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Chapter 3

Classification of Tile
Patterns

3.1 Introduction

In this chapter we will show how tiles and bricks can be combined to
form larger tilings and brick patterns, how the latter can be translated to
crease patterns, and how we can determine their corresponding mountain-
valley configurations. In particular, we formulate and solve the three
combinatorial problems that govern tilings, brick patterns, and mountain-
valley configurations.

An example of a 4 × 4 tile pattern is shown in Fig. 3.1.A. As all tiles
fit, all vertex colors are consistently defined. This tile pattern or tiling can
be converted into a brick pattern, as shown in Fig. 3.1.B. Here each tile
has acquired an allowed supplementation pattern (Fig. 2.6, Fig. 2.7), and
supplementations are consistent between adjacent bricks. All vertices are
now uniquely defined, as we know their supplementation, their orientation,
and their clockwise or counterclockwise character. If we then choose a
set of angles αi, as well as lengths ti and li, we can convert this brick
pattern into a crease pattern, as shown in Fig. 3.1.C. Note that an m × n
brick pattern defines a 3 + m + n-parameter family of crease patterns.
Finally, we can determine a specific mountain-valley pattern for this crease
pattern (Fig. 3.1.D). This mountain valley pattern is not unique as all crease
patterns obtained by our method allow at least two different mountain
valley patterns (not related by trivial mountain↔ valley symmetry).

In this chapter we will count the number of tilings, the number of sup-
plementation patterns for each tiling, and finally, the number of mountain-
valley patterns. In section 3.2 we start by showing how to define four
distinct tiling classes (I, II, III, and IV). For a given class, each tiling con-
tains one or more necessary tiles and an arbitrary number of optional
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3.1. INTRODUCTION

A B
tile pattern brick pattern

C D
fold pattern crease pattern

Figure 3.1: (A) A tile pattern (or tiling). (B) The same pattern with a
specific supplementation pattern yields a definite brick pattern. (C) Crease
pattern corresponding to the brick pattern in (B), with a choice of angles of
α1 = 60◦, α2 = 90◦, α3 = 135◦, α4 = 75◦, and mesh lengths ti and li. (D) One
corresponding mountain (red) valley (blue) configuration.

tiles - other tiles do not fit. We show that an important property of this
classification is that within each class, each L-shaped triplet of tiles ad-
mits precisely one fitting fourth tile. In section 3.3 we show how this last
property allows us to exactly count the number of m × n tile patterns.
We verify by brute force that the tilings in class-I–IV cover all possible
tilings, up to m = 6, n = 6. For m = 6, n = 6 there are already to 4226048
distinct tilings. In section 3.4, we show in how many ways we can choose
the supplementation of a pattern, i.e. in how many ways can we convert an
m × n tile pattern into an m × n brick pattern. We show that there are at
least two valid ways in which we can turn a tile-pattern into a brick pattern.
However, some classes of tiling have exponentially many ways in which we
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CHAPTER 3. CLASSIFICATION OF TILE PATTERNS

can choose the supplemented vertices. Last, we show in section 3.5 how
many valid mountain valley assignments each of the corresponding crease
patterns have. Finally, we summarize these results in section 3.6.

3.2 Triplet Completion and Classification

While it is easy to identify tiles that can be connected in pairs, the problem
of connecting multiple tiles is in general highly non-trivial. We will show
however, that by considering all (L-shaped) triplets of tiles we can greatly
simplify the tiling problem, by determining whether or not a fourth fitting
tile exists. For example, in Fig. 3.2.A we show a triplet of tiles. The missing
tile consists of four vertices, and we note that three of these are already
completely specified by the tile triplet. Hence (up to supplementation),
three of the four sector angles of the inner plate are specified. For generic
sector angles, the sum rule implies at most one choice for the sector angle
of the missing vertex1. Moreover, in each tile the number of clockwise
and counterclockwise oriented vertices is even (see Fig. 2.4, and section 3),
which specifies the orientation of the fourth vertex. These two simple rules

B C DA
X

1 2

3 4

Figure 3.2: (A) A triplet of tiles. We can find the fourth vertex (dashed) of
the fourth tile by inspecting the inner angles and orientation of the other three
vertices. (B) The fourth tile, X, that fits this triplet, does not occur in the set of
34 tiles displayed in Fig. 2.4. Therefore, the three tiles D3, F1, B do not occur in
the same class. (C) This triplet of tiles does admit a single, unique, fourth tile that
is within the set of 34 tiles. Therefore, D3, F1, B, and F4 occur in the same class.
(D) Repeated application of the triplet ‘completion rule’ (for example, in the order
shown in the figure) allows us to finish a tiling given only a single column and
row.

1If the three inner angles are all equal, the fourth should be equal too; if the three inner
angles are once αi and twice αj , the fourth should be αi; if the three inner angles are all
different, the fourth should be different from all of these.
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3.2. TRIPLET COMPLETION AND CLASSIFICATION

specify the fourth vertex (up to supplementation) and thus uniquely specify
a potential tile. In this case, this corresponds to tile ‘X’ shown in Fig. 3.2.B.
However, tile X does not occur within the set of 34 tiles shown in Fig. 2.4,
as the four corresponding operators do not satisfy the loop condition. In
contrast, the triplet of tiles shown in Fig. 3.2.C does admit a tile that occurs
within the set of 34 tiles shown in Fig. 2.4.

We now define tiling classes as follows. If a triplet does not admit a
fourth tile, the three tiles cannot be in the same class. If a triplet admits a
fourth tile, all tiles are in the same class. By considering all triplets, we find
that these two rules define four distinct classes, labeled I-IV. A given tiling
can easily be identified as belonging to one of these classes by inspecting
the presence of certain tiles (see Fig. 3.3). In tilings in each class, at least
one tile out of a subset of tiles has to be present; in addition, some classes
contain a group of optional tiles, which may or may not be present in a
tiling.

Each tile is a necessary tile in precisely one class. It can be checked that
for each triplet of tiles within a class, there always is a unique fourth fitting
tile. This property, which we will refer to as triplet completion, greatly
simplifies the construction and enumeration of tilings: once a single row
and column of a m × n tiling is specified, the full tiling can trivially be
constructed by iteratively applying the triplet completion rule (Fig. 3.2.D).

A

B

Figure 3.3: (A) Tiling classes. (B) Decision tree to determine whether a given
tiling created using the tiles of Fig. 2.4 is a class-I, class-II, class-III, or class-IV
tiling.
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CHAPTER 3. CLASSIFICATION OF TILE PATTERNS

3.3 Counting Multiplicity of Tilings

In this section we will derive expressions for the number of tilings that can
be constructed within each class. To do this, we first define the concept
of connection numbers. In each class, we define for each side of a tile, the
number of distinct sides of necessary tiles and the number of distinct sides
of optional tiles that fit. To facilitate discussions about the tiles, we define
the orientation of the tiles as shown Fig. 2.4 as the ‘horizontal’ orientation,
and refer to their sides by the four cardinal directions (north, east, south,
and west). We note that for all tiles, the connection numbers at opposite
sides are equal, allowing us to capture the connections by four integers
(Fig. 3.4.A). The necessary connection numbers along the north/south and
east/west sides are, respectively, x and v (in blue). The optional connection
along the north/south and east/west sides are, respectively y, w (in pink).

A

v/w

x/y

x/y

v/w

B

1 01/0

2/1

2/1

/

Figure 3.4: (A) For every side of every tile we can define a connection num-
ber within a given glass (blue: necessary, red optional tiles). (B) Example of
connectivity of D1 tile in class-IV.

An example of a tile and its connection numbers is given in Fig. 3.4.B
for tile {D1}, which is a necessary class-III tile. Within this class it connects
to necessary tiles {D4, J2} on its northside, necessary tile {J4} on the
westside, necessary tiles {D2, J2} on its southside, and necessary tile {J4}
on its eastside. Additionally it connects to optional class-III tile {D4} on its
southside, and optional tile {D2} on its northside. Therefore the connection
numbers are as indicated in Fig. 3.4.B. We observe that opposing sides have
identical total connection numbers. As a result, the total connection number
at the sides within a row or column of tiles is conserved. This simplifies
the counting of configurations.
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3.3. COUNTING MULTIPLICITY OF TILINGS

Counting Class-I Tilings

All tiles in class-I and their connection numbers are shown in Fig. 3.5.A.
Class-I tilings contain at least one necessary {A,B}-tile. Either of these can
be used to form a periodic tiling which maps to the Huffman quadrilateral
crease pattern (see Fig. 1.7.A). However, a vast number of additional tilings
can be generated by mixing these necessary tiles with optional tiles {Ci}
and {Fi}.

A B

{A,B}

{Fi}{Ci}

/1 1

/0 2

/0 2

/0 2

/0 2

/0 2

/0 2

/1 1

/1 1 /1 1

/1 1/1 1

1

4

7

2 3

6

8 9

5

m

nj

i

Figure 3.5: (A) Class-I tilings contain up to three different types tiles. The
necessary class-I tiles are tiles {A,B}. Furthermore there are two different sets
of optional class-I tiles: {Ci}, and {Fi}. The connection numbers of these sets of
tiles are indicated. (B) When counting the number of class-I tilings, we divide a
tiling into nine sectors, and assume the first necessary class-I tile we encounter is
in sector 5, there are eight choices for this tile. Pink sectors contain only optional
tiles, hatched blue-pink sectors can contain both optional as well as necessary
tiles.

We now illustrate how to construct and count all possible m× n, class I
tilings. We make use of two general properties of the adjacencies of tiles
within one class: (I) the number of necessary and optional adjacent tiles on
opposite sites is equal, and (II) once a single row and column of a tiling are
specified, the full tiling can trivially be constructed by triplet completion
(Fig. 3.2.D). We label the columns and rows from i = 1 to i = m, and j = 1
to j = n (Fig. 3.5). To construct and count the number of class I tilings, we
define the first necessary tile as the necessary tile with the lowest value of
i + j, denote its location as (i, j), and partition the tiling in nine sectors
1− 9 as indicated in Fig. 3.5.B. Sectors 1, 2, and 4 must consist of optional
tiles. As the optional connection number for the necessary tile in sector 5

30



CHAPTER 3. CLASSIFICATION OF TILE PATTERNS

is 1 on all sides, this determines a unique pattern (of Fi tiles) for sectors
2 and 4. In turn, these F tiles uniquely determine sector 1 by applying
triplet completion. For the tiles in sectors 6 and sector 8, there are two
potential choices for each tile: these tiles can be either an optional type-1
tile, or a necessary type-1 tile. To indicate this, these positions are therefore
pink-blue hatched, and these choices lead to 2m−i+n−j options in total. For
any given choice of tiles in sector 6 and sector 8, the sectors 3, 7 and 9 are
again uniquely determined by triplet completion.

Summing over all locations (i, j), and taking into account there are 8
choices for the first necessary tile (A or B, each in one of four rotations),
we obtain that the number of class-I, m× n tilings equals,

N I
t (m,n) = 8 ·

m∑
i=1

n∑
j=1

2m−i · 2n−j = 8 · (2n − 1) · (2m − 1). (3.1)

j=2

j=1

i=1 i=2

j=3

A B C

{Ci}

1

1

1

1

i=3 i=4

Figure 3.6: (A) Class-II tilings only contain tiles {Ci}. (B) Choosing the type
and orientation of the (1,1) tile fixes the whole pattern. (C) Periodic 4 × 4 type-II
tiling, where a 2 × 2 unit cell is indicated by the dashed line.

Counting Class-II Tilings

Class-II tilings consist exclusively of Ci tiles. These tiles are highly symmet-
ric, and occur as optional tiles in all other classes (see table in Fig. 3.3.A).
For class-II tilings, the connection number of the Ci tiles on all sides is 1
(see Fig. 3.6.A). This ensures that, when we determine the tile in position
(i, j) = (1, 1), all tiles in the first column, i = 1, and the first row, j = 1,
are fixed. Repeated application of the triplet completion rule (see Fig.
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3.3. COUNTING MULTIPLICITY OF TILINGS

3.2), then fixes the whole tiling (Fig. 3.6.B). The multiplicity of class-II
tilings is thus specified by the four possible tiles (C1,C2,C3,C4), and the
two orientations of the (1, 1) tile, yielding,

N II
t (m,n) = 8, (3.2)

class-II tilings, independent of m and n. We note that as the tiles form
periodic patterns, all m by n tilings can be seen as subtilings of an infinite
periodic tiling, where the number of choices of the (1, 1) tile corresponds
to the translational and rotational symmetries of the periodic tiling. For an
example of a four by four tile periodic class-II tiling, see Fig. 3.6.C.

Counting Class-III Tilings

Class-III tilings contain at least one necessary class-III tile {Ei, Fi, Gi, Hi,
Ii,Ki}. Additionally, we can add two different sets of optional tiles, {Ci},
and {Di, Ji}. Together, the connection numbers of these tiles are shown
in Fig. 3.7.A. The necessary tiles in class-III only admit a single fitting
tile along their east and west sides, and this tile is always a necessary
tile. This significantly simplifies the construction of class-III tilings, as
necessary tiles can therefore only occur as full columns or rows – but not
both. Hence, class-III tilings come in two flavors. Either the necessary tiles
are horizontally oriented, and occur in rows with the first one occurring in
column 1 (Fig. 3.7.B), or the necessary tiles are vertically oriented, occur in
columns, with the first one occurring in row 1 (Fig. 3.7.C).

We now first count the horizontally oriented tilings (Fig. 3.7). The first
necessary tile at location (1, j), sector 3, uniquely determines a pattern
of necessary tiles in sector 4. There are 20 distinct necessary tiles in
class-III, which can be in two horizontal orientations2 at location (1, j).
For the optional tiles in sector 1 the relevant connection number is three,
leading to 3j−1 choices, and once sector 1 and 4 are chosen, sector 2 is fixed.
Finally for sector 5 we can use either optional or necessary tiles, with a
combined connection number of 8, leading to 8n−j options; sector 6 is then
determined by triplet completion. Therefore the number of horizontally

2Either the tiles are oriented as in Fig. 2.4, or flipped upside down.
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/
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n
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2 3
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{Ei,Fi,Gi,Hi,Ii,Ki}

5/3

{Ci}

5/3

1 0 /1 0

/5 3

/5 3 /5 3

/5 3
{Di,Ji}

5/3

/0 1 /0 1

/5 3

A B C
j=1

n

mm

n

i=1

j

i

Figure 3.7: (A) Class-III tilings contain up to three different sets of tiles: a set
of necessary class-III tiles: {Ei, Fi, Gi, Hi, Ii,Ki}, and two sets of optional class-III
tiles: {Ci}, and {Di, Ji}. The connection numbers of these three sets of tiles are
indicated. (B) A horizontally oriented class-III pattern, divided into six sectors.
(C) A vertically oriented class-III pattern, divided into six sectors.

oriented class-III tilings is,

N III
t-horizontal(m,n) = 40 ·

n∑
j=1

8n−j · 3j−1 = 8 · (8n − 3n), (3.3)

where m is the number of columns, and n the number of rows. The same
holds for vertically oriented patterns, for which the necessary tiles are
rotated a quarter turn (either clockwise or anticlockwise) with respect to
their orientation as depicted in Fig. 3.7.C. A schematic for this scenario is
shown in Fig. 3.7.C. The total number of class-III tilings is,

N III
t (m,n) = 40 ·

m∑
i=1

8m−i · 3i−1 + 40 ·
n∑
i=1

8n−i · 3i−1

= 8 · (8m − 3m) + 8 · (8n − 3n). (3.4)

Counting Class-IV Tilings

Class-IV tilings contain at least one necessary class-IV tile {Di, Ji}, and
optional tiles, {Ci}, see Fig. 3.8.A. As in class-III, the necessary tiles only
admit one other necessary tile along their east- and westside. The counting
is therefore very similar to class-III. In Fig. 3.8.B we show a class-IV tiling,
divided into six sectors (1–6). Here we assume the necessary class-IV tiles
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1 2

3 4

65

3

1

4

2 3

65

{Di,Ji}

2/1

{Ci}

2/1

/1 0 /1 0

/2 1

/2 1 /2 1

/2 1

A B C

Figure 3.8: (A) Class-IV tilings consist out of two sets of tiles. The necessary
class-IV tiles, {Di, Ji}, and the optional class-IV tiles {Ci}. The connection num-
bers of these two sets of tiles are indicated in the figure. (B) Class-IV tilings are
either horizontally or vertically oriented. In this case we show a horizontally
oriented pattern, where the necessary tile is horizontally oriented. (C) Verti-
cally oriented class-IV tiling. Pink sectors contain only optional class-IV tiles,
blue sectors contain only necessary class-IV tiles, and hatched blue-pink sectors
correspond to sectors in which we can find both optional and necessary tiles.

are oriented horizontally, so that the necessary tiles occur in rows. The first
sector where we encounter necessary class-IV tiles is sector 3, at location
(1, j). The necessary connection number for all tiles in sector 4 is one, the
whole row of tiles consisting of sector 3 and 4 together is fixed by choosing
the tile (and its orientation) at position (1, j), leading to 16 choices. For
the optional tiles in sector 1, the connection number is one, which fixes
sector 2. In sector 5 we do have a choice of tiles, as we can choose from two
necessary, and one optional tile at every position, for a total of 3n−i options.
Summing over all possible initial positions of sector 3, we therefore find,

N IV
t-hor(m,n) = 16 ·

n∑
i=1

3n−i, (3.5)

horizontally oriented class-IV tilings, where m is the number of rows, and
n the total number of columns. The same logic holds for vertically oriented
patterns (Fig. 3.8.C), so in total we find,

N IV
t-hor(m,n) = 16 ·

m∑
i=1

3m−i+16 ·
n∑
i=1

3n−i = 8 · (3m−1)+8 · (3n−1), (3.6)

class-IV patterns.
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CHAPTER 3. CLASSIFICATION OF TILE PATTERNS

Counting Total Number of Patterns

If we consider the total number of m,n tilings, Nt(m,n), we find, by sum-
ming the results in Eq.3.1, Eq.3.2, Eq.3.4, and Eq.3.6, that:

Nt(m,n) = 2m+3(4m − 1) + 2n+3(4n − 1) + 8 · 2m+n, (3.7)

Here we note that Nt(m,n) counts all configurations that are possible
when placing the tiles of Fig. 2.4 on an m by n array. Hence, we double
count tilings that are related by global rotations and translations3. We
note in addition that class-III and class-IV could be combined in one
super-class, that satisfies the triplet completion rule, and for which the
counting is somewhat simpler, yielding a total of N III+IV

t = 8 · (8m + 8n− 2)
tilings (summing Eq. 3.4 and Eq. 3.6). However, class-III and class-IV are
significantly different in their supplementation patterns, as we will see
below.

We have numerically counted all tilings by brute force by using a
backtracking algorithm where as only input we use a Boolean matrix that
indicates which sides of which tiles fit to which other sides – without any
knowledge of classes, edge characteristics etc – up to m = 6, n = 6. The
resulting numbers exactly correspond to our analytical expression for the
number of m × n tilings (see Table 3.1), thus illustrating that the tilings in
class I–IV cover all possible tilings that can be made constructed out of our
34 tiles.

n m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

1 128
2 592 1088
3 4208 4768 8576
4 32944 33632 37696 67328
5 262448 263392 267968 298624 531968
6 2097712 2099168 2104768 2137472 2374912 4226048

Table 3.1: Numerically obtained number of possiblem×n-tilings are consistent
with our analytical expression (Eq. 3.7).

3The local rotation symmetry of the Ci tiles does not artificially increase the count Nt

however, note that N II
t = 8 and not 16.
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3.4. COUNTING SUPPLEMENTATION PATTERNS

3.4 Counting Supplementation Patterns

In this section we will count the number of different ways in which we can
convert (supplement) tile patterns into brick patterns. We show that there
are always at least two ways in which we can do this, but for classes II, III,
IV there are exponentially many.

Counting Supplemented Angles for Class-I Tilings

Here, we will show that each class-I tiling has two valid supplementation
patterns. We recall that class-I tilings contain tilesA,B, Ci and Fi. The sup-
plementation patterns of tile A and B (0 and 7), and the supplementation
patterns of tiles Ci (1-6) will be easy to deal with. However, the situation is
more complex for tiles Fi, which admit patterns 1, 2, 4, 6, but not 3 or 5.
Hence, the admissible supplementation patterns could potentially depend
on the orientation of the Fi tiles, which requires a closer inspection of the
structure of class-I tilings.

Assume that we specify a pattern of necessary and optional tiles in
row 1 and column 1 as in Fig. 3.9.A4. First, using triplet completion we

A B

1

4

7

2

5

8

3

6

9

N N O O O O N N

N

O

O

O

N

N

Figure 3.9: (A) A generic example of a class-I tiling-pattern: N indicate nec-
essary {A,B}-tiles (in blue), O indicates indicate optional tiles {Ci, Fi} (in pink).
(B) Example of one of the two valid supplementation patterns for the tile pattern
in (A).

can show that the missing tiles in sector 1 are necessary tiles, so that
4The case that these rows or columns are purely optional can easily be dealt with by

focusing on the first rows and columns where necessary tiles occur.
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CHAPTER 3. CLASSIFICATION OF TILE PATTERNS

the supplementation pattern of sector 1 is either fully empty (no vertices
supplemented) or fully filled (all vertices supplemented); below we assume
the former to be the case. In addition it is also easy to show that all
necessary tiles in sector 1 are either horizontally or vertically oriented.
Finally, triplet completion can be used to show that the tiles in sector
2,4,5,6 and 8 are all optional.

Second, the choice of the supplementation pattern in sector 1 fixes
the supplementation pattern of the whole system, as demonstrated by
the example in Fig. 3.9.B; i.e. the necessary sectors are ‘monocolor’, the
sectors 2, 4, 6, and 8 that separate the necessary sectors are striped (as the
optional bricks have always 2 supplemented vertices), and the sector 5 is
checkerboard-like.

Third, the supplementation patterns in the necessary sectors are clearly
compatible with the necessary tiles, and the supplementation pattern in
sector 5 is clearly compatible with all optional tiles - we note in passing that
sector 5 exclusively consists ofCi tiles. The potential mismatch between tile
pattern and supplementation pattern might occur in the striped sectors:
vertically (horizontally) oriented Fi tiles in sector 2, 8 (4, 6) would be
incompatible with the supplementation pattern. However, the conservation
of edge characteristic prevents this: in rows or columns where A or B tiles
are present, all edges have opposite bumps, and this immediately orients
the F tiles in sector 2 and 8 horizontally, and in sector 4 and 6 vertically.

Hence: once the supplementation of one necessary tile is specified, a
unique and compatible supplementation for the whole system arises. Since
there are two choices for the supplementation pattern of necessary tiles,
this construction yields precisely two (complementary) supplementation
patterns for each class-I tiling. Therefore, the number of supplementation
patterns in class I, N I

s , equals:

N I
s = 2. (3.8)

Counting Supplemented Angles for Class-II Tilings

Class-II tilings contain only {Ci} tiles, which can all be supplemented
in six different ways, as is shown in Fig. 2.6. In Fig. 3.10.A we show a
class-II brick pattern, where we choose the supplementation of the left-
most column of vertices. Doing so fixes the supplementation of all the
vertices in the whole pattern, as every column has the opposite pattern of
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3.4. COUNTING SUPPLEMENTATION PATTERNS

A

C

n=3

m=4

D

B

Figure 3.10: (A) A 4 by 3 class-II tiling, where we arbitrarily choose the
supplementation of the leftmost column of vertices. (B) Supplementation pattern
of the brick pattern in (A), the arrows indicate how the left column uniquely
determines the adjacent columns. (C) The same 4 by 3 tile pattern, but with
a different supplementation pattern. (D) Supplementation pattern of the brick
pattern in (C).

its neighbors. In total there are 2n+1 ways to choose a supplementation
pattern of the leftmost column. The same holds when we choose the sup-
plementation pattern of the top row of vertices, as we did in the example
shown in Fig. 3.10.C. In that case every row of vertices has the opposite
supplementation pattern of its neighbor (Fig. 3.10.D), and there are 2m+1

ways to choose a supplementation pattern on the top row.
We therefore find that we can supplement the vertices in class-II tilings

in
N II

s = 2m+1 + 2n+1 − 2, (3.9)

different ways. Here the −2 is necessary to prevent double counting pat-
terns where both the columns and the rows follow alternating patterns.

Counting Supplemented Angles for Class-III Tilings

Class-III tilings can either be horizontally or vertically oriented (see section
3.3), and contain necessary tiles N = {Ei, Fi, Gi, Hi, Ii,Ki}, and optional
tiles O = {Ci, Di, Ji}. Let us assume that the tiling is horizontally oriented,
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CHAPTER 3. CLASSIFICATION OF TILE PATTERNS

as in Fig. 3.7.B. We conjecture that we can choose the supplementation
pattern freely on the left edge of the left column, and then take the sup-
plementation of adjacent columns to alternate. To allow this, we require
that tiles with only supplementation patterns 1, 2, 4, 6 (all necessary tiles
{Ei, Fi, Gi, Hi, Ii,Ki}-tiles, and optional {Ji}-tiles) are horizontally ori-
ented. Optional {Ci, Di}-tiles have supplementation pattern 1, 2, 3, 4, 5, 6
and can be oriented arbitrarily.

To show that all {Ei, Fi, Gi, Hi, Ii,Ki}-tiles are horizontally oriented in
a horizontally oriented class-III tiling, we start by noting that the necessary
tile at sector 3 (Fig. 3.7.B) is by definition horizontally oriented, and as all
N-tiles have connection numbers cn = 1 and co = 0 along their East/West
edges, sector 4 consists solely of N tiles as well. The orientation of the
tiles in sector 4 is also horizontal, which can be seen by considering the
edge characteristics of the necessary {Ei, Fi, Gi, Hi, Ii,Ki}-tiles, which are
{oeee, oeoo, oeeo, oeee, oeee, oeee} respectively (see Table 2.1). Inspection
reveals that none of their North/South and East/West sides are compatible,
and since the tile in sector 3 is horizontally oriented and these edge charac-
teristics are conserved in every row (and column), all tiles in sector 4 are as
well.

A B

Figure 3.11: (A) A horizontally oriented class-III tiling, where we choose the
supplementation of the vertices on the left boundary. (B) Supplementation pattern
of the brick pattern shown in (A).

When we now look at the North/South edge characteristic of the hor-
izontally oriented tiles in sector 3 and 4, we see that these are all equal
to oe. As these edge characteristics are conserved in every column, that
means all tiles in sectors-1,2,5,6 also have North/South edge characteristic
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oe. Comparison with Table. 2.1 then shows that all optional and necessary
tiles in sectors 1,2,5,6 must also be horizontally oriented, except for the Ci-
tiles, which can also be vertically oriented. We conclude that the resulting
orientations are compatible with the conjectured supplementation pattern,
where we can arbitrarily choose the supplementation of the vertices on the
right boundary (see Fig. 3.11). This therefore yields,

N III
s-hor = 2n+1, (3.10)

supplementation patterns for horizontally oriented class-III patterns. Like-
wise, we find

N III
s-ver = 2m+1, (3.11)

possible supplementations for vertically oriented class-III patterns.

Counting Supplementation Patterns for Class-IV Tilings

Class-IV tilings contain necessary Di and Ji tiles, and optional Ci tiles.
The necessary tiles are either horizontally or vertically oriented, similar
to class-III. However, unlike the necessary class-III tiles, which can all be
supplemented in only four different ways, the Di and Ci tiles allow six
different supplementations, whereas the Ji tiles are only compatible with
the four supplementation patterns where the E and W sides have opposite
supplementations (see Fig. 2.6). As a result, the location of the Ji tiles
determines the number of allowed supplementation patterns for type-IV
tilings.

We now first consider the location and orientation of the various tiles in
horizontally oriented class-IV tilings. Consider the leftmost column of such
a tiling, filled with a combination of necessary and optional tiles. As shown
in Fig. 3.8, the necessary tiles only connect to a single other, necessary, tile
along their E/W sides: a necessary tile in the leftmost column thus uniquely
determines a row of necessary tiles. Specifically, Di tiles only connect to Ji
tiles and vice versa, so each row of necessary tiles consists of alternating Di

and Ji tiles, each of these oriented horizontally. In addition, optional rows
consist of Ci tiles only. As a result, we can distinguish two types of columns:
those with Ji tiles, and those without. This allows us to distinguish four
subclasses of class-IV tilings, depending on which columns contain Ji tiles:

• Subclass 1: Here Ji tiles occur in all columns. This is the most
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common situation, and arises whenever the leftmost column has at
least one Di and Ji tile.

• Subclass 2-4: Here Ji tiles occur in alternating columns; subclass 2
corresponds to even m, where J tiles occur in either the leftmost or
rightmost column; subclass 3 and 4 correspond to odd m, with J tiles
occurring in neither the left nor rightmost column (subclass 3) or in
both columns (subclass 4).

A B C

Figure 3.12: (A) A column containing at least one Ji-tile leads to an alternat-
ing supplementation pattern in the horizontal direction. This scenario occurs in
subclass-1. (B,C) A column containing no J-tiles allows identical supplementa-
tion patterns on the left and right side, as long as the supplementation pattern
alternates in the vertical direction. This scenario occurs in subclasses-2,3,4.

We first consider the supplementation pattern of individual columns.
For columns containing Ji tiles, the four allowed supplementation patterns
of Ji tiles correspond to opposite supplementations at their E and W sides.
It is easy to show that adjacent tiles therefore also need opposite supple-
mentation patterns (Fig. 3.12.A), and by iteration, we find that the only
allowed supplementation patterns are precisely opposite at E and W sides,
leading to 2n+1 allowed supplementation patterns for such a column. We
note that two of these correspond to patterns where the supplementation of
the left and right columns are strictly alternating in the vertical direction,
and 2n+1 − 2 where they do not strictly alternate in the vertical direction.
In contrast, columns that are free of Ji tiles, allow two additional ‘ladder’
configurations, where the vertices on the left and right side have identical
supplementation and are strictly alternating, see Fig. 3.12.B,C. This leads
to 2n+1 + 2 supplementation patterns; 4 of these correspond to patterns
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where the supplementation of vertices is strictly alternating in the verti-
cal direction, and 2n+1 − 2 to patterns where this is not the case. Hence,
the presence of Ji tiles, both determines the subclass and the number of
supplementation patterns:

• Subclass 1: Ji tiles occur in each column. This occurs when the left
column contains at least one Ji and one Di tile. Once the supplemen-
tations of the left most column of vertices are fixed, adjacent vertex
columns have alternating signs, yielding precisely,

N IV-1
s = 2n+1, (3.12)

supplementation patterns.

• Subclass 2: Every second column is free of Ji tiles and m is even.
This occurs when the left column does not contain both Di and Ji
tiles. To count the number of supplementations, suppose only the
odd columns contains Ji, and the even columns do not. Then the left
column allows 2n+1 − 2 non-alternating supplementation patterns,
and 2 alternating patterns. For each of the non-alternating patterns,
the supplementation pattern of all other columns are fixed, yielding
2n+1−2 configurations. For each of the 2 alternating patterns, each of
the m/2 Ji-free columns allow 2 strictly alternating supplementation
patterns, yielding 2 · 2m/2 supplementation patterns. Hence the total
number of horizontally oriented subclass-2 supplementation patterns
yields:

N IV-2
s-hor = 2n+1 − 2 + 2m/2+1. (3.13)

• Subclass 3: For odd m with Ji tiles absent from the left and right col-
umn, we find (m+ 1)/2 columns with ladder configurations, leading
to:

N IV-3
s-hor = 2n+1 − 2 + 2(m+1)/2+1. (3.14)

• Subclass 4: For odd m with Ji tiles present from the left and right col-
umn, we find (m− 1)/2 columns with ladder configurations, leading
to:

N IV-4
s-hor = 2n+1 − 2 + 2(m−1)/2+1. (3.15)

We now count the number of horizontally oriented tilings of each
subclass. For even m, we encounter both subclass 1 and subclass 2, for a
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total of:
N IV-1,2

t-hor = 8 · (3n − 1), (3.16)

tilings, see Eq. 3.6. The left column of a subclass-2 tiling contains either Di

and Ci tiles, or J and C tiles. Suppose we only have D and C-tiles, then
(following the same argument as that leads to Eq. 3.5) we find a total of:

8 ·
n∑
i=1

2n−i = 8 · (2n − 1) (3.17)

tilings; and the same amount when we have only Ji and Ci tiles in the first
column. Hence the total number of horizontally oriented subclass-2 tilings
is:

N IV-2
t-hor = 16 · (2n − 1). (3.18)

As the sum of the number of subclass-1 and subclass-2 tilings is given by
Eq. 3.16, we readily obtain that:

N IV-1
t-hor = 8 · (3n − 1)− 16 · (2n − 1) = 8(3n + 1− 2n+1). (3.19)

For odd m, we encounter subclass 1, 3 and 4. The left column of a
subclass-3 tiling can only contain Di and Ci tiles, with at least one Di-tile,
leading to:

N IV-3
t−hor = 8 ·

n∑
i

2n−i = 8 · (2n − 1). (3.20)

Similarly, the left column of a subclass-4 tiling only contains Ji tiles and
Ci-tiles, and cannot consist of Ci tiles only, leading to:

N IV-4
t−hor = 8 · (2n − 1). (3.21)

Hence, the number of subclass-1 tilings for odd m equals:

N IV-1
t-hor = 8 · (3n − 1)− 2 · 8 · (2n − 1) = 8 · (3n + 1− 2n+1). (3.22)

We finally combine the results for the number of tilings and supplemen-
tation patterns per subclass to obtain Hb-hor = Nt-hor ·Ns-hor, the number
of horizontally oriented brick patterns in each subclass:
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• subclass-1 (even m),

Hb-hor = 8 · (3n + 1− 2n+1)× 2n+1; (3.23)

• subclass-1 (odd m),

Hb-hor = 8 · (3n + 1− 2n+1)× 2n+1; (3.24)

• subclass-2 (even m),

Hb-hor = 16 · (2n − 1)× (2n+1 − 2 + 2m/2+1); (3.25)

• subclass-3 (odd m),

Hb-hor = 8 · (2n − 1)× (2n+1 − 2 + 2(m+1)/2+1); (3.26)

• subclass-4 (odd m),

Hb-hor = 8 · (2n − 1)× (2n+1 − 2 + 2(m−1)/2+1). (3.27)

The total number of class-IV m × n tilings and brick patterns can be
obtained by adding the horizontal and vertically oriented patterns, dis-
tinguishing different subtypes depending on the parity of both m and
n.

3.5 Counting Folding Branches

A single flat 4-vertex has two distinct folding branches, which each have a
single, continuous degree-of-freedom. On each of these folding branches
one of the four fold angles is opposite in sign to the other three. These two
folds are called ‘odd folds’, and they straddle a common ‘odd plate’, for
which the corresponding sector angle satisfies the inequality: αi + αi+1 <
αi+2 + αi+3 [28]. Analytical expressions for the relations between the fold
angles on these two fold branches are given in appendix A.

In this section we will determine how the two folding branches of a
single vertex determine the number of independent folding branches per
tile, and ultimately, the number of folding branches of crease patterns in
class I–IV. We start by counting the folding branches per tile, by reconsider-
ing the underlying operator quads (Eq. 2.9–2.19). So far, we have assumed
that all operators refer to folding motion on the same branch, but now
dress these operators with a superscript I or II, to indicate their respective
folding branch. The number of folding branches per tile is now equal to the
number of combinations of I and II labels in the operator quads that lead
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to identities. We can group all operator quads in three groups: the first
group contains the Ci-tiles (Eq. 2.11) which combine the operators ρI,II

i,i−1.
To obtain an identity, we need to pair adjacent operators. For example,

ρI14ρ
I
41ρ

II
14ρ

II
41 = I, (3.28)

which corresponds to tile {C1}, which represents a rigidly foldable config-
uration as ρI14ρ

I
41 = ±I , and ρII14ρ

II
41 = ±I .5 Conversely,

ρI14ρ
II
41ρ

I
14ρ

II
41 6= I (3.29)

does not represent a rigidly foldable configuration, as the folding operators
on different branches do not ‘annihilate’ in pairs. There are six distinct
choices for the folding branches of Ci tiles where ‘adjacent operators’ are
on the same branch - tiles {Ci} can therefore be folded into six different
configurations. We show these six configurations in Fig. 3.13.A.

I

I I

I II

II II

II II

I I

II II

II I

I I

II II

I I

I II

II

I

I I

I II

II II

II I

II II

I II

I I

II

I

I

I

I

II

II II

II

I

I I

I II

II II

II I

II II

I II

II I

I II

I I

II I

I II

II

A

B

C

1 2 3 4 5 6

Figure 3.13: The allowed folding branches for all tiles. (A) The branches of tile
C1 can take six different configurations. (B) For tiles {Di, Ei, Fi, Gi, Hi, Ii, Ji,Ki}
the branches of their vertices take four different configurations. (C) Tiles {A,B}
can only take two configurations.

5Here the ± sign reflect the fact we left out which operators are supplemented, we will
come back to this on the next page.
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Second, there are tiles {Di, Ei, Fi, Gi, Hi, Ii, Ji,Ki}, which contain pairs
of distinct operators, and which only allow four choices of the vertex
branches. These correspond to the choices of branch I or II for each pair of
vertices. These Kokotsakis meshes can thus be folded into four different
configurations. For example, Eq. 2.15 with i = 1,

ρII41ρ
II
14ρ

I
21ρ

I
12 = I, (3.30)

but,
ρII41ρ

I
14ρ

I
21ρ

II
12 6= I. (3.31)

The four possible configurations are shown in Fig. 3.13.B.
Third, there remain the tiles {A,B} related to Eq. 2.9 and Eq. 2.10,

which can only be folded into two different configurations for the identity
of Eq. 2.9 or Eq. 2.10 to hold, as all of the vertices need to be in the same
folding branch. For example,

ρI43ρ
I
32ρ

I
21ρ

I
14 = I, (3.32)

see Fig. 3.13.C.
We note here that the supplementation pattern is not relevant for count-

ing the number of branches, although it is important for the corresponding
mountain valley pattern. Similarly, the choice of the odd folds (i.e. the
choice of the numerical values of αi − α4) determines the specific M-V
patterns. Examples of these are shown in Fig. 3.14. This illustrates the
power of separately solving for the choice of branches for each vertex that
solve the loop condition, Eq. 2.8, and the supplementation patterns which
satisfy the sum rule, Eq. 2.1.

Counting Folding Branches for Class-I Tilings

Class-I tilings exhibit two distinct folding branches:

N I
b = 2. (3.33)

This is because the choice of supplementation patterns and the choice
of branches are identical combinatorial problems in class I. Hence, the
branches of one of the necessary class-I tiles ({A} or {B}) immediately
determines the folding branch of all other vertices.
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Figure 3.14: Mountain-Valley patterns. (A) Assuming that ρ4 is the odd fold
at branch I, a single vertex can be in two M-V configurations. (B) The odd fold
on branch I of the supplemented vertex is ρ2 (opposite to ρ4). (C) The folding
angle configuration for tile G1. (D) For a given supplementation pattern, two
corresponding and opposite M-V patterns exist. (E) A different supplementation
pattern yields two different M-V patterns.

Counting Folding Branches for Class-II Tilings

The total number of folding branches of an m × n class-II tiling is:

N II
b = 2m+1 + 2n+1 − 2. (3.34)

This is because the choice of supplementation patterns and branches are
identical combinatorial problems in class II: Ci tiles have identical configu-
rations for the choice of supplementation and the choice of folding branch
at each vertex.

Counting Folding Branches for Class-III and Class-IV Tilings

For class-III we again observe that the number of supplementation patterns
equals the number of folding branches. We find,

N III
b-hor = 2m+1, (3.35)

for a horizontally oriented class-III pattern, analogous to Eq. 3.10.
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Class-IV contains the only tiles for which the number of supplementa-
tion patterns differs from the number of branch patterns: tiles Di. These
can be supplemented in six different ways, but have only four possi-
ble branch configurations. The combinatorial problem of choosing the
branches of a class-IV tiling is therefore identical to the problem of count-
ing branches for class-III tilings. This means that for an m × n class-IV
pattern we have:

N IV
b-hor = 2m+1. (3.36)

Conversely, when a class-III or class-IV pattern is vertically oriented, we
have:

N III
b-ver = N IV

b-ver = 2n+1. (3.37)

3.6 Summary and Outlook

We summarize the results of this chapter, in Table 3.2. Here we show the
classification of the 34 tiles into four classes, the number of tile patterns
Nt within each class, the number of possible supplementations into brick
patterns Ns, and the number of possible folding branches Nb. Note that
for class-III and class-IV, the expressions in the table are for horizontally
oriented patterns. Expressions for vertically oriented patterns can be found
by interchanging m and n.

In the next chapter, we aim to design bipotent crease patterns where
we can change the folded shape of two folding branches independently.
Table 3.2 shows that class-II patterns can not be used with this goal in
mind, as the number of tilings is fixed at 8. The number of supplemented
angles Ns = 2n + 2m − 2 also does not form a large enough design space
to facilitate this, as any changes in the supplementation pattern always
occur along either the horizontal, or the vertical direction. Class-III and
class-IV patterns have a larger design space, where the number of possible
patterns scales exponentially with n (m). However, this still only allows us
to change the tiles on the left (top) side of the pattern, which does not allow
us to independently tune the folding shape of two or more branches. The
only remaining class is therefore class-I, where we see that the number of
tilings scales asNt ∼ 2m+n. This reflects the fact that we can independently
choose the tiles on the top row and left column of the pattern; where the
choice of tiles in these locations directly changes the shape of the two
folding branches. In the next chapter we will show how to design the two
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folded shapes of class-I patterns, by changing the composition of the top
row and left column.

Class Necessary Tiles Optional Tiles Tilings (Nt) Sup.Angles (Ns) Branches (Nb)

I {A,B} {Ci, Fi} 8(2m−1)(2n−1) 2 2

II {Ci} − 8 2m+1+2n+1−2 2m+1+2n+1−2

III† {Ei, Fi, Gi, Hi, Ii,Ki} {Ci, Di, Ji} 8(8n−3n) 2n+1 2n+1

IV-1 (m even)† {Di, Ji} {Ci} 8(3n +1−2n+1) 2n+1 2n+1

IV-1 (m odd)† {Di, Ji} {Ci} 8(3n +1−2n+1) 2n+1 2n+1

IV-2 (m even)† {Di, Ji} {Ci} 16(2n − 1) 2n+1− 2+ 2
m+2

2 2n+1

IV-3 (m odd)† {Di, Ji} {Ci} 8(2n − 1) 2n+1− 2+ 2
m+3

2 2n+1

IV-4 (m odd)† {Di, Ji} {Ci} 8(2n − 1) 2n+1− 2+ 2
m+1

2 2n+1

Table 3.2: Table summarizing the results of sections 3.3, and 3.4, 3.5. The
symbol † indicates the pattern is horizontally oriented, expressions for vertically
oriented patterns can be obtained by m↔ n
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