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Chapter 1

Introduction

1.1 Origami

Folding paper for decorative purposes is an art that seems to have devel-
oped separately in different parts of the world [1, 2], but is now known
worldwide by the Japanese word ‘origami’, meaning: ‘folding paper’.
Origami in Japan is thought to originate from the folding of ceremonial
wrappers during the 14th century [1], and evolved in complexity over
the subsequent centuries (Fig. 1.1.A). Folding paper in Europe seems to
stem from the 16th century, as a way to make baptismal certificates [1]
(Fig. 1.1.B), and was later also used for decorative purposes, for example, to
elaborately fold napkins (Fig. 1.1.C). Up until 1854, when the United States
and Japan signed the Kanagawa treaty [6], there was very little mixing of
the Western and Japanese traditions of paper folding [1, 2]. The modern
day interpretation of ‘origami’ is a result of the mixing of these two tradi-
tions after the modernization of Japan during the second half of the 19th
century [1].

BA C

Figure 1.1: (A) Origami Fold pattern from a 1797 Japanese book [3]. (B) German
‘Patenbrief’ (baptism certificate), dated 1769. (C) Instructions on decoratively
folding napkins from a 1754 Dutch cooking book [4]. Figures from [5].
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1.1. ORIGAMI

In the 1950s, the development of a standard way to draw origami
diagrams allowed for more efficient sharing of origami models [7]. At the
same time, mathematicians started to get interested in the mathematics
behind paper folding, starting with the 1949 book ‘Geometric Tools’ [8].
Since then, mathematicians have found a variety of necessary conditions
which crease patterns should satisfy in order to fold, first at the level of
single vertices [9, 10], and later at the level of folding patterns [11–16].

Building on these mathematical rules, and benefiting from the in-
creasing popularity of computers, emerged the field of ‘computational
origami’. The first major breakthrough in this field was an algorithm named
‘Treemaker’ developed by Robert Lang, first released in 1993 [17]. This pro-
gram finds a two-dimensional fold pattern for a given three-dimensional
shape, allowing for the design of very complex origamis. A different and
more sophisticated algorithm was developed by Tomohiro Tachi [18, 19].
An example of the capability of this latter algorithm is shown in Fig. 1.2.A,
where we depict a complicated two-dimensional folding pattern designed
to fold into the shape of a ‘Stanford Bunny’, containing 374 triangles [19].
Fig. 1.2.B displays a three-dimensional, manually folded version of this
crease pattern, made out of paper.

A B

Figure 1.2: (A) 2D crease pattern, containing 374 triangles, designed to fold
into the shape of a ‘Stanford Bunny’. (B) Paper folded into the shape of a Stanford
Bunny according to the crease pattern in (A). Figure adopted from [19].

The most recent wave of interest in origami comes from the fields of
physics and engineering. This interest can be traced back to the 1960s,
when engineers started to consider origami based materials for structural
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CHAPTER 1. INTRODUCTION

applications. Specifically, various patents were filed for so called ‘folded
sandwich core’ panels [20, 21]. These panels consist of a sheet of material
folded in a ‘double corrugated shape’, glued onto a skin on the top and the
bottom (Fig. 1.3). Designs such as these promised to outperform ‘classic’
honeycomb sandwich core panels in terms of transversal shear stiffness
for the same weight [22, 23], but proved impractical at the time, due to
the sensitivity to fabrication imperfections [24, 25]. However, advances in
fabrication processes have renewed interest in these materials, giving rise
to a large number of experimental and numerical studies [23].

More recently, it has been shown that origami inspired materials can
exhibit a variety of exotic properties, ranging from a negative Possion’s
ratio [26], to tuneable stiffness [27], to multistability [28]. In addition,
origami can serve as a low-cost manufacturing platform for the fabrication
of simple robots [29–31]. Here, we will show some examples of these exotic
properties.

One example is the folded core of the panel in Fig. 1.3, which is also
shown in Fig. 1.4.A. Here it is demonstrated that this sheet has a negative
2D-Poisson’s ratio, as it shrinks in both planar directions simultaneously.
This property can be harnessed by stacking multiple sheets to make a 3D
origami structure that can contract (or expand) in all three orthogonal
directions simultaneously, which is impossible with a regular (positive
Poisson’s ratio) solid [26, 32]. This pattern is now called the “Miura-ori"
pattern, named after K. Miura, who proposed it as an effective way to pack
and deploy large membranes for space-flight, as it can unfold with a single
continuous motion, using a minimal amount of motors [33].

This Miura pattern –as well as derivatives– have since been extensively

Figure 1.3: Patent filing for a folded core sandwich panel, figure adapted from
[20].
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1.1. ORIGAMI

studied, and a host of other interesting properties have been discovered;
such as multistability [28], arbitrary shape change [34], and the ability
to reversibly program the stiffness of a sheet [27, 35]. For example, in
[27] it is shown that it is possible to pop-through a single unit cell of the
Miura pattern in its folded configuration, introducing a so-called ‘pop-
through defect’. The presence of these pop-through defects can change the
compressive stiffness of the sheet, as the fold pattern is locally frustrated.
In some cases however, two adjacent pop-through defects can interact in
such a way as to generate a lattice vacancy. These lattice vacancies give rise
to various crystallographic structures, such as grain boundaries, and edge
dislocation – an example of the latter is shown in Fig. 1.7.B [27].

Additionally, fold patterns seem to be ubiquitous in nature, appearing
naturally in leaves [37–39], insect wings [40, 41], and in embryonic gut
tissue in chicks [36]. This natural occurrence is attributed to the material
growing within a constrained environment [38, 42]. For example, when
the gut-tube of an embryonic chick is developing it is initially smooth,
but when the development of circumferentially oriented muscle tissue
starts, inward buckling of the tube prompts the formation of ridges in the
longitudinal direction. A second layer of longitudinally oriented muscle
then starts to develop several days later, after which the longitudinal ridges
themselves buckle into parallel zigzags [43], leading to the pattern shown
in Fig. 1.4.C.

Figure 1.4: (A) A Miura-ori pattern shows auxetic (negative Poisson’s ratio)
behavior. (B) Multiple pop-through defects in a column of a Miura-ori sheet give
rise to an edge dislocation [27]. (C) SEM picture of turkey gut, showing a fold
structure resembling the Miura-ori pattern. Panel (A) adapted from [32], panel
(B) adapted from [27], panel (C) adapted from [36].

4



CHAPTER 1. INTRODUCTION

1.2 Rigid Folding

In this section I will explain the concept of rigid folding, which is central
to understanding the work in this thesis. In addition, I will explain what
this means in the case of a single 4-vertex, and for patterns consisting of
multiple 4-vertices.

1.2.1 Single Crease

The simplest possible origami pattern that we can study is a single crease,
which already turns out to have interesting mechanics. When applying a
crease to a piece of material, we plastify some of the bonds in the paper,
such that their rest positions are no longer flat. When we then pull the
material outward we effectively open the crease, which then acts as a
torsional spring. Additionally, the sheet itself may deform and bend. The
length scale that determines which of these elastic effects dominates, is
called the origami length scale [44]:

L∗ =
B

κ
. (1.1)

Here B is the bending modulus, B = Eh3/12(1 − ν2), E is the Young’s
modulus, ν is the Poisson’s ratio, and h the thickness of the material. κ is
defined as the effective torsional stiffness of the crease. Based on the energy
stored in a single crease, it can be shown that the torsional stiffness should
scale roughly as κ = B/h [45]. The length scale L∗ therefore linearly
increases with the thickness of the material h. Experiments in [44] for
Mylar sheets show that there is a large separation of scales between h and
L∗.

This separation of scales can be explained by a separation of scales
between the Young’s modulus of the material, which sets B in Eq. 1.1, and
the yield stress σY , which sets κ in Eq. 1.1. The existence of this difference
allows for the following two scenarios: sheets with a fold pattern where the
length of the creases, l, is larger than L∗, and sheets whose crease length l
is smaller than L∗. This difference can be demonstrated by folding a sheet
of material into an accordion shape, such as shown in Fig. 1.5. In the case
l > L∗ extending the sheet will not change the angle between the plate
very much from its rest angle (φ ≈ φ0), but instead will bend the plates
(Fig. 1.5.B). In the case l < L∗ the deformation is concentrated in the crease,
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1.2. RIGID FOLDING

which acts as an approximately linear torsional spring, and the panels stay
almost completely straight (Fig. 1.5.D) [44]. In the scenario where l < L∗

we can therefore approximate a fold pattern by a set of hinges, dressed
with torsional springs, connecting rigid plates – this is the rigid folding
limit.

l 

 

A B C D

Figure 1.5: Side view of two sheets of Mylar with thickness h = 130 µm, folded
into an accordion shape (A,C), and extended by pulling on the top and bottom
(B,D). (A) Rest state with l = 2.5 cm. (B) Deformed state. (C) Rest state with
l = 0.6 cm. (D) Deformed state. L∗ ≈ 2.5 cm. Figure adapted from [44].

1.2.2 Rigidly Folding Vertices

The fold pattern shown in Fig. 1.5 is a very simple one, consisting of parallel
lines. Most fold patterns are more complicated than this, and also contain
vertices, i.e. points where multiple folds come together (see Fig. 1.4.A,B). It
is therefore important to understand what happens at these vertices. If we
assume the rigid folding condition, where the plates are perfectly rigid, we
can use 3D Maxwell-Calladine constraint counting to count the number of
floppy modes of a single vertex [46, 47].

In the case of a vertex where three lines come together (shown in blue
in Fig. 1.6.A), we count 4 × 3 = 12 degrees of freedom (d.o.f.) for the 4
points in 3D space. These points cannot freely move, but are constrained
by 3 × 1 + 3 × 1 = 6 constraints: the 3 black bonds (which represent the
fold lines), and 3 gray bonds (representing the rigid plates), which each
represent one constraint. In total we therefore have 12 − 6 = 6 degrees
of freedom. These correspond to the 6 degrees of freedom (rotation and

6



CHAPTER 1. INTRODUCTION

A B C

Figure 1.6: (A) A vertex where three folds come together can not fold rigidly.
(B) A generic 4-vertex has a single degree of freedom. (C) A mesh consisting of
four 4-vertices together is generically overconstrained, but can fold rigidly if the
sector angles around each vertex are related by symmetries.

translation) of a rigid body in three dimensions; the number of internal
d.o.f. thus equals 12 − 6 − 6 = 0. A 3-vertex is therefore overconstrained,
and can not fold rigidly.

For a single 4-vertex, where 4 lines come together, the same calculation
tells us there is exactly 5×3−4×1−4×1−3−3 = 1 internal d.o.f. A single
4-vertex can therefore fold rigidly. We note, in passing, that flat 4-vertices
have two distinct continuous folding branches, each with a single degree of
freedom [28]. We now ask what happens when we add multiple 4-vertices
together into a pattern, such as in Fig. 1.4.A? This scenario is depicted in
Fig. 1.6.C, where four 4-vertices surround a single rigid quadrilateral plate.
In this case, we count 12× 3 = 36 d.o.f. for the 12 points, 12× 1 constraints
for the bonds that represent the creases, 5 × 2 = 10 d.o.f. for the bonds
that rigidify the 5 quadrilateral plates, and 8 d.o.f. for the bonds around
the periphery. This results in 36 − 12 − 10 − 8 − 6 = 0 non-trivial d.o.f.
We therefore see that, even though a single 4-vertex can generically fold,
patterns consisting of multiple 4-vertices are generically rigid. In order
to construct rigidly foldable 4-vertex patterns such as the one shown in
Fig. 1.4.A, it is necessary to exploit symmetries and non-generic vertices,
so that degeneracies in the constraints generate non-trivial degrees of
freedom.

7



1.2. RIGID FOLDING

1.2.3 4-Vertex Fold Patterns

As shown in the previous section, 4-vertex patterns are generically over-
constrained, and can not fold rigidly unless the vertices that constitute
the pattern are in some way related. Here we will give a few examples
of rigidly foldable 4-vertex patterns known from literature, such as the
Miura-ori pattern in Fig. 1.4.A, which do rigidly fold.

One of the first known quadrilateral fold patterns is the so called ‘Huff-
man’ pattern, named after Huffman [48], although it was A. Kokotsakis
who first published this pattern as rigidly foldable [49]. This pattern,
shown in Fig. 1.7.A, is based on the well known tessellation in which a
single generic quadrilateral, with inner angles αi (i = 1, 2, 3, 4), is used to
tile the plane, by alternating copies of itself by copies that are rotated by
180◦. Remarkably, the shape into which this pattern folds was not described
until very recently. In [50] it was shown that this flat pattern can fold into
a cylindrical shape in two different ways: one along the vertical direction
and one along and the horizontal direction. Here columns, respectively,
rows of quadrilaterals in the flat pattern trace out a helical path on the
surface of the circumscribed cylinder.

Figure 1.7: Three different quadrilateral patterns that are rigidly foldable.
(A) Huffman pattern [48]. All vertices have identical sector angles αi, and are
oriented in the same direction. (B) Generalized version of Barreto’s MARS pattern
[28, 51]. Pattern contains CW oriented vertices with sector angles αi, and CCW
oriented vertices with sector angles α′i = π − αi (red). (C) Non-periodic pattern
designed using Origamizer software [16, 19]. Fold pattern from [52]. Dashed lines
in panel A and B indicates unit cell.
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CHAPTER 1. INTRODUCTION

Another example of a rigidly foldable pattern can be obtained by modi-
fying the Miura-Ori pattern shown in Fig. 1.4, such that it no longer has any
straight lines. This variation is shown in Fig. 1.7.B, and was first described
by Barreto [51]. A generic version of this pattern was later described by
Waitukaitis et al. [28]. The unit cell of this tiling (indicated by the dashed
line) consists of 4 different parallelograms surrounding a vertex (in blue)
with angles αi, where i = 1, 2, 3, 4. When this unit cell is tiled, it there-
fore results in a pattern with two types of vertices: the blue vertices with
sector angles αi , oriented in a counterclockwise direction, and the red ver-
tices with supplemented sector angles α′i = π − αi, oriented in a clockwise
direction.

Finally, it was shown by Tachi in 2009, that rigidly foldable quadrilat-
eral patterns do not necessarily have to be periodic [16]. The pattern shown
in Fig. 3.1.C folds rigidly, despite the fact that the sector angles at every
vertex are different. However, the sector angles in this pattern are tuned by
a computer algorithm, such that each of the nine internal quadrilaterals
can fold rigidly with a single degree of freedom [19]1. As a result, the
whole pattern can fold rigidly with a single degree of freedom.

The patterns shown in Fig. 3.1 are just three examples of rigidly fold-
able 4-vertex patterns. Other variations on these patterns exist, many of
which are based on the Miura-ori pattern, these include: modular tubular
structures [53, 54], semi rigidly-foldable patterns with arbitrary curvature
[34], superimposed fold patterns that allow for hierarchical folding [55],
trapezoidal fold patterns with double curvature [56], and fold patterns
where each vertex is replaced by a ‘corner-gadget’ [57].

1.3 This Thesis

This thesis starts with chapter 2, where we describe the necessary condi-
tions under which a two by two 4-vertex mesh can fold rigidly. We show
how to precisely count the number of rigidly foldable two by two vertex
meshes one can construct using four symmetry-related vertices: those with
sector angles αi, those with sector angles π−αi, and their respective mirror
images. Furthermore, we show how to depict all of these meshes as a
combinatorial puzzle pieces, which allows for the construction of rigidly
foldable meshes of arbitrary size. In chapter 3 we show how to construct

1The same computer algorithm as used to design the fold pattern in Fig. 1.2.
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1.3. THIS THESIS

rigidly foldable 4-vertex patterns using these puzzle pieces. We find that
the patterns can be classified into four different classes, and for each class
count the number of m by n vertex patterns. Furthermore, we show that
fold patterns constructed using this methodology have multiple folding
branches, which all have a single degree of freedom, and count the number
of folding branches for each of the four classes. In chapter 4 we then focus
on one of these classes, which has two folding branches regardless of the
size of the pattern, and show that we can designm by n vertex patterns with
two folding branches that have a pre-programmed curvature, resulting in
a multishape material.

In chapter 5 we once again focus on single 4-vertices, and study non-
Euclidean 4-vertices, i.e. vertices of which the sector angles no longer add
up to 2π. In such a case it is no longer possible to access the flat configu-
ration by rigidly folding the vertex, which results into two disconnected
folding branches. By 3D-printing 4-vertices with a slight angular deficit
(or surplus), and dressing these with a torsional spring, we show that we
can harness these two folding branches to create tristable vertices.

10



Chapter 2

Discrete Origami Tiles

2.1 Introduction

Origami based metamaterials, comprised of stiff plates connected by flexi-
ble hinges, are specified by two-dimensional crease patterns composed of
vertices connected by straight creases. 4-vertices are ideal building blocks
of such crease patterns as they exhibit two distinct folding motions [28, 58].
In this section we will combine 4-vertices to make rigidly foldable meshes.
In particular, we will focus on two by two 4-vertex meshes as their foldabil-
ity is a necessary and sufficient condition for foldability of larger meshes.
The general problem of the flexibility of such a 4-vertex mesh was first dis-
cussed by Kokotsakis [49], and has recently received renewed interest due
to advances in the field of discrete differential geometry [59–61]. However,
these efforts concentrate on the symmetries that need to be present in order
for a two by two 4-vertex mesh –which is generically overconstrained– to
fold rigidly.

In this chapter, we will instead aim to answer the question: how many
different rigidly foldable meshes can we construct by combining a generic
vertex, its mirror image, and their supplements. We will show that these 4
vertices can be represented as 140 discrete ‘bricks’ which can be combined
in different ways to form larger tilings, and ultimately crease patterns. Here,
we will show how we obtain these 140 bricks, and list which properties
they have. In the chapter 3 we will show how these building blocks can be
combined to form crease patterns. We will classify the resulting patterns,
and count them. In chapter 4, we will show that these bricks can be used
to design unique, multishape origami crease patterns which can be folded
into two different, pre-programmed shapes.

11



2.2. RIGID FOLDING CONDITIONS

2.2 Rigid Folding Conditions

A 4-vertex fold pattern can be divided into 2 × 2 vertex sub-meshes
(Fig. 2.1.A), which are also named Kokotsakis meshes. A quadrilateral
crease pattern is only rigidly foldable when each of these sub-meshes are
rigidly foldable. In Fig. 2.1.B we show such a 2 × 2 vertex sub-mesh, con-
sisting of four 4-vertices, {W, X, Y, Z}, with sector angles {αi, βi, γi, δi} in
red. Furthermore, we indicate the out-of-plane fold angles ρi (in grey),
where ρi = 0 corresponds to the flat state. In order for this 2 × 2 vertex
mesh to be rigidly foldable, we now require the following sum condition
[16, 49, 62]:

α1 + β4 + γ3 + δ2 = 2π, (2.1)

in order for the central plate to be flat, which is a necessary, but not a suffi-
cient condition for rigid foldability. Furthermore, we have the necessary
condition,

ρW
1 = ρX

3 ,

ρX
4 = ρY

2 ,

ρY
3 = ρZ

1 ,

ρZ
1 = ρW

2 ,

(2.2)

in order for any collective out of plane folding motion to be geometrically
compatible. As 4-vertices have one degree of freedom [28], it is possible
to express every fold angle as function of another (see Appendix A), for
example: ρZ2 (ρZ1 ). Using this, we can rewrite the conditions in Eq. 2.2 in a
single equation,

ρZ2 (ρY3 (ρX4 (ρW1 (ρZ1 ))))=ρZ2 , (2.3)

which can further simplify by defining operators, ρZ21 = ρZ2 (ρZ1 ),

ρZ21 ◦ ρY32 ◦ ρX43 ◦ ρW12 = I. (2.4)

This loop condition needs to be satisfied on every internal quadrilateral of a
quadrilateral mesh in order for it to be rigidly foldable [16, 62]. Further-
more, as the exact form of e.g. the non-linear operators –e.g. ρWij – depends
on the in-plane sector angles {αi, βi, γi, δi}, Eq. 2.4 will not be satisfied
when choosing arbitrary {αi, βi, γi, δi}.

12



CHAPTER 2. DISCRETE ORIGAMI TILES

A B

Figure 2.1: (A) Quadrilateral crease pattern (gray) composed of Kokotsakis
submeshes (black), consisting of four 4-vertices (light blue) around central plates
(yellow). (B) A Kokotsakis mesh is rigidly foldable if and only if the compatibility
conditions Eqs. 2.1 and Eq. 2.4) are satisfied. The red labels indicate the in-plane
sector angles of the 4 vertices W, X, Y, Z, whereas the gray labels indicate the out-
of-plane angles. The four black labels in the middle indicate the fold operators
(see text).

2.3 Combinatorial Loop Condition

In this section we aim to find 2 × 2 vertex meshes which simultaneously
solve Eq. 2.1 and Eq. 2.4. Our strategy is to replace vertices W-Z in Fig. 2.1
by one of the four following vertices: (i) a 4-vertex with angles αi (Fig. 2.2.i),
(ii) its mirror image (Fig. 2.2.ii), (iii) the supplement of vertex (i) with angles
α′i = π−αi (Fig. 2.2.iii), and (iv) the mirror image of vertex (iii) (Fig. 2.2.iv).
We denote the out-of-plane fold-angles ρi for vertices (i) and (ii), and ρ′i
for the two supplemented vertices (iii) and (iv). Furthermore we define
operators that relate one fold angle to another, ρi+1,i(ρi) = ρi+1 (or ρ′i+1,i

for the supplemented vertices). These operators are defined to operate in a
counterclockwise fashion (Fig. 2.2).

For each vertex in the 2 × 2 mesh we can choose whether to pick vertex
(i)-(iv). Once this choice is made, each vertex can be oriented in four
different manners. Together this leads to a total of 4 × 4 = 16 possible
options for a given vertex. For a 2 × 2 vertex mesh this leads to a total
number of 164 = 65536 meshes.
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ivi ii iii

Figure 2.2: (i) Counterclockwise oriented vertex with sector angles αi. (ii) Mir-
ror image of vertex (i). (iii) The supplement of vertex (i), with sector angles π − αi.
(iv) Mirror image of vertex (iii). Note the colors are identical for αi and α′i, and
the white/gray dot in the center of the vertex indicates whether the vertex is
supplemented.

Most of these violate violate either condition Eq. 2.1 or Eq. 2.4 (or both),
but a significant number of combinations satisfy both conditions. These
can be found by brute force, but to gain more insight, we make use of three
relations. First, an operator and its inverse annihilate each other,

ρij ◦ ρji = I. (2.5)

Second, we note that the operators are odd, such that we have,

ρij(−ρ) = −ρij(ρ). (2.6)

Third, we have,
ρij = −ρ′ij , (2.7)

which we derive explicitly in appendix A. This is the most critical ingredi-
ent to construct rigidly foldable quadrilateral meshes.

In order to find all possible rigidly foldable 2 by 2 vertex meshes based
on the four vertices (i)-(iv) of Fig. 2.2, we can now write down a general
version of the loop condition of Eq. 2.4:

ρi,i±1 ◦ ρj,j±1 ◦ ρk,k±1 ◦ ρl,l±1 = I, (2.8)

and ask ourselves which combination of indices {i, j, k, l} ∈ {1, 2, 3, 4} and
signs satisfy this condition, making use of relations Eq. 2.5, Eq. 2.6, and
Eq. 2.7. We note that Eq. 2.7 allows us to supplement an even number of
operators (zero, two, or four) in Eq. 2.8 without affecting the loop condition,

14



CHAPTER 2. DISCRETE ORIGAMI TILES

as the operators are odd (Eq. 2.6). This property allows us to decouple
the problem of satisfying the loop condition from the problem deciding
which (pairs of) vertices should be supplemented. Moreover, as we will
see, for each operator quad that satisfies Eq. 2.8, there are at least two
supplementation patterns that satisfy the sum rule (Eq. 2.1). The solutions
to Eq. 2.8 presented below are therefore at least twofold degenerate, as we
can always invert the supplementation of all four operators. Some solutions
however, are fourfold or sixfold degenerate, we will come back to this in
detail in section 2.5.

Firstly, note that:

ρ4,3 ◦ ρ3,2 ◦ ρ2,1 ◦ ρ1,4 = I, (2.9)

and,
ρ1,2 ◦ ρ2,3 ◦ ρ3,4 ◦ ρ4,1 = I, (2.10)

as these cyclic operations simply describe the folding operation of a single
vertex, see Fig. 2.2.ii and Fig. 2.2.i respectively. In addition we find the
following nine additional combinations of operators that yield identity:

ρi,i−1 ◦ ρi−1,i ◦ ρi,i−1 ◦ ρi−1,i = I, (2.11)

ρi,i−1 ◦ ρi−1,i ◦ ρi−1,i ◦ ρi,i−1 = I, (2.12)

ρi,i−1 ◦ ρi−1,i ◦ ρi+1,i ◦ ρi,i+1 = I, (2.13)

ρi,i−1 ◦ ρi−1,i ◦ ρi,i+1 ◦ ρi+1,i = I, (2.14)

ρi−1,i ◦ ρi,i−1 ◦ ρi+1,i ◦ ρi,i+1 = I, (2.15)

ρi−1,i ◦ ρi,i−1 ◦ ρi,i+1 ◦ ρi+1,i = I, (2.16)

ρi,i−1 ◦ ρi−1,i ◦ ρi+2,i+1 ◦ ρi+1,i+2 = I, (2.17)

ρi,i−1 ◦ ρi−1,i ◦ ρi+1,i+2 ◦ ρi+2,i+1 = I, (2.18)

ρi−1,i ◦ ρi,i−1 ◦ ρi+1,i+2 ◦ ρi+2,i+1 = I, , (2.19)

where i = 1, 2, 3, 4, and it is understood that the indices are defined modulo
4, i.e. mod (i − 1, 4) + 1. Additionally, we left multiply the operators,
which corresponds to evaluating the loop condition in a clockwise fashion,
and starting in the top left corner (also see Fig. 2.1.B). Varying i, Eqs. 2.11-
2.16, 2.18 lead to four different configurations each, for a total of 6 · 4 = 28
different configurations. Eq. 2.17 and Eq. 2.19 each only lead to two
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different configurations, as these equations are identical for i = 1, 3 and
i = 2, 41, for a total of 2 · 2 = 4 different configurations. Last, Eqs. 2.9,
2.10 each contribute only 1 configuration. All in all there are therefore
24 + 8 + 2 = 34 different operator quads which satisfy Eq.2.8. Without
appropriate supplementation, only Eq. 2.9 and Eq. 2.10 satisfy both the
‘sum-rule’ (Eq. 2.1) and the ‘loop-equation’ (Eq. 2.8). We state again that,
all operator quads admit at least two supplementation patterns that both
satisfy the sum rule (Eq. 2.1) and the loop equation (Eq. 2.8), leading
to a multitude of rigidly foldable 2 × 2 vertex meshes+ for details see
section 2.5.

2.4 Tiles

Quadrilateral meshes larger than 2 × 2 vertices can only fold rigidly when
Eq. 2.4 is satisfied for every 2 × 2 vertex submesh [16]. To facilitate
creating larger meshes based on the 34 different configurations of Eq. 2.9,
Eq. 2.10, and Eqs. 2.11–2.19, we devise a graphical representation of each
of these equations. In Fig. 2.3.A we depict a diagram of a counterclockwise
oriented vertex, where the sector angles αi correspond to specific colors.
Furthermore, the profile of each protrusion uniquely corresponds to a
specific fold angle ρi, where the protrusions point in the same orientation
as the vertex itself. The clockwise oriented mirror image of the vertex in
Fig. 2.3.A is shown in Fig. 2.3.B - note that the protrusions in this case also
point in the clockwise direction.

When we now use the counterclockwise oriented vertex of Fig. 2.3.A
and the clockwise oriented vertex of Fig. 2.3.B to make a diagram of a 2 × 2
vertex mesh, we naturally obtain a square tile with four protrusions and
four indentations. An example of such a tile is shown in Fig.2.3.C, where
we combined four (rotated) copies of the vertex shown in Fig.2.3.B. The
shape outlined by the dashed line –including the colored corners– is what
we now define as a ‘tile’. In this case it depicts a two by two vertex mesh
that is described by Eq. 2.10 (ρ12 ◦ ρ23 ◦ ρ34 ◦ ρ41 = I); this can be seen
by following the fold angles in Fig.2.3.B, and applying the operators in a
counterclockwise fashion, starting from the bottom left vertex.

This graphical representation can extended to each of the equations

1After allowing for a cyclical permutation of the operators, as the loop condition in
Fig. 2.1.B can be evaluated starting from any of the four vertices.
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BA C D

1
2 2

3

3
44

1

Figure 2.3: (A) Symbolic depiction of 4-vertex where the sector angles αi are
represented by colors.(B) Mirror image of the 4-vertex depicted in (A). (C) Four
(rotated) copies of the vertex in (B), representing a two by two vertex mesh. The
dashed shape is an example of a ‘tile’. Numbers indicate the index of the respective
fold. (D) Tiles can be combined to represents larger meshes.

Eq. 2.9, Eq. 2.10, and Eqs.2.11–2.19; the resulting 34 tiles are shown in
Fig. 2.4. We note that each tile can be rotated. The orientation here will be
referred to as horizontally oriented. Rotating clock- or counterclockwise by
90◦ we obtain vertically oriented tiles; rotating by 180◦ yields a horizontally
oriented tile. These tiles can be combined to represent bigger meshes,
provided they fit together. When an appropriate supplementation pattern
is chosen –which is always possible– these meshes are guaranteed to corre-
spond to real space crease patterns which fold rigidly. An example a tiling
is shown in Fig. 2.3; where we show a two by two tile pattern, consisting
of tiles F4, B, C4 and F2. Note that the C4 tile is rotated a quarter turn
counterclockwise with respect to its position in table 2.4 in order to fit the
three other tiles. This two by two tile pattern can be converted into a three
by three 4-vertex mesh2, once we specify sector angles αi, mesh lengths,
and which vertices are supplemented to satisfy Eq.2.1.

To construct such tilings, we make use of two discrete characteristics of
the tile edges. First, we note the parity of the number of different shapes
on opposite edges; the four edges (N/E/S/W) of every tile either consist of
the same shape (parity: odd), or two different shapes (parity: even). Here
it is understood that each protrusion/indentation has one of four shapes:
cusp, triangle, semicircle, rectangle. Opposite edges of each tile have the
same parity. A second quantity that is equal at opposite edges is the parity

2Due to our schematic depiction using tiles, we do not show the four vertices posi-
tioned on the top-left, top-right, bottom-right, and bottom-left corners. However, they are
uniquely determined by the colors in the tiling and direction of the protrusions.
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Eq.  2.9

i=1

i=2

i=3

i=4

Eq.  2.10 Eq.  2.13 Eq.  2.14 Eq.  2.15 Eq.  2.16 Eq.  2.17 Eq.  2.18 Eq.  2.19 Eq.  2.20 Eq.  2.21

Figure 2.4: Table with all 34 tiles corresponding to Eq. 2.9, Eq. 2.10, and
Eqs.2.11–2.19.

(odd/even) of the number of outward facing protrusions. The values of
these quantities are indicated in Table. 2.1.

As an example, consider theA-tile, where both the north- and southside
of the tile consist of only one type of shape (parity: odd), as well as the
east- and westside (parity: odd). Furthermore, the north- and the southside
–as well as the east- and westside– of the A-tile both have one outward
facing protrusion (parity: odd). The edge characteristic of the A tile is
therefore: odd/odd/odd/odd, or oooo for short; where we first indicate the
parity of the shape of the north-southside, then the parity of the number of
outward facing protrusions on the north-southside, then the parity of the
number of shapes on the east-westside, and finally the number of outward
facing protrusions on the east-west side. Crucially, as edge-characteristics
are equal for opposite sides, these characteristics are conserved along
the connecting edges of each column and row of a tiling. As we will
see in chapter 3 this property limits the orientations of some tiles when
constructing larger patterns, and is crucial to understand the allowed
supplementation patterns.

2.5 Bricks

The tiles listed in Fig. 2.4 can not directly be converted to real space
meshes, as we first need to decide which vertices are supplemented and
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North-South East-West

No. of
different shapes

No. of outward
facing protrusions

No. of
different shapes

No. of outward
facing protrusions

A odd odd odd odd
B odd odd odd odd
Ci odd even odd even
Di odd even even odd
Ei odd even even even
Fi odd even odd odd
Gi odd even even odd
Hi odd even even even
Ii odd even even even
Ji odd even even odd
Ki odd even even even

Table 2.1: Overview of the edge characteristics of the different tiles displayed
in Fig. 2.4.

which are not. As discussed, this supplementation is needed to satisfy
the sum rule, and when (appropriate) pairs are supplemented, does not
change the loop rule. A picture of a three by two pattern is shown in
Fig. 2.5.A. This particular pattern can be supplemented in several ways,
one of which is shown in Fig. 2.5.B; here we indicate supplemented vertices
by a gray dot, and unsupplemented vertices by a white dot. We now see
that the units of which the pattern in Fig. 2.5.B is composed, constitute a
building block of their own. We define such building blocks as ‘bricks’,
and one example is shown in Fig. 2.5.C, where the gray corners indicate
supplemented angles, and white corners indicate unsupplemented angles.
Because a brick encodes the supplementation on its corners, there is a
one-to-one correspondence with a real-space mesh, once the sector angles
and mesh lengths are fixed.

Note the brick in Fig. 2.5.C carries a superscript index, E2
4 which indi-

cates that the two leftmost vertices of this brick (in its ‘upright’ orientation)
are supplemented. The number of distinct supplementation patterns de-
pends on the tile, and are summarized in the table shown in Fig. 2.6. Here
the eight possible supplementation patterns are shown on the top, labeled
0–7, where the gray corners indicate supplemented vertices. These eight
supplementation patterns correspond to the eight possible ways in which
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A B C

Figure 2.5: (A) A 3 × 2 tile pattern. (B) The same 3 × 2 tiling as in (A), with
a particular choice of supplemented vertices, which are indicated by the gray or
white circles. (C) A ‘brick’, taken from the tiling in (B). Note the superscript 2 in
E2

4 indicates which vertices of the brick are supplemented (see text for details).

we can supplement an even number of vertices within a tile. However, not
all of these eight options satisfy the sum-rule (Eq. 2.1). For example, a C1

tile can be supplemented in six different ways: C1
1 , C

2
1 , C

3
1 , C

4
1 , C

5
1 , and C6

1 ,
as we can choose any pair of vertices to supplement and still satisfy Eq. 2.1.
Supplementing all (C0

1 ) or none (C7
1 ) of the vertices within this brick is

impossible, as both 4 · α 6= 2π and 4 · α′i 6= 2π. Likewise, all Di tiles can be
supplemented in six different ways.

Bricks {Ei–Ki} need one supplemented vertex on the top, and one on
the bottom in order to satisfy Eq. 2.1. As these can be chosen independently,
this produces four different supplementation patterns (see Fig. 2.6). Finally,
tiles {A,B} can be supplemented in only two different ways. These are the
only tiles for which the loop condition does not rely on the annihilation of
pairs of operators, and the only for which we use all four sector angles αi.
As such, we can only supplement all of the (A0 and B0), or none (A7 and
B7).

Analogous to Fig. 2.4 we now list all unique bricks. In order to accu-
rately count the number of unique bricks, we have to keep track of bricks
which are identical under rotations. We find that such rotation symmetries
only occur for the Ci tiles, where for example C3

1 is identical to C5
1 when

flipped upside down, and likewise for C4
1 and C6

1 . This is not the case for
Di bricks, for which all six supplementations are unique, nor for any other
brick. All in all we therefore find 2×2 + 4×4 + 4×6 + 24×4 = 140 unique
bricks, all of which are shown in Fig. 2.7.
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Supplementation

Ti
le

s

0 1 2 3 4 5 6 7

0 7

1 2 3 4 5 6

1 2 3 4 5 6

1 2 4 6

1 2 4 6

1 2 4 6

1 2 4 6

1 2 4 6

1 2 4 6

0 7

1 2 4 6

Figure 2.6: Table indicating which of the eight supplementation patterns are
valid for each tile, such that we can convert them into bricks. Supplementation
patterns 5 and 6 are grayed out for the Ci tiles, due to symmetry – see text. The
resulting 140 bricks are shown in Fig. 2.7.
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Figure 2.7: Table listing all 140 possible bricks.
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2.6 Summary and Outlook

In this chapter, we aimed to count the number of rigidly foldable, two
by two 4-vertex meshes that can be constructed using the four symmetry
related vertices shown in Fig. 2.2. We were able to answer this question
using the language of operators. Furthermore, we developed a graphical
representation for each of the 140 possible meshes, depicting each mesh as
a combinatorial puzzle piece. In the next chapter we will make extensive
use of this combinatorial representation to construct larger meshes. We
will first categorize which puzzle pieces fit together in one and the same
pattern, giving rise to four different classes of patterns. We will count
the number of patterns of a given size within each class, and examine the
properties of patterns within each class.
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Chapter 3

Classification of Tile
Patterns

3.1 Introduction

In this chapter we will show how tiles and bricks can be combined to
form larger tilings and brick patterns, how the latter can be translated to
crease patterns, and how we can determine their corresponding mountain-
valley configurations. In particular, we formulate and solve the three
combinatorial problems that govern tilings, brick patterns, and mountain-
valley configurations.

An example of a 4 × 4 tile pattern is shown in Fig. 3.1.A. As all tiles
fit, all vertex colors are consistently defined. This tile pattern or tiling can
be converted into a brick pattern, as shown in Fig. 3.1.B. Here each tile
has acquired an allowed supplementation pattern (Fig. 2.6, Fig. 2.7), and
supplementations are consistent between adjacent bricks. All vertices are
now uniquely defined, as we know their supplementation, their orientation,
and their clockwise or counterclockwise character. If we then choose a
set of angles αi, as well as lengths ti and li, we can convert this brick
pattern into a crease pattern, as shown in Fig. 3.1.C. Note that an m × n
brick pattern defines a 3 + m + n-parameter family of crease patterns.
Finally, we can determine a specific mountain-valley pattern for this crease
pattern (Fig. 3.1.D). This mountain valley pattern is not unique as all crease
patterns obtained by our method allow at least two different mountain
valley patterns (not related by trivial mountain↔ valley symmetry).

In this chapter we will count the number of tilings, the number of sup-
plementation patterns for each tiling, and finally, the number of mountain-
valley patterns. In section 3.2 we start by showing how to define four
distinct tiling classes (I, II, III, and IV). For a given class, each tiling con-
tains one or more necessary tiles and an arbitrary number of optional
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A B
tile pattern brick pattern

C D
fold pattern crease pattern

Figure 3.1: (A) A tile pattern (or tiling). (B) The same pattern with a
specific supplementation pattern yields a definite brick pattern. (C) Crease
pattern corresponding to the brick pattern in (B), with a choice of angles of
α1 = 60◦, α2 = 90◦, α3 = 135◦, α4 = 75◦, and mesh lengths ti and li. (D) One
corresponding mountain (red) valley (blue) configuration.

tiles - other tiles do not fit. We show that an important property of this
classification is that within each class, each L-shaped triplet of tiles ad-
mits precisely one fitting fourth tile. In section 3.3 we show how this last
property allows us to exactly count the number of m × n tile patterns.
We verify by brute force that the tilings in class-I–IV cover all possible
tilings, up to m = 6, n = 6. For m = 6, n = 6 there are already to 4226048
distinct tilings. In section 3.4, we show in how many ways we can choose
the supplementation of a pattern, i.e. in how many ways can we convert an
m × n tile pattern into an m × n brick pattern. We show that there are at
least two valid ways in which we can turn a tile-pattern into a brick pattern.
However, some classes of tiling have exponentially many ways in which we
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can choose the supplemented vertices. Last, we show in section 3.5 how
many valid mountain valley assignments each of the corresponding crease
patterns have. Finally, we summarize these results in section 3.6.

3.2 Triplet Completion and Classification

While it is easy to identify tiles that can be connected in pairs, the problem
of connecting multiple tiles is in general highly non-trivial. We will show
however, that by considering all (L-shaped) triplets of tiles we can greatly
simplify the tiling problem, by determining whether or not a fourth fitting
tile exists. For example, in Fig. 3.2.A we show a triplet of tiles. The missing
tile consists of four vertices, and we note that three of these are already
completely specified by the tile triplet. Hence (up to supplementation),
three of the four sector angles of the inner plate are specified. For generic
sector angles, the sum rule implies at most one choice for the sector angle
of the missing vertex1. Moreover, in each tile the number of clockwise
and counterclockwise oriented vertices is even (see Fig. 2.4, and section 3),
which specifies the orientation of the fourth vertex. These two simple rules

B C DA
X

1 2

3 4

Figure 3.2: (A) A triplet of tiles. We can find the fourth vertex (dashed) of
the fourth tile by inspecting the inner angles and orientation of the other three
vertices. (B) The fourth tile, X, that fits this triplet, does not occur in the set of
34 tiles displayed in Fig. 2.4. Therefore, the three tiles D3, F1, B do not occur in
the same class. (C) This triplet of tiles does admit a single, unique, fourth tile that
is within the set of 34 tiles. Therefore, D3, F1, B, and F4 occur in the same class.
(D) Repeated application of the triplet ‘completion rule’ (for example, in the order
shown in the figure) allows us to finish a tiling given only a single column and
row.

1If the three inner angles are all equal, the fourth should be equal too; if the three inner
angles are once αi and twice αj , the fourth should be αi; if the three inner angles are all
different, the fourth should be different from all of these.
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specify the fourth vertex (up to supplementation) and thus uniquely specify
a potential tile. In this case, this corresponds to tile ‘X’ shown in Fig. 3.2.B.
However, tile X does not occur within the set of 34 tiles shown in Fig. 2.4,
as the four corresponding operators do not satisfy the loop condition. In
contrast, the triplet of tiles shown in Fig. 3.2.C does admit a tile that occurs
within the set of 34 tiles shown in Fig. 2.4.

We now define tiling classes as follows. If a triplet does not admit a
fourth tile, the three tiles cannot be in the same class. If a triplet admits a
fourth tile, all tiles are in the same class. By considering all triplets, we find
that these two rules define four distinct classes, labeled I-IV. A given tiling
can easily be identified as belonging to one of these classes by inspecting
the presence of certain tiles (see Fig. 3.3). In tilings in each class, at least
one tile out of a subset of tiles has to be present; in addition, some classes
contain a group of optional tiles, which may or may not be present in a
tiling.

Each tile is a necessary tile in precisely one class. It can be checked that
for each triplet of tiles within a class, there always is a unique fourth fitting
tile. This property, which we will refer to as triplet completion, greatly
simplifies the construction and enumeration of tilings: once a single row
and column of a m × n tiling is specified, the full tiling can trivially be
constructed by iteratively applying the triplet completion rule (Fig. 3.2.D).

A

B

Figure 3.3: (A) Tiling classes. (B) Decision tree to determine whether a given
tiling created using the tiles of Fig. 2.4 is a class-I, class-II, class-III, or class-IV
tiling.
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3.3 Counting Multiplicity of Tilings

In this section we will derive expressions for the number of tilings that can
be constructed within each class. To do this, we first define the concept
of connection numbers. In each class, we define for each side of a tile, the
number of distinct sides of necessary tiles and the number of distinct sides
of optional tiles that fit. To facilitate discussions about the tiles, we define
the orientation of the tiles as shown Fig. 2.4 as the ‘horizontal’ orientation,
and refer to their sides by the four cardinal directions (north, east, south,
and west). We note that for all tiles, the connection numbers at opposite
sides are equal, allowing us to capture the connections by four integers
(Fig. 3.4.A). The necessary connection numbers along the north/south and
east/west sides are, respectively, x and v (in blue). The optional connection
along the north/south and east/west sides are, respectively y, w (in pink).

A

v/w

x/y

x/y

v/w

B

1 01/0

2/1

2/1

/

Figure 3.4: (A) For every side of every tile we can define a connection num-
ber within a given glass (blue: necessary, red optional tiles). (B) Example of
connectivity of D1 tile in class-IV.

An example of a tile and its connection numbers is given in Fig. 3.4.B
for tile {D1}, which is a necessary class-III tile. Within this class it connects
to necessary tiles {D4, J2} on its northside, necessary tile {J4} on the
westside, necessary tiles {D2, J2} on its southside, and necessary tile {J4}
on its eastside. Additionally it connects to optional class-III tile {D4} on its
southside, and optional tile {D2} on its northside. Therefore the connection
numbers are as indicated in Fig. 3.4.B. We observe that opposing sides have
identical total connection numbers. As a result, the total connection number
at the sides within a row or column of tiles is conserved. This simplifies
the counting of configurations.
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Counting Class-I Tilings

All tiles in class-I and their connection numbers are shown in Fig. 3.5.A.
Class-I tilings contain at least one necessary {A,B}-tile. Either of these can
be used to form a periodic tiling which maps to the Huffman quadrilateral
crease pattern (see Fig. 1.7.A). However, a vast number of additional tilings
can be generated by mixing these necessary tiles with optional tiles {Ci}
and {Fi}.

A B

{A,B}

{Fi}{Ci}

/1 1

/0 2

/0 2

/0 2

/0 2

/0 2

/0 2

/1 1

/1 1 /1 1

/1 1/1 1

1

4

7

2 3

6

8 9

5

m

nj

i

Figure 3.5: (A) Class-I tilings contain up to three different types tiles. The
necessary class-I tiles are tiles {A,B}. Furthermore there are two different sets
of optional class-I tiles: {Ci}, and {Fi}. The connection numbers of these sets of
tiles are indicated. (B) When counting the number of class-I tilings, we divide a
tiling into nine sectors, and assume the first necessary class-I tile we encounter is
in sector 5, there are eight choices for this tile. Pink sectors contain only optional
tiles, hatched blue-pink sectors can contain both optional as well as necessary
tiles.

We now illustrate how to construct and count all possible m× n, class I
tilings. We make use of two general properties of the adjacencies of tiles
within one class: (I) the number of necessary and optional adjacent tiles on
opposite sites is equal, and (II) once a single row and column of a tiling are
specified, the full tiling can trivially be constructed by triplet completion
(Fig. 3.2.D). We label the columns and rows from i = 1 to i = m, and j = 1
to j = n (Fig. 3.5). To construct and count the number of class I tilings, we
define the first necessary tile as the necessary tile with the lowest value of
i + j, denote its location as (i, j), and partition the tiling in nine sectors
1− 9 as indicated in Fig. 3.5.B. Sectors 1, 2, and 4 must consist of optional
tiles. As the optional connection number for the necessary tile in sector 5
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is 1 on all sides, this determines a unique pattern (of Fi tiles) for sectors
2 and 4. In turn, these F tiles uniquely determine sector 1 by applying
triplet completion. For the tiles in sectors 6 and sector 8, there are two
potential choices for each tile: these tiles can be either an optional type-1
tile, or a necessary type-1 tile. To indicate this, these positions are therefore
pink-blue hatched, and these choices lead to 2m−i+n−j options in total. For
any given choice of tiles in sector 6 and sector 8, the sectors 3, 7 and 9 are
again uniquely determined by triplet completion.

Summing over all locations (i, j), and taking into account there are 8
choices for the first necessary tile (A or B, each in one of four rotations),
we obtain that the number of class-I, m× n tilings equals,

N I
t (m,n) = 8 ·

m∑
i=1

n∑
j=1

2m−i · 2n−j = 8 · (2n − 1) · (2m − 1). (3.1)

j=2

j=1

i=1 i=2

j=3

A B C

{Ci}

1

1

1

1

i=3 i=4

Figure 3.6: (A) Class-II tilings only contain tiles {Ci}. (B) Choosing the type
and orientation of the (1,1) tile fixes the whole pattern. (C) Periodic 4 × 4 type-II
tiling, where a 2 × 2 unit cell is indicated by the dashed line.

Counting Class-II Tilings

Class-II tilings consist exclusively of Ci tiles. These tiles are highly symmet-
ric, and occur as optional tiles in all other classes (see table in Fig. 3.3.A).
For class-II tilings, the connection number of the Ci tiles on all sides is 1
(see Fig. 3.6.A). This ensures that, when we determine the tile in position
(i, j) = (1, 1), all tiles in the first column, i = 1, and the first row, j = 1,
are fixed. Repeated application of the triplet completion rule (see Fig.
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3.3. COUNTING MULTIPLICITY OF TILINGS

3.2), then fixes the whole tiling (Fig. 3.6.B). The multiplicity of class-II
tilings is thus specified by the four possible tiles (C1,C2,C3,C4), and the
two orientations of the (1, 1) tile, yielding,

N II
t (m,n) = 8, (3.2)

class-II tilings, independent of m and n. We note that as the tiles form
periodic patterns, all m by n tilings can be seen as subtilings of an infinite
periodic tiling, where the number of choices of the (1, 1) tile corresponds
to the translational and rotational symmetries of the periodic tiling. For an
example of a four by four tile periodic class-II tiling, see Fig. 3.6.C.

Counting Class-III Tilings

Class-III tilings contain at least one necessary class-III tile {Ei, Fi, Gi, Hi,
Ii,Ki}. Additionally, we can add two different sets of optional tiles, {Ci},
and {Di, Ji}. Together, the connection numbers of these tiles are shown
in Fig. 3.7.A. The necessary tiles in class-III only admit a single fitting
tile along their east and west sides, and this tile is always a necessary
tile. This significantly simplifies the construction of class-III tilings, as
necessary tiles can therefore only occur as full columns or rows – but not
both. Hence, class-III tilings come in two flavors. Either the necessary tiles
are horizontally oriented, and occur in rows with the first one occurring in
column 1 (Fig. 3.7.B), or the necessary tiles are vertically oriented, occur in
columns, with the first one occurring in row 1 (Fig. 3.7.C).

We now first count the horizontally oriented tilings (Fig. 3.7). The first
necessary tile at location (1, j), sector 3, uniquely determines a pattern
of necessary tiles in sector 4. There are 20 distinct necessary tiles in
class-III, which can be in two horizontal orientations2 at location (1, j).
For the optional tiles in sector 1 the relevant connection number is three,
leading to 3j−1 choices, and once sector 1 and 4 are chosen, sector 2 is fixed.
Finally for sector 5 we can use either optional or necessary tiles, with a
combined connection number of 8, leading to 8n−j options; sector 6 is then
determined by triplet completion. Therefore the number of horizontally

2Either the tiles are oriented as in Fig. 2.4, or flipped upside down.
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Figure 3.7: (A) Class-III tilings contain up to three different sets of tiles: a set
of necessary class-III tiles: {Ei, Fi, Gi, Hi, Ii,Ki}, and two sets of optional class-III
tiles: {Ci}, and {Di, Ji}. The connection numbers of these three sets of tiles are
indicated. (B) A horizontally oriented class-III pattern, divided into six sectors.
(C) A vertically oriented class-III pattern, divided into six sectors.

oriented class-III tilings is,

N III
t-horizontal(m,n) = 40 ·

n∑
j=1

8n−j · 3j−1 = 8 · (8n − 3n), (3.3)

where m is the number of columns, and n the number of rows. The same
holds for vertically oriented patterns, for which the necessary tiles are
rotated a quarter turn (either clockwise or anticlockwise) with respect to
their orientation as depicted in Fig. 3.7.C. A schematic for this scenario is
shown in Fig. 3.7.C. The total number of class-III tilings is,

N III
t (m,n) = 40 ·

m∑
i=1

8m−i · 3i−1 + 40 ·
n∑
i=1

8n−i · 3i−1

= 8 · (8m − 3m) + 8 · (8n − 3n). (3.4)

Counting Class-IV Tilings

Class-IV tilings contain at least one necessary class-IV tile {Di, Ji}, and
optional tiles, {Ci}, see Fig. 3.8.A. As in class-III, the necessary tiles only
admit one other necessary tile along their east- and westside. The counting
is therefore very similar to class-III. In Fig. 3.8.B we show a class-IV tiling,
divided into six sectors (1–6). Here we assume the necessary class-IV tiles
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{Di,Ji}
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Figure 3.8: (A) Class-IV tilings consist out of two sets of tiles. The necessary
class-IV tiles, {Di, Ji}, and the optional class-IV tiles {Ci}. The connection num-
bers of these two sets of tiles are indicated in the figure. (B) Class-IV tilings are
either horizontally or vertically oriented. In this case we show a horizontally
oriented pattern, where the necessary tile is horizontally oriented. (C) Verti-
cally oriented class-IV tiling. Pink sectors contain only optional class-IV tiles,
blue sectors contain only necessary class-IV tiles, and hatched blue-pink sectors
correspond to sectors in which we can find both optional and necessary tiles.

are oriented horizontally, so that the necessary tiles occur in rows. The first
sector where we encounter necessary class-IV tiles is sector 3, at location
(1, j). The necessary connection number for all tiles in sector 4 is one, the
whole row of tiles consisting of sector 3 and 4 together is fixed by choosing
the tile (and its orientation) at position (1, j), leading to 16 choices. For
the optional tiles in sector 1, the connection number is one, which fixes
sector 2. In sector 5 we do have a choice of tiles, as we can choose from two
necessary, and one optional tile at every position, for a total of 3n−i options.
Summing over all possible initial positions of sector 3, we therefore find,

N IV
t-hor(m,n) = 16 ·

n∑
i=1

3n−i, (3.5)

horizontally oriented class-IV tilings, where m is the number of rows, and
n the total number of columns. The same logic holds for vertically oriented
patterns (Fig. 3.8.C), so in total we find,

N IV
t-hor(m,n) = 16 ·

m∑
i=1

3m−i+16 ·
n∑
i=1

3n−i = 8 · (3m−1)+8 · (3n−1), (3.6)

class-IV patterns.
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Counting Total Number of Patterns

If we consider the total number of m,n tilings, Nt(m,n), we find, by sum-
ming the results in Eq.3.1, Eq.3.2, Eq.3.4, and Eq.3.6, that:

Nt(m,n) = 2m+3(4m − 1) + 2n+3(4n − 1) + 8 · 2m+n, (3.7)

Here we note that Nt(m,n) counts all configurations that are possible
when placing the tiles of Fig. 2.4 on an m by n array. Hence, we double
count tilings that are related by global rotations and translations3. We
note in addition that class-III and class-IV could be combined in one
super-class, that satisfies the triplet completion rule, and for which the
counting is somewhat simpler, yielding a total of N III+IV

t = 8 · (8m + 8n− 2)
tilings (summing Eq. 3.4 and Eq. 3.6). However, class-III and class-IV are
significantly different in their supplementation patterns, as we will see
below.

We have numerically counted all tilings by brute force by using a
backtracking algorithm where as only input we use a Boolean matrix that
indicates which sides of which tiles fit to which other sides – without any
knowledge of classes, edge characteristics etc – up to m = 6, n = 6. The
resulting numbers exactly correspond to our analytical expression for the
number of m × n tilings (see Table 3.1), thus illustrating that the tilings in
class I–IV cover all possible tilings that can be made constructed out of our
34 tiles.

n m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

1 128
2 592 1088
3 4208 4768 8576
4 32944 33632 37696 67328
5 262448 263392 267968 298624 531968
6 2097712 2099168 2104768 2137472 2374912 4226048

Table 3.1: Numerically obtained number of possiblem×n-tilings are consistent
with our analytical expression (Eq. 3.7).

3The local rotation symmetry of the Ci tiles does not artificially increase the count Nt

however, note that N II
t = 8 and not 16.
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3.4. COUNTING SUPPLEMENTATION PATTERNS

3.4 Counting Supplementation Patterns

In this section we will count the number of different ways in which we can
convert (supplement) tile patterns into brick patterns. We show that there
are always at least two ways in which we can do this, but for classes II, III,
IV there are exponentially many.

Counting Supplemented Angles for Class-I Tilings

Here, we will show that each class-I tiling has two valid supplementation
patterns. We recall that class-I tilings contain tilesA,B, Ci and Fi. The sup-
plementation patterns of tile A and B (0 and 7), and the supplementation
patterns of tiles Ci (1-6) will be easy to deal with. However, the situation is
more complex for tiles Fi, which admit patterns 1, 2, 4, 6, but not 3 or 5.
Hence, the admissible supplementation patterns could potentially depend
on the orientation of the Fi tiles, which requires a closer inspection of the
structure of class-I tilings.

Assume that we specify a pattern of necessary and optional tiles in
row 1 and column 1 as in Fig. 3.9.A4. First, using triplet completion we

A B

1

4

7

2

5

8

3

6

9

N N O O O O N N

N

O

O

O

N

N

Figure 3.9: (A) A generic example of a class-I tiling-pattern: N indicate nec-
essary {A,B}-tiles (in blue), O indicates indicate optional tiles {Ci, Fi} (in pink).
(B) Example of one of the two valid supplementation patterns for the tile pattern
in (A).

can show that the missing tiles in sector 1 are necessary tiles, so that
4The case that these rows or columns are purely optional can easily be dealt with by

focusing on the first rows and columns where necessary tiles occur.
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the supplementation pattern of sector 1 is either fully empty (no vertices
supplemented) or fully filled (all vertices supplemented); below we assume
the former to be the case. In addition it is also easy to show that all
necessary tiles in sector 1 are either horizontally or vertically oriented.
Finally, triplet completion can be used to show that the tiles in sector
2,4,5,6 and 8 are all optional.

Second, the choice of the supplementation pattern in sector 1 fixes
the supplementation pattern of the whole system, as demonstrated by
the example in Fig. 3.9.B; i.e. the necessary sectors are ‘monocolor’, the
sectors 2, 4, 6, and 8 that separate the necessary sectors are striped (as the
optional bricks have always 2 supplemented vertices), and the sector 5 is
checkerboard-like.

Third, the supplementation patterns in the necessary sectors are clearly
compatible with the necessary tiles, and the supplementation pattern in
sector 5 is clearly compatible with all optional tiles - we note in passing that
sector 5 exclusively consists ofCi tiles. The potential mismatch between tile
pattern and supplementation pattern might occur in the striped sectors:
vertically (horizontally) oriented Fi tiles in sector 2, 8 (4, 6) would be
incompatible with the supplementation pattern. However, the conservation
of edge characteristic prevents this: in rows or columns where A or B tiles
are present, all edges have opposite bumps, and this immediately orients
the F tiles in sector 2 and 8 horizontally, and in sector 4 and 6 vertically.

Hence: once the supplementation of one necessary tile is specified, a
unique and compatible supplementation for the whole system arises. Since
there are two choices for the supplementation pattern of necessary tiles,
this construction yields precisely two (complementary) supplementation
patterns for each class-I tiling. Therefore, the number of supplementation
patterns in class I, N I

s , equals:

N I
s = 2. (3.8)

Counting Supplemented Angles for Class-II Tilings

Class-II tilings contain only {Ci} tiles, which can all be supplemented
in six different ways, as is shown in Fig. 2.6. In Fig. 3.10.A we show a
class-II brick pattern, where we choose the supplementation of the left-
most column of vertices. Doing so fixes the supplementation of all the
vertices in the whole pattern, as every column has the opposite pattern of
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A

C

n=3

m=4

D

B

Figure 3.10: (A) A 4 by 3 class-II tiling, where we arbitrarily choose the
supplementation of the leftmost column of vertices. (B) Supplementation pattern
of the brick pattern in (A), the arrows indicate how the left column uniquely
determines the adjacent columns. (C) The same 4 by 3 tile pattern, but with
a different supplementation pattern. (D) Supplementation pattern of the brick
pattern in (C).

its neighbors. In total there are 2n+1 ways to choose a supplementation
pattern of the leftmost column. The same holds when we choose the sup-
plementation pattern of the top row of vertices, as we did in the example
shown in Fig. 3.10.C. In that case every row of vertices has the opposite
supplementation pattern of its neighbor (Fig. 3.10.D), and there are 2m+1

ways to choose a supplementation pattern on the top row.
We therefore find that we can supplement the vertices in class-II tilings

in
N II

s = 2m+1 + 2n+1 − 2, (3.9)

different ways. Here the −2 is necessary to prevent double counting pat-
terns where both the columns and the rows follow alternating patterns.

Counting Supplemented Angles for Class-III Tilings

Class-III tilings can either be horizontally or vertically oriented (see section
3.3), and contain necessary tiles N = {Ei, Fi, Gi, Hi, Ii,Ki}, and optional
tiles O = {Ci, Di, Ji}. Let us assume that the tiling is horizontally oriented,
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as in Fig. 3.7.B. We conjecture that we can choose the supplementation
pattern freely on the left edge of the left column, and then take the sup-
plementation of adjacent columns to alternate. To allow this, we require
that tiles with only supplementation patterns 1, 2, 4, 6 (all necessary tiles
{Ei, Fi, Gi, Hi, Ii,Ki}-tiles, and optional {Ji}-tiles) are horizontally ori-
ented. Optional {Ci, Di}-tiles have supplementation pattern 1, 2, 3, 4, 5, 6
and can be oriented arbitrarily.

To show that all {Ei, Fi, Gi, Hi, Ii,Ki}-tiles are horizontally oriented in
a horizontally oriented class-III tiling, we start by noting that the necessary
tile at sector 3 (Fig. 3.7.B) is by definition horizontally oriented, and as all
N-tiles have connection numbers cn = 1 and co = 0 along their East/West
edges, sector 4 consists solely of N tiles as well. The orientation of the
tiles in sector 4 is also horizontal, which can be seen by considering the
edge characteristics of the necessary {Ei, Fi, Gi, Hi, Ii,Ki}-tiles, which are
{oeee, oeoo, oeeo, oeee, oeee, oeee} respectively (see Table 2.1). Inspection
reveals that none of their North/South and East/West sides are compatible,
and since the tile in sector 3 is horizontally oriented and these edge charac-
teristics are conserved in every row (and column), all tiles in sector 4 are as
well.

A B

Figure 3.11: (A) A horizontally oriented class-III tiling, where we choose the
supplementation of the vertices on the left boundary. (B) Supplementation pattern
of the brick pattern shown in (A).

When we now look at the North/South edge characteristic of the hor-
izontally oriented tiles in sector 3 and 4, we see that these are all equal
to oe. As these edge characteristics are conserved in every column, that
means all tiles in sectors-1,2,5,6 also have North/South edge characteristic
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oe. Comparison with Table. 2.1 then shows that all optional and necessary
tiles in sectors 1,2,5,6 must also be horizontally oriented, except for the Ci-
tiles, which can also be vertically oriented. We conclude that the resulting
orientations are compatible with the conjectured supplementation pattern,
where we can arbitrarily choose the supplementation of the vertices on the
right boundary (see Fig. 3.11). This therefore yields,

N III
s-hor = 2n+1, (3.10)

supplementation patterns for horizontally oriented class-III patterns. Like-
wise, we find

N III
s-ver = 2m+1, (3.11)

possible supplementations for vertically oriented class-III patterns.

Counting Supplementation Patterns for Class-IV Tilings

Class-IV tilings contain necessary Di and Ji tiles, and optional Ci tiles.
The necessary tiles are either horizontally or vertically oriented, similar
to class-III. However, unlike the necessary class-III tiles, which can all be
supplemented in only four different ways, the Di and Ci tiles allow six
different supplementations, whereas the Ji tiles are only compatible with
the four supplementation patterns where the E and W sides have opposite
supplementations (see Fig. 2.6). As a result, the location of the Ji tiles
determines the number of allowed supplementation patterns for type-IV
tilings.

We now first consider the location and orientation of the various tiles in
horizontally oriented class-IV tilings. Consider the leftmost column of such
a tiling, filled with a combination of necessary and optional tiles. As shown
in Fig. 3.8, the necessary tiles only connect to a single other, necessary, tile
along their E/W sides: a necessary tile in the leftmost column thus uniquely
determines a row of necessary tiles. Specifically, Di tiles only connect to Ji
tiles and vice versa, so each row of necessary tiles consists of alternating Di

and Ji tiles, each of these oriented horizontally. In addition, optional rows
consist of Ci tiles only. As a result, we can distinguish two types of columns:
those with Ji tiles, and those without. This allows us to distinguish four
subclasses of class-IV tilings, depending on which columns contain Ji tiles:

• Subclass 1: Here Ji tiles occur in all columns. This is the most
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common situation, and arises whenever the leftmost column has at
least one Di and Ji tile.

• Subclass 2-4: Here Ji tiles occur in alternating columns; subclass 2
corresponds to even m, where J tiles occur in either the leftmost or
rightmost column; subclass 3 and 4 correspond to odd m, with J tiles
occurring in neither the left nor rightmost column (subclass 3) or in
both columns (subclass 4).

A B C

Figure 3.12: (A) A column containing at least one Ji-tile leads to an alternat-
ing supplementation pattern in the horizontal direction. This scenario occurs in
subclass-1. (B,C) A column containing no J-tiles allows identical supplementa-
tion patterns on the left and right side, as long as the supplementation pattern
alternates in the vertical direction. This scenario occurs in subclasses-2,3,4.

We first consider the supplementation pattern of individual columns.
For columns containing Ji tiles, the four allowed supplementation patterns
of Ji tiles correspond to opposite supplementations at their E and W sides.
It is easy to show that adjacent tiles therefore also need opposite supple-
mentation patterns (Fig. 3.12.A), and by iteration, we find that the only
allowed supplementation patterns are precisely opposite at E and W sides,
leading to 2n+1 allowed supplementation patterns for such a column. We
note that two of these correspond to patterns where the supplementation of
the left and right columns are strictly alternating in the vertical direction,
and 2n+1 − 2 where they do not strictly alternate in the vertical direction.
In contrast, columns that are free of Ji tiles, allow two additional ‘ladder’
configurations, where the vertices on the left and right side have identical
supplementation and are strictly alternating, see Fig. 3.12.B,C. This leads
to 2n+1 + 2 supplementation patterns; 4 of these correspond to patterns
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where the supplementation of vertices is strictly alternating in the verti-
cal direction, and 2n+1 − 2 to patterns where this is not the case. Hence,
the presence of Ji tiles, both determines the subclass and the number of
supplementation patterns:

• Subclass 1: Ji tiles occur in each column. This occurs when the left
column contains at least one Ji and one Di tile. Once the supplemen-
tations of the left most column of vertices are fixed, adjacent vertex
columns have alternating signs, yielding precisely,

N IV-1
s = 2n+1, (3.12)

supplementation patterns.

• Subclass 2: Every second column is free of Ji tiles and m is even.
This occurs when the left column does not contain both Di and Ji
tiles. To count the number of supplementations, suppose only the
odd columns contains Ji, and the even columns do not. Then the left
column allows 2n+1 − 2 non-alternating supplementation patterns,
and 2 alternating patterns. For each of the non-alternating patterns,
the supplementation pattern of all other columns are fixed, yielding
2n+1−2 configurations. For each of the 2 alternating patterns, each of
the m/2 Ji-free columns allow 2 strictly alternating supplementation
patterns, yielding 2 · 2m/2 supplementation patterns. Hence the total
number of horizontally oriented subclass-2 supplementation patterns
yields:

N IV-2
s-hor = 2n+1 − 2 + 2m/2+1. (3.13)

• Subclass 3: For odd m with Ji tiles absent from the left and right col-
umn, we find (m+ 1)/2 columns with ladder configurations, leading
to:

N IV-3
s-hor = 2n+1 − 2 + 2(m+1)/2+1. (3.14)

• Subclass 4: For odd m with Ji tiles present from the left and right col-
umn, we find (m− 1)/2 columns with ladder configurations, leading
to:

N IV-4
s-hor = 2n+1 − 2 + 2(m−1)/2+1. (3.15)

We now count the number of horizontally oriented tilings of each
subclass. For even m, we encounter both subclass 1 and subclass 2, for a
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total of:
N IV-1,2

t-hor = 8 · (3n − 1), (3.16)

tilings, see Eq. 3.6. The left column of a subclass-2 tiling contains either Di

and Ci tiles, or J and C tiles. Suppose we only have D and C-tiles, then
(following the same argument as that leads to Eq. 3.5) we find a total of:

8 ·
n∑
i=1

2n−i = 8 · (2n − 1) (3.17)

tilings; and the same amount when we have only Ji and Ci tiles in the first
column. Hence the total number of horizontally oriented subclass-2 tilings
is:

N IV-2
t-hor = 16 · (2n − 1). (3.18)

As the sum of the number of subclass-1 and subclass-2 tilings is given by
Eq. 3.16, we readily obtain that:

N IV-1
t-hor = 8 · (3n − 1)− 16 · (2n − 1) = 8(3n + 1− 2n+1). (3.19)

For odd m, we encounter subclass 1, 3 and 4. The left column of a
subclass-3 tiling can only contain Di and Ci tiles, with at least one Di-tile,
leading to:

N IV-3
t−hor = 8 ·

n∑
i

2n−i = 8 · (2n − 1). (3.20)

Similarly, the left column of a subclass-4 tiling only contains Ji tiles and
Ci-tiles, and cannot consist of Ci tiles only, leading to:

N IV-4
t−hor = 8 · (2n − 1). (3.21)

Hence, the number of subclass-1 tilings for odd m equals:

N IV-1
t-hor = 8 · (3n − 1)− 2 · 8 · (2n − 1) = 8 · (3n + 1− 2n+1). (3.22)

We finally combine the results for the number of tilings and supplemen-
tation patterns per subclass to obtain Hb-hor = Nt-hor ·Ns-hor, the number
of horizontally oriented brick patterns in each subclass:
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• subclass-1 (even m),

Hb-hor = 8 · (3n + 1− 2n+1)× 2n+1; (3.23)

• subclass-1 (odd m),

Hb-hor = 8 · (3n + 1− 2n+1)× 2n+1; (3.24)

• subclass-2 (even m),

Hb-hor = 16 · (2n − 1)× (2n+1 − 2 + 2m/2+1); (3.25)

• subclass-3 (odd m),

Hb-hor = 8 · (2n − 1)× (2n+1 − 2 + 2(m+1)/2+1); (3.26)

• subclass-4 (odd m),

Hb-hor = 8 · (2n − 1)× (2n+1 − 2 + 2(m−1)/2+1). (3.27)

The total number of class-IV m × n tilings and brick patterns can be
obtained by adding the horizontal and vertically oriented patterns, dis-
tinguishing different subtypes depending on the parity of both m and
n.

3.5 Counting Folding Branches

A single flat 4-vertex has two distinct folding branches, which each have a
single, continuous degree-of-freedom. On each of these folding branches
one of the four fold angles is opposite in sign to the other three. These two
folds are called ‘odd folds’, and they straddle a common ‘odd plate’, for
which the corresponding sector angle satisfies the inequality: αi + αi+1 <
αi+2 + αi+3 [28]. Analytical expressions for the relations between the fold
angles on these two fold branches are given in appendix A.

In this section we will determine how the two folding branches of a
single vertex determine the number of independent folding branches per
tile, and ultimately, the number of folding branches of crease patterns in
class I–IV. We start by counting the folding branches per tile, by reconsider-
ing the underlying operator quads (Eq. 2.9–2.19). So far, we have assumed
that all operators refer to folding motion on the same branch, but now
dress these operators with a superscript I or II, to indicate their respective
folding branch. The number of folding branches per tile is now equal to the
number of combinations of I and II labels in the operator quads that lead
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to identities. We can group all operator quads in three groups: the first
group contains the Ci-tiles (Eq. 2.11) which combine the operators ρI,II

i,i−1.
To obtain an identity, we need to pair adjacent operators. For example,

ρI14ρ
I
41ρ

II
14ρ

II
41 = I, (3.28)

which corresponds to tile {C1}, which represents a rigidly foldable config-
uration as ρI14ρ

I
41 = ±I , and ρII14ρ

II
41 = ±I .5 Conversely,

ρI14ρ
II
41ρ

I
14ρ

II
41 6= I (3.29)

does not represent a rigidly foldable configuration, as the folding operators
on different branches do not ‘annihilate’ in pairs. There are six distinct
choices for the folding branches of Ci tiles where ‘adjacent operators’ are
on the same branch - tiles {Ci} can therefore be folded into six different
configurations. We show these six configurations in Fig. 3.13.A.
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I I
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II II

II II

I I

II II

II I
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II II
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I I
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A

B

C

1 2 3 4 5 6

Figure 3.13: The allowed folding branches for all tiles. (A) The branches of tile
C1 can take six different configurations. (B) For tiles {Di, Ei, Fi, Gi, Hi, Ii, Ji,Ki}
the branches of their vertices take four different configurations. (C) Tiles {A,B}
can only take two configurations.

5Here the ± sign reflect the fact we left out which operators are supplemented, we will
come back to this on the next page.
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Second, there are tiles {Di, Ei, Fi, Gi, Hi, Ii, Ji,Ki}, which contain pairs
of distinct operators, and which only allow four choices of the vertex
branches. These correspond to the choices of branch I or II for each pair of
vertices. These Kokotsakis meshes can thus be folded into four different
configurations. For example, Eq. 2.15 with i = 1,

ρII41ρ
II
14ρ

I
21ρ

I
12 = I, (3.30)

but,
ρII41ρ

I
14ρ

I
21ρ

II
12 6= I. (3.31)

The four possible configurations are shown in Fig. 3.13.B.
Third, there remain the tiles {A,B} related to Eq. 2.9 and Eq. 2.10,

which can only be folded into two different configurations for the identity
of Eq. 2.9 or Eq. 2.10 to hold, as all of the vertices need to be in the same
folding branch. For example,

ρI43ρ
I
32ρ

I
21ρ

I
14 = I, (3.32)

see Fig. 3.13.C.
We note here that the supplementation pattern is not relevant for count-

ing the number of branches, although it is important for the corresponding
mountain valley pattern. Similarly, the choice of the odd folds (i.e. the
choice of the numerical values of αi − α4) determines the specific M-V
patterns. Examples of these are shown in Fig. 3.14. This illustrates the
power of separately solving for the choice of branches for each vertex that
solve the loop condition, Eq. 2.8, and the supplementation patterns which
satisfy the sum rule, Eq. 2.1.

Counting Folding Branches for Class-I Tilings

Class-I tilings exhibit two distinct folding branches:

N I
b = 2. (3.33)

This is because the choice of supplementation patterns and the choice
of branches are identical combinatorial problems in class I. Hence, the
branches of one of the necessary class-I tiles ({A} or {B}) immediately
determines the folding branch of all other vertices.
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Figure 3.14: Mountain-Valley patterns. (A) Assuming that ρ4 is the odd fold
at branch I, a single vertex can be in two M-V configurations. (B) The odd fold
on branch I of the supplemented vertex is ρ2 (opposite to ρ4). (C) The folding
angle configuration for tile G1. (D) For a given supplementation pattern, two
corresponding and opposite M-V patterns exist. (E) A different supplementation
pattern yields two different M-V patterns.

Counting Folding Branches for Class-II Tilings

The total number of folding branches of an m × n class-II tiling is:

N II
b = 2m+1 + 2n+1 − 2. (3.34)

This is because the choice of supplementation patterns and branches are
identical combinatorial problems in class II: Ci tiles have identical configu-
rations for the choice of supplementation and the choice of folding branch
at each vertex.

Counting Folding Branches for Class-III and Class-IV Tilings

For class-III we again observe that the number of supplementation patterns
equals the number of folding branches. We find,

N III
b-hor = 2m+1, (3.35)

for a horizontally oriented class-III pattern, analogous to Eq. 3.10.
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Class-IV contains the only tiles for which the number of supplementa-
tion patterns differs from the number of branch patterns: tiles Di. These
can be supplemented in six different ways, but have only four possi-
ble branch configurations. The combinatorial problem of choosing the
branches of a class-IV tiling is therefore identical to the problem of count-
ing branches for class-III tilings. This means that for an m × n class-IV
pattern we have:

N IV
b-hor = 2m+1. (3.36)

Conversely, when a class-III or class-IV pattern is vertically oriented, we
have:

N III
b-ver = N IV

b-ver = 2n+1. (3.37)

3.6 Summary and Outlook

We summarize the results of this chapter, in Table 3.2. Here we show the
classification of the 34 tiles into four classes, the number of tile patterns
Nt within each class, the number of possible supplementations into brick
patterns Ns, and the number of possible folding branches Nb. Note that
for class-III and class-IV, the expressions in the table are for horizontally
oriented patterns. Expressions for vertically oriented patterns can be found
by interchanging m and n.

In the next chapter, we aim to design bipotent crease patterns where
we can change the folded shape of two folding branches independently.
Table 3.2 shows that class-II patterns can not be used with this goal in
mind, as the number of tilings is fixed at 8. The number of supplemented
angles Ns = 2n + 2m − 2 also does not form a large enough design space
to facilitate this, as any changes in the supplementation pattern always
occur along either the horizontal, or the vertical direction. Class-III and
class-IV patterns have a larger design space, where the number of possible
patterns scales exponentially with n (m). However, this still only allows us
to change the tiles on the left (top) side of the pattern, which does not allow
us to independently tune the folding shape of two or more branches. The
only remaining class is therefore class-I, where we see that the number of
tilings scales asNt ∼ 2m+n. This reflects the fact that we can independently
choose the tiles on the top row and left column of the pattern; where the
choice of tiles in these locations directly changes the shape of the two
folding branches. In the next chapter we will show how to design the two
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folded shapes of class-I patterns, by changing the composition of the top
row and left column.

Class Necessary Tiles Optional Tiles Tilings (Nt) Sup.Angles (Ns) Branches (Nb)

I {A,B} {Ci, Fi} 8(2m−1)(2n−1) 2 2

II {Ci} − 8 2m+1+2n+1−2 2m+1+2n+1−2

III† {Ei, Fi, Gi, Hi, Ii,Ki} {Ci, Di, Ji} 8(8n−3n) 2n+1 2n+1

IV-1 (m even)† {Di, Ji} {Ci} 8(3n +1−2n+1) 2n+1 2n+1

IV-1 (m odd)† {Di, Ji} {Ci} 8(3n +1−2n+1) 2n+1 2n+1

IV-2 (m even)† {Di, Ji} {Ci} 16(2n − 1) 2n+1− 2+ 2
m+2

2 2n+1

IV-3 (m odd)† {Di, Ji} {Ci} 8(2n − 1) 2n+1− 2+ 2
m+3

2 2n+1

IV-4 (m odd)† {Di, Ji} {Ci} 8(2n − 1) 2n+1− 2+ 2
m+1

2 2n+1

Table 3.2: Table summarizing the results of sections 3.3, and 3.4, 3.5. The
symbol † indicates the pattern is horizontally oriented, expressions for vertically
oriented patterns can be obtained by m↔ n
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Chapter 4

Rational Design of
Origami Patterns

4.1 Introduction

In the previous chapters we showed that by converting the problem of
rigid foldability into a discrete tiling problem, we can fully characterize
and count all the possible crease patterns which can be made using a
single vertex, its supplement, and their two mirror images. Doing so we
uncovered new, space-filing periodic tilings –e.g. the tiling in Fig. 3.1– as
well as a vast array of aperiodic tilings.

In this section we aim to rationally design origami patterns using the
same discrete tiling strategy. We first show that we can create periodic
or non-periodic crease patterns, starting from a periodic class-I tiling in
section 4.2. Then we focus on class-I patterns, which allow the greatest
design space of the four different classes, as the number of class-I patterns
(N I

t = 8 · (2m − 1) · (2n − 1)) scales exponentially with both m and n. In
section 4.3 we show how to program class-I patterns such that we obtain
strips that can be folded into shapes with a pre-programmed curvature.
In section 4.4 we then show how to extend this design strategy to m × n
sheets, which can be folded into two different, pre-programmed shapes.
The result is a multishape material – this is unique for origami, where one
usually designs structures with only one target shape in mind. Finally, we
show experimental realizations of such multishape sheets, in the form of
lasercut Mylar™ sheets.
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4.2 Space-Filling Tilings

In this section we will address the issue of space-filling tilings, where we
will focus specifically on class-I patterns. The first requirement for a crease
pattern to be space-filling is for its corresponding tile pattern to be space
filling. In Fig. 4.1.A we show a tile-pattern of which the top and bottom fit
together, but the left and right side do not – this pattern therefore can not
be turned into a space-filling crease pattern. In Fig. 4.1.B we replaced the
leftmost columns with tiles which create a space filling tile pattern.

In Fig. 4.2.A we convert the 4 × 4 pattern of Fig. 4.1.B into a 12 × 12
crease pattern using nine unit cells. To do so, we fix 11 degrees of freedom:
the crease lengths {ti} and {li} (8 d.o.f.) and the sector angles {αi} =
{60◦, 90◦, 135◦, 75◦} (3 d.o.f., as

∑
αi = 2π). We can clearly see that the

resulting pattern is not space-filling. This is because the lengths of the
top and left side of the crease pattern, do not match those of the bottom
and right side. To ensure matching lengths, we require that bi = ti and
ri = li; fixing {αi}. These yield eight equations for the eight degrees
of freedom {ti} and {li}. We solve these nonlinear coupled equations
numerically (by means of a Python script with standard minimization
libraries, scipy.optimize.minimize, using the Nelder-Mead method). The
result is shown in Fig. 4.1B, yielding a periodic, space filling crease pattern.

A B

Figure 4.1: (A) A class-I pattern that does not tile the plane: although the top
and bottom side of this tiling fit together, the left and right side do not. (B) A
class-I pattern which tiles the plane, and can potentially also tile the plane once
converted into a real-space crease pattern, see Fig. 4.2.
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Figure 4.2: (A) Real space version of the tile pattern shown in Fig. 4.1, where the
lengths of the top (ti), and the left side (li) are not specifically tuned, which leads
to a non-space filling pattern. (B) Real space version of the tile pattern shown in
Fig. 4.1b, where the lengths of the top (ti), and the left side (li) are tuned such that
the pattern is space-filling. Dashed lines indicate unit cells. Both patterns have
{α1, α2, α3, α4} = {60◦, 90◦, 135◦, 75◦} for the unsupplemented vertex (indicated
in white).

4.3 Designing Origami Strips with One Target Shape

In this section we will show that we can design one of the two folding-
branches of a class-I tiling in such a way such that it folds into a sheet
with a predefined curvature along one direction. The other folding branch
folds into a cylinder. To illustrate how we construct origami patterns which
lead to certain predefined shapes, we depicted an m = 13, n = 5 class-I
tiling in Fig.4.3.A. The columns in this pattern consist solely of A-tiles,
B-tiles, or Fi-tiles, and have a periodicity of 2 in the vertical direction.
The colors purple and orange in this figure indicate curvature for the non-
cylindrical folding branch. Here purple indicates the sheet curving upward,
and orange indicates the sheet curving downward (or vice versa). This is
demonstrated in Fig.4.3.B, where a realization of the tiling of Fig.4.3.A
is shown with sector angles αi = {60◦, 75◦, 120◦, 105◦}, which is the base
vertex used for all the subsequent crease patterns in this section. This
corresponds to a flat foldable vertex, but one our approach works equally
well for generic vertices. The red lines indicate mountain folds, whereas
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Figure 4.3: (A) Class-I tiling, with columns consisting out of bricks with
identical letters. Purple columns contain A-tiles, whereas orange columns contain
B-tiles. These determine the curvature of the pattern when folded along the
vertical direction, see (B,D). (B) MV pattern associated with the pattern in (A),
when folded along the vertical direction. (C) MV pattern associated with the
pattern in (A), when folded along the horizontal direction. (D,E) 3D shapes of
folded states of the patterns depicted in (B,C) were calculated using software from
[63].

the blue lines indicate valley folds. A 3D visualization of this pattern is
depicted in Fig.4.3.D, showing that we can adjust the curvature of the sheet
by programming the sequence of bricks in the horizontal direction.

We see that the purple columns, consisting out of A-tiles, are lined
left and right by valley folds (V ). On the contrary, we see that the orange
columns, consisting out of B-tiles, are lined left and right by mountain
folds (M ). Consecutive columns of B tiles, such as in the middle of the

54



CHAPTER 4. RATIONAL DESIGN OF ORIGAMI PATTERNS

pattern, therefore induce a downward curvature, whereas consecutive
columns of A-tiles induce a positive curvature (or the other way around, as
every MV-pattern has a mirrored counterpart). Furthermore we notice that
the F -tiles always have opposite fold signs left and right. Multiple adjacent
columns of F -tiles do not induce curvature, but form a corrugated sheet,
like many origami patterns do (such as Miura-ori). Lastly, we observe from
Fig.4.3.A that when mixing F tiles with A and B tiles, an even number of
consecutive F -tiles is surrounded left and right by the same kind of tile
(either A or B), this can be seen in column 2–5 in Fig.4.3.A. An odd number
of consecutive F -tiles is surrounded left and right by both an A-tile and a
B tile.

Altogether we then see that class-I tilings can be used to program any
arbitrary code of fold signs along the vertical (or horizontal) direction. We
do this by choosing the right combination of A, B, and F -tiles. In this case
the pattern can be written as,

V VMVMV VMMMMMV V . (4.1)

Different combinations of tiles can result in nearly any of the 2m+1 different
patterns, where n is the number of columns of tiles. The only patterns that
can not be created within class-I itself are the ones where mountains and
valleys alternate throughout the sheet (VMVM . . . ). The corresponding
tiling would be comprised solely of F tiles, and therefore is not a class-I,
but a class-III tiling. The total number of possible MV patterns that we can
choose from is therefore,

2m+1 − 2. (4.2)

Using the design strategy of alternating columns (or rows) of A, B, and
F -tiles ensures that one of the two branches still folds into a cylinder,
which is shown in the MV pattern of Fig.4.3.C, and the 3D visualization of
Fig.4.3.E. Note that the left edge of the pattern in Fig.4.3.C is colored green,
corresponding to the green edge in Fig.4.3.E. In the next section we will
show that we can also modify this cylindrical folding branch, by adding C
tiles.

First however, we will extend on the principle of using A and B-tiles to
introduce curvature into certain places to target a more complicated shape.
In Fig.4.4.A we show a 67 by 4 vertex quadrilateral mesh, converted from
a 66 by 3 tile pattern. Note that here we count the internal vertices and
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internal tiles, as we can arbitrarily reshape the quadrilaterals on the edge
of the this pattern without affecting the folding motion. Fig.4.4.B reveals
that the mesh depicted in Fig.4.4.A folds into the Greek-letter β. Note
that the green edge in Fig.4.4.A corresponds to the green edge in Fig.4.4.B.
We designed the pattern in Fig. 4.4.A to consist of flat areas when folded,
corresponding to columns of F -tiles. These are interspersed with A and
B-tiles to create curves with varying radius of curvature. For example, the
ratio of B to F columns in the top loop of the β is 1 : 2, whereas the ratio
of B to F tiles in the bottom loop of the letter β is 1 : 4. The resultant
3D shape therefore shows that the radius of curvature of the bottom loop
is approximately twice as big as the radius of curvature of the top loop,
throughout the folding motion of the sheet. This can also be seen in Fig.4.5.
Here several snapshots of the crease pattern depicted in Fig.4.4.A are taken
throughout its folding motion, as seen from the side. Note that the folding
motion is restricted, as eventually the sheet comes into contact with itself.
In principle this strategy –varying the ratio of A and B to F -tiles– can be

A

C

B

Figure 4.4: (A) A 67 by 4 (internal) vertex quadrilateral mesh, which is a
realization of 66 by 3 internal tile pattern (not shown here). By choosing the
position of the A, B, and F tiles we can program the curvature of the sheet when
folded. (B) 3D visualization of the MV pattern depicted in (A), revealing this mesh
folds into the shape of the letter β. (C) 3D visualization of the mesh shown in (A)
when folded into the cylinder configuration (MV pattern not shown here). 3D
folded shapes in figures (B,C) calculated using software from [63].
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extended to achieve any kind of ratio between the curved parts of the 3D
shape. Furthermore, we can tune the m+ n continuous degrees of freedom
of the mesh, which are indicated in Fig.4.3.D.

Figure 4.5: Side-view of the folding process leading up to the final 3D shape
depicted in Fig. 4.4.B, 3D folded shapes calculated using software from [63]. A
movie illustrating the folding process can be found online.

4.4 Designing Origami Sheets with Two Target Shapes

The strategy explained in the previous section can be extended to tune the
shape of both folding branches of a class-I tiling. An example of this is
shown in Fig.4.6.A, where we show a class-I brick tiling. We can choose any
pattern of A,B and F tiles on both the top and the left edge. The rest of the
(m− 1)(n− 1) tiles in the pattern, masked by a partially translucent layer,
are fixed by this choice. Note that the resultant pattern also contains C
tiles in the interior. These are located wherever we find a F tile on the left
edge in the corresponding row, and top edge in the corresponding column.

In Fig.4.6.B we show a realization of the tiling of Fig.4.6.A. The moun-
tain valley pattern here is the one that corresponds to the vertically corru-
gated folding branch. A 3D visualization of this MV pattern is depicted
in Fig.4.6.C. Contrastingly, Fig.4.6.D depicts the same quadrilateral mesh
as in Fig.4.6.B, but with the mountain valley pattern of the horizontally
corrugated folding branch. A 3D visualization of the folded state of this
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Figure 4.6: (A) A 7 by 8 tile class-I tiling, containing all 10 A, B, Ci, and Fi

tiles. (B) Horizontally corrugated shape, where the sign of the folds along each
row is identical. (C) 3D visualization of the mesh shown in (B). (D) Vertically
corrugated shape, where the sign of the folds along each column is identical. (E) 3D
visualization of the mesh shown in (D). 3D folded shapes in (D,E) calculated using
software from [63]. Green lines in (B,C) and (D,E) are a visual aid to indicate the
orientation of the patterns in their flat and folded configurations.

MV pattern is depicted Fig.4.6.E. Clearly, the pattern of tiles along the left
edge determines the curvature pattern of one folding branch; the pattern
along the top edge determines the curvature pattern of the other folding
branch. Hence, this strategy allows to independently design two 3D shapes.

To illustrate the possibilities of this combinatorial origami design, we
designed a 38 × 38 class I brick pattern, shown in Fig. 4.7. Here the A
and B-tiles are highlighted in purple and orange (respectively), to indicate
the areas where the corresponding crease pattern will develop curvature.
In Fig. 4.8.A we show the resulting crease pattern, using a base vertex
with angles αi = {60◦, 105◦, 120◦, 75◦}. This pattern was designed with
two target shapes: the letter α, and the letter ω. The bottom edge of this
pattern (indicated in red) folds into the shape of the letter ‘α’ when folded
along the horizontal direction, as can be seen in the computer visualization
in Fig. 4.8.B, and the rest of sheet is an extrusion of this shape. When
folded along the vertical direction, the left edge of this pattern (indicated
in green) folds into the shape of the letter ‘ω’, as can be seen in the computer
visualization in Fig. 4.8.D.

To demonstrate that this strategy works to fold sheets of material into
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multiple different target shapes, we lasercut the pattern in Fig. 4.8 into
two 50 cm by 60 cm Mylar™ sheets, with a thickness of 0.2 mm. Here we
program the laser cutter to scorch the crease pattern 0.1 mm deep into the
sheet. These two identical sheets are then manipulated by hand to into

Figure 4.7: Brick pattern corresponding to the crease pattern shown in
Fig. 4.8.A, where the letters indicating the brick type are omitted. A-tiles are
highlighted in purple, whereas B-tiles are highlighted in orange. We encourage
the reader to download the high-resolution version of this image.
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the two different target shapes. Final folded shapes are shown in Fig.4.8.C
and Fig.4.8.E. We note the close resemblance to the shapes in the computer
simulations of Fig.4.8.B,D. Finally, we note that the shapes depicted in
Fig. 4.8.C,E share the same underlying 2D structure, and it is therefore

Figure 4.8: (A) A 38 by 38 tile class-I (37 by 37 internal vertices) class-I tiling,
created from the brick pattern shown in Fig. 4.7, with αi = {60◦, 105◦, 120◦, 75◦}.
(B) 3D visualization of the final folded state of the pattern displayed in (A) when
folded in the horizontal direction, representing the letter ‘α’. (C) Lasercut My-
lar™ sheet, folded into the same shape as in (B). Five cent euro coin for scale.
(D) 3D visualization of the final folded state of the pattern displayed in (A) when
folded in the vertical direction, representing the letter ‘ω’. (E) Lasercut Mylar™
sheet, folded into the same shape as in (D). Five cent euro coin for scale. 3D folded
shapes in (B,D) calculated using software from [63].
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in principle possible for the shape of Fig. 4.8.B to morph continuously
into the shape depicted in Fig. 4.8.C (via the flat, unfolded state). Movies
illustrating the folding process of both shapes are available for download.

We conclude that our design strategy allows us to create a single 2D
crease pattern, which has two mountain valley patterns with corresponding
3D shapes. Both of these shapes can be tuned such that they have an
arbitrary mountain-valley arrangement along one direction. This allows
for the creation of multishape origami patterns, which is new in origami
design, where usually one only targets a single shape [17–19, 34, 64, 65].
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Chapter 5

Multistability of
Non-Flat Vertices

5.1 Introduction

One appealing feature of many origami patterns is that they readily exhibit
multistable behavior. For example: a simple waterbomb pattern, consisting
of folds of alternating sign coming together at a vertex is generically bistable
[66, 67]. Here the flexibility of the folds and the flexibility of the material
work together to create one stable shape at zero elastic energy, and one
stable shape at finite energy. Other examples of bistability also exploit the
finite stiffness of the plate material to achieve bistable structures [68, 69],
whereas yet other studies focus on strictly rigid folding structures dressed
by linear or torsional springs [28, 34, 70, 71]. Both of these approaches
however, generally consider only bistable behavior [28, 34, 66, 67, 70].

A Euclidean 4-vertex which is made out of paper –or any other flat
material– has two folding branches, which connect at the flat state [28]. As
a consequence, when one of the fold angles is fixed, the vertex can be in two
distinct configurations. It is therefore straightforward to make a bistable
element out of a 4-vertex mechanism, by putting a single torsional spring
on any of the four folds. When additionally putting springs on the three
remaining folds, it is theoretically possible to create tri-, quad-, penta-, and
hexa-stable vertices [28]. However, these more complex energy landscapes
only occur in a small region of the phase space spanned by the sector angles
of the vertex and the spring rest angles and stiffnesses. Moreover, most of
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the energy minima are shallow. It is therefore difficult to turn these designs
into actual tri-stable vertices.

In this chapter we aim to create experimentally robust tristable 4-
vertices. To do so, we opt for a novel approach, based on non-flat, non-
Euclidean 4-vertices. For these, the sum of sector angles

∑
αi is unequal

to 2π. Such non-flat vertices occur in non-developable origami structures,
which typically consist of cells which are glued together, such as eggbox pat-
terns [72], tubular origami structures [54], as well as 3D-origami stackings
[26].

For a non-Euclidean vertex, the flat state is no longer accessible by
rigidly folding the vertex. As a consequence, the two folding branches
split apart [73], as we discuss below, and the only way to switch from one
branch to another is by ‘popping through’ the vertex. This branch splitting
will be harnessed to create a vertex with two global (E = 0) minima on one
folding branch, and one additional local minimum (E > 0) on the other
folding branch.

In this chapter we experimentally demonstrate these tristable vertices.
In section 5.2 we explain the theory behind non-flat 4-vertices, and under
which conditions they are tristable. In section 5.3 we show how we fabricate
the vertices by means of 3D printing, as well as our experimental setup. In
section 5.4 we show our results. Based on these experiments, we calculate
energy curves, which show clear tristable behavior. We compare these to
our theoretical predictions in section 5.4.4 and find good agreement. Hence
we present a generic and robust route to fabricate tristable vertices.

5.2 Non-Flat 4-Vertices

In this section we will show how the two branches of a flat 4-vertex separate
when the four sector angles of the vertex add up to slightly less, or slightly
more, than 2π. The separation of the two folding branches effectively
creates an energy barrier between the two folding branches, which we
harness to design tristable 4-vertices.

5.2.1 Phenomenology

In order to understand the folding behavior of a non-flat vertex, we first
consider the two folding branches of a flat vertex. In Fig. 5.1.A we show
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a flat 4-vertex with sector angles αi for a vertex with sector angles αi =
{π/3, π/2, 3π/4, 5π/12} for i = 1, 2, 3, 4, which is the same geometry as
the vertex in Fig. 5.1.A. When we fold this 4-vertex it can be modeled
as a mechanism which has a single continuous degree of freedom, and
two folding branches that meet in the flat state. Spherical trigonometry
can be used to derive the relationships ρi(ρj) on the two principal folding
branches, which we name branch-I and branch-II. On branch I, the sign
of ρ4 is opposite to all others, whereas on the branch II the sign of ρ1 is
opposite to all others. These two folds, ρ4 and ρ1 are so called ‘odd-folds’,
which are found on either side of the ‘odd plate’, which is defined as the
plate for which the corresponding sector angle satisfies [28],

αi + αi+1 < αi+2 + αi+3, (5.1)

αi + αi+3 < αi+1 + αi+2. (5.2)

We further subdivide these in branches I+ and II+, for which three out
of the four folds are positive in sign, as well as I− and II−, for which
three out of the four folds are negative in sign. In Fig. 5.2.A we plot the
relationships ρi(ρ1).

From the folding branches in Fig. 5.2.A it is evident that putting a
torsional spring on any of the four folds ρi results in a bistable vertex. A

A

4

3

B

C

Figure 5.1: (A) Flat 4-vertex with sector angles αi = {π/3, π/2, 3π/4, 5π/12}
(B) Vertex where the αi of A are uniformly shrunk by a factor f < 1 (α′i = f · αi)
such that

∑
αi < 2π. As depicted, this vertex has assumed a ‘hat-shape’, where

all the ρi are identical in sign, which is not possible with flat vertices. C: Vertex
where the αi of A are uniformly expanded by a factor f > 1 such that

∑
αi > 2π.

As depicted, this vertex has assumed a ‘saddle-shape’ where the ρi alternate in
sign. This alternation is not possible with flat vertices. Figure from [74].
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A B

Figure 5.2: (A) Folding branches ρI
+

i (ρ1), ρI
−

i (ρ1), ρII
+

i (ρ1), and ρII
−

i (ρ1) for
i = 2, 3, 4, for a flat vertex with sector angles as in Fig. 5.1.A. (B) Plot of ρ3 as a
function of ρ1 for the small area around the origin shown in A. The dashed, and
double dashed lines through the origin correspond to ρI

+/−

3 (ρ1) and ρII
+/−

3 (ρ1)
as in A, for ε = 0. The curved green lines indicate the merged folding branches
ρI

−II+

and ρI
+II−

(for ε > 0), and ρI
+II+

and ρI
−II−

(for ε < 0). The solid black,
blue, green, and red lines indicate where the folding angles ρ1, ρ2, ρ3, and ρ4
change sign, and divide the plot in eight sectors, with the signs of their fold angles
as indicated.

spring with rest angle φ placed on fold i results in stable states with ρi = φ,
of which there are always two, provided φ 6= 0 and φ is not too large (not all
ρi reach ±π along their folding branches). We show two specific examples.
First, we consider a torsional spring with a positive rest angle ρspring = π/2
on the ρ1 fold. As this single spring wants to relax to its rest angle, this
results in two stable configurations: one on the I+ branch, and one the
II− branch. The blue dots (for branch I+) and blue diamonds (for branch
II−) at ρ1 = ρspring on these two branches indicate the ρi values for the
two equilibrium configurations. Second, when we choose to put the same
torsional spring on ρ3, we again find two stable states: one on the I+ branch
as before, and one on the II+ branch. Here the red dots (for branch I+)
and red diamonds (for branch II+) on these two branches indicate the two
equilibrium configurations for which ρ3 = ρspring. For convenience, we
summarize the signs of the folding angles on the four different branches in
table 5.1. From this, we deduce that a single spring on one of the two odd
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ρ1 ρ2 ρ3 ρ4
I+ + + + −
I− − − − +

II+ − + + +

II− + − − −

Table 5.1: Overview of the signs of the folding angles on the four ε = 0 folding
branches.

folds yields stable states at branch I+II− or I−II+; a single spring on one
of the other folds yields stable states at branch I+II+ or I−II−.

This picture changes completely when we uniformly shrink or expand
all the sector angles αi by a factor f , such that the vertex is no longer
euclidean. To describe these vertices we define the surplus angle, ε =
f
∑
αi−2π. Here ε < 0, f < 1, corresponds to a vertex for which

∑
αi < 2π,

which results in a hat shaped vertex, as depicted in Fig. 5.1.B. Conversely,
ε > 0, f > 1, corresponds to a vertex for which

∑
αi > 2π, which results in

a saddle shaped vertex, as depicted in Fig. 5.1.C. For a flat vertex, where
ε = 0, the branching point of the two branches I and II is the flat state,
where all ρi = 0. For a vertex where ε 6= 0 this branching point disappears,
resulting in disjoint folding branches.

We now explain what happens to the folding branches for ε 6= 0, by
focusing on the relation ρ3(ρ1) in the area around the origin corresponding
to the black square in Fig. 5.2.A, shown in large in Fig. 5.2.B1. Here the
four curves ρI

+

3 (ρ1), ρI
−

3 (ρ1), ρII
+

3 (ρ1), and ρII
−

3 (ρ1) for ε = 0 are shown
by the four green lines meeting at the origin. When we introduce a small
angular offset, such that ε 6= 0, we find that for ε < 0 the two branches I+

and II+ merge together. This creates a new folding branch, which we shall
indicate by I+II+. In Fig. 5.2.B this corresponds to the ρI

+II+
3 (ρ1) curve.

Similarly, we find that for ε < 0 and ρ3 < 0, the two branches ρI
−

3 (ρ1) and
ρII

−
3 (ρ1) merge to form ρI

−II−
3 (ρ1). We note that for ε < 0, the signs of

the fold angles ρi vary as (+ + +−) 7→ (+ + ++) 7→ (− + ++) or ρi as
(−−−+) 7→ (−−−−) 7→ (+−−−). Hence, these vertices can form a ‘cone’
(+ + ++), or ‘bowl’ (+−−−) shape (see Table 5.2).

For the ε > 0 case we find that the branches ρI
−

3 (ρ1) and ρII
+

3 (ρ1) merge
to form ρI

−II+
3 (ρ1) when ρ1 < 0. For ε > 0 and ρ1 > 0 we find that ρI

+

3 (ρ1)

1We here explicitly calculated the branches, but this scenario is generic [74].
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and ρII
−

3 (ρ1) merge to form ρI
+II−

3 (ρ1). Along these branches, the signs
of the fold angles vary as (− − −+) 7→ (− + −+) 7→ (− + ++), or as
(+ + +−) 7→ (+ − +−) 7→ (+ − −−). Hence, these vertices can form a
‘saddle’ (+ − +−) or (− + −+) shape (see Table 5.2). As illustrated in
Fig. 5.2 there are still two possible folding branches for both ε > 0 and
ε < 0. However, they are no longer connected by a common branching
point.

ρ1 ρ2 ρ3 ρ4

ε < 0

I+II+
+ + + −
+ + + +
− + + +

I−II−
− − − +
− − − −
+ − − −

ε > 0

I−II+
+ + + −
+ − + −
+ − − −

I+II−
− − − +
− + − +
− + + +

Table 5.2: Overview of the signs of the folding angles on the four folding
branches for ε 6= 0.

In this chapter we will harness the disconnectedness of the two folding
branches for ε 6= 0 to create tristable origami vertices. For example, the
separation of the ρI

−II−
3 and the ρI

+II+
3 branches in the ε < 0 case means

that we can not change the sign of ρ3 by rigid folding. However, real
vertices have finite stiffness, and can be elastically deformed, by bending
and stretching the plates and hinges. This enables us to ‘pop-through’ the
vertex from branch ρI

+II+
3 to ρI

−II−
3 or vice versa. The angular surplus ε

effectively creates an energy barrier between a cone with folding angles
−−−−, and a cone with folding angles + + ++. Similarly, the ε > 0 case
exhibits a saddle-to-saddle transition when popping the vertex through
such that we force the vertex from the folding branch ρI

+II−
3 , with sign

configuration −+−+, into folding branch ρI
−II+

3 with sign configuration
+−+−.
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We now show that a vertex with an angular offset |ε| > 0, combined
with a single torsional spring, allows us to make a tristable vertices. To
demonstrate this, imagine attaching a single torsional spring with a rest
angle of ρspring = 3π/40 on the ρ1 fold of a ε > 0 vertex. As we can see in
Fig. 5.2.B, this results in two stable (E = 0) configurations on the ρI

+II−
3

branch, one where ρ3 > 0, and one where ρ3 < 0, indicated by the blue
dots. When we pop this vertex through to the folding branch ρI

−II+
3 , one

additional local minimum can be found on the ρI
−II+

3 branch, indicated by
the blue diamond. Here E 6= 0, as the spring cannot reach its relaxed state,
as the torsional spring wants to minimize its energy, the energy minimum
is located as close to ρ1 = ρspring as possible. This minimum, which is
not present when ε = 0, is stable provided that the energy necessary to
‘pop-through’ the vertex from the I−II+ branch to the I+II− is sufficiently
high compared to the energy stored in the spring. Conversely, we can
make a tristable ε < 0 vertex by putting a ρspring = 3π/40 on the ρ3 fold.
In Fig. 5.2.B we see this results in two stable states on the ρI

+II+
3 folding

branch, as indicated by the two red dots. A third, local minimum can be
found on the ρI

−II−
3 folding branch when we pop the vertex through from

the I+II+ branch to the I−II− branch, as is indicated by the red diamond.
Inspecting the signs of the fold angles on the ε 6= 0 branches as summa-

rized in table table 5.2, as well as the generic sketch of these branches in
Fig. 5.2, we conclude that ε < 0 vertices can be made tristable by putting
a single spring on ρ2 or ρ3, i.e. a fold opposite to the odd folds (ρ4, ρ1)
of the corresponding flat vertex. On the contrary, ε > 0 vertices can be
made tristable by putting a single spring on one of the two odd folds of the
corresponding flat vertex.

5.2.2 Theoretical Energy Curves

In this section we compute the elastic energy as a function of fold angle,
for non-Euclidean 4-vertices, augmented with a single torsional spring.
We focus on the scenarios outlined in the previous section that potentially
lead to tristable vertices. We consider vertices with sector angles αi =
(1 + ε

2π ){π/3, π/2, 3π/4, 5π/12}, and angular surplus of ε =
∑
αi − 2π =

±{0.001, 0.01, 0.03, 0.001} rad.
For the cone-like, ε < 0 vertices we choose to put the spring on the

ρ4 fold of the vertices. As discussed in the previous section this leads to
two stable states on the I+II+ branch, and one stable state on the I−II−
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branch. Assuming a torsional spring with a stiffness kspring, and a rest angle
ρspring > 0, the energy curves can then be calculated as,

Eε<0
bistable(ρ1, ε) =

1

2
· kspring

(
ρI

+II+

3 (ρ1, ε)− ρspring
)2

(5.3)

for the bistable branch, and

Eε<0
monostable(ρ1, ε) =

1

2
· kspring

(
ρI

−II−
3 (ρ1, ε)− ρspring

)2
(5.4)

for the monostable branch. The corresponding energy curves as a function
ρ1 are displayed in Fig. 5.3.A.

For the saddle-like, ε > 0 vertices we choose to put a torsional spring
on the ρ2 fold of the vertices, which leads to one bistable branch (I+II−),
and one monostable branch (I−II+), when viewed as a function of ρ3 (see
Fig. 5.2.B). The energy curves can then be calculated as,

Eε>0
bistable(ρ3, ε) =

1

2
· kspring

(
ρI

+II−
1 (ρ3, ε)− ρspring

)2
(5.5)

A B

Figure 5.3: (A) Bistable energy curve on branch I+II+ (pink), and monostable
energy curve on branch I−II− (orange), for a cone-like, ε < 0 vertex with a spring
on ρ4, and controlling ρ2, for various values of ε (see legend). (B) Bistable energy
curve (pink) on branch I+II−, and monostable energy curve on branch I−II+

(orange), for a saddle-like, ε > 0 vertex with a spring on ρ2, and controlling ρ4, for
various values of ε (see legend).
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and,

Eε>0
monostable(ρ3, ε) =

1

2
· kspring

(
ρI

−II+
1 (ρ3, ε)− ρspring

)2
(5.6)

respectively. These energy curves are plotted in Fig. 5.3.B as function of ρ3.
In both the ε < 0, and the ε > 0 case we clearly have three minima.

We note that the separation of the energies at ρ3 = 0 between the upper
and lower branches grows as

√
ε, which is expected for the unfolding of a

transcritical scenario (the intersection of the I and II branches at ε = 0). In
addition, we notice that the depth of the two minima on the lower branch
diminishes with ε. The experimental challenge is therefore to find a value
of ε for which the upper and lower branch are sufficiently separated by
means of the ‘pop-through’ barrier, but which does not wash out the two
minima on the lower branch.

5.3 3D Printed Tristable Vertices

Here we describe the manufacturing of non-flat 4-vertices. Specifically,
we aim to create vertices where the two branches have one, respectively
two energy minima at corresponding stable states, and where the energy
barrier between these branches is in the right range to allow “popping"
from one branch to the other, without destroying the three energy minima
on the two branches. We discuss how we make these vertices by use of 3D
printing, and how we turn them into tristable vertices by dressing them
with a torsional spring.

We first discuss the experimental fabrication of non-flat 4-vertices. The

A B

NaOH (aq)

Figure 5.4: (A) Schematic side view of the 3D printing process, using two
different materials. Vertices are built up layer by layer (in gray), and arbitrary
geometries can be created by use of a scaffold material (in lilac). (B) We dissolve
the scaffold in an 70◦ C aqueous NaOH solution, which leaves the plate material
intact.
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vertices we use for our experiment are 3D printed with a Stratasys Fortus
250 MC, which is capable of printing ABS plastic, as well as a sacrificial
ABS-like plastic, with a layer thickness of 0.18 mm and an xy-resolution of
better than 0.24 mm. The sacrificial material serves as a scaffold, and allows
us to print non-flat vertices, see Fig. 5.4.A. This scaffold is subsequently
dissolved by putting the structure in a 70◦ C sodium hydroxide (NaOH,
pH 9.0) solution for 7 hours, see Fig. 5.4.B. This printing technique there-
fore allows us to print non-flat vertices with an arbitrary angular surplus
ε.

We design our vertices to be 150 mm in diameter, consisting of four
plates which are 3.0 mm thick, see Fig. 5.5.A. The four plates of the vertex

z

x

z

150.0 mm

4.2 mm

6.0 mm

4.5 mm

12.0 mm

dgap

y

x

dgap

3.0 mm

A B

C D

y

x

α1

α2

α3 α4

12.0 mm

3.0 mm1.5 mm

B

C

Figure 5.5: (A) Top view of the design of a 3D printed, (flat) 4-vertex with
sector angles αi = {π/3, π/2, 3π/4, 5π/12}. This vertex is 150 mm in diameter and
3 mm thick. The plates are connected by four conically shaped hinges (detailed
view in B,D). A torsional spring can be put on one of the folds (see C for a detailed
side view). (B) Detailed top view of the hinges in A, where the dotted orange line
indicates the axis of rotation of the conical hinges. (C) Side view of the torsional
spring in A. The spring is offset from the plates of the vertex such that its axis of
rotation aligns with the axis of rotation of the hinges (see blue line in B). (D) Side
view cut through of the hinges in A,B. The dotted orange line indicates the axis of
rotation of the conical hinges as in A,B.
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are connected to each other by four hinges, and the axes of rotation of all
these hinges meet at the center of the vertex. The hinges consist of two
disconnected conical holes attached to one plate, and two opposing conical
pins attached to the opposing plates (Fig. 5.5.B). This design allows us to
closely emulate a perfect hinging fold. The main experimental limitation
is the finite maximal folding angle, of approximately |ρi| ≈ 2.65 rad, due
to the formation of self contacts between the plates that occur for high
folding angles. A detailed view of the design is shown in Fig. 5.5.B and
Fig. 5.5.D. This hinge design allows us to print the vertex in its assembled
state, including the hinges. However, it does require careful tuning of
the dgap parameter that sets the separation between the conical holes and
the conical pins (Fig. 5.5.B,D). When we set dgap too low, the hinges get
stuck to each other after the printing process, which was found to be the
case for dgap = 0.05 mm and dgap = 0.1 mm. Setting dgap too high results
in a vertex with excessive play in the hinges, which leads to significant
deviations from rigid folding. The gap dgap was therefore chosen to be
dgap = 0.15mm, which is roughly equal to the layer resolution of the 3D
printer (at 0.18 mm).

The vertex is designed to allow to incorporate a torsional spring on one
of the folds, as is shown in Fig. 5.5.A. We do this by including cylindrical
holes of diameter 1.14 mm in the design of the 3D-printed vertex, which
allows us to attach an Amatec T045-270-312 torsional spring. These holes
are offset from the plate material such that the center of rotation aligns with
that of the center of the hinges, see Fig. 5.5.C. In order to create a tristable
vertex by adding a single torsional spring, we choose to print cone-like
vertices such that we can attach the spring to the ρ1 fold, and the saddle-like
vertices such that we can attach the spring to the ρ3 fold (see section5.2).
Furthermore we note that the torsional springs are not irreversibly attached
to the vertices, and can be taken out to perform control experiments.

For the sector angles of the vertices we choose αi = (1 + ε
2π ){π/3, π/2,

3π/4, 5π/12}. Our goal is to fabricate vertices which we can reversibly
pop-through. This puts an upper limit on |ε|, as the maximal stresses on
the hinges during the pop-through grows with increasing |ε|. In practice,
we found that vertices for which |ε| > 0.105 rad readily fail at the hinges
after popping it through ten or less times. Conversely, vertices for which
|ε| < 0.026 rad barely show any pop-through behavior at all, presumably
due to the small but finite play in the hinges. This makes such vertices
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unsuitable to our end goal of making tristable vertices, which requires an
energy barrier between the two branches. We therefore focus on vertices
with an angular surplus of |ε| = 0.052 rad. These vertices do not break
at the hinges after popping them through numerous times, yet the pop-
through energy barrier of these vertices is large enough for the two folding
branches to remain separated, as we will show.

5.4 Experimental Results

In this section we will first demonstrate that the 3D printed vertices of
section 5.3 can be made tristable by adding a single torsional spring to
one of the folds (section 5.4.1). After this, we characterize the tristable
energy landscape by use of an Instron MT-1 torsion tester. We first explain
the experimental protocol (section 5.4.2), then we show our experimental
results (section 5.4.3), and last we convert our torsion data into experi-
mental energy curves, in order to compare them to theoretical predictions
(section 5.4.4). Finally, we show that we can control the separation between
the bistable and monostable folding branches of the vertices by carefully
tuning the angular surplus ε (section 5.4.5).

5.4.1 Tristable Vertex: Qualitative Results

In the previous section we showed that we settled on a vertex with an
angular surplus of ε = ±0.052 rad, which allowed for reversible pop-
through behavior. To turn the 3D printed vertices into a tristable vertex,
we now attach an Amatec T045-270-312 torsional spring, with a torsional
stiffness of 46(1) mNm/rad, and rest angle ρspring ≈ 0.69(2). We will
show that the combination of spring and vertex geometry ensures that
the energy needed to pop-through the vertex, Epop, is sufficiently high
in comparison to the barriers of the mono- and bi-stable branches, Emin

and Ebarrier respectively. We can qualitatively verify that Emin < Epop by
taking one of the experimentally realized vertices including the torsional
spring, popping it through manually, and leaving it untouched. This is
shown in Fig. 5.6.A and Fig. 5.6.D for the ε = −π/60 ≈ −0.052 rad and the
ε = π/60 ≈ 0.052 rad vertex respectively. Furthermore, we can show that
Ebarrier < Epop by showing that the two minima on the bistable branch are
stable; this is shown in Fig. 5.6.B,C and Fig. 5.6.E,F. This shows that the
combination of angular surplus and torsional spring chosen here leads to a
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tristable vertex, both for ε < 0 and ε > 0.

B CA

E FD

Figure 5.6: (A,B,C) The three stable states we found for an ε = −π/60 vertex.
Here (A) represents a state corresponding to a local energy minimum; (B) and
(C) represent states corresponding to global energy minima, where ρ1 < 0 and
ρ1 > 0 respectively. (D,E,F) The three stable states we found for an ε = π/60
vertex. Here (D) represents a state corresponding to a local energy minimum; (E)
and (F) represent states corresponding to global energy minima, where ρ3 < 0 and
ρ3 > 0 respectively.

5.4.2 Experimental Protocol for Torsion Experiments

To quantify the multistability of these experimentally realized, non-flat 4-
vertices, we aim to obtain the elastic energy as a function of one of the fold
angles, on both branches, as well as the energy of the pop-through. While
in principle these can be measured straight forwardly by measuring the
torque as function of fold angle, in practice there are several experimental
complications, due to the effect of gravity, and friction, that require special
care. To measure the torque as function of fold angle, we clamp two plates
of the vertex in an Instron MT-1 torsion tester with a 2.25 N·m load cell,
which allows us to measure torques with an accuracy of 0.01 N·m, and
angular displacement with a resolution of 5 · 10−5 rad; a picture of this
setup is shown in Fig. 5.7.A. In Fig. 5.7.B we depict a schematic side-view
of the setup used to measure the torque as a function of the folding angle.
On the left side we see the drive side of the torsion tester, which can rotate
the red plate plate by means of a center-offset clamp. On the right side we
see the load cell, which is stationary. In order for the load cell to measure
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the torque exerted on the green plate, we made a custom U-shaped clamp,
which has enough clearance for the vertex to fold, and can attach on the
other side of the vertex (see Fig. 5.7.B).

Protocol: (i) The first step in measuring the energy landscape of the
vertex is to characterize the torsional spring by probing its spring constant
kspring, and rest angle ρspring. We do this by attaching the spring to the
vertex and by manipulating the fold on which the spring is attached, which
is fold ρ3 for the ε < 0 vertices, and fold ρ1 for the ε > 0 vertices (see
section 5.3). (ii) Second, we attach the vertex differently, so as to measure
the torque required to change the fold angle opposite to the spring, which
is fold ρ1 for the cone-like vertices, and fold ρ3 for the saddle-like vertices.
Here, we make sure that the vertex is on the bistable branch. (iii) Third,
while the vertex is still attached to the clamps of the torsion tester, we
manually force the vertex to pop-through the fold where the spring is
attached, which moves the vertex to the monostable folding branch. For
the cone-like vertices this means changing the sign of the ρ3 fold from
positive to negative; for the saddle-like vertices this means changing the
sign of ρ1 from positive to negative. To probe the energy landscape on the
monostable branch we then measure the torque required to change fold ρ1
for the cone-like vertices, and fold ρ3 for the saddle-like vertices. The three
torque measurements (i)-(iii) can be converted to energy landscapes by
integration, and in principle yield the energy curves that can be compared
to the theoretical prediction (see Fig. 5.3). However, friction and gravity
also play a role, and require careful attention.

First, the hinges of the vertices are not frictionless, even though they are
thoroughly sprayed with silicone oil. The resulting frictional forces show
up in our measurements as an offset to the signal that we want to measure.
Our approach is to “average out" the friction signal, as frictional forces are
always oriented opposite to the direction of movement, and are roughly
rate-independent. We therefore perform cyclic experiments, where we first
increase the fold angle ρi to its maximum value, and then decrease ρi to
its minimum value. For every measurement we then average the signal
of the upward and downward ρi to suppress frictional forces. Second,
even without any springs attached to the vertices, there is a non-constant
torque signal due to gravitational forces. This is explained schematically in
Fig. 5.7.C, and 5.7.D. As the drive shaft rotates the red plate, three of the
plates change position relative to the gravitational field, which leads to a
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α1

α2

α3

α4

Drive Loadcell

Fz

θ

Fz

θ

A

B

C D

Figure 5.7: (A) Picture of the vertex shown in Fig. 5.6.D-F, clamped in the
Instron MT-1 torsion tester. See (B) for a schematic of the setup. (B) Side view
schematic of how the Instron torsion tester is connected to the 4-vertex. One plate
(here plate α4) is attached to the drive side of the tester (on the left) by means of a
center-offset clamp. Another clamp is attached to the load cell side of the tester
(on the right), by means of a U-shaped clamp. Note that when actuated, plates
1, 2, and 4 move, while plate 3 is kept stationary. (C,D) Cut-through schematic
when looking from the side of the load cell, in the direction of the drive shaft, as
indicated in panel A. The three moving plates change position in the gravitational
field, which results in a non-zero torque signal, even without any spring attached
to the vertex.
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corresponding torque, Tgravity. In order to suppress this signal, we do two
separate experiments: one with the torsional spring attached to the vertex,
and one where we take the spring off. By subtracting these two signals, we
effectively suppress the Tgravity signal.

By averaging the signal obtained from cyclic experiments, as well as
pairing every measurement with spring to an identical control experiment
without spring, we suppress both the effect of friction, as well as the effect
of gravity. We therefore have to do six experiments for every vertex. Here,
in summary, we list this series of experiments. First, for the cone-like
vertices we perform the following six experiments:

1. manipulating ρ3 with and without spring attached, to obtain the
spring constant, kspring;

2. manipulating ρ1, on the bistable branch (ρ3 > 0), with and without
spring attached, to probe the energy landscape of the bistable branch;

3. manipulating ρ1, on the monostable branch (ρ3 < 0), with and with-
out spring attached, to probe the energy landscape of the monostable
branch.

Likewise, for the saddle-like vertices we perform the following six experi-
ments:

1. manipulating ρ1 with and without spring attached, to obtain the
spring constant, kspring;

2. manipulating ρ3, on the bistable branch (ρ1 > 0), with and without
spring attached, to probe the energy landscape of the bistable branch;

3. manipulating ρ3, on the monostable branch (ρ1 < 0), with and with-
out spring attached, to probe the energy landscape of the monostable
branch.

For each of these experiments we open and close the fold that we manipu-
late four times, using up and down sweeps of the angle with a ramp rate
of 0.070 rad/s. The maximum opening and closing angle of the fold that
is manipulated is determined when the first fold reaches its maximum
angle of ρi ≈ 2.65 rad, at which self-contact of the hinges limits the range
of movement (see previous chapter), add the aluminium clamps that are
holding the plates (indicated by the two dashed circles in Fig. 5.7.B), which
can contact each other.
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5.4.3 Torsion Experiments - Results

We now explain in detail how we deal with gravitational and frictional
forces for the measurements where we probe the torsional spring on the
ε = −π/60 vertex. After correcting for these spurious signals, we find
that the torque exerted by the spring as function of fold angle is close to
linear, which gives confidences in our methodology. We then apply the
same protocol to the remaining experiments that probe the torsional spring
on the ε = π/60 vertex in section 5.4.3, as well as the non trivial energy
landscape at each branch, in sections 5.4.3 and 5.4.3.

We now first explain in detail how we determine the spring properties
by actuating the fold where the spring is attached, and how we deal with
gravitational and frictional forces. We both probe the torsional spring on
the ε = −π/60 vertex and on the ε = π/60 vertex.

Torsional Spring on a Cone-like Vertex

As explained in the above section, to determine the spring properties, we
clamp the ε = −π/60 vertex such that the torque is directly applied to
the two plates adjacent to the spring (ρ3 fold), and compare data with and
without a spring attached. As shown in Fig. 5.8A, even without a spring
attached, the raw torque signal T0(ρ3) is complex and exhibits hysteresis.
This hysteresis is due to friction, and we obtain a signal T 0 by averaging
over up and down sweeps (Fig. 5.8B):

T 0(ρ3) =
1

2
(T0(ρ3 ↑) + T0(ρ3 ↓)) . (5.7)

As shown in Fig. 5.8C-D, we follow the same procedure for a vertex where
the spring is attached, and define T as

T (ρ3) =
1

2
(T (ρ3 ↑) + T (ρ3 ↓)) . (5.8)

After eliminating friction, the two signals T0 and T have contributions
from gravity (Tg), non-rigid deformations of the vertex (TV D), and in the
case of T , from the spring Tspring. The gravitational signal is expected to be
very similar in T0 and T , and by subtracting these signals we obtain a signal
that is the sum of Tspring and TVD (Fig. 5.9). The non-rigid deformations are
due to the vertex “popping” between two branches and are the cause of the
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large torque spikes near ρ3 = 0. The interval of the folding angles where
these deformations can be expected with bounds ±ρ3,min is dependent on
the surplus parameter ε, as can be seen from Fig. 5.2.C. For the ε = −π/60
vertex we find ρ3,min = ±0.27 using our analytical model. Hence, for larger
fold angles, the only signal is due to the spring, and indeed we observe that
for |ρ3| > ρ3,min, the signal is essentially linear. The excellent fit to a linear
function (black) indicates that the spring follows the torsional variant
of Hooke’s law, and can be used to extract the torsional spring constant
kspring = 46(1) mNm/rad, as well as the rest angle: ρspring = 0.73(1) rad.
We conclude that, even though the raw torque signal shows large amounts
of hysteresis, a significant contribution due to gravity, and near ρ3 = 0 a
strong signal due to vertex deformation, we can deal with these effects to
characterize the torsional spring.
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Figure 5.8: (A) Raw data T0 for a measurement on a < 2π vertex without spring
attached (see inset). (B) Mean signal T 0 eliminates friction but has contributions from
gravity and vertex deformations. (C) Raw data T for a measurement on a < 2π vertex with
spring attached (see inset). (D) Mean signal T eliminates friction but has contributions
from gravity, vertex deformations and the spring.
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Figure 5.9: The difference between T and T 0 is the sum of the vertex deformations,
confined near |ρ3| < 0.27, and a nearly linear function, due to the spring (blue). The black
line indicates a linear fit.

Torsional Spring on a Saddle-like Vertex

The same experiments were performed for the ε = π/60, saddle-like vertex.
Here we place the spring –which is the same spring as used before– on the
ρ1 fold. The measurements without spring is shown in Fig. 5.10.A, and the
averaged signal T 0(ρ1) = 1

2(T0(ρ1 ↑)+T0(ρ1 ↓)) is shown in Fig. 5.10.B. The
average signal of the measurement with spring, T (ρ1) = 1

2(T(ρ1 ↑)+T(ρ1 ↓))
is shown in Fig. 5.10.D. The two signals are then subtracted, to obtain
Tspring = T − T 0, for |ρ1| > ρ1,min, which is shown in Fig. 5.11. Here
ρ1,min = ±0.25 rad indicates the boundary within which the signal due to
vertex deformations, TV D, can not be neglected (see previous section).

The black line in Fig. 5.11 indicates a linear fit of the form Tspring =
kspring · (ρ1 − ρspring). This produces a torsional spring constant of kspring =
47(1) mNm/rad, which is within errorbars of the of kspring = 46(1) mNm/rad
obtained in the previous section, as this the same identical spring. How-
ever, the rest angle seems to have changed slightly: ρspring = 0.65(1) rad
compared to ρspring = 0.73(1) rad as extracted from the fit in Fig. 5.9. This
difference in rest angle might be attributed to a slightly different way the
torsional spring is glued to the vertex, resulting in a different effective rest
angle.
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Figure 5.10: (A) Raw data T0 for measurement on> 2π vertex without spring attached
(see inset). (B) Mean signal T0 eliminates friction but has contributions from gravity and
vertex deformations. (C) Raw data T for a measurement on > 2π vertex with spring
attached (see inset). (D) Mean signal T eliminates friction but has contributions from
gravity, vertex deformations and the torsional spring.

Figure 5.11: The difference between T and T 0 is the sum of the vertex deformations,
confined near |ρ1| < 0.25, and a nearly linear function, due to the spring (blue). The black
line indicates a linear fit.
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Monostable and Bistable Branch for a Cone-like Vertex

In order to probe the bi- and monostable branch of the ε < 0 vertex we
manipulate the ρ1 fold, with the spring on the ρ3 fold. The sign of the
ρ3 fold then determines whether we are dealing with the bistable branch
(ρ3 > 0), or the monostable branch (ρ3 < 0), see Fig. 5.2.C.

To extract the torque signal associated with the monostable branch,
where we first need to pop the vertex through by hand such that such that
ρ3 < 0. After having done this, we clamp the vertex in the torsion tester
such that we can manipulate the ρ1 fold. The raw data of the measurement
without spring, T0(ρ1), is shown in Fig. 5.12.A, and the averaged signal,
T 0(ρ1) = 1

2(T0(ρ1 ↑) +T0(ρ1 ↓), in Fig. 5.12.B. The raw data of the measure-
ment with spring is displayed in Fig. 5.12.C, whereas the averaged signal
T (ρ1) = 1

2(T (ρ1 ↑)+T (ρ1 ↓) is displayed in Fig. 5.12.D. Finally, we subtract
the two signals to yield T ε<0

mono(ρ1) = T (ρ1)− T 0(ρ1), which is displayed in
Fig. 5.13.

The same procedure is repeated for the bistable branch –where ρ3 > 0–
we once again need two experiments. First, we measure without the spring
attached, and manipulate the ρ1 fold. The result of this measurement
is shown in Fig. 5.14.A. The up and down sweeps are then averaged to
suppress friction: T 0(ρ1) = 1

2(T0(ρ1 ↑) + T0(ρ1 ↓)), see Fig. 5.14.B. Second,
we measure with the spring on ρ3, where the averaged torque signal T (ρ1) =
1
2(T (ρ1 ↑) + T (ρ1 ↓)) is displayed in Fig. 5.14.D. Finally, we subtract the
two averaged signals to find T ε<0

bi (ρ1) = T (ρ1)−T 0(ρ1), which is displayed
in Fig. 5.15 as the orange curve.
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Figure 5.12: (A) Raw data T0 of the the monostable branch of a < 2π vertex, without
spring attached (see inset). (B) Mean signal T 0 eliminates friction but has contributions
from gravity. (C) Raw data T of the monostable branch of a < 2π vertex, with spring
attached (see inset). (D) Mean signal T 0 eliminates friction but has contributions from
gravity as well as the spring.

Figure 5.13: The difference between T (red) and T 0 (green), results in the torsion
signal for the monostable branch: T ε<0

mono (purple).
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Figure 5.14: (A) Raw data T0 of the the bistable branch of a < 2π vertex, without
spring attached (see inset). (B) Mean signal T 0 eliminates friction but has contributions
from gravity. (C) Raw data T of the bistable branch of a < 2π vertex, with spring attached
(see inset). (D) Mean signal T 0 eliminates friction but has contributions from gravity as
well as the spring.

Figure 5.15: The difference between T (red) and T 0 (green), results in the torsion
signal for the bistable branch: T ε<0

bi (orange).
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Monostable and Bistable Branch for a Saddle-like Vertex

The torque measurements for the bi- and monostable branches for the ε =
π/60 vertex are shown in Fig. 5.18 and Fig. 5.16 respectively. The difference
with respect to the cone-like, ε = π/60 vertices is that the torsional spring
is now put on the ρ1 fold, whereas the plates connected by the ρ3 fold are
clamped. The torque measurements of the monostable branch, where the
vertex is ‘popped through’ such that ρ1 < 0, is summarized in Fig. 5.17,
where we show T ε>0

mono(ρ3) = T (ρ3) − T 0(ρ3) in purple. The torque data of
the bistable branch –where ρ1 > 0– is summarized by Fig. 5.19, where the
gravity corrected signal T ε>0

bi (ρ3) = T (ρ3) − T 0(ρ3) is shown by the orange
line.
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Figure 5.16: (A) Raw data T0 of the monostable branch of an ε > 0 vertex, without
spring attached (see inset). (B) Mean signal T 0 eliminates friction but has contributions
from gravity. (C) Raw data T of the monostable branch of an ε > 0 vertex, with spring
attached (see inset). (D) Mean signal T 0 eliminates friction but has contributions from
gravity as well as the spring.
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Figure 5.17: The difference between T (red) and T 0 (green), results in the torsion
signal for the monostable branch: T ε>0

mono (purple).
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Figure 5.18: (A) Raw data T0 of the bistable branch of an ε > 0 vertex, without spring
attached (see inset). (B) Mean signal T 0 eliminates friction but has contributions from
gravity. (C) Raw data T of the bistable branch of an ε > 0 vertex, with spring attached (see
inset). (D) Mean signal T 0 eliminates friction but has contributions from gravity as well as
the spring.

87



5.4. EXPERIMENTAL RESULTS

Figure 5.19: The difference between T (red) and T 0 (green), results in the torsion
signal for the monostable branch: T ε>0

bi (orange).

5.4.4 Experimental Energy Curves

In this section we translate our experimental data for the torque as function
of fold angle to curves of the elastic energy as function of the fold angle.
Subsequently we compare our experimental energy landscapes to our
theoretical predictions of section 5.2.2. In addition, we experimentally
characterize the energy barriers between the two folding branches, Epop.
In order for the three minima of our vertices to be stable, Epop should be
larger than the energy barrier separating the two global minima on the
bistable branch, Ebarrier, and also larger than the energy of the minimum
on the monostable branch, Emin. We first discuss how to extract Emin from
the spring potential. After this we show how we obtain the energy curves
of the mono-, and bi-stable branches from the torque data, from which we
can extract Ebarrier. Finally, we perform an additional, linear compression
experiment, which we use to characterize Epop.

Together, our data shows good agreement to our theoretical model, and
a clear separation of the two folding branches and the three stable states,
for cone-like as well as saddle-like vertices.

Spring Potential

In this section we extract the spring potential from our experimental data,
for both the cone-like vertices (section 5.4.3), and the saddle-like vertices
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(section 5.4.3). In general, torque measurements can be integrated to obtain
elastic energies:

E(ρi) =

∫
T (ρi)dρ. (5.9)

The data for T (ρi) is shown in Fig. 5.9 and Fig. 5.11. We recall that the

A B

Figure 5.20: (A) Spring potential of the ε = −π/60 vertex, extracted from the
data in Fig. 5.9. (B) Spring potential of the ε = π/60 vertex, extracted from the
data in Fig. 5.11.

experimental data has a gap in the “forbidden" region, where ρ3, respec-
tively ρ2, are pushed through the “pop-through" range where the vertex
deviates from rigid-folding. Outside this gap, the torque data can be fitted
well by a single linear function of the form T = κ · (ρ− ρ0), where ρ0 is the
spring’s rest angle. Piecewise integration of the energy to the left and right
of this gap, and fitting the energy offsets such that (i) E = 0 at ρ1,3 = ρ0
and (ii) E(ρ) is continuous, we obtain the energy curves shown in Fig. 5.20.
Here we non-dimensionalize our data by the torsional spring constant,
κspring.

Mono, and Bistable Energy Curves

In this section we extract the mono-, and bi-stable energy curves for both
the cone-, and saddle-like vertices. First, we consider the cone-like, ε =
−π/60 vertex. In Fig. 5.21.A the solid purple line corresponds to the
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experimental, dimensionless energy curve:

Eε<0
mono(ρ1) =

∫ [
T ε<0
mono(ρ1)

]
dρ1, (5.10)

where T ε<0
mono(ρ1) is the torque signal displayed in Fig. 5.13. The bistable,

dimensionless energy curve is displayed Fig. 5.21.B as the solid orange line:

Eε<0
bi (ρ1) =

∫ [
T ε<0
bi (ρ1)

]
dρ1, (5.11)

where T ε<0
bi (ρ1) is the torque signal displayed in Fig. 5.15.

Second, we consider the saddle-like, ε = π/60 vertex. In Fig. 5.21.C the
solid purple line corresponds to the experimental, dimensionless energy
curve:

Eε>0
mono(ρ3) =

∫ [
T ε>0
mono(ρ3)

]
dρ3, (5.12)

where T ε>0
mono(ρ3) is the torque signal displayed in Fig. 5.17. The bistable,

dimensionless energy curve is displayed Fig. 5.21.D as the solid orange
line:

Eε>0
bi (ρ3) =

∫ [
T ε>0
bi (ρ3)

]
dρ3, (5.13)

where T ε>0
bi (ρ3) is the torque signal displayed in Fig. 5.19.

The dashed lines in Fig. 5.21 indicate our theoretical predictions for
the energy curves for the non-Euclidean vertices, using the appropriately
determined spring potentials.

For the ε = −π/60 vertex, we experimentally find that the minima B
and C in Fig. 5.21.B are located at ρ1 ≈ −0.66 and ρ1 = 0.64 respectively.
Assuming a single spring located at ρ3 with a rest angle of 0.73(1) rad
(Fig. 5.9), theory predicts these minima to be located at ρ1 = ±0.73 rad,
which closely match the experiment. Furthermore, we find that the single
minimum on the monostable branch is located at ρ1 ≈ 0.01 in the exper-
imental data (Fig. 5.21.A), whereas we expect it to be located at ρ1 = 0.0.
While it is difficult to put a precise errorbar on our determination of the
location of the minima, which is dominated by fabrication errors, play,
clamping errors, and the shallowness of the minima, we estimate our
errorbar to be larger than the signal, of the order of 0.1 rad.

For the ε = π/60 vertex, we find that the minima E and F in Fig. 5.21.D
are located at ρ3 ≈ −0.74 rad, and ρ3 ≈ 0.80 respectively. Based on theory –
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Figure 5.21: (A) Experimental and theoretical dimensionless energy curves
for the monostable folding branch of the ε = −π/60 vertex. The minimum
energy is set to Emin = 0.51, corresponding to the energy of the purple point in
Fig. 5.20.A. (B) Energy curves for the bistable folding branch of the ε = −π/60
vertex. (C) Energy curves for the monostable folding branch of the ε = π/60 vertex.
Hence the minimum energy is set to Emin = 0.40, corresponding to the energy of
the purple point in Fig. 5.20.B. (D) Energy curve for the bistable folding branch of
the ε = π/60 vertex. The letters indicating the various minima correspond those
in Fig. 5.6.

assuming a single spring located at ρ1 with a spring constant of 0.65(1) rad–
we expect them to be located at ρ3 = ±0.69. We suggest that the relatively
large deviation of the location of the left minimum may be attributed to an
offset in the torque signal of Fig. 5.19, which tilts the integrated potential
shown in Fig. 5.21.D, and therefore also shifts the location of the minima.
We note that the distance between the two minima is within 5% of what we
expect from theory. Finally, the single minimum on the monostable branch
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is located at ρ3 ≈ 0.02 in the experimental data (Fig. 5.21.C), whereas we
expect it to be located at ρ3 = 0.0± 0.1.

We conclude that the four experimental energy curves shown in Fig. 5.21
demonstrate that theory and experiment agree closely, as the shape of the
experimental mono- and bistable branches, as well as the location of the
experimental minima, closely match the dashed theoretical curves.

5.4.5 Vertex Pop-Through

In this section we characterize the pop-through behavior of our vertices.
The energy barrier for pop-through, Epop, is presumably set by hinge
stretching and plate bending. These two effects both directly influence
the peak shown in Fig. 5.9 and Fig. 5.11. In these experiments we see
that the torque signal rises (drops) relatively slowly, until it hits a peak
value, after which the torque suddenly drops due to the pop-through
instability, resulting a in a near vertical slope. This is akin to the way the
load-displacement curve of a simple von Mises truss becomes asymmetric
when, instead of perfect displacement control, it is loaded with a spring,
see Fig. 5.22 and p.278–p.285 of [75].

In order to quantify Epop, we use a linear compression testing machine
(Instron 3361) to measure the force required to flatten the vertex, without
any torsional spring attached to the vertex. A schematic of our experiment
is depicted in 5.22. We put our vertices on a flat surface, and measure the
energy necessary to flatten it, which can be calculated from ∆E =

∫
Fzdz,

where Fz is the force exerted by the compression tester. When loading the
vertex, Fz will rise to a maximum value Fz = Fz,peak, starting from Fz = 0
(Fig. 5.22.A,B). After this, Fz will drop back to Fz = 0 for the fully flattened
vertex. On the contrary, E will monotonically increase, and we take the
maximum value of E for the fully compressed vertex as the pop-through
energy barrier, Epop.

The setup that we use in the vertical Instron testing machine consist of
single ε ≈ −0.052, cone-like vertex, with geometric parameters identical to
the one used for the experiments in section 5.4. To this vertex we glue 4
truncated spheres: three to the bottom, at approximately 120◦ apart along
the periphery of the vertex, and one to the top, near the center of the vertex
– see Fig. 5.23.A. The vertex is then placed in between two parallel circular
plates with a diameter of 20.0 cm, see Fig. 5.23.B. This setup creates a well
defined contact on the top and the bottom, and avoids the need for any
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Figure 5.22: Side-view schematic of the setup used to measure the energy
necessary to pop-through the vertex, Epop. (A) Start of the experiment: the vertex
is uncompressed, E = 0, and Fz = 0. (B) Approximately halfway the experiment,
the force exerted in the z direction will hit a maximum Fz , E > 0. (C) The vertex
is fully compressed. Vertically exerted force is once again Fz = 0, whereas the
elastic energy is now maximal, E = Epop.

precise parallel alignment of the top and bottom plate. Lastly, the spheres
as well as the aluminum plates are all coated with silicone grease in order
to minimize friction.

A similar setup is used for the ε ≈ 0.052, saddle like vertex. However,
as the pop-through transition in this case transforms the vertex from one
saddle configuration to another, pushing on the vertex on a single point
near the center does not pop the vertex through. Therefore, we use a a
different arrangement of spheres: two spheres are glued to the bottom of
the vertex, on opposite sides, and two on the top, also on opposite sides,
where the two pairs approximately form a cross (Fig. 5.23.C). A picture of
this configuration is shown in Fig. 5.23.D.

The result of the measurement for the ε ≈ −0.052 vertex is shown
in Fig. 5.24.A. The measurement protocol consists of lowering the top
plate until it is about to make contact with the top sphere, as depicted in
Fig. 5.23.B. We then impose an up and down sweep of the z-displacement,
∆z, where we use a strain rate of 0.1 mm/s, and a maximum ∆z of 1.6 mm
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Figure 5.23: (A) Top-view schematic of the ε < 0, hat-like vertex, where the
position of the attached spheres is indicated by the circles; dashed lines indicate
the spheres are attached to the underside of the vertex. (B) Side view of the ε < 0
in our compression setup. (C) Top-view schematic of the ε > 0, saddle-like vertex,
where the position of the attached spheres is indicated by the circles; dashed lines
indicate the spheres are attached to the underside of the vertex. (D) Side view of
the ε > 0 vertex in our compression setup.

(positive ∆z means pushing down). This maximum is increased by 1.0 mm
every second cycle to ∆z = 2.6, 3.6, 4.6, 5.6 mm, and finally ∆Z = 6.6 mm.
On the last cycle we see that the vertex pops through, at ∆z ≈ 6.28 mm. We
see that from ∆z . 3 mm, Fz increases to a peak value, which we determine
to be Fz,peak = 19.5± 0.5 N, obtained by taking the average maximum over
seven up sweeps – the error bar represents the standard deviation of seven
maximum values. After hitting this peak value, Fz monotonically decreases
all the way down to Fz = 0; the top plate staying in contact all the way till
the pop-through point. The amount of work necessary to pop-through the
vertex can now be calculated by integrating the signal of Fig. 5.24.A, as
we have done in Fig. 5.24.B, and we find a value of Wpop = 0.065 J. Finally,
we note the large discrepancy between Fz for the upward sweeps, and the
downward sweeps. We attribute this discrepancy to friction in the hinges,
which we also witnessed in our torsion experiments (section 5.4). Hence,
the amount of work is not equal to the maximum elastic energy stored in
the deformed configuration, Epop.
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A B

Figure 5.24: (A) Data of the compression experiment depicted in Fig. 5.23, for
a ε ≈ −0.052 rad vertex. Top plate makes contact with the vertex ∆z = 1.0 mm,
and is further compressed until ∆z = 1.6 mm using up an down sweeps of ∆z,
where the maximum ∆z is increased by 1.0 mm every other sweep. The last sweep
(brown) reaches a maximum of ∆z = 6.6 mm, where we witness a pop-through
event at ∆z = 6.275 mm. (B) Integrated signal of (A); we find Wpop = 0.065 J.

The result of the measurement for the ε ≈ 0.052 vertex is shown in
Fig. 5.25.A. In this experiment the top plate makes contact with the vertex
at a z-displacement of around ∆z = 1.0 mm, and is further compressed
until ∆z = 6.2 mm, which is just before the pop-through point, for three
up an down sweeps. On next compression cycle we increase the maximum
z-displacement to ∆z = 10 mm, and we witness a pop-through event at
∆z = 7.37 mm. The sudden drop in Fz at this point is where the vertex
pops through, and the top plate loses contact. The fact this happens before
Fz drops to zero, probably indicates the vertex is not perfectly flattened,
which would require precise alignment of the four attached spheres (unlike
in the ε > 0 case, where the four contacts are self-aligning). The average
peak load found in this case is Fz,peak = 15.5±0.1 N, which was determined
by taking the average of the peak load over four up sweeps, and likewise
for the errorbar, which corresponds to the standard deviation of these four
peak loads. This peak load is of the same order as the peak load found for
the ε ≈ 0.052 vertex. The integrated signal is equivalent to the amount of
work necessary to pop the vertex through, and is displayed in Fig. 5.25.C.
The ‘pop-through work’ is calculated from the total area under the curve in
Fig. 5.25.A, which results in Wpop = 0.072 J, which is approximately 10%
higher than theWpop value found for the ε > 0 case. Our data clearly shows
that this barrier is significantly larger than the energy scales on a single
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branch; hence once popped, the vertex will stay on one of these branches.
We also note that Wpop for the ε > 0 and ε < 0 vertices are similar. This
suggests that hinge stretching constitutes the main deviation from rigid
folding; if instead plate bending would dominate, ε > 0 vertices can easily
be popped, but ε < 0 vertices not2. Finally, the monotonous increase of the
“in plane" forces, while Fz goes to zero, suggests that frictional forces must
be important, even if the friction coefficient is small.

A B

Figure 5.25: (A) Data of the compression experiment depicted in Fig. 5.23, for
an ε ≈ 0.052 vertex. Top plate makes contact with the vertex at ∆z = 1.0 mm,
and is further compressed until a maximum of ∆z = 6.2 mm using a triangular
waveform, for 3 cycles. On the last cycle ∆z is increased to ∆z = 10.0 mm, where
we witness a pop-through event at ∆z = 7.37 mm. (B) Integrated signal of (A): we
find Wpop = 0.072 J.

In order to determine how Wpop depends on the angular surplus (or
deficit), we 3D printed four additional ε < 0 vertices, for ε = −π/120 ≈
−0.025 rad, ε = −π/72 ≈ 0.044 rad, ε = −π/45 ≈ −0.070 rad, and ε =
−π/30 ≈ −0.105 rad. The ε ≈ −0.026 rad vertex has a negligible bump,
which in particular is not enough to support the vertex’s weight when put
in a ‘cone up’ configuration on a flat surface – this is likely due to small but
finite play of the hinges. On the other extreme, repeatedly popping through
the ε ≈ −0.105 rad vertex breaks one of the outermost hinges of the vertex
within ten cycles, indicating the stresses put on these hinges is beyond the
yield stress of the material (ABS). The results of the compression tests of
the remaining three vertices: ε ≈ {−0.044,−0.052,−0.070}, are shown in
Fig. 5.26.A. The curves here correspond to the last compression cycle of

2This can readily be demonstrated by making non-Euclidean vertices out of paper,
where the ‘pop-through’ transition is facilitated by bending the paper.
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each test, where the brown curve in Fig. 5.26.A corresponds to the brown
curve in Fig. 5.24.A. To characterize the increase in bump size as a function
of surplus angle ε, we integrate each curve to find the energy underneath
each curve, and plot this value as function of ε, as shown in Fig. 5.26.B. The
points suggest there is a linear relationship between the amount of work,
Wpop, and the surplus angle, ε. A fit of the formWpop = a·ε+b is displayed
in Fig. 5.26.B as the black line. We find a = −3.34 J/rad and b = −0.109 J ,
which translates to a cut-off point of ε ≈ −0.033 rad. This is consistent
with the observation that the ε ≈ −0.026 rad vertex has a negligible barrier.
We note that this relationship is specific to this geometry and vertex size.
Most hinge stretching and bending takes place around the periphery of the
vertex, and the maximum stresses exerted on the hinges will decrease if
we print a vertex with a smaller radius, but otherwise identical geometric
parameters. We do expect however, to find a roughly similar relationship
between Wpop and ε for ε > 0 vertices, as Wpop for the ε = −0.052 and
ε = +0.052 vertices differs by only 10%.

A B

Figure 5.26: (A) Last compression cycle of three different vertices, with ε ≈
−0.044, ε ≈ −0.052, and ε ≈ −0.070. The brown, ε ≈ 0.052 curve corresponds to
the brown curve displayed in Fig. 5.24.A. (B) Wpop found by integrating the three
curves in (A), black line indicates a linear fit (see text).

Finally, we observe that Wpop, Emin and Ebarrier can all be expressed in
terms of dimensionless units, e.g:

W̃pop = Wpop/kspring, (5.14)

which yields W̃pop ≈ 1.43 for the ε ≈ −0.052 vertex , and W̃pop ≈ 1.57 for
the ε ≈ 0.052 vertex. From Fig. 5.21 we can see that Ẽmin � W̃pop and
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5.5. CONCLUSION

Ẽbarrier < W̃pop, which is consistent with our observation that both vertices
are tri-stable.

5.5 Conclusion

In this chapter we have shown how to create experimentally robust tristable
vertex. We use weakly non-flat 4-vertices that exhibit two folding branches
that are separated by a finite energy barrier, controlled by a non-rigid “pop-
through transition. By dressing one of the folds with a torsional spring, we
can turn one of the two folding branches into a bistable branch, thereby
creating tristable vertices. The fact that this same mechanism works for
both cone-like (ε < 0) as well as saddle-like (ε > 0) vertices opens up the
possibility to create corrugated sheets composed out of tristable non-flat
vertices, for which we need both saddle-like and cone-like vertices.
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Appendix A

Fold Angles

In this appendix we will derive closed form expressions for the relations
between the fold angles of a generic 4-vertex. Expressions in the literature
are either in implicit form [48, 76], are for flat foldable vertices only [16, 35,
76], or fail to clearly distinguish between the two possible discrete folding
branches [16, 48]. The derivation shown here is originally by Rémi Menaut,
and was shortened by Scott Waitukaitis. In addition we will show how the
fold angles of a given 4-vertex and its supplement relate to each other.

A Euclidean 4-vertex consists of four rigid plates with sector angles αi
connected by four folds or hinges, where

∑
αi = 2π and we assume that

all sector angles are unequal and smaller than π (Fig. A.1.A). The non-flat,
folded states are characterized by the folding angles ρi, defined as the devi-
ation from in-plane alignment between adjacent plates i and i+ 1 (modulo
4). 4-vertices are equivalent to non-intersecting spherical mechanisms,
allowing to represent their folded state accordingly (Fig. A.1.B). The fold
angles are equal to the angle between the great circles at the point they
meet, see ρ1 in Fig. A.1.B, where we note that ρ1 here is positive, as it is
oriented counterclockwise.

Folding Branches

It was first shown by Huffman that a folded Euclidean 4-vertex will always
have one fold whose sign is unique, i.e. the angle is opposite in sign from
the other folding angles [28, 48, 58]. We call these folds odd folds, and
these odd folds always straddle a common odd plate. A necessary and
sufficient condition for the sector angle of the odd plate is the inequality
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A B C Branch I Branch II

Figure A.1: (A) A generic 4-vertex with sector angles αi, fold angles ρi, and
fold operators ρi+1,i. (B) An origami vertex (i) can be modeled as a spherical
mechanism. Dashed lines trace out the two vertices related by mirror symmetry,
whereas the solid lines trace out supplemented vertices. (C) The four possible
Mountain-Valley (colored red and blue respectively) arrangements of a generic
Euclidean 4-vertex.

αi + αi+1 < αi+2 + αi+3. A generic 4-vertex always has two odd folds,
which straddle a common odd plate [28]; we define our vertices such that
ρ4 and ρ1 are the odd folds, and α1 is the odd plate. Together with the
{ρi} ↔ {−ρi} symmetry, this yields four distinct mountain-valley patterns
for a given 4-vertex, shown in Fig. A.1.C. We denote the folding branches
where ρ4 or ρ1 has the opposite sign by I and II respectively.

Folding Operators

Along a given branch, 4-vertices have one continuous degree of freedom,
and the relations between folding angles are anti-symmetric ρi(−ρj) =

−ρi(ρj) and bijective; we define folding operators ρI,IIi+1,i which map the

fold angles adjacent to plate i: ρI,IIi+1,i(ρi) = ρi+1, and suppress the index I
and II when possible. Here we use the relations between the folding angles
to show that the folding operators of a vertex, ρi+1,i and its supplement,
ρ′i+1,i are related as ρ′i+1,i = −ρi+1,i.

We consider a folded state of a 4-vertex, and aim to express all fold
angles as function of ρ4. We schematically represent the arc lengths and
dihedral angles of the folded states as seen on the Euclidean sphere by
diagrams such as Fig. A.2.B,C. We now consider the arc length λ41 between
folds ρ3 and ρ1, depicted in Fig. A.1.B,C. Using the spherical law of cosines,
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CHAPTER A. FOLD ANGLES

we obtain:

cosλ34 = cosα4 cosα1 − sinα4 sinα1 cos ρ4 . (A.1)

The arc length λ34 is part of two spherical triangles, one with dihedral
angles π − σ4, π − σ1 and π − σ3, and the other with π − τ1, π − τ2 and
π − τ3. Making use of the shorthand notation,

A(a, b, c) ≡ arccos

(
cos a cos b− cos c

sin a sin b

)
, (A.2)

and repeatedly using the spherical law of cosines, the dihedral angles σi
and τi are,

σ1 = A(λ34, α1, α4) τ1 = A(α2, λ34, α3)

σ3 = A(α4, λ34, α1) τ2 = A(α3, α2, λ34)

σ4 = A(α1, α4, λ34) τ3 = A(λ34, α3, α2).

These are all functions or ρ4 through their dependence on λ34.

1

1
1

1

2

3

4

3
3

4= 1

2= 2

3

A B

Branch I Branch II

1

3

4

1

2= 2

34= 4

1
1

3

3

2
34

34

Figure A.2: (A) Simplified diagram of a 4-vertex (i) folded in Branch I, as in
Fig. A.1.B. (B) Simplified diagram of a 4-vertex folded in Branch II.

We obtain the folding angles from σi and τi; taking care regarding the
relative signs of the fold angles on each branch, the exact equations for
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ρ4 > 0 are,

ρ
I/II
1 = −π + σ1 ∓ τ1, (A.3)

ρ
I/II
2 = ∓τ2, (A.4)

ρ
I/II
3 = −π + σ3 ∓ τ3, (A.5)

where the minus sign in ∓ corresponds to branches I , and the plus sign in
∓ to branch II . Because of reflection symmetry in the flat-state plane, these
equations are antisymmetric: [ρI/IIi (ρ4 < 0) = −ρI/IIi (ρ4 > 0)]. Similarly,
we can obtain expressions for any fold angle as function of any other fold
angle.

The operator ρ14 follows directly from Eq. A.3. Using these explicit
expressions, we now show that ρ′i+1,i = −ρi+1,i. For the supplemented
vertex, we modify the sector angles from αi to α′i = π − αi. First, note
that the expression for cos(λ34), Eq. A.1, remains identical under this
transformation, making use of the identity cos(−x) = cos(x) and sin(−x) =
− sin(x) . Second, note that we can write:

σ′1 = A(λ34, α
′
1, α
′
4),

= arccos

(
− cosλ34 cosα1 + cosα4

sinλ34 sinα1

)
= π −A(λ34, α1, α4),

= π − σ1

(A.6)

using the identity: arccos(−x) = π − arccos(x). Likewise, we have τ ′1 =
π − τ1. We therefore find (dropping the branch notation),

ρ′1 = −π + σ′1 ∓ τ ′1,
= −π + (π − σ1)∓ (π − τ ′1),
= π − σ1 ± τ1,
= −ρ1 .

(A.7)

Hence, ρ′14 = −ρ14, and we can trivially extend this argument to show that
ρ′i+1,i = −ρi+1,i.
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Appendix B

4-Vertex as a Spherical
Mechanism

The operator symmetry ρ′ij = −ρij derived in appendix A, can also be
derived graphically. As shown before, a 4-vertex can be modeled as a
spherical mechanism, which can be represented on the surface of a sphere
(Fig. A.1.B). In Fig. B.1.A we schematically represent a 4-vertex (i) in a
folded configuration, by using a pseudo-Mercator projection. Extending
the arcs of vertex (i), we obtain four directed great circles. The intersection
of circle i and i + 1 –indicated by the black circles– correspond to the
hinges of spherical linkage (i), whereas their respective angle corresponds
to fold angle ρi. We define the fold angles ρi as positive when ρi turns
counterclockwise. The grey circles indicate the antipodal points of the black
points of vertex (i). Along each directed circle we name the four arc lengths:
αi, ᾱi, α̇i, α̃i, where α̇i = αi, ᾱi = α̃i = π − αi, and αi + ᾱi + α̇i + α̃i = 2π
(also see Fig. B.1.A). Furthermore, any pair of great circles intersects at
two locations, and because they are great circles, the angles around an
intersection point are identical in magnitude to the angles around its
antipodal point.

We first show that we can derive the relationship between the fold
angles (and fold operators) of the four related vertices (i), (ii), (iii) and (iv)
of Fig. 2.2. Our goal is to relate the fold angles of vertices (ii), (iii) and
(iv) to the fold angles ρi of vertex (i) – shaded pink in Fig. B.1.A. First,
vertex (ii) –shaded orange in Fig. B.1.A– can be found by connecting the
four antipodal (grey) nodes, which consists of arc lengths α̇i. When we
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consider the fold angles of this vertex (running clockwise), we see that they
are all oppositely oriented with respect to those of vertex (i), and therefore
each pick up a minus sign. Thus, if a vertex can be in a configuration with
folding angles {ρi}, it can also be in a configuration with folding angles
{−ρi}, consistent with ρj(−ρi) = −ρj(ρi)

Second, we consider vertex (iii), which is shaded purple in Fig. B.1.B.
This vertex consists of arc lengths: α̃1, ᾱ2, α̃3, ᾱ4, running clockwise. We
see that in this case, only the fold angle around the antipodal (gray) nodes
are reversed. The same holds true for vertex (iv) (ᾱ1, α̃2, ᾱ3, α̃4), which is
shaded orange in Fig. B.1.B. As the resultant fold angles are alternating
in sign for both vertex (iii) and (iv), and we find: ρi+1(ρi) = −ρi+1(ρi), or
ρ′ij = −ρij , using the operator notation. We finally note that vertex (i) in
Fig. B.1.A depicts a vertex folded on branch I, where ρ4 is opposite to the
three other folds, but the relations above also hold on branch II (where ρ1
is opposite in sign).

A

23

B

Figure B.1: (A) Simplified Mercator projection of a vertex (i) as shown in
Fig. A.1, and its mirror image on the other side of the sphere (ii). (B) Simplified
Mercator projection of two the two supplemented vertices, (iii) and (iv). Dashed
line indicates periodic boundary. For details see text.

Besides the related Euclidean vertices (i)-(iv) and their representative
spherical mechanisms (also termed ’folding linkages’ [77]), there are an
additional 12 related spherical mechanisms [78, 79]. All of these rep-
resent non-Euclidean vertices. Some of these mechanisms however, are
self-intersecting, meaning they can not be converted into a 4-vertex as the
plates would intersect. To study these additional spherical mechanisms
in detail, we use the same pseudo-Mercator map as in Fig. B.1, in Fig. B.2.
On this map we express all 16 arc lengths (αi, ᾱi, α̇i, α̃i), as well as the
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CHAPTER B. 4-VERTEX AS A SPHERICAL MECHANISM

angles around each node (ρi and ρ′i) in terms of the arc lengths and angles
of the original counterclockwise oriented vertex (i), which is depicted by
the dashed line.

An example of one the 12 non-Euclidean spherical mechanisms is
shown in light-blue in Fig. B.2, which we denote as α̃1α̇2ᾱ3α4. When we
consider the magnitude of the angles between consecutive links of this
mechanism, we find that they are: ρ′1, ρ′2, ρ′3, ρ′4. The signs of these angles
can be found by comparing the orientation of these angles to those of
the original vertex (vertex (i) in Fig. B.1.A), where the orientation of the
mechanism itself is set by the colors of the segments (blue→ green→ yel-
low→ red). In this case, the orientation of the angles in the mechanism
α̃1α̇2ᾱ3α4 are respectively: counterclockwise, counterclockwise, clockwise,
and counterclockwise. When comparing this to vertex (i), we see that both
ρ′3 and ρ′4 are oppositely oriented, which is why they obtain a minus sign.
The folding angles of this mechanism are therefore ρ′1, ρ′2, −ρ′3, −ρ′4. An
example of a self-intersecting non-Euclidean mechanism is colored green
in Fig. B.2. This mechanism is denoted as ᾱ1α̃2α̇3α̇4. Comparison of the
angles of this mechanism to those of vertex (i) yields: ρ1, ρ′2, −ρ3, ρ′4.

Figure B.2: Simplified mercator projection of the flat vertex shown in Fig. A.1
(dashed lines), folded on branch I. Dashed lines indicate periodic boundary.
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In Table B.1 we list all 16 spherical mechanisms and their respective
arc lengths (βi), and fold angles (θi), expressed in terms of the arc lengths
and fold angles of the vertex α1α2α3α4. Although the fold angles de-
rived here are derived from Fig. B.2, which depicts a spherical mechanism
on branch I (where the sign of ρ4 on vertex α1α2α3α4 is opposite to the
other three), we note that the expressions are valid for branch II as well
(where the sign of ρ1 on vertex α1α2α3α4 is opposite to the other three).
In addition to the fold angles θi, we also display the sign of θi on both
branch I and branch II. From the ᾱ1α̃2α̇3α̇4 mechanism we know that
self intersecting mechanisms have two consecutive positive fold angles,
and two consecutive negative fold angles. We therefore see that mecha-
nisms α1α2α̃3ᾱ4, α̃1ᾱ2α3α4, α̇1α̇2ᾱ3α̃4, and ᾱ1α̃2α̇3α̇4 are self-intersecting
on branch I. On branch II we find that α1α̃2ᾱ3α4, α̃1α̇2α̇3ᾱ4, α̇1ᾱ2α̃3α̇4,
and ᾱ1α2α3α̃4 are self intersecting. Other than the four Euclidean vertices
α1α2α3α4, α̃1ᾱ2α̃3ᾱ4, α̇1α̇2α̇3α̇4, ᾱ1α̃2ᾱ3α̃4, this leaves four spherical mech-
anisms that represent non-Euclidean vertices which can fold from branch I
to branch II, these are: α1α̃2α̇3ᾱ4, α̃1α̇2ᾱ3α4, α̇1ᾱ2α3α̃4, ᾱ1α2ᾱ3α̇4.

Arc Lengths Folding Angle Sign (Branch I) Sign (Branch II)
β1 β2 β3 β4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

α1 α2 α3 α4 ρ1 ρ2 ρ3 ρ4 + + + − − + + +

α1 α̃2 ᾱ3 α4 −ρ′1 −ρ2 −ρ′3 ρ4 − − − − + − − +

α1 α2 α̃3 ᾱ4 ρ1 −ρ′2 −ρ3 −ρ′4 + − − + − − − −
α1 α̃2 α̇3 ᾱ4 −ρ′1 ρ′2 ρ′3 −ρ′4 − + + + + + + −
α̃1 ᾱ2 α̃3 ᾱ4 −ρ1 ρ2 −ρ3 ρ4 − + − − + + − +

α̃1 α̇2 α̇3 ᾱ4 ρ′1 −ρ2 ρ′3 ρ4 + − + − − − + +

α̃1 ᾱ2 α3 α4 −ρ1 −ρ′2 ρ3 −ρ′4 − − + + + − + −
α̃1 α̇2 ᾱ3 α4 ρ′1 ρ′2 −ρ′3 −ρ′4 + + − + − + − −
α̇1 α̇2 α̇3 α̇4 −ρ1 −ρ2 −ρ3 −ρ4 − − − + + − − −
α̇1 ᾱ2 α̃3 α̇4 ρ′1 ρ2 ρ′3 −ρ4 + + + + − + + −
α̇1 α̇2 ᾱ3 α̃4 −ρ1 ρ′2 ρ3 ρ′4 − + + − + + + +

α̇1 ᾱ2 α3 α̃4 ρ′1 −ρ′2 −ρ′3 ρ′4 + − − − − − − +

ᾱ1 α̃2 ᾱ3 α̃4 ρ1 −ρ2 ρ3 −ρ4 + − + + − − + −
ᾱ1 α2 α3 α̃4 −ρ′1 ρ2 −ρ′3 −ρ4 − + − + + + − −
ᾱ1 α̃2 α̇3 α̇4 ρ1 ρ′2 −ρ3 ρ′4 + + − − − + − +

ᾱ1 α2 α̃3 α̇4 −ρ′1 −ρ′2 ρ′3 ρ′4 − − + − + − + +

Table B.1: Table listing all 16 spherical mechanisms that can be linked to a
generic Euclidean 4-vertex, and their fold angles.
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Samenvatting

Bij het vouwen van een vouwpatroon verandert men een tweedimensio-
naal plat materiaal in een vaak complexe driedimensionale vorm. Voor-
beelden van zulke vouwpatronen kent men al eeuwenlang als ‘origami’,
maar recent hebben materiaal- en natuurkundigen ontdekt dat sommige
vouwpatronen in hun opgevouwen toestand exotische materiaaleigen-
schappen hebben. Een voorbeeld hiervan is het zogenaamde ‘Miura-ori’
vouwpatroon (zie hoofdstuk 1), dat in zijn opgevouwen toestand een ne-
gatieve Poisson-factor heeft, wat betekent dat het in meerdere richtingen
krimpt als het wordt ingeduwd. Zulk soort eigenschappen hangen alleen
af van de geometrie van het vouwpatroon en zijn dus toepasbaar op zowel
hele kleine schaal, zoals voor insectenvleugels, als op hele grote schaal,
zoals voor het opvouwen van zonnepanelen in satellieten. In het eerste
gedeelte van dit proefschrift kijken we daarom naar de geometrie van
vouwpatronen. In het bijzonder focussen we hier ons op vouwpatronen
bestaande uit vier-vertices; dit zijn punten waar vier vouwlijnen samen-
komen. Een enkele vier-vertex is het simpelste voorbeeld van een vouw-
patroon dat kan worden gevouwen zonder het materiaal te verbuigen, en
heeft een opmerkelijke eigenschap: ondanks zijn enkele vrijheidsgraad
heeft hij twee verschillende vouwbewegingen. We maken gebruik van
deze eigenschap, en laten zien hoe we willekeurig grote vier-vertex vouw-
patronen kunnen ontwerpen die op twee of meer manieren op kunnen
vouwen. Dit is in tegenstelling tot andere methodes, die vouwpatronen
produceren die slechts op één manier vouwen. In het tweede gedeelte be-
kijken we enkele vier-vertices, en laten we een robuuste methode zien om
een vertex te maken met drie energieminima, welke corresponderen met
drie verschillende stabiele vouwtoestanden. Ook dit is in tegenstelling tot
andere methodes, die slechts bistabiele vertices of patronen genereren.

De meeste vouwpatronen die bestaan uit vier-vertices zijn periodiek,
en worden gemaakt door een enkele eenheidscel steeds te kopiëren, waar-
door het patroon willekeurig groot kan worden gemaakt. Deze patronen
voldoen aan de zogenaamde ‘starre-vouw voorwaarde’ die zegt dat de pa-
nelen tussen de vouwlijnen in –in dit geval vierhoeken– niet mogen ver-
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vormen tijdens de vouwbeweging. Een dergelijk vouwpatroon kan be-
schouwd worden als een mechanisme, bestaande uit starre vierhoekige
panelen verbonden door vrij bewegende scharnieren. Wij laten in dit werk
een methode zien die op combinatorische wijze star-vouwbare vier-vertex
vouwpatronen genereert, die op meer dan één manier kunnen vouwen, en
bovendien aperiodiek kunnen zijn. We doen dit door vouwpatronen op te
bouwen uit puzzelstukjes. Elk van deze puzzelstukjes representeert een
minimaal vier-vertex vouwpatroon waarbij de vier hoeken van een vier-
hoek allen worden bezet door een vier-vertex. Door gebruik te maken van
een set vertices die door symmetrie aan elkaar gerelateerd zijn, kan elk
puzzelstukje op tenminste twee verschillende manieren star opvouwen.
Daarnaast zijn deze puzzelstukjes zo ontworpen dat twee of meer aan
elkaar passende puzzelstukjes automatisch leiden tot een star-vouwbaar
patroon. De resulterende combinatorische vouwpatronen zijn in te de-
len in klassen, aangezien sommige puzzelstukjes wel samen binnen één
en hetzelfde patroon kunnen voorkomen, en sommige niet. We tellen de
hoeveelheid vouwpatronen van een bepaalde grootte binnen elke klasse,
en het aantal mogelijke vouwbewegingen per patroon, dat varieert per
klasse.

Hierna focussen we ons op een bijzondere klasse die precies twee vouw-
bewegingen heeft, ongeacht de grootte van het patroon. In deze klasse
kan de vorm van beide vouwbewegingen onafhankelijk van elkaar aan-
gepast worden, door specifieke puzzelstukjes te kiezen aan de zij- en bo-
venkant van het patroon. We demonstreren deze ontwerpstrategie door
twee plastic vellen met identiek lasergesneden vouwpatronen op te vou-
wen tot twee verschillende vormen. Dit is voor zover wij weten de eer-
ste (experimentele) demonstratie van een dergelijk tweevoudig vouwbaar
vouwpatroon.

In het tweede gedeelte van dit proefschrift kijken we naar het gedrag
van de enkele vier-vertex. Onze aandacht gaat in het bijzonder uit naar
niet-euclidische vier-vertices. Dit zijn vertices die niet gevouwen kunnen
worden uit een vlak stuk materiaal, omdat de vier hoeken tussen de vier
lijnen van de vertex niet optellen tot 360 graden, maar juist meer, óf min-
der. Dit zorgt ervoor dat de twee vouwbewegingen –die voor een euclidi-
sche vier-vertex samenkomen in de vlakke toestand– van elkaar worden
gescheiden door de starre-vouw voorwaarde. Deze scheiding maakt het
onmogelijk te wisselen van vouwbeweging zonder de panelen te verbui-
gen. Echter, het is nog wel mogelijk van vouwbeweging te wisselen door
de vertex dóór de vlakke toestand heen te duwen. Effectief hebben we zo
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een energiebarrìere gecreëerd tussen de twee vouwbewegingen, aangezien
het materiaal van de vertex in de praktijk verbogen moet worden.

We laten zien hoe deze energiebarrìere gebruikt kan worden om vier-
vertices te ontwerpen die drie stabiele vouwtoestanden hebben door het
toevoegen van één enkele torsieveer op één van de vouwen. Deze veer
zorgt ervoor dat op één van de twee vouwbewegingen twee stabiele vouw-
toestanden ontstaan, die corresponderen met een globaal minimum in de
energie. Op de andere vouwbeweging ontstaat daarentegen een lokaal
minimum, dat stabiel is mits de bovengenoemde energiebarrìere groot ge-
noeg is. We geven een experimentele demonstratie van een dergelijk sys-
teem door niet-euclidische vier-vertices te 3D-printen van plastic, en op
een van de vouwen één enkele torsieveer te plaatsen. We laten zien dat de
verkregen vertices inderdaad drie stabiele vouwtoestanden hebben. Als
laatste vergelijken we de theoretische energiecurves van de vouwbewe-
gingen met experimentele energiecurves. Dit doen we door de geprinte
vertices te testen in een torsietester, waarmee we het krachtmoment en de
energie meten die nodig zijn om van de ene stabiele vouwtoestand naar
de andere te schakelen.

De ontwerpstrategieën gepresenteerd in dit proefschrift kunnen wor-
den gemaakt door gebruik te maken van nieuwe, computergestuurde pro-
ductietechnieken, zoals lasersnijders en 3D-printers. Deze technieken
kunnen worden toegepast om patronen te maken met vouwen ter grootte
van enkele centimeters, zoals in dit proefschrift, maar zijn ook toe te pas-
sen op de kleinere schaal van micro- en millimeters. Daarmee komen
materialen met geheel nieuwe functionaliteiten binnen handbereik.
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Summary

When folding a crease pattern we change a two-dimensional, flat material
into an often complex three dimensional shape. Examples of such crease
patterns have been known for centuries as ‘origami’. Recently however,
material scientists and physicists have discovered that some crease pat-
terns have exotic material properties when folded. An example of this is
the so called ‘Miura-ori’ pattern (see chapter 1), which has a negative Pois-
son’s ratio in its folded configuration, which means it shrinks in multiple
directions when squeezed. Such properties depend solely on the geometry
of the crease pattern, and can be applied on the very small scale, such as in
insect wings, and on the very large scale, such as in solar panels for space-
satellites. In the first part of this thesis we therefore study the geometry
of folding patterns. Specifically, we focus on crease patterns consisting
entirely of four-vertices; these are points where four fold lines come to-
gether. A single four-vertex is the simplest example of a foldable crease
pattern that can be folded without bending the material in between the
folds, and has a remarkable property: despite its single degree of freedom,
it has two distinct folding motions. We make use of this property, and
show how to design arbitrarily large four-vertex crease patterns, which
can fold into two or more shapes. This is in contrast to other design meth-
ods, which produce patterns that can only fold into one specific shape. In
the second part of this thesis, we study single four-vertices, and show a
robust method to obtain four-vertices with three energy minima, which
correspond to three different stable folded configurations. This too is in
contrast to other experimental methods, which can only generate bistable
vertices or patterns.

Most crease patterns consisting of four-vertices are periodic, and are
designed by copying a single unit cell, which allows for the creation of ar-
bitrarily large crease patterns. These crease patterns satisfy the so called
‘rigid-folding’ condition, which says that the panels in between the fold
lines –quadrilaterals in this case– are not allowed to deform during the
folding process. Such a crease pattern can be considered as a mecha-
nism, consisting of rigid quadrilateral panels connected by freely moving
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hinges. In this work we show a combinatorial method capable of gen-
erating arbitrarily large aperiodic crease patterns, which also have multi-
ple distinct folding motions. We do this by representing crease patterns
by puzzle pieces; each of these puzzle pieces represents a minimal four-
vertex folding pattern where the four corners of a quadrilateral are each
occupied by a four-vertex. By using a set of vertices that are related to each
other by symmetry, the crease pattern associated with each puzzle piece
can fold into at least two different configurations. Furthermore, these
puzzle pieces are designed such that two (or more) puzzle pieces that
fit together, automatically lead to a rigidly foldable pattern. The result-
ing combinatorial fold patterns can be categorized into different classes,
since some puzzle pieces can appear within one and the same pattern,
and some can not. We count the number of crease patterns of a given size
within each class, and the number of folding motions for each pattern,
which varies per class.

We then focus on a special class, which has exactly two folding mo-
tions, regardless of the size of the pattern. In this class the shape of both
folding motions can be tuned independently of each other, by choosing
which puzzle pieces are at the top- and left-side of the pattern. We demon-
strate this design strategy by laser cutting two plastic sheets with identical
crease patterns, and folding them up into two different shapes. As far as
we know, this is the first (experimental) demonstration of such a bipotent
folding pattern.

In the second part of this thesis we study the behavior of single
four-vertices. Specifically, we focus our attention on non-euclidean four-
vertices. These are four-vertices which can not be folded from a flat piece
of material, as the four angles between the four fold lines of the vertex
add up to less (or more) than 360 degrees. Because of this, the two folding
branches of the single four-vertex –which come together at the flat config-
uration for a euclidean four-vertex– are disconnected from each other by
the rigid folding condition. This separation makes it impossible to switch
between the two folding branches without bending the panels. However,
it is still possible to switch from folding branches by forcing the vertex
through the flat configuration. Effectively we therefore created an energy
barrier between the two folding branches, since the material of the vertex
has to be bent.

We show that this energy barrier can be harnessed to design four-
vertices with three stable configurations by adding a single torsional
spring to one of the folds. This spring ensures that two stable configu-



rations are created on one of the two folding branches, which both cor-
respond to a global energy minimum. On the other folding branch, we
find a single stable configuration, corresponding to a local energy min-
imum. This minimum is stable, provided that the energy barrier men-
tioned above is high enough. We give an experimental demonstration
of such a system by 3D-printing non-euclidean four-vertices of plastic,
and placing a single torsional spring on one of the folds. We show that
the resulting vertices indeed have three stable configurations. Finally, we
compare the theoretical energy curves of the folding branches with experi-
mental energy curves. We do this by testing the vertices in a torsion-tester,
which can measure the torque and energy required to switch from one sta-
ble configuration to another.

The design strategies presented in this thesis can be applied by mak-
ing use of new, computer-controlled manufacturing techniques, such as
laser cutters and 3D-printers. These techniques can be applied to make
patterns on the scale of centimeters, such as in this thesis, but are also
applicable on the smaller scale of micro- and millimeters. This puts ma-
terials with completely novel functionalities within reach.
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