxicity profile [130-133]. 
Interestingly, BRAF inhibition seems to enhance PD-1/PD-1L expression suggesting 
that down regulating the immune system is beneficial for the acquirement of BRAF 
resistance [134]. These data suggested already that combining BRAF inhibition with 
immunotherapy could boost the efficiency of each single therapy. And indeed, pre-
clinical data have shown that combining BRAF inhibition with immunotherapy has 
significant additive effects over the single treatments [135, 136].

2.2 Uveal melanoma
Uveal melanoma (UM) accounts for approximately 5 % of total melanoma incidence 
and originates from the choroid (85%), iris (5%) or ciliary body (10%) [137, 138]. Driver 
mutations in UM are found in the α subunits of G-proteins GNAQ (50%) or GNA11 
(43%), mainly resulting in a Q209L substitution locking GNAQ/11 in a GTP-bound, 
active state [139-141]. Due to the high frequency of these activating mutations in 
GNAQ/11, like BRAF in cutaneous melanoma, targeting the mutant protein(s) could 
potentially serve as an interesting therapeutic intervention. Although a number of 
cyclic depsipeptides have been reported to selectively inhibit GNAQ, it has not been 
investigated properly whether these compounds can still bind the mutant GNAQ [141, 
142]. UM without GNAQ or GNA11 have mutual exclusive mutations in the G-protein 
coupled receptor encoding Cysteinyl Leukotriene Receptor 2 (CYSLTR2) (4%) or the 
downstream effector Phospholipase C Beta 4 (PLCB4) (2.5%) [143, 144]. Together 
these data demonstrate that constitutively active G-protein signaling is an important 
early event in UM.

Like with cutaneous melanoma, the primary UM tumor can be treated efficiently. 
However, once UM patients develop metastasis, which happens in about half of the 
patients within 15 years after primary tumor detection, median survival is reduced 
to only several months since no effective treatment exists [145-147]. Frequent chro-
mosomal aberrations in UM are loss of one copy of chromosome 3, amplification of 
8q, 6p or both. Less frequently 8p gain or loss of 1p, 6q and 16q is observed [148, 
149]. Monosomy 3 strongly correlates with development of metastasis and therefore 
is a marker for poor prognosis [150, 151]. The BAP1 gene residing at chromosome 3 
frequently shows an inactivating mutation and the remaining wild type BAP1 allele 
is often lost due the monosomy 3 [152]. Mutations in BAP1 have a strong predictive 
power for the occurrence of metastasis in UM and 80-90% of the metastatic patients 
contain a BAP1 mutation [152, 153]. BAP1 functions as a de-ubiquitination enzyme 
and a regulator of cell cycle progression and DNA damage response [154-157]. It 
is thought that BAP1 influences these processes by de-ubiquitination of one of its 
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primary targets, histone 2A [158]. Depletion of BAP1 in vitro results in a stem cell-like 
phenotype of UM cells [159]. In addition to monosomy 3 and loss of BAP1 expression, 
gain of 8q is associated with poor survival rates [160, 161]. Multiple potentially inter-
esting genes residing on 8q could potentially explain the poor survival and/or provide 
interesting therapeutic targets, such as proto-oncogenes PTP4A3, c-MYC, PVT1, LYN 
and MOS.

In addition, mutations have been found in the  EIF1AX gene, coding for Eukaryotic 
Translation Initiation Factor 1A X-linked, an essential component of translation initia-
tion [162-164]. Mutations in EIF1AX occur for 20% in N-terminal end of the protein, 
which do not include inactivating mutations, such as frame shifts suggesting activating 
mutations [163, 165]. Mutations in EIF1AX are associated with good prognosis and 
subsequently correlate with disomy 3 [163]. Interestingly, only the mutant allele is 
expressed suggesting an oncogenic selection advantage [163]. Depletion of EIF1AX 
in wild type and mutant cell lines result in reduced cell viability, suggesting EIF1AX 
to be an essential gene [165]. Another gene often found mutated in UM in which 
two copies of chromosome 3 are retained is encoding the splicing factor 3B subunit 
1 (SF3B1) and these mutations corrupt SF3B1 functioning and are associated with a 
favorable prognosis [162, 166]. However, it has recently been shown that, although 
SF3B1 mutations have a favorable prognosis compared to monosomy 3 tumors, these 
mutations are associated with metastasis development after 5 year [167], indicating 
that SF3B1 mutations are a long term poor prognosis marker. Mutations in SF3B1 are 
found in 10-21% of patients and mainly affect Arg625 [163, 166]. SF3B1 has been 
shown to be an essential part of the spliceosome [168]. It is, therefore, not surprising 
that mutations in SF3B1 resulted in alterations in the splicing of many genes [169, 
170]. It remains unclear how EIF1AX and SF3B1 mutations exactly contribute to mela-
noma formation and how their functions correlate with their respective prognostic 
implications. It could be hypothesized that due to the mutual exclusive pattern and 
functioning in RNA processing EIF1AX and SF3B1 have partly overlapping functions in 
driving UM.

Most novel therapeutic interventions employed for metastasized UM focus on mu-
tated G-protein signaling. G-protein coupled signaling feeds into the know oncogenic 
MAPK pathway via its important effector PLC-β, which hydrolyzes phosphatidylinosi-
tol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol 
(DAG) [171]. IP3, via the increase of intracellular Ca2++, and DAG act as second mes-
sengers to activate various protein kinase C (PKC) isoforms (Figure 2B) [172, 173]. 
Although multiple PKC isoforms are activated, PKC δ and ε were shown to be sufficient 
to activate MEK, mediated by RAS Guanyl Releasing Protein 3 (RASGRP3) activation, 
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which in turn promotes UM survival and proliferation [174]. Indicating that the growth 
inhibitory effects of other PKC isoforms is not mediated trough MAPK inhibition. The 
insights into PKC activation have spurred investigations on PKC inhibitors such as So-
trastaurin. Indeed, UM cells are highly dependent on PKC and MEK signaling and were 
found to be sensitive to either MEK or PKC inhibition by small molecule compounds 
[175, 176]. A phase I clinical trial with UM patients was initiated using Sotrastaurin 
as PKC inhibitor. Sotrastaurin treatment resulted in progression free survival of 15 
weeks in about 50% of the patients [177]. Interestingly, both MEK and PKC inhibition 
is required to completely abolish ERK phosphorylation and thereby cell proliferation 
and survival in vitro and in vivo [176]. Unfortunately, a clinical trial assessing the 
potency of dual MEK and PKC inhibition had to be terminated due to strong adverse 
effects [178]. Aside from the MAPK pathway the PI3K pathway is also activated by 
the continuous G-protein coupled signaling in UM (Figure 2B). Upon activation PI3K 
catalyzes the conversion of PIP2 into PIP3, which in turn mediates the activation of 
AKT [179]. Indeed, the inhibition of the PI3K/AKT pathway has been shown to reduce 
proliferation in vitro [180]. A downstream target of AKT in the PI3K pathway is MTOR, 
a kinase with downstream effectors 4E-BP1 and S6K1 regulating translation [181-185]. 
Although multiple effective MTOR inhibitors exist, the impact of mTOR inhibition on 
UM cell proliferation and survival appears to be far less potent when compared to 
BRAF mutant cells [180, 186, 187]. Mutated G-protein coupled signaling to cell prolif-
eration and survival also involves the transcription regulators YAP and TAZ (Figure 2B). 
Mutated GNAQ/11 has been demonstrated to increase YAP/TAZ activity via Trio and 
downstream G-proteins Rho and Rac [188, 189]. The requirement of the YAP pathway 
for UM proliferation and survival was best illustrated by the knockdown of YAP in UM 
cells. Additionally, small molecule inhibition of YAP using Verteporfin demonstrated 
the clinical potential of targeting this pathway downstream of mutated GNAQ/11 
[188-190]. Together these pathways provide a wide range of opportunities to find 
novel therapeutic interventions for patients with metastasized UM (Figure 2B).

3. AIM AND OUTLINE OF THIS THESIS

The focus of this thesis is uveal melanoma (UM), an ocular cancer which, once metas-
tasized, is lethal due to lack of effective treatment options. UM is driven by an onco-
genic activating mutation in the α subunit of G-proteins GNAQ or GNA11. Essentially 
no mutations are found in the tumor suppressor gene p53 in UM. To represses p53 
activity approximately 65% of UM tumors express high levels of the p53 inhibitory 
proteins MDMX or MDM2. MDMX is shown to act as p53 inhibitor by binding to its 
transactivation domain, rendering it inactive as a transcription factor. Interestingly, it 
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has been demonstrated that the oncogenic function of MDMX reaches beyond that 
of p53 inhibition. The aim of this thesis is to unravel the oncogenic function of MDMX 
and provide new treatment options for patients with metastasized UM.

Chapter 2 describes the regulation of the transcriptome by MDMX in UM. We dem-
onstrate here that MDMX affects the transcription of genes involved in cell cycle 
regulation or apoptosis. This chapter also describes novel p53-independent effects 
of MDMX in addition to p53 inhibition, i.e. FOXO inhibition. Furthermore, a novel p53 
back-up mechanism with a potential therapeutic target is proposed in this chapter.

In chapter 3 the opportunities of a combined targeting of two common signaling path-
ways, GNAQ/11 mutations and wildtype p53, as therapeutic intervention for metas-
tasized UM patients is investigated. Drugs targeting these pathways, PKC- and MDM2 
inhibitors, are already known to elicit strong adverse effects in patients. Genetic 
interference with either MDMX or PKC δ expression or activity showed that beneficial 
effects can already be achieved by a more specific targeting, which is presumable less 
toxic to the patient.

In chapter 4 it is described, opposed to what has been reported before, that enhancer 
of zeste homolog 2 (EZH2) inhibition poses a valuable novel therapeutic invention for 
UM. However, since EZH2 inhibition might take too long to exert a clinical beneficial 
effect, it was investigated whether EZH2 targeting would sensitize UM cells for other 
therapeutic strategies. Indeed, interfering with EZH2 activity synergized with HDAC 
inhibition, thus providing a novel treatment option for metastasized UM.

In chapter 5 it is shown that combining two clinically approved drugs, the pan-histone 
deacetylase (HDAC) inhibitor Quisinostat and the pan-CDK inhibitor Flavopiridol, 
could serve as an effective therapeutic intervention for UM patients. In addition, this 
combination of compounds, effectively causing apoptotic cell death in UM cells, could 
serve as alternative treatment option for cutaneous melanoma patients as well.

In chapter 6 the results from the preceding chapters are summarized and discussed 
and implications for future research and clinical implementation provided.
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