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Chapter 1

Introduction

1.1 Origami

Folding paper for decorative purposes is an art that seems to have devel-
oped separately in different parts of the world [1, 2], but is now known
worldwide by the Japanese word ‘origami’, meaning: ‘folding paper’.
Origami in Japan is thought to originate from the folding of ceremonial
wrappers during the 14th century [1], and evolved in complexity over
the subsequent centuries (Fig. 1.1.A). Folding paper in Europe seems to
stem from the 16th century, as a way to make baptismal certificates [1]
(Fig. 1.1.B), and was later also used for decorative purposes, for example, to
elaborately fold napkins (Fig. 1.1.C). Up until 1854, when the United States
and Japan signed the Kanagawa treaty [6], there was very little mixing of
the Western and Japanese traditions of paper folding [1, 2]. The modern
day interpretation of ‘origami’ is a result of the mixing of these two tradi-
tions after the modernization of Japan during the second half of the 19th
century [1].

BA C

Figure 1.1: (A) Origami Fold pattern from a 1797 Japanese book [3]. (B) German
‘Patenbrief’ (baptism certificate), dated 1769. (C) Instructions on decoratively
folding napkins from a 1754 Dutch cooking book [4]. Figures from [5].
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1.1. ORIGAMI

In the 1950s, the development of a standard way to draw origami
diagrams allowed for more efficient sharing of origami models [7]. At the
same time, mathematicians started to get interested in the mathematics
behind paper folding, starting with the 1949 book ‘Geometric Tools’ [8].
Since then, mathematicians have found a variety of necessary conditions
which crease patterns should satisfy in order to fold, first at the level of
single vertices [9, 10], and later at the level of folding patterns [11–16].

Building on these mathematical rules, and benefiting from the in-
creasing popularity of computers, emerged the field of ‘computational
origami’. The first major breakthrough in this field was an algorithm named
‘Treemaker’ developed by Robert Lang, first released in 1993 [17]. This pro-
gram finds a two-dimensional fold pattern for a given three-dimensional
shape, allowing for the design of very complex origamis. A different and
more sophisticated algorithm was developed by Tomohiro Tachi [18, 19].
An example of the capability of this latter algorithm is shown in Fig. 1.2.A,
where we depict a complicated two-dimensional folding pattern designed
to fold into the shape of a ‘Stanford Bunny’, containing 374 triangles [19].
Fig. 1.2.B displays a three-dimensional, manually folded version of this
crease pattern, made out of paper.

A B

Figure 1.2: (A) 2D crease pattern, containing 374 triangles, designed to fold
into the shape of a ‘Stanford Bunny’. (B) Paper folded into the shape of a Stanford
Bunny according to the crease pattern in (A). Figure adopted from [19].

The most recent wave of interest in origami comes from the fields of
physics and engineering. This interest can be traced back to the 1960s,
when engineers started to consider origami based materials for structural
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CHAPTER 1. INTRODUCTION

applications. Specifically, various patents were filed for so called ‘folded
sandwich core’ panels [20, 21]. These panels consist of a sheet of material
folded in a ‘double corrugated shape’, glued onto a skin on the top and the
bottom (Fig. 1.3). Designs such as these promised to outperform ‘classic’
honeycomb sandwich core panels in terms of transversal shear stiffness
for the same weight [22, 23], but proved impractical at the time, due to
the sensitivity to fabrication imperfections [24, 25]. However, advances in
fabrication processes have renewed interest in these materials, giving rise
to a large number of experimental and numerical studies [23].

More recently, it has been shown that origami inspired materials can
exhibit a variety of exotic properties, ranging from a negative Possion’s
ratio [26], to tuneable stiffness [27], to multistability [28]. In addition,
origami can serve as a low-cost manufacturing platform for the fabrication
of simple robots [29–31]. Here, we will show some examples of these exotic
properties.

One example is the folded core of the panel in Fig. 1.3, which is also
shown in Fig. 1.4.A. Here it is demonstrated that this sheet has a negative
2D-Poisson’s ratio, as it shrinks in both planar directions simultaneously.
This property can be harnessed by stacking multiple sheets to make a 3D
origami structure that can contract (or expand) in all three orthogonal
directions simultaneously, which is impossible with a regular (positive
Poisson’s ratio) solid [26, 32]. This pattern is now called the “Miura-ori"
pattern, named after K. Miura, who proposed it as an effective way to pack
and deploy large membranes for space-flight, as it can unfold with a single
continuous motion, using a minimal amount of motors [33].

This Miura pattern –as well as derivatives– have since been extensively

Figure 1.3: Patent filing for a folded core sandwich panel, figure adapted from
[20].
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studied, and a host of other interesting properties have been discovered;
such as multistability [28], arbitrary shape change [34], and the ability
to reversibly program the stiffness of a sheet [27, 35]. For example, in
[27] it is shown that it is possible to pop-through a single unit cell of the
Miura pattern in its folded configuration, introducing a so-called ‘pop-
through defect’. The presence of these pop-through defects can change the
compressive stiffness of the sheet, as the fold pattern is locally frustrated.
In some cases however, two adjacent pop-through defects can interact in
such a way as to generate a lattice vacancy. These lattice vacancies give rise
to various crystallographic structures, such as grain boundaries, and edge
dislocation – an example of the latter is shown in Fig. 1.7.B [27].

Additionally, fold patterns seem to be ubiquitous in nature, appearing
naturally in leaves [37–39], insect wings [40, 41], and in embryonic gut
tissue in chicks [36]. This natural occurrence is attributed to the material
growing within a constrained environment [38, 42]. For example, when
the gut-tube of an embryonic chick is developing it is initially smooth,
but when the development of circumferentially oriented muscle tissue
starts, inward buckling of the tube prompts the formation of ridges in the
longitudinal direction. A second layer of longitudinally oriented muscle
then starts to develop several days later, after which the longitudinal ridges
themselves buckle into parallel zigzags [43], leading to the pattern shown
in Fig. 1.4.C.

Figure 1.4: (A) A Miura-ori pattern shows auxetic (negative Poisson’s ratio)
behavior. (B) Multiple pop-through defects in a column of a Miura-ori sheet give
rise to an edge dislocation [27]. (C) SEM picture of turkey gut, showing a fold
structure resembling the Miura-ori pattern. Panel (A) adapted from [32], panel
(B) adapted from [27], panel (C) adapted from [36].
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CHAPTER 1. INTRODUCTION

1.2 Rigid Folding

In this section I will explain the concept of rigid folding, which is central
to understanding the work in this thesis. In addition, I will explain what
this means in the case of a single 4-vertex, and for patterns consisting of
multiple 4-vertices.

1.2.1 Single Crease

The simplest possible origami pattern that we can study is a single crease,
which already turns out to have interesting mechanics. When applying a
crease to a piece of material, we plastify some of the bonds in the paper,
such that their rest positions are no longer flat. When we then pull the
material outward we effectively open the crease, which then acts as a
torsional spring. Additionally, the sheet itself may deform and bend. The
length scale that determines which of these elastic effects dominates, is
called the origami length scale [44]:

L∗ =
B

κ
. (1.1)

Here B is the bending modulus, B = Eh3/12(1 − ν2), E is the Young’s
modulus, ν is the Poisson’s ratio, and h the thickness of the material. κ is
defined as the effective torsional stiffness of the crease. Based on the energy
stored in a single crease, it can be shown that the torsional stiffness should
scale roughly as κ = B/h [45]. The length scale L∗ therefore linearly
increases with the thickness of the material h. Experiments in [44] for
Mylar sheets show that there is a large separation of scales between h and
L∗.

This separation of scales can be explained by a separation of scales
between the Young’s modulus of the material, which sets B in Eq. 1.1, and
the yield stress σY , which sets κ in Eq. 1.1. The existence of this difference
allows for the following two scenarios: sheets with a fold pattern where the
length of the creases, l, is larger than L∗, and sheets whose crease length l
is smaller than L∗. This difference can be demonstrated by folding a sheet
of material into an accordion shape, such as shown in Fig. 1.5. In the case
l > L∗ extending the sheet will not change the angle between the plate
very much from its rest angle (φ ≈ φ0), but instead will bend the plates
(Fig. 1.5.B). In the case l < L∗ the deformation is concentrated in the crease,
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1.2. RIGID FOLDING

which acts as an approximately linear torsional spring, and the panels stay
almost completely straight (Fig. 1.5.D) [44]. In the scenario where l < L∗

we can therefore approximate a fold pattern by a set of hinges, dressed
with torsional springs, connecting rigid plates – this is the rigid folding
limit.

l 

 

A B C D

Figure 1.5: Side view of two sheets of Mylar with thickness h = 130 µm, folded
into an accordion shape (A,C), and extended by pulling on the top and bottom
(B,D). (A) Rest state with l = 2.5 cm. (B) Deformed state. (C) Rest state with
l = 0.6 cm. (D) Deformed state. L∗ ≈ 2.5 cm. Figure adapted from [44].

1.2.2 Rigidly Folding Vertices

The fold pattern shown in Fig. 1.5 is a very simple one, consisting of parallel
lines. Most fold patterns are more complicated than this, and also contain
vertices, i.e. points where multiple folds come together (see Fig. 1.4.A,B). It
is therefore important to understand what happens at these vertices. If we
assume the rigid folding condition, where the plates are perfectly rigid, we
can use 3D Maxwell-Calladine constraint counting to count the number of
floppy modes of a single vertex [46, 47].

In the case of a vertex where three lines come together (shown in blue
in Fig. 1.6.A), we count 4 × 3 = 12 degrees of freedom (d.o.f.) for the 4
points in 3D space. These points cannot freely move, but are constrained
by 3 × 1 + 3 × 1 = 6 constraints: the 3 black bonds (which represent the
fold lines), and 3 gray bonds (representing the rigid plates), which each
represent one constraint. In total we therefore have 12 − 6 = 6 degrees
of freedom. These correspond to the 6 degrees of freedom (rotation and
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CHAPTER 1. INTRODUCTION

A B C

Figure 1.6: (A) A vertex where three folds come together can not fold rigidly.
(B) A generic 4-vertex has a single degree of freedom. (C) A mesh consisting of
four 4-vertices together is generically overconstrained, but can fold rigidly if the
sector angles around each vertex are related by symmetries.

translation) of a rigid body in three dimensions; the number of internal
d.o.f. thus equals 12 − 6 − 6 = 0. A 3-vertex is therefore overconstrained,
and can not fold rigidly.

For a single 4-vertex, where 4 lines come together, the same calculation
tells us there is exactly 5×3−4×1−4×1−3−3 = 1 internal d.o.f. A single
4-vertex can therefore fold rigidly. We note, in passing, that flat 4-vertices
have two distinct continuous folding branches, each with a single degree of
freedom [28]. We now ask what happens when we add multiple 4-vertices
together into a pattern, such as in Fig. 1.4.A? This scenario is depicted in
Fig. 1.6.C, where four 4-vertices surround a single rigid quadrilateral plate.
In this case, we count 12× 3 = 36 d.o.f. for the 12 points, 12× 1 constraints
for the bonds that represent the creases, 5 × 2 = 10 d.o.f. for the bonds
that rigidify the 5 quadrilateral plates, and 8 d.o.f. for the bonds around
the periphery. This results in 36 − 12 − 10 − 8 − 6 = 0 non-trivial d.o.f.
We therefore see that, even though a single 4-vertex can generically fold,
patterns consisting of multiple 4-vertices are generically rigid. In order
to construct rigidly foldable 4-vertex patterns such as the one shown in
Fig. 1.4.A, it is necessary to exploit symmetries and non-generic vertices,
so that degeneracies in the constraints generate non-trivial degrees of
freedom.
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1.2. RIGID FOLDING

1.2.3 4-Vertex Fold Patterns

As shown in the previous section, 4-vertex patterns are generically over-
constrained, and can not fold rigidly unless the vertices that constitute
the pattern are in some way related. Here we will give a few examples
of rigidly foldable 4-vertex patterns known from literature, such as the
Miura-ori pattern in Fig. 1.4.A, which do rigidly fold.

One of the first known quadrilateral fold patterns is the so called ‘Huff-
man’ pattern, named after Huffman [48], although it was A. Kokotsakis
who first published this pattern as rigidly foldable [49]. This pattern,
shown in Fig. 1.7.A, is based on the well known tessellation in which a
single generic quadrilateral, with inner angles αi (i = 1, 2, 3, 4), is used to
tile the plane, by alternating copies of itself by copies that are rotated by
180◦. Remarkably, the shape into which this pattern folds was not described
until very recently. In [50] it was shown that this flat pattern can fold into
a cylindrical shape in two different ways: one along the vertical direction
and one along and the horizontal direction. Here columns, respectively,
rows of quadrilaterals in the flat pattern trace out a helical path on the
surface of the circumscribed cylinder.

Figure 1.7: Three different quadrilateral patterns that are rigidly foldable.
(A) Huffman pattern [48]. All vertices have identical sector angles αi, and are
oriented in the same direction. (B) Generalized version of Barreto’s MARS pattern
[28, 51]. Pattern contains CW oriented vertices with sector angles αi, and CCW
oriented vertices with sector angles α′i = π − αi (red). (C) Non-periodic pattern
designed using Origamizer software [16, 19]. Fold pattern from [52]. Dashed lines
in panel A and B indicates unit cell.

8



CHAPTER 1. INTRODUCTION

Another example of a rigidly foldable pattern can be obtained by modi-
fying the Miura-Ori pattern shown in Fig. 1.4, such that it no longer has any
straight lines. This variation is shown in Fig. 1.7.B, and was first described
by Barreto [51]. A generic version of this pattern was later described by
Waitukaitis et al. [28]. The unit cell of this tiling (indicated by the dashed
line) consists of 4 different parallelograms surrounding a vertex (in blue)
with angles αi, where i = 1, 2, 3, 4. When this unit cell is tiled, it there-
fore results in a pattern with two types of vertices: the blue vertices with
sector angles αi , oriented in a counterclockwise direction, and the red ver-
tices with supplemented sector angles α′i = π − αi, oriented in a clockwise
direction.

Finally, it was shown by Tachi in 2009, that rigidly foldable quadrilat-
eral patterns do not necessarily have to be periodic [16]. The pattern shown
in Fig. 3.1.C folds rigidly, despite the fact that the sector angles at every
vertex are different. However, the sector angles in this pattern are tuned by
a computer algorithm, such that each of the nine internal quadrilaterals
can fold rigidly with a single degree of freedom [19]1. As a result, the
whole pattern can fold rigidly with a single degree of freedom.

The patterns shown in Fig. 3.1 are just three examples of rigidly fold-
able 4-vertex patterns. Other variations on these patterns exist, many of
which are based on the Miura-ori pattern, these include: modular tubular
structures [53, 54], semi rigidly-foldable patterns with arbitrary curvature
[34], superimposed fold patterns that allow for hierarchical folding [55],
trapezoidal fold patterns with double curvature [56], and fold patterns
where each vertex is replaced by a ‘corner-gadget’ [57].

1.3 This Thesis

This thesis starts with chapter 2, where we describe the necessary condi-
tions under which a two by two 4-vertex mesh can fold rigidly. We show
how to precisely count the number of rigidly foldable two by two vertex
meshes one can construct using four symmetry-related vertices: those with
sector angles αi, those with sector angles π−αi, and their respective mirror
images. Furthermore, we show how to depict all of these meshes as a
combinatorial puzzle pieces, which allows for the construction of rigidly
foldable meshes of arbitrary size. In chapter 3 we show how to construct

1The same computer algorithm as used to design the fold pattern in Fig. 1.2.
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rigidly foldable 4-vertex patterns using these puzzle pieces. We find that
the patterns can be classified into four different classes, and for each class
count the number of m by n vertex patterns. Furthermore, we show that
fold patterns constructed using this methodology have multiple folding
branches, which all have a single degree of freedom, and count the number
of folding branches for each of the four classes. In chapter 4 we then focus
on one of these classes, which has two folding branches regardless of the
size of the pattern, and show that we can designm by n vertex patterns with
two folding branches that have a pre-programmed curvature, resulting in
a multishape material.

In chapter 5 we once again focus on single 4-vertices, and study non-
Euclidean 4-vertices, i.e. vertices of which the sector angles no longer add
up to 2π. In such a case it is no longer possible to access the flat configu-
ration by rigidly folding the vertex, which results into two disconnected
folding branches. By 3D-printing 4-vertices with a slight angular deficit
(or surplus), and dressing these with a torsional spring, we show that we
can harness these two folding branches to create tristable vertices.
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