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Chapter 4

Rational Design of
Origami Patterns

4.1 Introduction

In the previous chapters we showed that by converting the problem of
rigid foldability into a discrete tiling problem, we can fully characterize
and count all the possible crease patterns which can be made using a
single vertex, its supplement, and their two mirror images. Doing so we
uncovered new, space-filing periodic tilings –e.g. the tiling in Fig. 3.1– as
well as a vast array of aperiodic tilings.

In this section we aim to rationally design origami patterns using the
same discrete tiling strategy. We first show that we can create periodic
or non-periodic crease patterns, starting from a periodic class-I tiling in
section 4.2. Then we focus on class-I patterns, which allow the greatest
design space of the four different classes, as the number of class-I patterns
(N I

t = 8 · (2m − 1) · (2n − 1)) scales exponentially with both m and n. In
section 4.3 we show how to program class-I patterns such that we obtain
strips that can be folded into shapes with a pre-programmed curvature.
In section 4.4 we then show how to extend this design strategy to m × n
sheets, which can be folded into two different, pre-programmed shapes.
The result is a multishape material – this is unique for origami, where one
usually designs structures with only one target shape in mind. Finally, we
show experimental realizations of such multishape sheets, in the form of
lasercut Mylar™ sheets.
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4.2. SPACE-FILLING TILINGS

4.2 Space-Filling Tilings

In this section we will address the issue of space-filling tilings, where we
will focus specifically on class-I patterns. The first requirement for a crease
pattern to be space-filling is for its corresponding tile pattern to be space
filling. In Fig. 4.1.A we show a tile-pattern of which the top and bottom fit
together, but the left and right side do not – this pattern therefore can not
be turned into a space-filling crease pattern. In Fig. 4.1.B we replaced the
leftmost columns with tiles which create a space filling tile pattern.

In Fig. 4.2.A we convert the 4 × 4 pattern of Fig. 4.1.B into a 12 × 12
crease pattern using nine unit cells. To do so, we fix 11 degrees of freedom:
the crease lengths {ti} and {li} (8 d.o.f.) and the sector angles {αi} =
{60◦, 90◦, 135◦, 75◦} (3 d.o.f., as

∑
αi = 2π). We can clearly see that the

resulting pattern is not space-filling. This is because the lengths of the
top and left side of the crease pattern, do not match those of the bottom
and right side. To ensure matching lengths, we require that bi = ti and
ri = li; fixing {αi}. These yield eight equations for the eight degrees
of freedom {ti} and {li}. We solve these nonlinear coupled equations
numerically (by means of a Python script with standard minimization
libraries, scipy.optimize.minimize, using the Nelder-Mead method). The
result is shown in Fig. 4.1B, yielding a periodic, space filling crease pattern.

A B

Figure 4.1: (A) A class-I pattern that does not tile the plane: although the top
and bottom side of this tiling fit together, the left and right side do not. (B) A
class-I pattern which tiles the plane, and can potentially also tile the plane once
converted into a real-space crease pattern, see Fig. 4.2.
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CHAPTER 4. RATIONAL DESIGN OF ORIGAMI PATTERNS
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Figure 4.2: (A) Real space version of the tile pattern shown in Fig. 4.1, where the
lengths of the top (ti), and the left side (li) are not specifically tuned, which leads
to a non-space filling pattern. (B) Real space version of the tile pattern shown in
Fig. 4.1b, where the lengths of the top (ti), and the left side (li) are tuned such that
the pattern is space-filling. Dashed lines indicate unit cells. Both patterns have
{α1, α2, α3, α4} = {60◦, 90◦, 135◦, 75◦} for the unsupplemented vertex (indicated
in white).

4.3 Designing Origami Strips with One Target Shape

In this section we will show that we can design one of the two folding-
branches of a class-I tiling in such a way such that it folds into a sheet
with a predefined curvature along one direction. The other folding branch
folds into a cylinder. To illustrate how we construct origami patterns which
lead to certain predefined shapes, we depicted an m = 13, n = 5 class-I
tiling in Fig.4.3.A. The columns in this pattern consist solely of A-tiles,
B-tiles, or Fi-tiles, and have a periodicity of 2 in the vertical direction.
The colors purple and orange in this figure indicate curvature for the non-
cylindrical folding branch. Here purple indicates the sheet curving upward,
and orange indicates the sheet curving downward (or vice versa). This is
demonstrated in Fig.4.3.B, where a realization of the tiling of Fig.4.3.A
is shown with sector angles αi = {60◦, 75◦, 120◦, 105◦}, which is the base
vertex used for all the subsequent crease patterns in this section. This
corresponds to a flat foldable vertex, but one our approach works equally
well for generic vertices. The red lines indicate mountain folds, whereas
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4.3. DESIGNING ORIGAMI STRIPS WITH ONE TARGET SHAPE
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Figure 4.3: (A) Class-I tiling, with columns consisting out of bricks with
identical letters. Purple columns contain A-tiles, whereas orange columns contain
B-tiles. These determine the curvature of the pattern when folded along the
vertical direction, see (B,D). (B) MV pattern associated with the pattern in (A),
when folded along the vertical direction. (C) MV pattern associated with the
pattern in (A), when folded along the horizontal direction. (D,E) 3D shapes of
folded states of the patterns depicted in (B,C) were calculated using software from
[63].

the blue lines indicate valley folds. A 3D visualization of this pattern is
depicted in Fig.4.3.D, showing that we can adjust the curvature of the sheet
by programming the sequence of bricks in the horizontal direction.

We see that the purple columns, consisting out of A-tiles, are lined
left and right by valley folds (V ). On the contrary, we see that the orange
columns, consisting out of B-tiles, are lined left and right by mountain
folds (M ). Consecutive columns of B tiles, such as in the middle of the
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CHAPTER 4. RATIONAL DESIGN OF ORIGAMI PATTERNS

pattern, therefore induce a downward curvature, whereas consecutive
columns of A-tiles induce a positive curvature (or the other way around, as
every MV-pattern has a mirrored counterpart). Furthermore we notice that
the F -tiles always have opposite fold signs left and right. Multiple adjacent
columns of F -tiles do not induce curvature, but form a corrugated sheet,
like many origami patterns do (such as Miura-ori). Lastly, we observe from
Fig.4.3.A that when mixing F tiles with A and B tiles, an even number of
consecutive F -tiles is surrounded left and right by the same kind of tile
(either A or B), this can be seen in column 2–5 in Fig.4.3.A. An odd number
of consecutive F -tiles is surrounded left and right by both an A-tile and a
B tile.

Altogether we then see that class-I tilings can be used to program any
arbitrary code of fold signs along the vertical (or horizontal) direction. We
do this by choosing the right combination of A, B, and F -tiles. In this case
the pattern can be written as,

V VMVMV VMMMMMV V . (4.1)

Different combinations of tiles can result in nearly any of the 2m+1 different
patterns, where n is the number of columns of tiles. The only patterns that
can not be created within class-I itself are the ones where mountains and
valleys alternate throughout the sheet (VMVM . . . ). The corresponding
tiling would be comprised solely of F tiles, and therefore is not a class-I,
but a class-III tiling. The total number of possible MV patterns that we can
choose from is therefore,

2m+1 − 2. (4.2)

Using the design strategy of alternating columns (or rows) of A, B, and
F -tiles ensures that one of the two branches still folds into a cylinder,
which is shown in the MV pattern of Fig.4.3.C, and the 3D visualization of
Fig.4.3.E. Note that the left edge of the pattern in Fig.4.3.C is colored green,
corresponding to the green edge in Fig.4.3.E. In the next section we will
show that we can also modify this cylindrical folding branch, by adding C
tiles.

First however, we will extend on the principle of using A and B-tiles to
introduce curvature into certain places to target a more complicated shape.
In Fig.4.4.A we show a 67 by 4 vertex quadrilateral mesh, converted from
a 66 by 3 tile pattern. Note that here we count the internal vertices and
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4.3. DESIGNING ORIGAMI STRIPS WITH ONE TARGET SHAPE

internal tiles, as we can arbitrarily reshape the quadrilaterals on the edge
of the this pattern without affecting the folding motion. Fig.4.4.B reveals
that the mesh depicted in Fig.4.4.A folds into the Greek-letter β. Note
that the green edge in Fig.4.4.A corresponds to the green edge in Fig.4.4.B.
We designed the pattern in Fig. 4.4.A to consist of flat areas when folded,
corresponding to columns of F -tiles. These are interspersed with A and
B-tiles to create curves with varying radius of curvature. For example, the
ratio of B to F columns in the top loop of the β is 1 : 2, whereas the ratio
of B to F tiles in the bottom loop of the letter β is 1 : 4. The resultant
3D shape therefore shows that the radius of curvature of the bottom loop
is approximately twice as big as the radius of curvature of the top loop,
throughout the folding motion of the sheet. This can also be seen in Fig.4.5.
Here several snapshots of the crease pattern depicted in Fig.4.4.A are taken
throughout its folding motion, as seen from the side. Note that the folding
motion is restricted, as eventually the sheet comes into contact with itself.
In principle this strategy –varying the ratio of A and B to F -tiles– can be

A

C

B

Figure 4.4: (A) A 67 by 4 (internal) vertex quadrilateral mesh, which is a
realization of 66 by 3 internal tile pattern (not shown here). By choosing the
position of the A, B, and F tiles we can program the curvature of the sheet when
folded. (B) 3D visualization of the MV pattern depicted in (A), revealing this mesh
folds into the shape of the letter β. (C) 3D visualization of the mesh shown in (A)
when folded into the cylinder configuration (MV pattern not shown here). 3D
folded shapes in figures (B,C) calculated using software from [63].
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CHAPTER 4. RATIONAL DESIGN OF ORIGAMI PATTERNS

extended to achieve any kind of ratio between the curved parts of the 3D
shape. Furthermore, we can tune the m+ n continuous degrees of freedom
of the mesh, which are indicated in Fig.4.3.D.

Figure 4.5: Side-view of the folding process leading up to the final 3D shape
depicted in Fig. 4.4.B, 3D folded shapes calculated using software from [63]. A
movie illustrating the folding process can be found online.

4.4 Designing Origami Sheets with Two Target Shapes

The strategy explained in the previous section can be extended to tune the
shape of both folding branches of a class-I tiling. An example of this is
shown in Fig.4.6.A, where we show a class-I brick tiling. We can choose any
pattern of A,B and F tiles on both the top and the left edge. The rest of the
(m− 1)(n− 1) tiles in the pattern, masked by a partially translucent layer,
are fixed by this choice. Note that the resultant pattern also contains C
tiles in the interior. These are located wherever we find a F tile on the left
edge in the corresponding row, and top edge in the corresponding column.

In Fig.4.6.B we show a realization of the tiling of Fig.4.6.A. The moun-
tain valley pattern here is the one that corresponds to the vertically corru-
gated folding branch. A 3D visualization of this MV pattern is depicted
in Fig.4.6.C. Contrastingly, Fig.4.6.D depicts the same quadrilateral mesh
as in Fig.4.6.B, but with the mountain valley pattern of the horizontally
corrugated folding branch. A 3D visualization of the folded state of this
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4.4. DESIGNING ORIGAMI SHEETS WITH TWO TARGET SHAPES
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Figure 4.6: (A) A 7 by 8 tile class-I tiling, containing all 10 A, B, Ci, and Fi

tiles. (B) Horizontally corrugated shape, where the sign of the folds along each
row is identical. (C) 3D visualization of the mesh shown in (B). (D) Vertically
corrugated shape, where the sign of the folds along each column is identical. (E) 3D
visualization of the mesh shown in (D). 3D folded shapes in (D,E) calculated using
software from [63]. Green lines in (B,C) and (D,E) are a visual aid to indicate the
orientation of the patterns in their flat and folded configurations.

MV pattern is depicted Fig.4.6.E. Clearly, the pattern of tiles along the left
edge determines the curvature pattern of one folding branch; the pattern
along the top edge determines the curvature pattern of the other folding
branch. Hence, this strategy allows to independently design two 3D shapes.

To illustrate the possibilities of this combinatorial origami design, we
designed a 38 × 38 class I brick pattern, shown in Fig. 4.7. Here the A
and B-tiles are highlighted in purple and orange (respectively), to indicate
the areas where the corresponding crease pattern will develop curvature.
In Fig. 4.8.A we show the resulting crease pattern, using a base vertex
with angles αi = {60◦, 105◦, 120◦, 75◦}. This pattern was designed with
two target shapes: the letter α, and the letter ω. The bottom edge of this
pattern (indicated in red) folds into the shape of the letter ‘α’ when folded
along the horizontal direction, as can be seen in the computer visualization
in Fig. 4.8.B, and the rest of sheet is an extrusion of this shape. When
folded along the vertical direction, the left edge of this pattern (indicated
in green) folds into the shape of the letter ‘ω’, as can be seen in the computer
visualization in Fig. 4.8.D.

To demonstrate that this strategy works to fold sheets of material into
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CHAPTER 4. RATIONAL DESIGN OF ORIGAMI PATTERNS

multiple different target shapes, we lasercut the pattern in Fig. 4.8 into
two 50 cm by 60 cm Mylar™ sheets, with a thickness of 0.2 mm. Here we
program the laser cutter to scorch the crease pattern 0.1 mm deep into the
sheet. These two identical sheets are then manipulated by hand to into

Figure 4.7: Brick pattern corresponding to the crease pattern shown in
Fig. 4.8.A, where the letters indicating the brick type are omitted. A-tiles are
highlighted in purple, whereas B-tiles are highlighted in orange. We encourage
the reader to download the high-resolution version of this image.
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4.4. DESIGNING ORIGAMI SHEETS WITH TWO TARGET SHAPES

the two different target shapes. Final folded shapes are shown in Fig.4.8.C
and Fig.4.8.E. We note the close resemblance to the shapes in the computer
simulations of Fig.4.8.B,D. Finally, we note that the shapes depicted in
Fig. 4.8.C,E share the same underlying 2D structure, and it is therefore

Figure 4.8: (A) A 38 by 38 tile class-I (37 by 37 internal vertices) class-I tiling,
created from the brick pattern shown in Fig. 4.7, with αi = {60◦, 105◦, 120◦, 75◦}.
(B) 3D visualization of the final folded state of the pattern displayed in (A) when
folded in the horizontal direction, representing the letter ‘α’. (C) Lasercut My-
lar™ sheet, folded into the same shape as in (B). Five cent euro coin for scale.
(D) 3D visualization of the final folded state of the pattern displayed in (A) when
folded in the vertical direction, representing the letter ‘ω’. (E) Lasercut Mylar™
sheet, folded into the same shape as in (D). Five cent euro coin for scale. 3D folded
shapes in (B,D) calculated using software from [63].
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CHAPTER 4. RATIONAL DESIGN OF ORIGAMI PATTERNS

in principle possible for the shape of Fig. 4.8.B to morph continuously
into the shape depicted in Fig. 4.8.C (via the flat, unfolded state). Movies
illustrating the folding process of both shapes are available for download.

We conclude that our design strategy allows us to create a single 2D
crease pattern, which has two mountain valley patterns with corresponding
3D shapes. Both of these shapes can be tuned such that they have an
arbitrary mountain-valley arrangement along one direction. This allows
for the creation of multishape origami patterns, which is new in origami
design, where usually one only targets a single shape [17–19, 34, 64, 65].
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