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Chapter 5

Multistability of
Non-Flat Vertices

5.1 Introduction

One appealing feature of many origami patterns is that they readily exhibit
multistable behavior. For example: a simple waterbomb pattern, consisting
of folds of alternating sign coming together at a vertex is generically bistable
[66, 67]. Here the flexibility of the folds and the flexibility of the material
work together to create one stable shape at zero elastic energy, and one
stable shape at finite energy. Other examples of bistability also exploit the
finite stiffness of the plate material to achieve bistable structures [68, 69],
whereas yet other studies focus on strictly rigid folding structures dressed
by linear or torsional springs [28, 34, 70, 71]. Both of these approaches
however, generally consider only bistable behavior [28, 34, 66, 67, 70].

A Euclidean 4-vertex which is made out of paper –or any other flat
material– has two folding branches, which connect at the flat state [28]. As
a consequence, when one of the fold angles is fixed, the vertex can be in two
distinct configurations. It is therefore straightforward to make a bistable
element out of a 4-vertex mechanism, by putting a single torsional spring
on any of the four folds. When additionally putting springs on the three
remaining folds, it is theoretically possible to create tri-, quad-, penta-, and
hexa-stable vertices [28]. However, these more complex energy landscapes
only occur in a small region of the phase space spanned by the sector angles
of the vertex and the spring rest angles and stiffnesses. Moreover, most of
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5.2. NON-FLAT 4-VERTICES

the energy minima are shallow. It is therefore difficult to turn these designs
into actual tri-stable vertices.

In this chapter we aim to create experimentally robust tristable 4-
vertices. To do so, we opt for a novel approach, based on non-flat, non-
Euclidean 4-vertices. For these, the sum of sector angles

∑
αi is unequal

to 2π. Such non-flat vertices occur in non-developable origami structures,
which typically consist of cells which are glued together, such as eggbox pat-
terns [72], tubular origami structures [54], as well as 3D-origami stackings
[26].

For a non-Euclidean vertex, the flat state is no longer accessible by
rigidly folding the vertex. As a consequence, the two folding branches
split apart [73], as we discuss below, and the only way to switch from one
branch to another is by ‘popping through’ the vertex. This branch splitting
will be harnessed to create a vertex with two global (E = 0) minima on one
folding branch, and one additional local minimum (E > 0) on the other
folding branch.

In this chapter we experimentally demonstrate these tristable vertices.
In section 5.2 we explain the theory behind non-flat 4-vertices, and under
which conditions they are tristable. In section 5.3 we show how we fabricate
the vertices by means of 3D printing, as well as our experimental setup. In
section 5.4 we show our results. Based on these experiments, we calculate
energy curves, which show clear tristable behavior. We compare these to
our theoretical predictions in section 5.4.4 and find good agreement. Hence
we present a generic and robust route to fabricate tristable vertices.

5.2 Non-Flat 4-Vertices

In this section we will show how the two branches of a flat 4-vertex separate
when the four sector angles of the vertex add up to slightly less, or slightly
more, than 2π. The separation of the two folding branches effectively
creates an energy barrier between the two folding branches, which we
harness to design tristable 4-vertices.

5.2.1 Phenomenology

In order to understand the folding behavior of a non-flat vertex, we first
consider the two folding branches of a flat vertex. In Fig. 5.1.A we show
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CHAPTER 5. MULTISTABILITY OF NON-FLAT VERTICES

a flat 4-vertex with sector angles αi for a vertex with sector angles αi =
{π/3, π/2, 3π/4, 5π/12} for i = 1, 2, 3, 4, which is the same geometry as
the vertex in Fig. 5.1.A. When we fold this 4-vertex it can be modeled
as a mechanism which has a single continuous degree of freedom, and
two folding branches that meet in the flat state. Spherical trigonometry
can be used to derive the relationships ρi(ρj) on the two principal folding
branches, which we name branch-I and branch-II. On branch I, the sign
of ρ4 is opposite to all others, whereas on the branch II the sign of ρ1 is
opposite to all others. These two folds, ρ4 and ρ1 are so called ‘odd-folds’,
which are found on either side of the ‘odd plate’, which is defined as the
plate for which the corresponding sector angle satisfies [28],

αi + αi+1 < αi+2 + αi+3, (5.1)

αi + αi+3 < αi+1 + αi+2. (5.2)

We further subdivide these in branches I+ and II+, for which three out
of the four folds are positive in sign, as well as I− and II−, for which
three out of the four folds are negative in sign. In Fig. 5.2.A we plot the
relationships ρi(ρ1).

From the folding branches in Fig. 5.2.A it is evident that putting a
torsional spring on any of the four folds ρi results in a bistable vertex. A

A

4

3

B

C

Figure 5.1: (A) Flat 4-vertex with sector angles αi = {π/3, π/2, 3π/4, 5π/12}
(B) Vertex where the αi of A are uniformly shrunk by a factor f < 1 (α′i = f · αi)
such that

∑
αi < 2π. As depicted, this vertex has assumed a ‘hat-shape’, where

all the ρi are identical in sign, which is not possible with flat vertices. C: Vertex
where the αi of A are uniformly expanded by a factor f > 1 such that

∑
αi > 2π.

As depicted, this vertex has assumed a ‘saddle-shape’ where the ρi alternate in
sign. This alternation is not possible with flat vertices. Figure from [74].
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5.2. NON-FLAT 4-VERTICES

A B

Figure 5.2: (A) Folding branches ρI
+

i (ρ1), ρI
−

i (ρ1), ρII
+

i (ρ1), and ρII
−

i (ρ1) for
i = 2, 3, 4, for a flat vertex with sector angles as in Fig. 5.1.A. (B) Plot of ρ3 as a
function of ρ1 for the small area around the origin shown in A. The dashed, and
double dashed lines through the origin correspond to ρI

+/−

3 (ρ1) and ρII
+/−

3 (ρ1)
as in A, for ε = 0. The curved green lines indicate the merged folding branches
ρI

−II+

and ρI
+II−

(for ε > 0), and ρI
+II+

and ρI
−II−

(for ε < 0). The solid black,
blue, green, and red lines indicate where the folding angles ρ1, ρ2, ρ3, and ρ4
change sign, and divide the plot in eight sectors, with the signs of their fold angles
as indicated.

spring with rest angle φ placed on fold i results in stable states with ρi = φ,
of which there are always two, provided φ 6= 0 and φ is not too large (not all
ρi reach ±π along their folding branches). We show two specific examples.
First, we consider a torsional spring with a positive rest angle ρspring = π/2
on the ρ1 fold. As this single spring wants to relax to its rest angle, this
results in two stable configurations: one on the I+ branch, and one the
II− branch. The blue dots (for branch I+) and blue diamonds (for branch
II−) at ρ1 = ρspring on these two branches indicate the ρi values for the
two equilibrium configurations. Second, when we choose to put the same
torsional spring on ρ3, we again find two stable states: one on the I+ branch
as before, and one on the II+ branch. Here the red dots (for branch I+)
and red diamonds (for branch II+) on these two branches indicate the two
equilibrium configurations for which ρ3 = ρspring. For convenience, we
summarize the signs of the folding angles on the four different branches in
table 5.1. From this, we deduce that a single spring on one of the two odd
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CHAPTER 5. MULTISTABILITY OF NON-FLAT VERTICES

ρ1 ρ2 ρ3 ρ4
I+ + + + −
I− − − − +

II+ − + + +

II− + − − −

Table 5.1: Overview of the signs of the folding angles on the four ε = 0 folding
branches.

folds yields stable states at branch I+II− or I−II+; a single spring on one
of the other folds yields stable states at branch I+II+ or I−II−.

This picture changes completely when we uniformly shrink or expand
all the sector angles αi by a factor f , such that the vertex is no longer
euclidean. To describe these vertices we define the surplus angle, ε =
f
∑
αi−2π. Here ε < 0, f < 1, corresponds to a vertex for which

∑
αi < 2π,

which results in a hat shaped vertex, as depicted in Fig. 5.1.B. Conversely,
ε > 0, f > 1, corresponds to a vertex for which

∑
αi > 2π, which results in

a saddle shaped vertex, as depicted in Fig. 5.1.C. For a flat vertex, where
ε = 0, the branching point of the two branches I and II is the flat state,
where all ρi = 0. For a vertex where ε 6= 0 this branching point disappears,
resulting in disjoint folding branches.

We now explain what happens to the folding branches for ε 6= 0, by
focusing on the relation ρ3(ρ1) in the area around the origin corresponding
to the black square in Fig. 5.2.A, shown in large in Fig. 5.2.B1. Here the
four curves ρI

+

3 (ρ1), ρI
−

3 (ρ1), ρII
+

3 (ρ1), and ρII
−

3 (ρ1) for ε = 0 are shown
by the four green lines meeting at the origin. When we introduce a small
angular offset, such that ε 6= 0, we find that for ε < 0 the two branches I+

and II+ merge together. This creates a new folding branch, which we shall
indicate by I+II+. In Fig. 5.2.B this corresponds to the ρI

+II+
3 (ρ1) curve.

Similarly, we find that for ε < 0 and ρ3 < 0, the two branches ρI
−

3 (ρ1) and
ρII

−
3 (ρ1) merge to form ρI

−II−
3 (ρ1). We note that for ε < 0, the signs of

the fold angles ρi vary as (+ + +−) 7→ (+ + ++) 7→ (− + ++) or ρi as
(−−−+) 7→ (−−−−) 7→ (+−−−). Hence, these vertices can form a ‘cone’
(+ + ++), or ‘bowl’ (+−−−) shape (see Table 5.2).

For the ε > 0 case we find that the branches ρI
−

3 (ρ1) and ρII
+

3 (ρ1) merge
to form ρI

−II+
3 (ρ1) when ρ1 < 0. For ε > 0 and ρ1 > 0 we find that ρI

+

3 (ρ1)

1We here explicitly calculated the branches, but this scenario is generic [74].
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5.2. NON-FLAT 4-VERTICES

and ρII
−

3 (ρ1) merge to form ρI
+II−

3 (ρ1). Along these branches, the signs
of the fold angles vary as (− − −+) 7→ (− + −+) 7→ (− + ++), or as
(+ + +−) 7→ (+ − +−) 7→ (+ − −−). Hence, these vertices can form a
‘saddle’ (+ − +−) or (− + −+) shape (see Table 5.2). As illustrated in
Fig. 5.2 there are still two possible folding branches for both ε > 0 and
ε < 0. However, they are no longer connected by a common branching
point.

ρ1 ρ2 ρ3 ρ4

ε < 0

I+II+
+ + + −
+ + + +
− + + +

I−II−
− − − +
− − − −
+ − − −

ε > 0

I−II+
+ + + −
+ − + −
+ − − −

I+II−
− − − +
− + − +
− + + +

Table 5.2: Overview of the signs of the folding angles on the four folding
branches for ε 6= 0.

In this chapter we will harness the disconnectedness of the two folding
branches for ε 6= 0 to create tristable origami vertices. For example, the
separation of the ρI

−II−
3 and the ρI

+II+
3 branches in the ε < 0 case means

that we can not change the sign of ρ3 by rigid folding. However, real
vertices have finite stiffness, and can be elastically deformed, by bending
and stretching the plates and hinges. This enables us to ‘pop-through’ the
vertex from branch ρI

+II+
3 to ρI

−II−
3 or vice versa. The angular surplus ε

effectively creates an energy barrier between a cone with folding angles
−−−−, and a cone with folding angles + + ++. Similarly, the ε > 0 case
exhibits a saddle-to-saddle transition when popping the vertex through
such that we force the vertex from the folding branch ρI

+II−
3 , with sign

configuration −+−+, into folding branch ρI
−II+

3 with sign configuration
+−+−.
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CHAPTER 5. MULTISTABILITY OF NON-FLAT VERTICES

We now show that a vertex with an angular offset |ε| > 0, combined
with a single torsional spring, allows us to make a tristable vertices. To
demonstrate this, imagine attaching a single torsional spring with a rest
angle of ρspring = 3π/40 on the ρ1 fold of a ε > 0 vertex. As we can see in
Fig. 5.2.B, this results in two stable (E = 0) configurations on the ρI

+II−
3

branch, one where ρ3 > 0, and one where ρ3 < 0, indicated by the blue
dots. When we pop this vertex through to the folding branch ρI

−II+
3 , one

additional local minimum can be found on the ρI
−II+

3 branch, indicated by
the blue diamond. Here E 6= 0, as the spring cannot reach its relaxed state,
as the torsional spring wants to minimize its energy, the energy minimum
is located as close to ρ1 = ρspring as possible. This minimum, which is
not present when ε = 0, is stable provided that the energy necessary to
‘pop-through’ the vertex from the I−II+ branch to the I+II− is sufficiently
high compared to the energy stored in the spring. Conversely, we can
make a tristable ε < 0 vertex by putting a ρspring = 3π/40 on the ρ3 fold.
In Fig. 5.2.B we see this results in two stable states on the ρI

+II+
3 folding

branch, as indicated by the two red dots. A third, local minimum can be
found on the ρI

−II−
3 folding branch when we pop the vertex through from

the I+II+ branch to the I−II− branch, as is indicated by the red diamond.
Inspecting the signs of the fold angles on the ε 6= 0 branches as summa-

rized in table table 5.2, as well as the generic sketch of these branches in
Fig. 5.2, we conclude that ε < 0 vertices can be made tristable by putting
a single spring on ρ2 or ρ3, i.e. a fold opposite to the odd folds (ρ4, ρ1)
of the corresponding flat vertex. On the contrary, ε > 0 vertices can be
made tristable by putting a single spring on one of the two odd folds of the
corresponding flat vertex.

5.2.2 Theoretical Energy Curves

In this section we compute the elastic energy as a function of fold angle,
for non-Euclidean 4-vertices, augmented with a single torsional spring.
We focus on the scenarios outlined in the previous section that potentially
lead to tristable vertices. We consider vertices with sector angles αi =
(1 + ε

2π ){π/3, π/2, 3π/4, 5π/12}, and angular surplus of ε =
∑
αi − 2π =

±{0.001, 0.01, 0.03, 0.001} rad.
For the cone-like, ε < 0 vertices we choose to put the spring on the

ρ4 fold of the vertices. As discussed in the previous section this leads to
two stable states on the I+II+ branch, and one stable state on the I−II−
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5.2. NON-FLAT 4-VERTICES

branch. Assuming a torsional spring with a stiffness kspring, and a rest angle
ρspring > 0, the energy curves can then be calculated as,

Eε<0
bistable(ρ1, ε) =

1

2
· kspring

(
ρI

+II+

3 (ρ1, ε)− ρspring
)2

(5.3)

for the bistable branch, and

Eε<0
monostable(ρ1, ε) =

1

2
· kspring

(
ρI

−II−
3 (ρ1, ε)− ρspring

)2
(5.4)

for the monostable branch. The corresponding energy curves as a function
ρ1 are displayed in Fig. 5.3.A.

For the saddle-like, ε > 0 vertices we choose to put a torsional spring
on the ρ2 fold of the vertices, which leads to one bistable branch (I+II−),
and one monostable branch (I−II+), when viewed as a function of ρ3 (see
Fig. 5.2.B). The energy curves can then be calculated as,

Eε>0
bistable(ρ3, ε) =

1

2
· kspring

(
ρI

+II−
1 (ρ3, ε)− ρspring

)2
(5.5)

A B

Figure 5.3: (A) Bistable energy curve on branch I+II+ (pink), and monostable
energy curve on branch I−II− (orange), for a cone-like, ε < 0 vertex with a spring
on ρ4, and controlling ρ2, for various values of ε (see legend). (B) Bistable energy
curve (pink) on branch I+II−, and monostable energy curve on branch I−II+

(orange), for a saddle-like, ε > 0 vertex with a spring on ρ2, and controlling ρ4, for
various values of ε (see legend).
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CHAPTER 5. MULTISTABILITY OF NON-FLAT VERTICES

and,

Eε>0
monostable(ρ3, ε) =

1

2
· kspring

(
ρI

−II+
1 (ρ3, ε)− ρspring

)2
(5.6)

respectively. These energy curves are plotted in Fig. 5.3.B as function of ρ3.
In both the ε < 0, and the ε > 0 case we clearly have three minima.

We note that the separation of the energies at ρ3 = 0 between the upper
and lower branches grows as

√
ε, which is expected for the unfolding of a

transcritical scenario (the intersection of the I and II branches at ε = 0). In
addition, we notice that the depth of the two minima on the lower branch
diminishes with ε. The experimental challenge is therefore to find a value
of ε for which the upper and lower branch are sufficiently separated by
means of the ‘pop-through’ barrier, but which does not wash out the two
minima on the lower branch.

5.3 3D Printed Tristable Vertices

Here we describe the manufacturing of non-flat 4-vertices. Specifically,
we aim to create vertices where the two branches have one, respectively
two energy minima at corresponding stable states, and where the energy
barrier between these branches is in the right range to allow “popping"
from one branch to the other, without destroying the three energy minima
on the two branches. We discuss how we make these vertices by use of 3D
printing, and how we turn them into tristable vertices by dressing them
with a torsional spring.

We first discuss the experimental fabrication of non-flat 4-vertices. The

A B

NaOH (aq)

Figure 5.4: (A) Schematic side view of the 3D printing process, using two
different materials. Vertices are built up layer by layer (in gray), and arbitrary
geometries can be created by use of a scaffold material (in lilac). (B) We dissolve
the scaffold in an 70◦ C aqueous NaOH solution, which leaves the plate material
intact.
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5.3. 3D PRINTED TRISTABLE VERTICES

vertices we use for our experiment are 3D printed with a Stratasys Fortus
250 MC, which is capable of printing ABS plastic, as well as a sacrificial
ABS-like plastic, with a layer thickness of 0.18 mm and an xy-resolution of
better than 0.24 mm. The sacrificial material serves as a scaffold, and allows
us to print non-flat vertices, see Fig. 5.4.A. This scaffold is subsequently
dissolved by putting the structure in a 70◦ C sodium hydroxide (NaOH,
pH 9.0) solution for 7 hours, see Fig. 5.4.B. This printing technique there-
fore allows us to print non-flat vertices with an arbitrary angular surplus
ε.

We design our vertices to be 150 mm in diameter, consisting of four
plates which are 3.0 mm thick, see Fig. 5.5.A. The four plates of the vertex

z

x

z

150.0 mm

4.2 mm

6.0 mm

4.5 mm

12.0 mm

dgap

y

x

dgap

3.0 mm

A B

C D

y

x

α1

α2

α3 α4

12.0 mm

3.0 mm1.5 mm

B

C

Figure 5.5: (A) Top view of the design of a 3D printed, (flat) 4-vertex with
sector angles αi = {π/3, π/2, 3π/4, 5π/12}. This vertex is 150 mm in diameter and
3 mm thick. The plates are connected by four conically shaped hinges (detailed
view in B,D). A torsional spring can be put on one of the folds (see C for a detailed
side view). (B) Detailed top view of the hinges in A, where the dotted orange line
indicates the axis of rotation of the conical hinges. (C) Side view of the torsional
spring in A. The spring is offset from the plates of the vertex such that its axis of
rotation aligns with the axis of rotation of the hinges (see blue line in B). (D) Side
view cut through of the hinges in A,B. The dotted orange line indicates the axis of
rotation of the conical hinges as in A,B.
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CHAPTER 5. MULTISTABILITY OF NON-FLAT VERTICES

are connected to each other by four hinges, and the axes of rotation of all
these hinges meet at the center of the vertex. The hinges consist of two
disconnected conical holes attached to one plate, and two opposing conical
pins attached to the opposing plates (Fig. 5.5.B). This design allows us to
closely emulate a perfect hinging fold. The main experimental limitation
is the finite maximal folding angle, of approximately |ρi| ≈ 2.65 rad, due
to the formation of self contacts between the plates that occur for high
folding angles. A detailed view of the design is shown in Fig. 5.5.B and
Fig. 5.5.D. This hinge design allows us to print the vertex in its assembled
state, including the hinges. However, it does require careful tuning of
the dgap parameter that sets the separation between the conical holes and
the conical pins (Fig. 5.5.B,D). When we set dgap too low, the hinges get
stuck to each other after the printing process, which was found to be the
case for dgap = 0.05 mm and dgap = 0.1 mm. Setting dgap too high results
in a vertex with excessive play in the hinges, which leads to significant
deviations from rigid folding. The gap dgap was therefore chosen to be
dgap = 0.15mm, which is roughly equal to the layer resolution of the 3D
printer (at 0.18 mm).

The vertex is designed to allow to incorporate a torsional spring on one
of the folds, as is shown in Fig. 5.5.A. We do this by including cylindrical
holes of diameter 1.14 mm in the design of the 3D-printed vertex, which
allows us to attach an Amatec T045-270-312 torsional spring. These holes
are offset from the plate material such that the center of rotation aligns with
that of the center of the hinges, see Fig. 5.5.C. In order to create a tristable
vertex by adding a single torsional spring, we choose to print cone-like
vertices such that we can attach the spring to the ρ1 fold, and the saddle-like
vertices such that we can attach the spring to the ρ3 fold (see section5.2).
Furthermore we note that the torsional springs are not irreversibly attached
to the vertices, and can be taken out to perform control experiments.

For the sector angles of the vertices we choose αi = (1 + ε
2π ){π/3, π/2,

3π/4, 5π/12}. Our goal is to fabricate vertices which we can reversibly
pop-through. This puts an upper limit on |ε|, as the maximal stresses on
the hinges during the pop-through grows with increasing |ε|. In practice,
we found that vertices for which |ε| > 0.105 rad readily fail at the hinges
after popping it through ten or less times. Conversely, vertices for which
|ε| < 0.026 rad barely show any pop-through behavior at all, presumably
due to the small but finite play in the hinges. This makes such vertices
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5.4. EXPERIMENTAL RESULTS

unsuitable to our end goal of making tristable vertices, which requires an
energy barrier between the two branches. We therefore focus on vertices
with an angular surplus of |ε| = 0.052 rad. These vertices do not break
at the hinges after popping them through numerous times, yet the pop-
through energy barrier of these vertices is large enough for the two folding
branches to remain separated, as we will show.

5.4 Experimental Results

In this section we will first demonstrate that the 3D printed vertices of
section 5.3 can be made tristable by adding a single torsional spring to
one of the folds (section 5.4.1). After this, we characterize the tristable
energy landscape by use of an Instron MT-1 torsion tester. We first explain
the experimental protocol (section 5.4.2), then we show our experimental
results (section 5.4.3), and last we convert our torsion data into experi-
mental energy curves, in order to compare them to theoretical predictions
(section 5.4.4). Finally, we show that we can control the separation between
the bistable and monostable folding branches of the vertices by carefully
tuning the angular surplus ε (section 5.4.5).

5.4.1 Tristable Vertex: Qualitative Results

In the previous section we showed that we settled on a vertex with an
angular surplus of ε = ±0.052 rad, which allowed for reversible pop-
through behavior. To turn the 3D printed vertices into a tristable vertex,
we now attach an Amatec T045-270-312 torsional spring, with a torsional
stiffness of 46(1) mNm/rad, and rest angle ρspring ≈ 0.69(2). We will
show that the combination of spring and vertex geometry ensures that
the energy needed to pop-through the vertex, Epop, is sufficiently high
in comparison to the barriers of the mono- and bi-stable branches, Emin

and Ebarrier respectively. We can qualitatively verify that Emin < Epop by
taking one of the experimentally realized vertices including the torsional
spring, popping it through manually, and leaving it untouched. This is
shown in Fig. 5.6.A and Fig. 5.6.D for the ε = −π/60 ≈ −0.052 rad and the
ε = π/60 ≈ 0.052 rad vertex respectively. Furthermore, we can show that
Ebarrier < Epop by showing that the two minima on the bistable branch are
stable; this is shown in Fig. 5.6.B,C and Fig. 5.6.E,F. This shows that the
combination of angular surplus and torsional spring chosen here leads to a
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CHAPTER 5. MULTISTABILITY OF NON-FLAT VERTICES

tristable vertex, both for ε < 0 and ε > 0.

B CA

E FD

Figure 5.6: (A,B,C) The three stable states we found for an ε = −π/60 vertex.
Here (A) represents a state corresponding to a local energy minimum; (B) and
(C) represent states corresponding to global energy minima, where ρ1 < 0 and
ρ1 > 0 respectively. (D,E,F) The three stable states we found for an ε = π/60
vertex. Here (D) represents a state corresponding to a local energy minimum; (E)
and (F) represent states corresponding to global energy minima, where ρ3 < 0 and
ρ3 > 0 respectively.

5.4.2 Experimental Protocol for Torsion Experiments

To quantify the multistability of these experimentally realized, non-flat 4-
vertices, we aim to obtain the elastic energy as a function of one of the fold
angles, on both branches, as well as the energy of the pop-through. While
in principle these can be measured straight forwardly by measuring the
torque as function of fold angle, in practice there are several experimental
complications, due to the effect of gravity, and friction, that require special
care. To measure the torque as function of fold angle, we clamp two plates
of the vertex in an Instron MT-1 torsion tester with a 2.25 N·m load cell,
which allows us to measure torques with an accuracy of 0.01 N·m, and
angular displacement with a resolution of 5 · 10−5 rad; a picture of this
setup is shown in Fig. 5.7.A. In Fig. 5.7.B we depict a schematic side-view
of the setup used to measure the torque as a function of the folding angle.
On the left side we see the drive side of the torsion tester, which can rotate
the red plate plate by means of a center-offset clamp. On the right side we
see the load cell, which is stationary. In order for the load cell to measure
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the torque exerted on the green plate, we made a custom U-shaped clamp,
which has enough clearance for the vertex to fold, and can attach on the
other side of the vertex (see Fig. 5.7.B).

Protocol: (i) The first step in measuring the energy landscape of the
vertex is to characterize the torsional spring by probing its spring constant
kspring, and rest angle ρspring. We do this by attaching the spring to the
vertex and by manipulating the fold on which the spring is attached, which
is fold ρ3 for the ε < 0 vertices, and fold ρ1 for the ε > 0 vertices (see
section 5.3). (ii) Second, we attach the vertex differently, so as to measure
the torque required to change the fold angle opposite to the spring, which
is fold ρ1 for the cone-like vertices, and fold ρ3 for the saddle-like vertices.
Here, we make sure that the vertex is on the bistable branch. (iii) Third,
while the vertex is still attached to the clamps of the torsion tester, we
manually force the vertex to pop-through the fold where the spring is
attached, which moves the vertex to the monostable folding branch. For
the cone-like vertices this means changing the sign of the ρ3 fold from
positive to negative; for the saddle-like vertices this means changing the
sign of ρ1 from positive to negative. To probe the energy landscape on the
monostable branch we then measure the torque required to change fold ρ1
for the cone-like vertices, and fold ρ3 for the saddle-like vertices. The three
torque measurements (i)-(iii) can be converted to energy landscapes by
integration, and in principle yield the energy curves that can be compared
to the theoretical prediction (see Fig. 5.3). However, friction and gravity
also play a role, and require careful attention.

First, the hinges of the vertices are not frictionless, even though they are
thoroughly sprayed with silicone oil. The resulting frictional forces show
up in our measurements as an offset to the signal that we want to measure.
Our approach is to “average out" the friction signal, as frictional forces are
always oriented opposite to the direction of movement, and are roughly
rate-independent. We therefore perform cyclic experiments, where we first
increase the fold angle ρi to its maximum value, and then decrease ρi to
its minimum value. For every measurement we then average the signal
of the upward and downward ρi to suppress frictional forces. Second,
even without any springs attached to the vertices, there is a non-constant
torque signal due to gravitational forces. This is explained schematically in
Fig. 5.7.C, and 5.7.D. As the drive shaft rotates the red plate, three of the
plates change position relative to the gravitational field, which leads to a
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Figure 5.7: (A) Picture of the vertex shown in Fig. 5.6.D-F, clamped in the
Instron MT-1 torsion tester. See (B) for a schematic of the setup. (B) Side view
schematic of how the Instron torsion tester is connected to the 4-vertex. One plate
(here plate α4) is attached to the drive side of the tester (on the left) by means of a
center-offset clamp. Another clamp is attached to the load cell side of the tester
(on the right), by means of a U-shaped clamp. Note that when actuated, plates
1, 2, and 4 move, while plate 3 is kept stationary. (C,D) Cut-through schematic
when looking from the side of the load cell, in the direction of the drive shaft, as
indicated in panel A. The three moving plates change position in the gravitational
field, which results in a non-zero torque signal, even without any spring attached
to the vertex.
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corresponding torque, Tgravity. In order to suppress this signal, we do two
separate experiments: one with the torsional spring attached to the vertex,
and one where we take the spring off. By subtracting these two signals, we
effectively suppress the Tgravity signal.

By averaging the signal obtained from cyclic experiments, as well as
pairing every measurement with spring to an identical control experiment
without spring, we suppress both the effect of friction, as well as the effect
of gravity. We therefore have to do six experiments for every vertex. Here,
in summary, we list this series of experiments. First, for the cone-like
vertices we perform the following six experiments:

1. manipulating ρ3 with and without spring attached, to obtain the
spring constant, kspring;

2. manipulating ρ1, on the bistable branch (ρ3 > 0), with and without
spring attached, to probe the energy landscape of the bistable branch;

3. manipulating ρ1, on the monostable branch (ρ3 < 0), with and with-
out spring attached, to probe the energy landscape of the monostable
branch.

Likewise, for the saddle-like vertices we perform the following six experi-
ments:

1. manipulating ρ1 with and without spring attached, to obtain the
spring constant, kspring;

2. manipulating ρ3, on the bistable branch (ρ1 > 0), with and without
spring attached, to probe the energy landscape of the bistable branch;

3. manipulating ρ3, on the monostable branch (ρ1 < 0), with and with-
out spring attached, to probe the energy landscape of the monostable
branch.

For each of these experiments we open and close the fold that we manipu-
late four times, using up and down sweeps of the angle with a ramp rate
of 0.070 rad/s. The maximum opening and closing angle of the fold that
is manipulated is determined when the first fold reaches its maximum
angle of ρi ≈ 2.65 rad, at which self-contact of the hinges limits the range
of movement (see previous chapter), add the aluminium clamps that are
holding the plates (indicated by the two dashed circles in Fig. 5.7.B), which
can contact each other.
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5.4.3 Torsion Experiments - Results

We now explain in detail how we deal with gravitational and frictional
forces for the measurements where we probe the torsional spring on the
ε = −π/60 vertex. After correcting for these spurious signals, we find
that the torque exerted by the spring as function of fold angle is close to
linear, which gives confidences in our methodology. We then apply the
same protocol to the remaining experiments that probe the torsional spring
on the ε = π/60 vertex in section 5.4.3, as well as the non trivial energy
landscape at each branch, in sections 5.4.3 and 5.4.3.

We now first explain in detail how we determine the spring properties
by actuating the fold where the spring is attached, and how we deal with
gravitational and frictional forces. We both probe the torsional spring on
the ε = −π/60 vertex and on the ε = π/60 vertex.

Torsional Spring on a Cone-like Vertex

As explained in the above section, to determine the spring properties, we
clamp the ε = −π/60 vertex such that the torque is directly applied to
the two plates adjacent to the spring (ρ3 fold), and compare data with and
without a spring attached. As shown in Fig. 5.8A, even without a spring
attached, the raw torque signal T0(ρ3) is complex and exhibits hysteresis.
This hysteresis is due to friction, and we obtain a signal T 0 by averaging
over up and down sweeps (Fig. 5.8B):

T 0(ρ3) =
1

2
(T0(ρ3 ↑) + T0(ρ3 ↓)) . (5.7)

As shown in Fig. 5.8C-D, we follow the same procedure for a vertex where
the spring is attached, and define T as

T (ρ3) =
1

2
(T (ρ3 ↑) + T (ρ3 ↓)) . (5.8)

After eliminating friction, the two signals T0 and T have contributions
from gravity (Tg), non-rigid deformations of the vertex (TV D), and in the
case of T , from the spring Tspring. The gravitational signal is expected to be
very similar in T0 and T , and by subtracting these signals we obtain a signal
that is the sum of Tspring and TVD (Fig. 5.9). The non-rigid deformations are
due to the vertex “popping” between two branches and are the cause of the
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large torque spikes near ρ3 = 0. The interval of the folding angles where
these deformations can be expected with bounds ±ρ3,min is dependent on
the surplus parameter ε, as can be seen from Fig. 5.2.C. For the ε = −π/60
vertex we find ρ3,min = ±0.27 using our analytical model. Hence, for larger
fold angles, the only signal is due to the spring, and indeed we observe that
for |ρ3| > ρ3,min, the signal is essentially linear. The excellent fit to a linear
function (black) indicates that the spring follows the torsional variant
of Hooke’s law, and can be used to extract the torsional spring constant
kspring = 46(1) mNm/rad, as well as the rest angle: ρspring = 0.73(1) rad.
We conclude that, even though the raw torque signal shows large amounts
of hysteresis, a significant contribution due to gravity, and near ρ3 = 0 a
strong signal due to vertex deformation, we can deal with these effects to
characterize the torsional spring.
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Figure 5.8: (A) Raw data T0 for a measurement on a < 2π vertex without spring
attached (see inset). (B) Mean signal T 0 eliminates friction but has contributions from
gravity and vertex deformations. (C) Raw data T for a measurement on a < 2π vertex with
spring attached (see inset). (D) Mean signal T eliminates friction but has contributions
from gravity, vertex deformations and the spring.
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Figure 5.9: The difference between T and T 0 is the sum of the vertex deformations,
confined near |ρ3| < 0.27, and a nearly linear function, due to the spring (blue). The black
line indicates a linear fit.

Torsional Spring on a Saddle-like Vertex

The same experiments were performed for the ε = π/60, saddle-like vertex.
Here we place the spring –which is the same spring as used before– on the
ρ1 fold. The measurements without spring is shown in Fig. 5.10.A, and the
averaged signal T 0(ρ1) = 1

2(T0(ρ1 ↑)+T0(ρ1 ↓)) is shown in Fig. 5.10.B. The
average signal of the measurement with spring, T (ρ1) = 1

2(T(ρ1 ↑)+T(ρ1 ↓))
is shown in Fig. 5.10.D. The two signals are then subtracted, to obtain
Tspring = T − T 0, for |ρ1| > ρ1,min, which is shown in Fig. 5.11. Here
ρ1,min = ±0.25 rad indicates the boundary within which the signal due to
vertex deformations, TV D, can not be neglected (see previous section).

The black line in Fig. 5.11 indicates a linear fit of the form Tspring =
kspring · (ρ1 − ρspring). This produces a torsional spring constant of kspring =
47(1) mNm/rad, which is within errorbars of the of kspring = 46(1) mNm/rad
obtained in the previous section, as this the same identical spring. How-
ever, the rest angle seems to have changed slightly: ρspring = 0.65(1) rad
compared to ρspring = 0.73(1) rad as extracted from the fit in Fig. 5.9. This
difference in rest angle might be attributed to a slightly different way the
torsional spring is glued to the vertex, resulting in a different effective rest
angle.
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Figure 5.10: (A) Raw data T0 for measurement on> 2π vertex without spring attached
(see inset). (B) Mean signal T0 eliminates friction but has contributions from gravity and
vertex deformations. (C) Raw data T for a measurement on > 2π vertex with spring
attached (see inset). (D) Mean signal T eliminates friction but has contributions from
gravity, vertex deformations and the torsional spring.

Figure 5.11: The difference between T and T 0 is the sum of the vertex deformations,
confined near |ρ1| < 0.25, and a nearly linear function, due to the spring (blue). The black
line indicates a linear fit.
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Monostable and Bistable Branch for a Cone-like Vertex

In order to probe the bi- and monostable branch of the ε < 0 vertex we
manipulate the ρ1 fold, with the spring on the ρ3 fold. The sign of the
ρ3 fold then determines whether we are dealing with the bistable branch
(ρ3 > 0), or the monostable branch (ρ3 < 0), see Fig. 5.2.C.

To extract the torque signal associated with the monostable branch,
where we first need to pop the vertex through by hand such that such that
ρ3 < 0. After having done this, we clamp the vertex in the torsion tester
such that we can manipulate the ρ1 fold. The raw data of the measurement
without spring, T0(ρ1), is shown in Fig. 5.12.A, and the averaged signal,
T 0(ρ1) = 1

2(T0(ρ1 ↑) +T0(ρ1 ↓), in Fig. 5.12.B. The raw data of the measure-
ment with spring is displayed in Fig. 5.12.C, whereas the averaged signal
T (ρ1) = 1

2(T (ρ1 ↑)+T (ρ1 ↓) is displayed in Fig. 5.12.D. Finally, we subtract
the two signals to yield T ε<0

mono(ρ1) = T (ρ1)− T 0(ρ1), which is displayed in
Fig. 5.13.

The same procedure is repeated for the bistable branch –where ρ3 > 0–
we once again need two experiments. First, we measure without the spring
attached, and manipulate the ρ1 fold. The result of this measurement
is shown in Fig. 5.14.A. The up and down sweeps are then averaged to
suppress friction: T 0(ρ1) = 1

2(T0(ρ1 ↑) + T0(ρ1 ↓)), see Fig. 5.14.B. Second,
we measure with the spring on ρ3, where the averaged torque signal T (ρ1) =
1
2(T (ρ1 ↑) + T (ρ1 ↓)) is displayed in Fig. 5.14.D. Finally, we subtract the
two averaged signals to find T ε<0

bi (ρ1) = T (ρ1)−T 0(ρ1), which is displayed
in Fig. 5.15 as the orange curve.
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Figure 5.12: (A) Raw data T0 of the the monostable branch of a < 2π vertex, without
spring attached (see inset). (B) Mean signal T 0 eliminates friction but has contributions
from gravity. (C) Raw data T of the monostable branch of a < 2π vertex, with spring
attached (see inset). (D) Mean signal T 0 eliminates friction but has contributions from
gravity as well as the spring.

Figure 5.13: The difference between T (red) and T 0 (green), results in the torsion
signal for the monostable branch: T ε<0

mono (purple).
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Figure 5.14: (A) Raw data T0 of the the bistable branch of a < 2π vertex, without
spring attached (see inset). (B) Mean signal T 0 eliminates friction but has contributions
from gravity. (C) Raw data T of the bistable branch of a < 2π vertex, with spring attached
(see inset). (D) Mean signal T 0 eliminates friction but has contributions from gravity as
well as the spring.

Figure 5.15: The difference between T (red) and T 0 (green), results in the torsion
signal for the bistable branch: T ε<0

bi (orange).
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Monostable and Bistable Branch for a Saddle-like Vertex

The torque measurements for the bi- and monostable branches for the ε =
π/60 vertex are shown in Fig. 5.18 and Fig. 5.16 respectively. The difference
with respect to the cone-like, ε = π/60 vertices is that the torsional spring
is now put on the ρ1 fold, whereas the plates connected by the ρ3 fold are
clamped. The torque measurements of the monostable branch, where the
vertex is ‘popped through’ such that ρ1 < 0, is summarized in Fig. 5.17,
where we show T ε>0

mono(ρ3) = T (ρ3) − T 0(ρ3) in purple. The torque data of
the bistable branch –where ρ1 > 0– is summarized by Fig. 5.19, where the
gravity corrected signal T ε>0

bi (ρ3) = T (ρ3) − T 0(ρ3) is shown by the orange
line.
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Figure 5.16: (A) Raw data T0 of the monostable branch of an ε > 0 vertex, without
spring attached (see inset). (B) Mean signal T 0 eliminates friction but has contributions
from gravity. (C) Raw data T of the monostable branch of an ε > 0 vertex, with spring
attached (see inset). (D) Mean signal T 0 eliminates friction but has contributions from
gravity as well as the spring.
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Figure 5.17: The difference between T (red) and T 0 (green), results in the torsion
signal for the monostable branch: T ε>0

mono (purple).
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Figure 5.18: (A) Raw data T0 of the bistable branch of an ε > 0 vertex, without spring
attached (see inset). (B) Mean signal T 0 eliminates friction but has contributions from
gravity. (C) Raw data T of the bistable branch of an ε > 0 vertex, with spring attached (see
inset). (D) Mean signal T 0 eliminates friction but has contributions from gravity as well as
the spring.

87



5.4. EXPERIMENTAL RESULTS

Figure 5.19: The difference between T (red) and T 0 (green), results in the torsion
signal for the monostable branch: T ε>0

bi (orange).

5.4.4 Experimental Energy Curves

In this section we translate our experimental data for the torque as function
of fold angle to curves of the elastic energy as function of the fold angle.
Subsequently we compare our experimental energy landscapes to our
theoretical predictions of section 5.2.2. In addition, we experimentally
characterize the energy barriers between the two folding branches, Epop.
In order for the three minima of our vertices to be stable, Epop should be
larger than the energy barrier separating the two global minima on the
bistable branch, Ebarrier, and also larger than the energy of the minimum
on the monostable branch, Emin. We first discuss how to extract Emin from
the spring potential. After this we show how we obtain the energy curves
of the mono-, and bi-stable branches from the torque data, from which we
can extract Ebarrier. Finally, we perform an additional, linear compression
experiment, which we use to characterize Epop.

Together, our data shows good agreement to our theoretical model, and
a clear separation of the two folding branches and the three stable states,
for cone-like as well as saddle-like vertices.

Spring Potential

In this section we extract the spring potential from our experimental data,
for both the cone-like vertices (section 5.4.3), and the saddle-like vertices
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(section 5.4.3). In general, torque measurements can be integrated to obtain
elastic energies:

E(ρi) =

∫
T (ρi)dρ. (5.9)

The data for T (ρi) is shown in Fig. 5.9 and Fig. 5.11. We recall that the

A B

Figure 5.20: (A) Spring potential of the ε = −π/60 vertex, extracted from the
data in Fig. 5.9. (B) Spring potential of the ε = π/60 vertex, extracted from the
data in Fig. 5.11.

experimental data has a gap in the “forbidden" region, where ρ3, respec-
tively ρ2, are pushed through the “pop-through" range where the vertex
deviates from rigid-folding. Outside this gap, the torque data can be fitted
well by a single linear function of the form T = κ · (ρ− ρ0), where ρ0 is the
spring’s rest angle. Piecewise integration of the energy to the left and right
of this gap, and fitting the energy offsets such that (i) E = 0 at ρ1,3 = ρ0
and (ii) E(ρ) is continuous, we obtain the energy curves shown in Fig. 5.20.
Here we non-dimensionalize our data by the torsional spring constant,
κspring.

Mono, and Bistable Energy Curves

In this section we extract the mono-, and bi-stable energy curves for both
the cone-, and saddle-like vertices. First, we consider the cone-like, ε =
−π/60 vertex. In Fig. 5.21.A the solid purple line corresponds to the
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experimental, dimensionless energy curve:

Eε<0
mono(ρ1) =

∫ [
T ε<0
mono(ρ1)

]
dρ1, (5.10)

where T ε<0
mono(ρ1) is the torque signal displayed in Fig. 5.13. The bistable,

dimensionless energy curve is displayed Fig. 5.21.B as the solid orange line:

Eε<0
bi (ρ1) =

∫ [
T ε<0
bi (ρ1)

]
dρ1, (5.11)

where T ε<0
bi (ρ1) is the torque signal displayed in Fig. 5.15.

Second, we consider the saddle-like, ε = π/60 vertex. In Fig. 5.21.C the
solid purple line corresponds to the experimental, dimensionless energy
curve:

Eε>0
mono(ρ3) =

∫ [
T ε>0
mono(ρ3)

]
dρ3, (5.12)

where T ε>0
mono(ρ3) is the torque signal displayed in Fig. 5.17. The bistable,

dimensionless energy curve is displayed Fig. 5.21.D as the solid orange
line:

Eε>0
bi (ρ3) =

∫ [
T ε>0
bi (ρ3)

]
dρ3, (5.13)

where T ε>0
bi (ρ3) is the torque signal displayed in Fig. 5.19.

The dashed lines in Fig. 5.21 indicate our theoretical predictions for
the energy curves for the non-Euclidean vertices, using the appropriately
determined spring potentials.

For the ε = −π/60 vertex, we experimentally find that the minima B
and C in Fig. 5.21.B are located at ρ1 ≈ −0.66 and ρ1 = 0.64 respectively.
Assuming a single spring located at ρ3 with a rest angle of 0.73(1) rad
(Fig. 5.9), theory predicts these minima to be located at ρ1 = ±0.73 rad,
which closely match the experiment. Furthermore, we find that the single
minimum on the monostable branch is located at ρ1 ≈ 0.01 in the exper-
imental data (Fig. 5.21.A), whereas we expect it to be located at ρ1 = 0.0.
While it is difficult to put a precise errorbar on our determination of the
location of the minima, which is dominated by fabrication errors, play,
clamping errors, and the shallowness of the minima, we estimate our
errorbar to be larger than the signal, of the order of 0.1 rad.

For the ε = π/60 vertex, we find that the minima E and F in Fig. 5.21.D
are located at ρ3 ≈ −0.74 rad, and ρ3 ≈ 0.80 respectively. Based on theory –
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Figure 5.21: (A) Experimental and theoretical dimensionless energy curves
for the monostable folding branch of the ε = −π/60 vertex. The minimum
energy is set to Emin = 0.51, corresponding to the energy of the purple point in
Fig. 5.20.A. (B) Energy curves for the bistable folding branch of the ε = −π/60
vertex. (C) Energy curves for the monostable folding branch of the ε = π/60 vertex.
Hence the minimum energy is set to Emin = 0.40, corresponding to the energy of
the purple point in Fig. 5.20.B. (D) Energy curve for the bistable folding branch of
the ε = π/60 vertex. The letters indicating the various minima correspond those
in Fig. 5.6.

assuming a single spring located at ρ1 with a spring constant of 0.65(1) rad–
we expect them to be located at ρ3 = ±0.69. We suggest that the relatively
large deviation of the location of the left minimum may be attributed to an
offset in the torque signal of Fig. 5.19, which tilts the integrated potential
shown in Fig. 5.21.D, and therefore also shifts the location of the minima.
We note that the distance between the two minima is within 5% of what we
expect from theory. Finally, the single minimum on the monostable branch
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is located at ρ3 ≈ 0.02 in the experimental data (Fig. 5.21.C), whereas we
expect it to be located at ρ3 = 0.0± 0.1.

We conclude that the four experimental energy curves shown in Fig. 5.21
demonstrate that theory and experiment agree closely, as the shape of the
experimental mono- and bistable branches, as well as the location of the
experimental minima, closely match the dashed theoretical curves.

5.4.5 Vertex Pop-Through

In this section we characterize the pop-through behavior of our vertices.
The energy barrier for pop-through, Epop, is presumably set by hinge
stretching and plate bending. These two effects both directly influence
the peak shown in Fig. 5.9 and Fig. 5.11. In these experiments we see
that the torque signal rises (drops) relatively slowly, until it hits a peak
value, after which the torque suddenly drops due to the pop-through
instability, resulting a in a near vertical slope. This is akin to the way the
load-displacement curve of a simple von Mises truss becomes asymmetric
when, instead of perfect displacement control, it is loaded with a spring,
see Fig. 5.22 and p.278–p.285 of [75].

In order to quantify Epop, we use a linear compression testing machine
(Instron 3361) to measure the force required to flatten the vertex, without
any torsional spring attached to the vertex. A schematic of our experiment
is depicted in 5.22. We put our vertices on a flat surface, and measure the
energy necessary to flatten it, which can be calculated from ∆E =

∫
Fzdz,

where Fz is the force exerted by the compression tester. When loading the
vertex, Fz will rise to a maximum value Fz = Fz,peak, starting from Fz = 0
(Fig. 5.22.A,B). After this, Fz will drop back to Fz = 0 for the fully flattened
vertex. On the contrary, E will monotonically increase, and we take the
maximum value of E for the fully compressed vertex as the pop-through
energy barrier, Epop.

The setup that we use in the vertical Instron testing machine consist of
single ε ≈ −0.052, cone-like vertex, with geometric parameters identical to
the one used for the experiments in section 5.4. To this vertex we glue 4
truncated spheres: three to the bottom, at approximately 120◦ apart along
the periphery of the vertex, and one to the top, near the center of the vertex
– see Fig. 5.23.A. The vertex is then placed in between two parallel circular
plates with a diameter of 20.0 cm, see Fig. 5.23.B. This setup creates a well
defined contact on the top and the bottom, and avoids the need for any
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Figure 5.22: Side-view schematic of the setup used to measure the energy
necessary to pop-through the vertex, Epop. (A) Start of the experiment: the vertex
is uncompressed, E = 0, and Fz = 0. (B) Approximately halfway the experiment,
the force exerted in the z direction will hit a maximum Fz , E > 0. (C) The vertex
is fully compressed. Vertically exerted force is once again Fz = 0, whereas the
elastic energy is now maximal, E = Epop.

precise parallel alignment of the top and bottom plate. Lastly, the spheres
as well as the aluminum plates are all coated with silicone grease in order
to minimize friction.

A similar setup is used for the ε ≈ 0.052, saddle like vertex. However,
as the pop-through transition in this case transforms the vertex from one
saddle configuration to another, pushing on the vertex on a single point
near the center does not pop the vertex through. Therefore, we use a a
different arrangement of spheres: two spheres are glued to the bottom of
the vertex, on opposite sides, and two on the top, also on opposite sides,
where the two pairs approximately form a cross (Fig. 5.23.C). A picture of
this configuration is shown in Fig. 5.23.D.

The result of the measurement for the ε ≈ −0.052 vertex is shown
in Fig. 5.24.A. The measurement protocol consists of lowering the top
plate until it is about to make contact with the top sphere, as depicted in
Fig. 5.23.B. We then impose an up and down sweep of the z-displacement,
∆z, where we use a strain rate of 0.1 mm/s, and a maximum ∆z of 1.6 mm
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Figure 5.23: (A) Top-view schematic of the ε < 0, hat-like vertex, where the
position of the attached spheres is indicated by the circles; dashed lines indicate
the spheres are attached to the underside of the vertex. (B) Side view of the ε < 0
in our compression setup. (C) Top-view schematic of the ε > 0, saddle-like vertex,
where the position of the attached spheres is indicated by the circles; dashed lines
indicate the spheres are attached to the underside of the vertex. (D) Side view of
the ε > 0 vertex in our compression setup.

(positive ∆z means pushing down). This maximum is increased by 1.0 mm
every second cycle to ∆z = 2.6, 3.6, 4.6, 5.6 mm, and finally ∆Z = 6.6 mm.
On the last cycle we see that the vertex pops through, at ∆z ≈ 6.28 mm. We
see that from ∆z . 3 mm, Fz increases to a peak value, which we determine
to be Fz,peak = 19.5± 0.5 N, obtained by taking the average maximum over
seven up sweeps – the error bar represents the standard deviation of seven
maximum values. After hitting this peak value, Fz monotonically decreases
all the way down to Fz = 0; the top plate staying in contact all the way till
the pop-through point. The amount of work necessary to pop-through the
vertex can now be calculated by integrating the signal of Fig. 5.24.A, as
we have done in Fig. 5.24.B, and we find a value of Wpop = 0.065 J. Finally,
we note the large discrepancy between Fz for the upward sweeps, and the
downward sweeps. We attribute this discrepancy to friction in the hinges,
which we also witnessed in our torsion experiments (section 5.4). Hence,
the amount of work is not equal to the maximum elastic energy stored in
the deformed configuration, Epop.
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A B

Figure 5.24: (A) Data of the compression experiment depicted in Fig. 5.23, for
a ε ≈ −0.052 rad vertex. Top plate makes contact with the vertex ∆z = 1.0 mm,
and is further compressed until ∆z = 1.6 mm using up an down sweeps of ∆z,
where the maximum ∆z is increased by 1.0 mm every other sweep. The last sweep
(brown) reaches a maximum of ∆z = 6.6 mm, where we witness a pop-through
event at ∆z = 6.275 mm. (B) Integrated signal of (A); we find Wpop = 0.065 J.

The result of the measurement for the ε ≈ 0.052 vertex is shown in
Fig. 5.25.A. In this experiment the top plate makes contact with the vertex
at a z-displacement of around ∆z = 1.0 mm, and is further compressed
until ∆z = 6.2 mm, which is just before the pop-through point, for three
up an down sweeps. On next compression cycle we increase the maximum
z-displacement to ∆z = 10 mm, and we witness a pop-through event at
∆z = 7.37 mm. The sudden drop in Fz at this point is where the vertex
pops through, and the top plate loses contact. The fact this happens before
Fz drops to zero, probably indicates the vertex is not perfectly flattened,
which would require precise alignment of the four attached spheres (unlike
in the ε > 0 case, where the four contacts are self-aligning). The average
peak load found in this case is Fz,peak = 15.5±0.1 N, which was determined
by taking the average of the peak load over four up sweeps, and likewise
for the errorbar, which corresponds to the standard deviation of these four
peak loads. This peak load is of the same order as the peak load found for
the ε ≈ 0.052 vertex. The integrated signal is equivalent to the amount of
work necessary to pop the vertex through, and is displayed in Fig. 5.25.C.
The ‘pop-through work’ is calculated from the total area under the curve in
Fig. 5.25.A, which results in Wpop = 0.072 J, which is approximately 10%
higher than theWpop value found for the ε > 0 case. Our data clearly shows
that this barrier is significantly larger than the energy scales on a single
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branch; hence once popped, the vertex will stay on one of these branches.
We also note that Wpop for the ε > 0 and ε < 0 vertices are similar. This
suggests that hinge stretching constitutes the main deviation from rigid
folding; if instead plate bending would dominate, ε > 0 vertices can easily
be popped, but ε < 0 vertices not2. Finally, the monotonous increase of the
“in plane" forces, while Fz goes to zero, suggests that frictional forces must
be important, even if the friction coefficient is small.

A B

Figure 5.25: (A) Data of the compression experiment depicted in Fig. 5.23, for
an ε ≈ 0.052 vertex. Top plate makes contact with the vertex at ∆z = 1.0 mm,
and is further compressed until a maximum of ∆z = 6.2 mm using a triangular
waveform, for 3 cycles. On the last cycle ∆z is increased to ∆z = 10.0 mm, where
we witness a pop-through event at ∆z = 7.37 mm. (B) Integrated signal of (A): we
find Wpop = 0.072 J.

In order to determine how Wpop depends on the angular surplus (or
deficit), we 3D printed four additional ε < 0 vertices, for ε = −π/120 ≈
−0.025 rad, ε = −π/72 ≈ 0.044 rad, ε = −π/45 ≈ −0.070 rad, and ε =
−π/30 ≈ −0.105 rad. The ε ≈ −0.026 rad vertex has a negligible bump,
which in particular is not enough to support the vertex’s weight when put
in a ‘cone up’ configuration on a flat surface – this is likely due to small but
finite play of the hinges. On the other extreme, repeatedly popping through
the ε ≈ −0.105 rad vertex breaks one of the outermost hinges of the vertex
within ten cycles, indicating the stresses put on these hinges is beyond the
yield stress of the material (ABS). The results of the compression tests of
the remaining three vertices: ε ≈ {−0.044,−0.052,−0.070}, are shown in
Fig. 5.26.A. The curves here correspond to the last compression cycle of

2This can readily be demonstrated by making non-Euclidean vertices out of paper,
where the ‘pop-through’ transition is facilitated by bending the paper.
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each test, where the brown curve in Fig. 5.26.A corresponds to the brown
curve in Fig. 5.24.A. To characterize the increase in bump size as a function
of surplus angle ε, we integrate each curve to find the energy underneath
each curve, and plot this value as function of ε, as shown in Fig. 5.26.B. The
points suggest there is a linear relationship between the amount of work,
Wpop, and the surplus angle, ε. A fit of the formWpop = a·ε+b is displayed
in Fig. 5.26.B as the black line. We find a = −3.34 J/rad and b = −0.109 J ,
which translates to a cut-off point of ε ≈ −0.033 rad. This is consistent
with the observation that the ε ≈ −0.026 rad vertex has a negligible barrier.
We note that this relationship is specific to this geometry and vertex size.
Most hinge stretching and bending takes place around the periphery of the
vertex, and the maximum stresses exerted on the hinges will decrease if
we print a vertex with a smaller radius, but otherwise identical geometric
parameters. We do expect however, to find a roughly similar relationship
between Wpop and ε for ε > 0 vertices, as Wpop for the ε = −0.052 and
ε = +0.052 vertices differs by only 10%.

A B

Figure 5.26: (A) Last compression cycle of three different vertices, with ε ≈
−0.044, ε ≈ −0.052, and ε ≈ −0.070. The brown, ε ≈ 0.052 curve corresponds to
the brown curve displayed in Fig. 5.24.A. (B) Wpop found by integrating the three
curves in (A), black line indicates a linear fit (see text).

Finally, we observe that Wpop, Emin and Ebarrier can all be expressed in
terms of dimensionless units, e.g:

W̃pop = Wpop/kspring, (5.14)

which yields W̃pop ≈ 1.43 for the ε ≈ −0.052 vertex , and W̃pop ≈ 1.57 for
the ε ≈ 0.052 vertex. From Fig. 5.21 we can see that Ẽmin � W̃pop and

97



5.5. CONCLUSION

Ẽbarrier < W̃pop, which is consistent with our observation that both vertices
are tri-stable.

5.5 Conclusion

In this chapter we have shown how to create experimentally robust tristable
vertex. We use weakly non-flat 4-vertices that exhibit two folding branches
that are separated by a finite energy barrier, controlled by a non-rigid “pop-
through transition. By dressing one of the folds with a torsional spring, we
can turn one of the two folding branches into a bistable branch, thereby
creating tristable vertices. The fact that this same mechanism works for
both cone-like (ε < 0) as well as saddle-like (ε > 0) vertices opens up the
possibility to create corrugated sheets composed out of tristable non-flat
vertices, for which we need both saddle-like and cone-like vertices.
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