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Structure and function of the global topsoil 
microbiome
Mohammad Bahram1,2,3,21*, Falk Hildebrand4,21, Sofia K. Forslund4,16,17, Jennifer L. Anderson2, Nadejda A. Soudzilovskaia5,  
Peter M. Bodegom5, Johan Bengtsson-Palme6,7,18, Sten Anslan1,8, Luis Pedro Coelho4, Helery Harend1, Jaime Huerta-Cepas4,19, 
Marnix H. Medema9, Mia r. Maltz10, Sunil Mundra11, Pål Axel Olsson12, Mari Pent1, Sergei Põlme1, Shinichi Sunagawa4,20,  
Martin ryberg2, Leho tedersoo13* & Peer Bork4,14,15*

Soils harbour some of the most diverse microbiomes on Earth 
and are essential for both nutrient cycling and carbon storage. 
To understand soil functioning, it is necessary to model the 
global distribution patterns and functional gene repertoires of 
soil microorganisms, as well as the biotic and environmental 
associations between the diversity and structure of both bacterial 
and fungal soil communities1–4. Here we show, by leveraging 
metagenomics and metabarcoding of global topsoil samples (189 
sites, 7,560 subsamples), that bacterial, but not fungal, genetic 
diversity is highest in temperate habitats and that microbial gene 
composition varies more strongly with environmental variables than 
with geographic distance. We demonstrate that fungi and bacteria 
show global niche differentiation that is associated with contrasting 
diversity responses to precipitation and soil pH. Furthermore, we 
provide evidence for strong bacterial–fungal antagonism, inferred 
from antibiotic-resistance genes, in topsoil and ocean habitats, 
indicating the substantial role of biotic interactions in shaping 
microbial communities. Our results suggest that both competition 
and environmental filtering affect the abundance, composition 
and encoded gene functions of bacterial and fungal communities, 
indicating that the relative contributions of these microorganisms 
to global nutrient cycling varies spatially.

Bacteria and fungi dominate terrestrial soil habitats in terms of bio-
diversity, biomass and their influence over essential soil processes5. 
Specific roles of microbial communities in biogeochemical processes 
are reflected by their taxonomic composition, biotic interactions and 
gene functional potential1–4. Although microbial-biogeography studies 
have focused largely on single taxonomic groups, and on how their 
diversity and composition respond to local abiotic soil factors (for 
example, pH6,7), global patterns and the impact of biotic interactions 
on microbial biogeography remain relatively unexplored. In addition to 
constraints imposed by environmental factors, biotic interactions may 
strongly influence bacterial communities. For example, to outcompete 
bacteria, many fungal taxa secrete substantial amounts of antimicro-
bial compounds8, which may select for antibiotic-resistant bacteria and 
effectively increase the relative abundance of antibiotic-resistance genes 
(ARGs). Here we used metagenomics and DNA metabarcoding (16S, 
18S and internal transcribed spacer (ITS) rRNA gene markers), soil 
chemistry and biomass assessments (phospholipid fatty acids analyses 
(PLFAs)) to determine the relationships among genetic (functional 

potential), phylogenetic and taxonomic diversity and abundance in 
response to biotic and abiotic factors in 189 topsoil samples, covering 
all terrestrial regions and biomes of the world9 (Extended Data Fig. 1a, 
Supplementary Table 1). Altogether, 58,000 topsoil subsamples were 
collected from 0.25-ha plots from 1,450 sites (40 subsamples per site), 
harbouring homogeneous vegetation that were minimally affected by 
humans. We minimized biases and shortcomings in sampling10 as well 
as technical variation, including batch effects11, by using highly stand-
ardized collection and processing protocols. From the total collection, 
189 representative sites were selected for this analysis. We validated 
our main findings in external datasets, including an independent soil 
dataset (145 topsoil samples; Supplementary Table 1) that followed the 
same sampling and sequencing protocol.

Using metagenomics, we constructed a gene catalogue for soils, 
by combining our newly generated data with published soil metage-
nomes (n = 859, Supplementary Table 1) and identified 159,907,547 
unique genes (or fragments thereof). Only 0.51% of these 160 mil-
lion genes overlapped with those from published genomes and large 
gut12 and ocean13 gene catalogues that are much closer to saturation 
(Supplementary Table 2), indicating that the functional potential of soil 
microbiomes is enormously vast and undersampled. For functional 
analysis, we annotated genes and functional modules via orthologous 
groups using the eggNOG database14. For each sample, we also con-
structed taxonomic profiles at the class and phylum levels for both 
bacteria and fungi from relative abundance of rRNA genes in metagen-
omic datasets (miTags15), complemented by operational taxonomic 
units (OTUs) that were based on clustering 18S rRNA and ITS16 genes 
for soil fungi and 16S rRNA genes for soil bacteria at 97% similarity 
threshold (see Methods ‘Metagenomics and metabarcoding analyses’). 
In total, 34,522 16S-based bacterial, 2,086 18S-based and 33,476 ITS-
based fungal OTUs were analysed in the context of geographic space 
and 16 edaphic and climatic parameters were determined for each 
sampling site (see Methods ‘Statistical analyses’). Archaea were poorly 
represented in our metabarcoding data (less than 1% of OTUs) and 
metagenomics data (less than 1% of miTags) and hence are excluded 
from most analyses.

We examined whether the latitudinal diversity gradient (LDG), a 
trend of increasing diversity from the poles to the tropics seen in many 
macroscopic organisms, especially plants17, applies to microbial global 
distribution patterns10. We found that, contrary to the typical LDG, 
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both taxonomic and gene functional diversity of bacteria peaked at 
mid-latitudes and declined towards the poles and the equator, as is also 
seen in the global ocean13, although the pattern was relatively weak 
for taxonomic diversity herein (Fig. 1a, c, Extended Data Figs. 1b, 2). 
The deviation of several bacterial phyla (5 out of 20) from the general 
trends may be explained by responses to edaphic and climate factors 
weakly related to latitude (Extended Data Fig. 1b) or contrasting effects 
at lower taxonomic levels (Supplementary Discussion). By contrast, the 
LDG does apply to overall fungal taxonomic diversity, and to three out 
of five fungal phyla when examined separately, but not to fungal func-
tional diversity, which was lowest in temperate biomes and exhibited 
an inverse unimodal relationship with latitude (Fig. 1b, d, Extended 
Data Fig. 2c). The LDG was negligible for oceanic fungi (regression 
analysis, P > 0.05)13, possibly owing to their lower dispersal limitation 
and the paucity of plant associations. Although fungal taxonomic diver-
sity decreased poleward, the total fungal biomass (inferred from PLFA 
markers) and the fungal/bacterial biomass ratio increased poleward, 
partly owing to a decline in bacterial biomass with increasing latitude 
(Extended Data Fig. 3a–c).

We tested the extent to which deterministic processes (such as com-
petition and environmental filtering; that is, the niche theory) versus 
neutral processes (dispersal and drift; the neutral theory) explain the 
distributions of fungal and bacterial taxa and functions18. In bacteria,  
environmental variation correlated strongly with taxonomic 

composition (partial Mantel test accounting for geographic distance 
between samples: rEnv|Geo = 0.729, P = 0.001) and moderately with gene 
functional composition (rEnv|Geo = 0.100, P = 0.001), whereas the overall 
effect of geographic distance among samples was negligible (P > 0.05). 
The weak correlation between geographic and taxonomic as well as 
functional composition suggests that environmental variables are more 
important than dispersal capacity in determining global distributions 
of soil bacteria and their encoded functions, as previously suggested19 
and observed for oceanic prokaryotes13.

For fungi, both geographic distance and environmental parameters 
were correlated with taxonomic composition (ITS data: rGeo|Env = 0.307, 
P = 0.001; rEnv|Geo = 0.208, P = 0.001; 18S data: rGeo|Env = 0.193, 
P = 0.001; rEnv|Geo = 0.333, P = 0.001). Environmental distance (but not 
geographic distance) correlated with composition of fungal functional 
genes (rEnv|Geo = 0.197, P = 0.001), as was also observed for bacteria. 
The relatively weaker correlation of fungi with environmental variation 
is consistent with results from local scales7. Thus, at both global and 
local scales, different processes appear to underlie community assembly 
of fungi and bacteria.

To more specifically investigate the association between environ-
mental parameters and the distribution of taxa and gene functions on 
a global scale, we used multiple regression modelling (see Methods 
‘Statistical analyses’). We found that bacterial taxonomic diversity, com-
position, richness and biomass as well as the relative abundance of major 
bacterial phyla can be explained by soil pH, nutrient concentration  
and to a lesser extent by climatic variables (Extended Data Figs. 4, 5, 
Supplementary Table 4). The composition of bacterial communities 
responded most strongly to soil pH, followed by climatic variables, par-
ticularly mean annual precipitation (MAP; Extended Data Figs. 4, 5).  
This predominant role of pH agrees with studies from local to conti-
nental scales6, and may be ascribed to the direct effect of pH or related 
variables such as the concentration of calcium and other cations6. 
The relative abundance of genes that encode several metabolic and 
transport pathways were strongly increased with pH (Extended Data 
Fig. 4c), suggesting that there may be greater metabolic demand for 
these functions for bacteria in high-nutrient and alkaline conditions.

Compared to temperate biomes, tropical and boreal habitats con-
tained more closely related taxa at the tip of phylogenetic trees, but 
from more distantly related clades (Extended Data Fig. 2d), indicating 
a deeper evolutionary niche specialization in bacteria20. Together with 
global biomass patterns (Extended Data Fig. 2a), these results suggest 
that soil bacterial communities in the tropics and at high latitudes are 
subjected to stronger environmental filtering and include a relatively 
greater proportion of edaphic-niche specialists, possibly rendering 
these communities more vulnerable to global change. By contrast, 
phylogenetic overdispersion in temperate bacterial communities, may 
result from greater competitive pressure20 or nutrient availability as 
predicted by the niche theory21.

In contrast to the strong association between bacterial taxonomic 
diversity and soil pH, diversity of bacterial gene functions was more 
strongly correlated with MAP (Extended Data Fig. 5a–h). The steeper 
LDG in gene functions than in taxa (Fig. 1a, c) may thus relate to the 
stronger association of specific metabolic functions to climate than 
to local soil conditions. Although soil and climate variables exhibited 
comparable correlations with fungal taxa, the soil carbon-to-nitrogen 
ratio (C/N) was the major predictor for fungal biomass and relative 
abundance and composition of gene functions (Extended Data Figs. 3g, 
4b, d, Supplementary Table 4). We hypothesize that, compared to  
bacteria, the global distribution of fungi is more limited by resource 
availability owing to specialization for the use of specific compounds 
as substrates and greater energy demand.

We interpret opposing biogeographic trends for bacteria and fungi 
as niche segregation, driven by differential responses of bacteria and 
fungi to environmental factors7 and their direct competition. Gene 
functional diversity of both bacteria and fungi responded to MAP and 
soil pH, albeit in opposite directions (Extended Data Fig. 5c, d, g, h, 
Supplementary Table 3). This may partly explain the observed inverse 
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Fig. 1 | Fungal and bacterial diversity exhibit contrasting patterns 
across the latitudinal gradient. a–d, Latitudinal distributions of 
bacterial (a, c) and fungal (b, d) taxonomic (a, b; n = 188 biologically 
independent samples) and gene functional (c, d; n = 189 biologically 
independent samples) diversity in global soil samples. First- and second-
order polynomial fits are shown in grey and black, respectively. The 
best polynomial fit was determined (as underlined) on the basis of the 
corrected Akaike Information Criterion (AICc; see Methods ‘Statistical 
analyses’) of the first and second order polynomial models (ANOVA:  
a, F = 34.28, P < 10−7; b, F = 3.84, P = 0.052; c, F = 50.48, P < 10−10;  
d, F = 18.55, P < 10−4). Grey dashed and black solid lines are the first 
and second order polynomial regression lines, respectively. Diversity was 
measured using inverse Simpson index (these trends were robust to the 
choice of index, see Extended Data Fig. 2b, c). The latitudinal distribution 
of the high-level biome (tropical, temperate and boreal-arctic) is given at 
the top of a and b.
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pattern of gene functional diversity across the latitudinal gradient, that 
is, niche differentiation, between bacteria and fungi (Fig. 1, Extended 
Data Fig. 2). Although increasing precipitation seems to favour higher 
fungal diversity, it is associated with higher bacterial/fungal biomass 
and abundance ratios (Extended Data Figs. 3d, g, 5f, h). The increasing 
proportion of fungi towards higher latitudes may be explained by com-
petitive advantages, perhaps owing to a greater tolerance to nutrient 
and water limitation associated with potential long-distance transport 
by hyphae.

A role of inter-kingdom biotic interactions in determining the  
distributions of functional diversity and biomass in fungi and bacteria 
has been suggested previously22. As competition for resources affects the 
biomass of fungi and bacteria22,23, we hypothesized that the bacterial/ 
fungal biomass ratio is related to the prevalence of fungi and bacterial 
antibiotic-resistance capacity, because of broader activities of fungi than 
bacteria in using complex carbon substrates24 as well as increased anti-
biotic production of fungi in high C/N environments25. Consistent with 
this hypothesis, we found that both fungal biomass and the bacterial/ 
fungal biomass ratio correlated with the relative abundance of ARGs 
(Extended Data Fig. 6) and that most fungal orthologous group 

subcategories, particularly those involved in biosynthesis of antibiotic 
and reactive oxygen species, increased with soil C/N (Supplementary 
Table 4; Supplementary Discussion). We also found that the relative 
abundance of ARGs in topsoil is more strongly related to fungal relative 
abundance (r = 0.435, P < 10−9) and bacterial/fungal abundance ratio 
(r = −0.445, P < 10−12; Fig. 2b) than to bacterial relative abundance 
(r = 0.232, P = 0.002, on the basis of miTags), which is supported by 
our external validation dataset (fungal relative abundance r = 0.637, 
P < 10−15; bacterial/fungal abundance ratio r = −0.621, P < 10−15; bac-
terial relative abundance r = 0.174, P = 0.036). In addition, the relative 
abundance of ARGs in topsoil was significantly negatively correlated 
with bacterial phylogenetic diversity and OTU richness on the basis 
of the 16S rRNA gene (Spearman correlation, P < 0.01; Extended 
Data Figs. 7a, c, 8a), further supporting a role for biotic interactions in  
shaping microbial communities.

We also tested possible direct and indirect relationships between 
ARGs and 16 environmental predictors using structural equation mod-
elling (SEM; Supplementary Table 5). The optimized model suggests 
that the soil C/N ratio and moisture, rather than pH—the predominant 
driver of bacterial diversity (Extended Data Fig. 3g, Supplementary 

Fig. 2 | Global relative abundance of ARGs can be explained by a 
combination of biotic and abiotic factors. a, Pairwise Spearman’s 
correlation matrix of the main biotic and abiotic determinants of 
the relative abundance of ARGs. b, Bacterial/fungal abundance ratio 
significantly correlated with the relative abundance of ARGs on a global 
scale. c, Structural equation modelling (SEM) of the relative abundance 
of ARGs in the soil (green) and ocean (blue) datasets (explaining 44% 
and 51% of variation, respectively; Supplementary Table 5). The goodness 
of fit was acceptable (soil dataset: root mean square error of estimation 
(RMSEA) = 0.00, P value for a test of close fit (PCLOSE) = 0.989, n = 189 

biologically independent samples; ocean dataset: RMSEA = 0.059, 
PCLOSE = 0.302, n = 139 biologically independent samples). Abundance, 
relative abundance of miTags determined as fungi (including fungus-like 
protists) or bacteria; B/F, bacterial/fungal abundance or biomass ratio; 
bacterial richness, bacterial OTU (>97% similarity) richness on the basis 
of the metabarcoding dataset; biomass (nmol g−1), absolute biomass on 
the basis of PLFA analysis; DCM, deep chlorophyll maximum; MAT, mean 
annual temperature; N, nitrates; NA, not applicable; NS, not significant 
(P > 0.05, q > 0.1); Std. coeff., standardized coefficients.
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Discussion)—affect the bacterial/fungal abundance ratio, which in turn 
affects the relative abundance of ARGs at the global scale (Fig. 2c). 
In line with increased production of antibiotics in high-competition 
environments, the soil C/N ratio was the best predictor for richness of 
fungal functional genes (r2 = 0.331, P < 10−15; Supplementary Table 3) 
and bacterial carbohydrate active enzyme (CAZyme) genes involved 
in degrading fungal carbohydrates (r = 0.501, P < 10−12). The relative  
abundance of ARGs was also strongly correlated with C/N in the  
external validation dataset (r = 0.505, P < 10−10).

Although the concomitant increase in antibiotic-resistance potential 
and the relative abundance of bacteria (as potential ARG carriers) was 
expected, the strong correlation of fungal relative abundance with the 
relative abundance of ARGs and in turn bacterial phylogenetic diversity 
may be explained by selection against bacteria that lack ARGs, such that 
bacteria surviving fungal antagonism are enriched for ARGs. Among 
all studied phyla, the relative abundance of Chloroflexi, Nitrospirae, 
and Gemmatimonadetes bacteria (on the basis of miTags), taxa with 
relatively low genomic ARG content (Supplementary Table 6) were 
most strongly negatively correlated with ARG relative abundance 
(Fig. 3a). By contrast, ARGs were strongly positively correlated with 
the relative abundance of Proteobacteria, which have the greatest aver-
age number of ARGs per genome26 among bacteria (Supplementary 
Table 6), and the fungal phyla Ascomycota and Zygomycota sensu lato 

(including Zoopagomycota and Mucoromycota) in both the global soil 
and the external validation datasets (Fig. 3a, b, Extended Data Fig. 9a, c,  
Supplementary Table 7). More specifically, ITS metabarcoding  
revealed increasing relative abundances of ARGs with numerous 
fungal OTUs (Supplementary Table 8), particularly those belong-
ing to Oidiodendron (Myxotrichaceae, Ascomycota) and Penicillium 
(Aspergillaceae, Ascomycota), which are known antibiotic  
producers27,28 (Supplementary Discussion). Among bacterial ARGs, 
the relative abundance of efflux pumps and β-lactamases, which act 
specifically on fungal-derived antibiotics, were significantly correlated 
to the relative abundance of Ascomycota (Extended Data Fig. 10a, 
Supplementary Table 7). Actinobacteria, encompassing antibiotic- 
producing Streptomyces, also significantly correlated to ARG diversity  
in topsoil (Supplementary Table 6). Together these results suggest 
that relationships between organismal and ARG abundances are  
probably the result of selective and/or suppressive actions of antibiotics 
on bacteria.

Consistent with our observations in topsoil, we found evidence 
for antagonism between fungi and bacteria in oceans by reanalysing  
the distribution of ARGs in 139 water samples from the global Tara 
Oceans project13 (see Methods ‘External metagenomic datasets’; 
Supplementary Table 1, Extended Data Fig. 8a): the fungus-like stra-
menopile class Oomycetes (water moulds) and the fungal phylum 
Chytridiomycota constituted the groups most strongly associated 
with the relative abundance of bacterial ARGs (Fig. 3a, c, Extended 
Data Figs. 9b, d, 10b, d). Although there is little direct evidence that 
oomycetes produce antibiotics, their high antagonistic activity can 
induce bacteria29 and other organisms, including fungi30, to produce 
antibiotics (Supplementary Discussion). As in topsoil, bacterial phy-
logenetic diversity was significantly negatively correlated with the  
relative abundance of ARGs in ocean samples (Extended Data Fig. 7b, c).  
In addition, the relative abundance of ARGs declined with increasing 
distance from the nearest coast in ocean samples (Extended Data 
Fig. 8b), which may reflect the effect of a decreasing nutrient gradient 
along distance from the coast on the pattern of bacterial and fungal 
abundance and in turn the abundance of ARGs. The agreement of 
results from these disparate habitats suggests that competition for 
resources related to nutrient availability and climate factors drive 
a eukaryotic–bacterial antagonism in both terrestrial and oceanic 
ecosystems.

Our results indicate that both environmental filtering and niche dif-
ferentiation determine global soil microbial composition, with a minor 
role of dispersal limitation at this scale (for limitations, see Methods 
‘Metagenomics and metabarcoding analyses’). In particular, the global 
distributions of soil bacteria and fungi were most strongly associated 
with soil pH and precipitation, respectively. Our data further indicate  
that inter-kingdom antagonism, as reflected in the association of  
bacterial ARGs with fungal relative abundance, is also important in 
structuring microbial communities. Although further studies are 
needed to explicitly address the interplay between the bacterial/fungal 
abundance ratio and the abundance of ARGs, our data suggest that 
environmental variables that affect the bacterial/fungal abundance 
ratio may have consequences for microbial interactions and may favour 
fungi- or bacteria-driven soil nutrient cycling. This unprecedented view 
of the global patterns of microbial distributions indicates that global 
climate change may differentially affect bacterial and fungal commu-
nity composition and their functional potential, because acidification, 
nitrogen pollution and shifts in precipitation all have contrasting effects 
on topsoil bacterial and fungal abundance, diversity and functioning.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0386-6.
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Fig. 3 | Fungi are the main determinants of the relative abundance 
of ARGs in soils and oceans. a, The association between the relative 
abundance of ARGs and major bacterial and fungal (including fungal-
like protist) phyla in metagenomic samples from soils and oceans. Outer 
circle colour corresponds to the Pearson’s correlation coefficient. Circle fill 
colour corresponds to the significance after adjustment for multiple testing 
(q value), as indicated in the legend. b, c, Relationships (non-parametric 
correlations) between the relative abundances of the most correlated fungal 
groups with ARGs in soil metagenomes from this study (b) and ocean 
metagenomes (c). For statistical details and significance, see Supplementary 
Table 8. Asterisks denote significance after Benjamini–Hochberg correction 
for multiple testing; *q < 0.1. See also Supplementary Discussion and 
Supplementary Table 8 for analogous results as in a but at the class level, and 
in other habitats besides soil and ocean including published non-forest and 
agricultural soil as well as human skin and gut samples.

Ext
er

na
l s

oil

Glob
al 

oc
ea

n

Fu
ng

i
B

ac
te

ria

Glob
al 

so
il

–0.6
–0.3
0
0.3
0.6

a

Abundance

Ascomycota abundance

1 × 10–4

2 × 10–4

0.0016 0.0034 0.0057

r = 0.475
P = 5 × 10–12

A
R

G
 a

b
un

d
an

ce

2.
5 

× 1
0
–7

2.
25

 ×
 1

0
–6

6.
25

 ×
 1

0
–6

0.000225

0.000625

r = 0.757c
P < 2 × 10–16

A
R

G
 a

b
un

d
an

ce

Correlation q value

b

n = 189

Oomycota abundance

n = 139

10–1

10–2

10–3

10–4

10–14

10–11

10–8

10–5

10–2

Firmicutes
Lentisphaerae
Thermotogae
Fibrobacteres

Microgenomates
Verrucomicrobia
Deferribacteres

Chlorobi
Planctomycetes

Tenericutes
Omnitrophica

Paracubacteria
Gemmatiomonadetes

Latescibacteria
Chloro�exi
Nitrospirae

Chlamydiae
Saccharibacteria

Fusobacteria
Cyanobacteria
Proteobacteria
Bacteroidetes

Armatimonadetes
Actinobacteria
Acidobacteria

Basidiomycota
Zygomycota

Oomycota
Chytridiomycota

Ascomycota

2 3 6  |  N A t U r e  |  V O L  5 6 0  |  9  A U G U S t  2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1038/s41586-018-0386-6
https://doi.org/10.1038/s41586-018-0386-6


Letter reSeArCH

 1. Green, J. L., Bohannan, B. J. & Whitaker, R. J. Microbial biogeography: from 
taxonomy to traits. Science 320, 1039–1043 (2008).

 2. Reed, D. C., Algar, C. K., Huber, J. A. & Dick, G. J. Gene-centric approach to 
integrating environmental genomics and biogeochemical models. Proc. Natl 
Acad. Sci. USA 111, 1879–1884 (2014).

 3. Maynard, D. S., Crowther, T. W. & Bradford, M. A. Fungal interactions reduce 
carbon use efficiency. Ecol. Lett. 20, 1034–1042 (2017).

 4. de Menezes, A. B., Richardson, A. E. & Thrall, P. H. Linking fungal–bacterial 
co-occurrences to soil ecosystem function. Curr. Opin. Microbiol. 37, 135–141 
(2017).

 5. Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem 
functioning. Nature 515, 505–511 (2014).

 6. Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based 
assessment of soil pH as a predictor of soil bacterial community structure at 
the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

 7. Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an 
arable soil. ISME J. 4, 1340–1351 (2010).

 8. de Boer, W., Folman, L. B., Summerbell, R. C. & Boddy, L. Living in a fungal 
world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 
29, 795–811 (2005).

 9. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: 
a new global map of terrestrial ecoregions provides an innovative tool for 
conserving biodiversity. Bioscience 51, 933–938 (2001).

 10. Green, J. & Bohannan, B. J. Spatial scaling of microbial biodiversity. Trends Ecol. 
Evol. 21, 501–507 (2006).

 11. Yuan, S., Cohen, D. B., Ravel, J., Abdo, Z. & Forney, L. J. Evaluation of methods for 
the extraction and purification of DNA from the human microbiome. PLoS ONE 
7, e33865 (2012).

 12. Li, J. et al. An integrated catalog of reference genes in the human gut 
microbiome. Nat. Biotechnol. 32, 834–841 (2014).

 13. Sunagawa, S. et al. Structure and function of the global ocean microbiome. 
Science 348, 1261359 (2015).

 14. Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with 
improved functional annotations for eukaryotic, prokaryotic and viral 
sequences. Nucleic Acids Res. 44, D286–D293 (2016).

 15. Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful 
alternative to amplicon sequencing to explore diversity and structure of 
microbial communities. Environ. Microbiol. 16, 2659–2671 (2014).

 16. Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 
1256688 (2014).

 17. Willig, M. R., Kaufman, D. & Stevens, R. Latitudinal gradients of biodiversity: 
pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 
(2003).

 18. Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the 
map. Nat. Rev. Microbiol. 4, 102–112 (2006).

 19. Baas-Becking, L. G. M. Geobiologie; Of Inleiding tot de Milieukunde (W. P. Van 
Stockum & Zoon NV, The Hague, 1934).

 20. Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and 
community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

 21. Bryant, J. A., Stewart, F. J., Eppley, J. M. & DeLong, E. F. Microbial community 
phylogenetic and trait diversity declines with depth in a marine oxygen 
minimum zone. Ecology 93, 1659–1673 (2012).

 22. Frey-Klett, P. et al. Bacterial–fungal interactions: hyphens between agricultural, 
clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 75, 
583–609 (2011).

 23. Mille-Lindblom, C., Fischer, H. & Tranvik, J. L. Antagonism between bacteria and 
fungi: substrate competition and a possible tradeoff between fungal growth and 
tolerance towards bacteria. Oikos 113, 233–242 (2006).

 24. Koranda, M. et al. Fungal and bacterial utilization of organic substrates depends 
on substrate complexity and N availability. FEMS Microbiol. Ecol. 87, 142–152 
(2014).

 25. Platas, G., Pelaez, F., Collado, J., Villuendas, G. & Diez, M. Screening of 
antimicrobial activities by aquatic hyphoycetes cultivated on various nutrient 
sources. Cryptogam. Mycol. 19, 33–43 (1998).

 26. Mende, D. R. et al. proGenomes: a resource for consistent functional and 
taxonomic annotations of prokaryotic genomes. Nucleic Acids Res. 45, 
D529–D534 (2017).

 27. Bérdy, J. Thoughts and facts about antibiotics: where we are now and where we 
are heading. J. Antibiot. (Tokyo) 65, 385–395 (2012).

 28. Andersen, N. R. & Rasmussen, P. The constitution of clerocidin a new antibiotic 
isolated from Oidiodendron truncatum. Tetrahedron Lett. 25, 465–468 (1984).

 29. Zhao, Y., Qian, G., Chen, Y., Du, L. & Liu, F. Transcriptional and antagonistic 
responses of biocontrol strain Lysobacter enzymogenes OH11 to the plant 
pathogenic oomycete Pythium aphanidermatum. Front. Microbiol. 8, 1025 (2017).

 30. Takahashi, K. et al. Cladomarine, a new anti-saprolegniasis compound isolated 
from the deep-sea fungus, Penicillium coralligerum YK-247. J. Antibiot. (Tokyo) 
70, 911–914 (2017).

Acknowledgements The authors thank I. Liiv for technical and laboratory 
assistance; S. Waszak for comments on the manuscript; Y. P. Yuan and A. 
Glazek for bioinformatics support and A. Holm Viborg for help in retrieving 
the CAZY database. We also thank V. Benes, R. Hercog and other members of 
the EMBL GeneCore (Heidelberg), who provided assistance and facilities for 
sequencing. This study was funded by the Estonian Research Council (grants 
PUT171, PUT1317, PUT1399, IUT20-30, MOBERC, KIK, RMK, ECOLCHANGE), 
the Swedish Research Council (VR grant 2017-05019), Royal Swedish Academy 
of Sciences, Helge Axson Johnsons Stiftelse, EU COST Action FP1305 Biolink 
(STSM grant), Netherlands Organization for Scientific research (vidi grant 
016.161.318), EMBL European Union’s Horizon 2020 Research and Innovation 
Programme (#686070; DD-DeDaF) and Marie Skłodowska-Curie (600375).

Reviewer information Nature thanks S. Tringe and the other anonymous 
reviewer(s) for their contribution to the peer review of this work.

Author contributions M.B., L.T. and P.B. conceived the project. L.T. supervised 
DNA extraction and sequencing. M.B., F.H., S.K.F., J.L.A., M.R. and P.M.B. designed 
and supervised the data analyses. F.H. designed and performed bioinformatics 
analysis. N.A.S. and P.A.O. performed biomass analysis. S.K.F., S.M., M.P., S.A., 
H.H., S.P., M.R.M., S.S. and L.T. contributed data. M.B., F.H., S.K.F., J.L.A., P.M.B., 
S.A., J.B.-P., M.H.M., L.P.C. and J.H.-C. performed the data analyses. M.B. wrote 
the first draft of the manuscript with input from F.H., S.F., J.L.A., L.T. and P.B. All 
authors contributed to data interpretation and editing of the paper.

Competing interests The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41586-
018-0386-6.
Supplementary information is available for this paper at https://doi.org/ 
10.1038/s41586-018-0386-6.
Reprints and permissions information is available at http://www.nature.com/
reprints.
Correspondence and requests for materials should be addressed to M.B., L.T. 
or P.B.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

9  A U G U S t  2 0 1 8  |  V O L  5 6 0  |  N A t U r e  |  2 3 7
© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1038/s41586-018-0386-6
https://doi.org/10.1038/s41586-018-0386-6
https://doi.org/10.1038/s41586-018-0386-6
https://doi.org/10.1038/s41586-018-0386-6
http://www.nature.com/reprints
http://www.nature.com/reprints


LetterreSeArCH

MEthodS
No statistical methods were used to predetermine sample size. The experiments 
were not randomized. The investigators were not blinded to allocation during 
experiments and outcome assessment.
Soil-sample preparation. Composite soil samples from 1,450 sites worldwide 
were collected using highly standardized protocols16. The sampling was conducted 
broadly across the most influential known environmental gradient (that is, the 
latitude) taking advantage of a global ‘natural laboratory’ to study the impact of 
climate on diversity across vegetation, biome and soil types and to enable testing 
of the effects of environmental parameters, spatial distance and biotic interactions 
in structuring microbial communities. We carefully selected representative sites 
for different vegetation types separated by spatial distances that were sufficient 
to minimize spatial autocorrelation and to cover most areas of the globe. Total 
DNA was extracted from 2 g of soil from each sample using the PowerMax Soil 
DNA Isolation kit (MoBio). A subset of 189 high-quality DNA samples represent-
ing different ecoregions spanning multiple forest, grassland and tundra biomes 
(Supplementary Table 1) were chosen for prokaryote and eukaryote metabar-
coding (ribosomal rRNA genes) and whole metagenome analysis. Samples from 
desert (n = 8; G4010, G4034, S357, S359, S411, S414, S418 and S421) and man-
grove (n = 1: G4023) biomes yielded sufficient DNA for metabarcoding, but not 
for metagenomics sequencing, thus these samples were used for global mapping 
of taxonomic diversity but excluded from all comparisons between functional 
and taxonomic diversity. One sample (S017) contained no 16S sequences; thus, 
altogether, 189 and 197 samples were used for metagenomics and metabarcoding 
analyses, respectively.

To determine the functional gene composition of each sample, 5 μg total soil 
DNA (300–400 bp fragments) was ligated to Illumina adaptors using the TruSeq 
Nano DNA HT Library Prep Kit (Illumina) and shotgun-sequenced in three 
runs of the Illumina HiSeq 2500 platform (2 × 250 bp paired-end chemistry, 
rapid run mode)31 in the Estonian Genomics Center (Tartu, Estonia). Taxonomic 
composition was estimated from the same DNA samples using ribosomal DNA 
metabarcoding for bacteria (16S V4 subregion) and eukaryotes (18S V9 subregion). 
For amplification of prokaryotes and eukaryotes, universal prokaryote primers 
515F and 806RB32 (although this pair may discriminate against certain groups of 
Archaea and Bacteria such as Crenarchaeota/Thaumarchaeota (and SAR1133) and 
eukaryote primers 1389f and 1510r34 were used. Although the resolution of 16S 
rRNA sequencing is limited to assignments to the level of genus (and higher), it is 
currently a standard approach in profiling bacterial communities and thus enabled 
us at least to explore patterns at coarse phylogenetic resolution.

Each primer was tagged with a 10–12-base identifier barcode16. DNA samples 
were amplified using the following PCR conditions: 95 °C for 15 min, and then 30 
cycles of 95 °C for 30 s, 50 °C for 45 s and 72 °C for 1 min with a final extension 
step at 72 °C for 10 min. The 25 μl PCR mix consisted of 16 μl sterilized H2O, 5 μl 
5× HOT FIREPol Blend MasterMix (Solis Biodyne, Tartu, Estonia), 0.5 μl each 
primer (200 nM) and 3 μl template DNA. PCR products from three technical rep-
licates were pooled and their relative quantity was evaluated after electrophoresis 
on an agarose gel. DNA samples producing no visible band or an overly strong band 
were amplified using 35 or 25 cycles, respectively. The amplicons were purified 
(FavourPrep Gel/PCR Purification Kit; Favourgen), checked for quality (ND 1000 
spectrophotometer; NanoDrop Technologies), and quantified (Qubit dsDNA HS 
Assay Kit; Life Technologies). Quality and concentration of 16S amplicon pools 
were verified using Bioanalyzer HS DNA Analysis Kit (Agilent) and Qubit 2.0 
Fluorometer with dsDNA HS Assay Kit (Thermo Fisher Scientific), respectively. 
Sequencing was performed on an Illumina MiSeq at the EMBL GeneCore facility 
(Heidelberg, Germany) using a v2 500 cycle kit, adjusting the read length to 300 
and 200 bp for read1 and read2, respectively. 18S amplicon pools were quality  
checked using Bioanalyzer HS DNA Analysis Kit (Agilent), quantified using 
Qubit 2.0 Fluorometer with dsDNA HS Assay Kit (Thermo Fisher Scientific) and 
sequenced on an Illumina HiSeq at Estonian Genomics Center (Tartu, Estonia). 
Sequences resulting from potential contamination and tag switching were  
identified and discarded on the basis of two negative and positive control samples 
per sequencing run.
Soil chemical analysis and biomass analysis. All topsoil samples were subjected 
to chemical analysis of pHKCl, Ptotal (total phosphorus), K, Ca and Mg; the content 
of 12C, 13C, 14N and 15N was determined using an elemental analyser (Eurovector) 
coupled with an isotope-ratio mass spectrometer35.

To calculate the absolute abundance of bacteria and fungi using an independent 
approach, bacterial and fungal biomass were estimated from PLFAs36 in nmol g−1 
as follows. Lipids were extracted from 2 g freeze dried soil in a one-phase solution 
of chloroform, methanol and citrate buffer37. Chloroform and citrate buffer was 
added to split the collected extract into one lipophilic phase, and one hydrophilic 
phase. The lipid phase was collected and applied on a pre-packed silica column37. 
The lipids were separated into neutral lipids, intermediate lipids and polar lipids 
(containing the phospholipids) by subsequent elution with chloroform, acetone 

and methanol. The neutral and phospholipids were dried using a speed vac. Methyl 
nonadecanoic acid (Me19:0) was added as an internal standard. The lipids were 
subjected to a mild alkaline methanolysis, in which fatty acids were derivatized to 
fatty acid methyl esters (FAMEs). The FAMEs from neutral (NLFAs) and phos-
pholipids (PLFAs) were dried, using speed vac, and then dissolved in hexane before 
analysis on a gas chromatograph as described38. Fungal biomass was estimated as 
the concentration of PLFA 18:2ω6,9 and bacterial biomass from the sum of nine 
PLFAs (i15:0, i16:0, i17:0, a15:0, a17:0, cy17:0, cy19:0, 10Me17:0 and 10Me18:0)37. 
The nomenclature of fatty acids was according to previously published work38.
Acquisition of metadata from public databases. Climate data including monthly 
temperature and precipitation were obtained from the WorldClim database (http://
www.worldclim.org). In addition, estimates of soil carbon, moisture, pH, potential 
evapotranspiration (PET) and net primary productivity (NPP) at 30 arc minute 
resolution were obtained from the Atlas of the Biosphere (https://nelson.wisc.edu/
sage/data-and-models/atlas/maps.php). Samples were categorized into 11 biomes9, 
with all grassland biomes being categorized as ‘grasslands’. Thus, the following 
biomes were considered and summarized to three global levels: moist tropical 
forests, tropical montane forests and dry tropical forests, savannahs as tropical; 
Mediterranean, grasslands and shrublands, southern temperate forests, conifer-
ous temperate forests and deciduous temperate forests as temperate; and boreal 
forests and arctic tundra as boreal–arctic. The time from the last fire disturbance 
was estimated on the basis of enquiries to local authorities or collaborators and 
evidence from the field.
Metagenomics and metabarcoding analyses. Processing of metagenomics sequence 
data. Most soil microorganisms are uncultured, making their identification  
difficult. Metagenomics analysis has emerged as a way around this to capture both 
genetic and phylogenetic diversity. As such, it can only directly reveal the poten-
tial for functions through determining and tracing gene family abundances (as 
opposed to realized protein activity), which may be involved in various functional 
pathways39, but we can safely assume a strong correspondence between gene func-
tional potential and the resulting ecosystem functioning40 or enzyme activities41.

Reads obtained from the shotgun metagenome sequencing of topsoil samples 
were quality-filtered, if the estimated accumulated error exceeded 2.5 with a prob-
ability of ≥0.0142, or >1 ambiguous position. Reads were trimmed if base quality 
dropped below 20 in a window of 15 bases at the 3′ end, or if the accumulated error 
exceeded 2 using the sdm read filtering software43. After this, all reads shorter 
than 70% of the maximum expected read length (250 bp unless noted otherwise 
for external datasets) were removed. This resulted in retention of 894,017,558 out 
of 1,307,037,136 reads in total (Supplementary Table 1). We implemented a direct 
mapping approach to estimate the functional gene composition of each sample. 
First, the quality-filtered read pairs were merged using FLASH44. The merged 
and unmerged reads were then mapped against functional reference sequence 
databases (see below) using DIAMOND v.0.8.10 in blastx mode using ‘-k 5 -e 
1e-4 --sensitive’ options. The mapping scores of two unmerged query reads that 
mapped to the same target were combined to avoid double counting. In this case, 
the hit scores were combined by selecting the lower of the two e values and the 
sum of the bit scores from the two hits. The best hit for a given query was based 
on the highest bit score, longest alignment length and highest percentage identity 
to the subject sequence. Finally, aligned reads were filtered to those that had an 
alignment percentage identity >50% and e < 1 × 10−9 (see ‘Parameterization and 
validation of metagenomics approach’ for parameter choice).

The functional databases to which metagenomic reads were mapped included 
gene categories related to ROS sources (peroxidases genes databases45,46, KEGG47 
(Kyoto Encyclopedia of Genes and Genomes) and CAZyme genes (http://www.
cazy.org, accessed 22 November 2015)48. To facilitate the interpretation of the 
results, the relative abundance of CAZyme genes were summed on the basis of 
the substrates for each gene family. Substrate utilization information for CAZyme 
families was obtained from previously published work49,50 as well as the CAZypedia 
(http://www.cazypedia.org/index.php?title=Carbohydrate-binding_modules&ol-
did=9411). On the basis of the KEGG orthologue abundance matrices we cal-
culated SEED functional module abundances. For functional annotations of 
metagenomic reads, we used in silico annotation on the basis of a curated database 
of the orthologous gene family resource eggNOG 4.514.

For all databases that included taxonomic information (eggNOG, KEGG, 
CAZy), reads were mapped competitively against all kingdoms and assigned into 
prokaryotic and eukaryotic groups, on the basis of best bit score in the alignment 
and the taxonomic annotation provided within the database at kingdom level. All 
functional abundance matrices were normalized to the total number of reads used 
for mapping in the statistical analysis, unless mentioned otherwise (for example, 
rarefied in the case of diversity analysis, see ‘Statistical analyses’). This normali-
zation better takes into account differences in library size as it has the advantage 
of including the fraction of unmapped (that is functionally unclassified) reads. 
Although there are limitations to using relative abundance of genes, our analy-
sis shows which potential functions are relatively more important. Without any  
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normalization, such analyses cannot be performed. It is currently difficult to test the 
absolute numbers, owing to limitations of reliably quantifying soil DNA resulting  
from differences in extraction efficiency and the level of degradation.

To identify ARGs in our metagenome samples, the merged and unmerged reads 
were mapped to a homology expansion51 of the Antibiotic Resistance Gene Data 
Base (ARDB). Only hits that passed the minimum sequence identity values as listed 
in the ARDB for each family were taken further into account. Although newer ARG 
databases exist, only the ARDB presently has curated family inclusion thresholds 
that directly allow application to our topsoil dataset: as soil microbial diversity 
is so large, unlike for gut datasets, high-fidelity gene catalogue construction will 
not be possible until many more samples are available. Therefore, direct mapping 
of reads to the gene family databases becomes necessary for our analysis, in turn 
necessitating ARG inclusion thresholds that are well-defined for single reads, not 
merely for full-length genes. Thus, the cut-offs curated by ResFams52 or CARD53, 
for example, are inappropriate, as they are defined in the length-dependent bit-
score space. The ARDB cut-offs, however, are defined as sequence identities and 
thus in principle are applicable to sequences shorter than full length. Because of 
these technical limitations, we used a soil-gene catalogue to determine CARD-
based ARG abundance matrices (see ‘Gene catalogue construction’).

It is important to note that measurements of functional genes, including ARGs, 
represent relative proportions of different gene families, because the absolute 
amount of DNA differs among samples. This necessitates the use of statistical 
tests that do not assume absolute measurements, and centres analysis of this type 
on comparisons across the set of samples.
Estimation of taxa abundance using miTag. We used a miTag approach15 to deter-
mine bacterial and fungal community composition from metagenome sequence 
data. First, SortMeRNA54 was used to extract and blast search rRNA genes against 
the SILVA LSU/SSU database. Reads approximately matching these databases with 
e < 10−1 were further filtered with custom Perl and C++ scripts, using FLASH to 
attempt to merge all matched read pairs. In case read pairs could not be merged, 
which happens when the overlap between read pairs is too small, the reads were 
interleaved such that the second read pair was reverse complemented and then 
sequentially added to the first read. To fine-match candidate interleaved or merged 
reads to the Silva LSU/SSU databases, lambda55 was used. Using the lowest com-
mon ancestor (LCA) algorithm adapted from LotuS (v.1.462)43, we determined 
the identity of filtered reads on the basis of lambda hits. This included a filtering 
step, in which queries were only assigned to phyla and classes if they had at least 
88% and 91% similarity to the best database hit, respectively. The taxon-by-sample 
matrices were normalized to the total number of reads per sample to minimize 
the effects of uneven sequencing depth. The average of SSU and LSU matrices was 
used for calculating the relative abundance of phyla or classes. The abundance of 
miTag sequences matching bacteria and fungi was used to determine the bacterial/
fungal abundance ratio. Although LSU/SSU assessments refer to the number of 
fungal cells rather than the number of discrete multicellular fungi (as this can apply 
to all samples equally), it is not systematically biased for comparing the trends of 
bacterial to fungal abundance across samples.
External metagenomic datasets. To validate and compare the global trends at 
smaller scales, we used a regional scale dataset of 145 topsoil samples that was  
generated and processed using the same protocol as our global dataset 
(Supplementary Table 1).

In addition, to compare patterns of ARG diversity in soils and oceans on a global 
scale, we re-analysed the metagenomics datasets of the Tara Oceans13, including all 
size fractions (Supplementary Table 1). After quality filtering, 41,790,928,650 out 
of 43,076,016,494 reads were retained from the Tara Oceans dataset.

The quality-filtered reads from all datasets were mapped to the corresponding 
databases using DIAMOND, with the exception that no merging of read pairs was 
attempted, because the chances of finding overlapping reads were too low (with 
a read length of 100 bp and insert size of 300 bp (Tara Oceans)). Sequences for 
SSU/LSU miTags were extracted from these metagenomics datasets as described 
above. ARG abundance matrices were also obtained from the Tara Oceans project 
on the basis of the published gene catalogues annotated using a similar approach 
as in the current study.
Gene catalogue construction. To create a gene catalogue, we first searched for com-
plete reference genes that matched to read pairs in our collection using Bowtie256 
with the options ‘--no-unal --end-to-end’. The resulting bam files were sorted 
and indexed using samtools 1.3.157 and the jgi_summarize_bam_contig_depths  
provided with MetaBat58 was used to create a depth profile of genes from the  
reference databases that were covered with ≥95% nucleotide identity. This cut-off 
is commonly used in constructing gene catalogues13,59 and chosen to delineate  
genes belonging to the same species. Using the coverage information, we extracted 
all genes that had at least 200 bp with ≥1× coverage by reads from our topsoil 
metagenomes. The reference databases included an ocean microbial gene  
catalogue13, a gut microbial gene catalogue12, as well as all genes extracted from 
25,038 published bacterial genomes26. Altogether, 273,723, 2,376 and 8,642 genes 

from proGenomes, IGC and Tara database, respectively, could be matched to soil 
reads and were used in the gene catalogue.

The majority of genes in our catalogue were assembled from the topsoil  
samples presented here. To reduce the likelihood of chimaeric reads, each sample 
was assembled separately using Spades 3.7-0 (development version obtained from 
the authors)60 in metagenomic mode with the parameters ‘--only-assembler -m 
500 --meta -k 21,33,67,111,127’. Only sdm-filtered43 paired reads were used in the 
assembly, with the same read-filtering parameters as described above. Resulting 
assemblies had an average N50 of 469 bases (total of all assemblies 21,538 Mb). The 
low N50 reflects difficulties in the assembly of soil metagenomes, which probably 
reflects the vast microbial genetic diversity of these ecosystems. We further de novo 
assembled reads from two other deep sequencing soil61 and sediment studies62,  
using the same procedure and parameters, except that the Spades parameter  
‘-k 21,33,67,77’ was adjusted to a shorter read length. Furthermore, we included 
publicly available data from the European Nucleotide Archive (ENA). The ENA 
was queried to identify all projects with publicly available metagenomes and whose 
metadata contained the keyword ‘soil’. The initial set of hits was then manually 
curated to select relevant project and/or samples that were assembled as described 
above. Additionally, we integrated gene predictions from soil metagenomes down-
loaded from MG-RAST63 (Supplementary Table 1). Assembly was not attempted 
for these samples owing to the absence of paired-end reads, and relatively low read 
depth; rather, only long reads or assemblies directly uploaded to MG-RAST with 
≥400 bp length were retained. Therefore, only scaffolds and long reads, with at least 
400 bp length, were used for analysis. On these filtered sequences, genes were de 
novo predicted using prodigal 2.6.164 in metagenomic mode. Finally, we merged 
the predicted genes from assemblies, long reads, gene catalogues and references 
genomes to construct a comprehensive soil gene catalogue.

Thus, 53,294,555,100 reads were processed, of which 31,015,827,636 (58.20%) 
passed our stringent quality control. The initial gene set predicted on the soil 
assemblies and long reads was separated into 17,114,295 complete genes and 
111,875,596 incomplete genes. A non-redundant gene catalogue was built by  
comparing all genes to each other. This operation was performed initially in amino- 
acid space using DIAMOND65. Subsequently, any reported hits were checked in 
nucleotide space. Any gene that covered at least 90% of another one (with at least 
95% identity over the covered area) was considered to be a potential representative 
of it (genes are also potential representatives of themselves). The final set was chosen  
by greedily picking the genes that were representative of the highest number of 
input genes until all genes in the original input have at least one representative in the 
output. This resulted in a gene catalogue with a total of 159,907,547 non-redundant  
genes at 95% nucleotide identity cut-off. We mapped reads from our experiment 
onto the gene catalogue with bwa66, requiring >45 nt overlap and >95% identity. 
The average mapping rate was 26.2 ± 7.4%. Although the gene catalogue is an 
invaluable resource for future explorations of the soil microbiome, we decided 
to rely on using the direct mapping approach to gene functional composition, 
owing to the low overall mapping rate. Furthermore, using minimap267 to find 
genes at 95% similarity threshold, we compared the soil gene catalogue with the 
Tara Oceans gene catalogue13, human gut gene catalogue12 and the proGenomes 
prokaryotic database26. The gene catalogue nucleotide and amino acid sequences 
and abundance matrix estimates from rtk68 have been deposited at http://vm-lux.
embl.de/~hildebra/Soil_gene_cat/.
Estimation of ARG abundance using CARD. CARD abundances in topsoil sam-
ples were estimated by annotating the soil gene catalogue using a DIAMOND 
search of the predicted amino acid sequences against the CARD database and 
filtering hits to the specified bit-score cut-offs in the CARD database. On the basis 
of gene abundances in each sample, we estimated the abundance of different CARD  
categories per metagenomic sample. Despite qualitative similarities in overall 
trends of ARDB and CARD abundance matrices, CARD abundance estimation is 
limited by being based on the gene catalogue (only a 26.2 ± 7.4% of all metagen-
omic reads could be mapped to the gene catalogue).
Processing of metabarcoding sequence data. The LotuS pipeline was used for bac-
terial 16S rRNA amplicon sequence processing. Reads were demultiplexed with 
modified quality-filtering settings for MiSeq reads, increasing strictness to avoid 
false positive OTUs. These modified options were the requirement of correctly 
detected forward 16S primer, trimming of reads after an accumulated error of 1 and 
rejecting reads below 28 average quality or, exceeding an estimated accumulated 
error >2.5 with a probability of ≥0.0142. Furthermore, we required each unique 
read (reads preclustered at 100% identity) to be present eight or more times in at 
least one sample, four or more times in at least two samples, or three or more times 
in at least three samples. In total 27,883,607 read pairs were quality-filtered and 
clustered with uparse69 at 97% identity. Chimeric OTUs were detected and removed 
on the basis of both reference-based and de novo chimaera checking algorithms, 
using the RDP reference database (http://drive5.com/uchime/rdp_gold.fa) in 
uchime69, resulting in 13,070,436 high-quality read pairs to generate and estimate 
the abundance of bacterial OTUs. The seed sequence for each OTU cluster was 
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selected from all read pairs assigned to that OTU, selecting the read pair with the 
highest overall quality and closest to the OTU centroid. Selected OTU seed read 
pairs were merged with FLASH44 and a taxonomic identity was assigned to each 
OTU by aligning full-length sequences with lambda to the SILVA v.123 database70 
and the LotuS least common ancestor (LCA) algorithm. This was performed using 
the following LotuS command line options: ‘-p miSeq -derepMin 8:1,4:2,3:3 -- 
simBasedTaxo 2 --refDB SLV -thr 8’. OTU abundances per sample were summed 
to class and phylum level per sample, according to their taxonomic classification, 
to obtain taxa abundance matrices. However, the choice of clustering method (for 
example, Swarm) and identity threshold had little effect on retrieved OTU richness 
(comparison with 99% threshold: r = 0.977, P < 10−15; comparison with Swarm 
clustering: r = 0.979, P < 10−15).

For eukaryotic 18S rRNA genes, we used the same options in LotuS, except that 
reads were rejected if they did not occur at least six times each in a minimum of 
two samples or at least four times each in a minimum of three samples. This was 
done to account for lower sequencing depth in 18S rRNA compared to 16S rRNA 
dataset. Furthermore, the database to annotate fungal taxonomy was extended to 
include general annotations of SILVA and information from unicellular eukaryotes 
(PR2 database71). Of 7,462,813 reads, 2,890,093 passed quality filtering. The fungal 
ITS metabarcoding dataset16 was downloaded and used in addition to 18S data 
in specific analyses, such as finding fungal OTUs associated with ARG relative 
abundance. The resulting taxon abundance matrix was further filtered to remove 
sequences of chloroplast origin for all three metabarcoding experiments.

Full-length sequences representing OTUs were aligned using the SILVA refer-
ence alignment as a template in mothur72. A phylogenetic tree was constructed 
using FastTree273 with the maximum-likelihood method using default settings. 
This program uses the Jukes–Cantor models to correct for multiple substitutions.
Parameterization and validation of metagenomics approach. Although we used 
state-of-art molecular approaches, there are several potential limitations regarding 
our analyses related to the technologies used. All metagenomics and amplicon- 
based analyses are affected by taxonomic biases in sequence databases, whereas 
(PCR-free) miTag as well as amplicon sequencing are biased owing to differential 
ribosomal gene copy number across taxonomic groups. Amplicon-based metabar-
coding, specifically, is affected by both primer PCR artefacts and PCR biases that 
may affect estimates of absolute organism abundance. These biases are inherent 
to all metagenomics and metabarcoding studies. However, all these biases affect 
different samples equally (same rRNA gene copy numbers, same PCR biases per 
species, same database bias per taxa) and thus we estimate that our results are 
robust to these methodological shortcomings. Shotgun-based metagenomics 
is affected by reference bias, in which human pathogens or Proteobacteria are 
overrepresented. The necessity for lenient thresholds becomes obvious from 
annotating phylogenetic profiles with MetaPhlAn274 using standard parameters: 
whereas we observed that most fungal phyla are present abundantly in our samples, 
MetaPhlAn2 detected Ascomycota in only 2 out of 189 samples. In 48 out of 189 
samples, no organism (bacteria/archaea/eukaryotes) was detected, and the most 
abundant phylum was Proteobacteria (55%). As these results are clearly deviating 
from our miTag, 16S, 18S and ITS analyses, specific database cut-off thresholds 
were required for this project.

To optimize the analysis pipeline and identify suitable e values for filtering blastx 
results, we used metagenomic simulations of four reference genomes for which 
CAZy assignments in the CAZy database were available. Simulated reads were 
created as 250-bp paired reads with 400 bp insert at differing sequence abun-
dances from the four reference genomes in each simulated metagenome, using 
iMessi75. For this simulated dataset, we used the pipeline described above to derive 
CAZy functional profiles. We found that querying short reads processed as above 
against databases results in the retrieval of most genes at relative abundances 
consistent with expectations on the basis of the reference genomes at e < 10−9 
(r = 0.95 ± 0.01, P < 0.001). Furthermore, we simulated 200 metagenomes from 
18 bacterial genomes, five bacterial plasmids, one fungal mitochondrion and two 
fungal genomes at differing relative proportions in each of these simulated metage-
nomes (Supplementary Table 11). We subsequently simulated 1,000,000 reads of 
250-bp and 400-bp insert size using iMessi, and mapped these against reference 
databases and retained hits that fulfilled the following arbitrary criteria (used in all 
subsequent analyses): e value cut-off of 10−9, alignment length ≥20 amino acids, 
and similarity ≥50% amino acids to the target sequence. From these, we gener-
ated functional profiles and found a strong correlation of simulated to expected 
functional metagenomic composition on the basis of mixed fungal and bacterial 
genomes (r = 0.94 ± 0.05, P < 0.001).
Estimating fungal antibiotics production. We also specifically screened for fungal  
gene clusters directly associated with antibiotic activity, on the basis of a  
compiled database of MIBiG (minimum information about a biosynthetic gene 
cluster, https://mibig.secondarymetabolites.org) repository entries that describe 
gene clusters for which the products have been shown experimentally to display 
antimicrobial activities (Supplementary Table 12). To extend the range of genes 

that can be associated with the validated, antibiotic-producing, MiBIG protein 
domains, we downloaded all published non-redundant fungal genomes depos-
ited in JGI (Supplementary Table 14) as well as all non-redundant fungal genes 
deposited in NCBI. The set of MiBIG and fungus-derived genes was screened 
with custom hidden Markov models for domains from secondary metabolite  
production (specifically these were dmat, AMP-binding, Condensation, PKS_KS 
and Terpene synthesis domains). All identified domains were aligned together 
with the MiBIG domains using Clustal Omega76 and a tree was constructed with 
FastTree2. Phylogenetic trees were rooted to midpoint and automatically scanned 
to identify highly supported clades (aLRT branch support ≥ 0.99) in which  
antibiotic-producing MiBIG domains were monophyletically grouped. The average 
nucleotide identity within each such group was subsequently used as identity cut-
off in the mapping step. All metagenomic reads were mapped with DIAMOND 
in blastx mode to the newly created database, using the previously mentioned 
sequence identity cut-offs and rejecting domains of reads that were mapping to 
bacterial non-supervised orthologous groups.
Statistical analyses. Data normalization and diversity estimates. All statistical anal-
yses were performed using specific packages in R (v.3.3.2) unless otherwise noted. 
Diversity parameters were estimated from OTU and functional gene matrices that 
were rarefied to an equal number per sample to reduce the effect of variation in 
sequencing depth using the function rrarefy in vegan (v.2.2.1; https://cran.r-project.
org/web/packages/vegan/index.html). ARG matrices were normalized to the total 
number of merged and singleton reads. The total abundance of ARGs per sample 
was estimated by summing the abundance of all individual ARGs per sample. ARG 
diversity measures indicate the variety and their proportions produced.

From the rarefied matrices we calculated OTU, orthologous group and CAZyme 
gene richness (function specnumber) and diversity (function diversity on the basis 
of the inverse Simpson index). The latter measure accounts for both richness and 
evenness, and it gives more weight to abundant groups compared to the Shannon 
index. Our results were robust to choice of index, and the various diversity indices 
were highly correlated in the present dataset (for example, bacterial taxonomic 
diversities calculated using inverse Simpson versus using Shannon diversity were 
highly correlated: r = 0.888, P < 10−15; for a comparison of richness and diversity 
trends, see Extended Data Fig. 2b, c). As evenness and richness were highly corre-
lated in all datasets, we report the results that, on the basis of the diversity index, 
represent both richness and evenness. The rarefaction process was repeated for 
calculating taxonomic and gene functional diversity and richness on the basis of 
the average of 100 rarefied datasets.

Phylogenetic diversity was calculated on the basis of Faith’s Phylogenetic 
Diversity (PD) metric77 in the Picante package (v.1.6-2; https://cran.r-project.org/
web/packages/picante/index.html). In addition, to assess phylogenetic clustering 
and overdispersion, nearest relative index (NRI) and nearest taxon index (NTI) 
were calculated in Picante. Although both measures are closely related, NRI is more 
sensitive to phylogenetic diversity at deep nodes, whereas NTI is more sensitive  
to phylogenetic clustering towards tips. A null model of shuffling taxon labels  
(100 times) was used to randomize phylogenetic relationships among OTUs.
Correlating environmental parameters to taxa and functions. To identify the main 
determinants of taxonomic and gene functional composition or diversity and  
relative abundance of phyla and classes, we used a series of statistical tests. We 
included all prominent environmental variables that we expected to have a significant  
effect on microbial diversity on the basis of previous studies, and which were  
feasible to collect. These included soil pH, carbon and nutrient levels and factors that 
can affect these, such as fire, assuming soil as the major resource for microbial nutri-
tion. We also included isotope ratios of nitrogen (∂15N) and carbon (∂13C) as these 
provide principal components for carbon and nitrogen cycling. To avoid overfitting 
and to ensure model simplicity, we excluded the variables that had no significant effect 
on fungal or bacterial diversity, such as altitude, age of vegetation, plant diversity and 
community (the first two principal component analysis axes of plant community 
variation at both genus and family level) and basal areas of trees. Thus, for univariate 
regression modelling, 16 variables (Supplementary Table 14) were included.

To understand which factors explain the orthologous group- and OTU-based 
community composition, variable selection was performed in the Forward.sel 
function of Packfor (v.0.0-8/r109; https://r-forge.r-project.org/R/?group_id=195) 
according to the coefficient of determination (threshold, r2 = 0.01). All functional 
and taxonomic compositional matrices were transformed using Hellinger trans-
formation before statistical analysis. Furthermore, Mantel tests and partial Mantel 
tests were used to test the effects of geographical versus environmental distances on 
the compositional similarity of OTUs and orthologous groups as implemented in 
vegan. Mantel tests allow testing of the correlation between two distance matrices, 
partial Mantel tests are similar but also control for variation in a third distance 
matrix. In our analysis, we controlled for the effect of geographic distance while 
testing the correlation of environmental variation and functional or taxonomic 
composition variation. The importance of biome type in explaining functional 
gene and taxonomic composition was tested in permutational multivariate  
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analysis of variance (PERMANOVA) using the Adonis function of vegan (using 103 
permutation for calculating pseudo-F test statistic and its statistical significance). 
For constructing orthologous group and OTU distance matrices, the Bray–Curtis 
dissimilarity was calculated between each pair of samples. Great-circle distance 
was used to calculate a geographic distance matrix between samples on the basis 
of geographical coordinates. This test compares the intragroup distances to  
intergroup distances in a permutation scheme and from this assesses significance. 
PERMANOVA post hoc P values were corrected for multiple testing using the 
Benjamini–Hochberg correction. We visualized taxonomic (OTU) and functional 
(orthologous group) composition of bacteria using global nonmetric multidimen-
sional scaling (GNMDS) in vegan with the following options: two dimensions, 
initial configurations = 100, maximum iterations = 200 and minimum stress 
improvement in each iteration = 10−7. The main environmental drivers of the 
relative abundance of major taxonomic groups and main functional categories 
were recovered by random forest analysis78 using the R package randomForest 
(v.4.6-10; https://cran.r-project.org/web/packages/randomForest/index.html).

To examine latitudinal gradients of diversity at phylum level (Fig. 2), the 
diversity of OTUs assigned to each phylum was calculated on the basis of inverse 
Simpson index. Diversity values were modelled in response to environmental  
variables and predicted values were extracted, which were used in a clustering and 
bootstrapping analysis to depict the similarities of phyla environmental associations 
using pvclust (v.1.3-2; https://cran.r-project.org/web/packages/pvclust/index.html) 
with 1,000 iterations. To model latitudinal gradients and environmental associa-
tions of diversity and biomass (Fig. 1, Extended Data Fig. 3), we compared the good-
ness of fit estimates between first and second order polynomial models on the basis 
of the corrected Akaike information criterion (AICc) using analysis of variance  
(ANOVA). AICc reflects both goodness of fit and parsimony of the models.

For univariate regression modelling of diversity and biomass measures, ordi-
nary least squares (OLS) or generalized least squares (GLS) regression models 
were used depending on the importance of the spatial component in the nlme 
package (v.3.1-120; https://cran.r-project.org/web/packages/nlme/index.html). 
The model variance structure (Gaussian, exponential, spherical and linear) was 
evaluated on the basis of AICc. After selection of variance structure, variables were 
combined in a set of models with specified variance structure (that is, the number 
of tested models = 2number of variables). The resulting models were sorted according to 
AICc values to reveal the best model. Lists of the five best-fitting models for each 
response variable are given in Supplementary Table 4. Prior to model selection, all 
variables were evaluated for linearity, normality, and multicollinearity (excluded if 
the variance inflation factor was >5). The degree of polynomial functions (linear,  
quadratic, cubic) was chosen on the basis of the lowest AIC values. Because of 
nonlinear relationships with response variables, a quadratic term for pH was 
also included in the model selection procedure. The accuracy of the final models  
was evaluated using tenfold ‘leave-one-out’ cross-validation. For this, we used 
1,000 randomly sampled 90%-data subsets for model training and predicting the  
withheld data. To minimize biases owing to the partitioning of the data and 
potential overfitting, the average of 1,000 resulting determination coefficients are 
reported as cross-validated r2 (r2cv.) for each regression model.
Correlating biotic interactions to taxa and functions. To test the associations of biotic 
variables on ARG relative abundance, we used a sparse partial least squares (sPLS) 
analysis, which reduces dimensionality by projecting predictor variables onto latent 
components to identify the 16S/18S lineages (phyla and classes) and the ITS OTUs 
most strongly associated with ARG relative abundance, as implemented in the 
mixOmics (v.5.0-4; https://cran.r-project.org/web/packages/mixOmics/index.
html) package. ARG composition and taxonomic community matrices (miTags 
classes and phyla and ITS OTUs) were normalized to library size using Hellinger 
transformation. Significance of associations was examined by bootstrap tests of 
subsets of each dataset. We subsequently used partial least squares (PLS) analysis 
to predict ARG relative abundance on the basis of significantly correlated line-
ages, which allows the dimensionality of multivariate data to be reduced into PLS 
components. Optimal numbers of PLS components for prediction of the relative 
ARG abundance were selected on the basis of leave-one-out cross-validation. To 
confirm the results of PLS analysis, we further used a cross-validated LASSO model 
to simultaneously perform variable selection and model fitting, as implemented in 
glmnet (v.2.0-2; https://cran.r-project.org/web/packages/glmnet/index.html). First 
the lambda shrinkage parameter was determined from a cross-validated LASSO-
penalized logistic regression classifier. Using this shrinkage parameter, a new 
logistic regression classifier was fit to the data to predict ARG relative abundance.

To further test direct and indirect effects of geographic and environmental 
variables on microbial distributions, we built SEM models in the AMOS soft-
ware (SPSS) by including predictors of the best GLS model. In a priori models, 
all indirect and direct links between variables were established on the basis of 
their pairwise correlations. We subsequently removed non-significant links and 
variables or created new links between error terms until a significant model fit 
was achieved. Goodness of fit was assessed on the basis of a χ2 test to evaluate 

the difference between the observed and estimated by-model covariance matrices 
(a non-significant value indicates that the model fits the observed data). We also 
used RMSEA and PCLOSE to assess the discrepancy between the observed data and 
model per degree of freedom, which is less sensitive to sample size compared to the 
χ2 test (RMSEA < 0.08 and PCLOSE > 0.05 show a good fit). Observed correlations 
between diversity and environmental values can serve as the first step towards 
understanding the structure and function of global topsoil microbiome, however, 
they are not proof of causations and mechanism. Despite the fact that we used SEM 
modelling to infer indirect links, we cannot preclude the possibility of other biotic 
or soil variables confounded with climate variables that we did not include in our 
models. Further laboratory experiments may be able to address the causality of 
relationships reported in this study.

Differences between univariate variables such as taxonomic and functional  
richness were tested using a non-parametric Wilcoxon rank-sum test, with 
Benjamini–Hochberg multiple testing correction. Post hoc statistical testing for 
significant differences between all combinations of two groups was conducted only 
for taxa with P < 0.2 in the Kruskal–Wallis test. For this, Wilcoxon rank-sum tests 
were calculated for all possible group combinations and corrected for multiple 
testing using Benjamini–Hochberg multiple testing correction.

Geographic coordinates were plotted on a world map transformed to a Winkler2 
projection, using the maptools package (v.0.8-36; https://cran.r-project.org/web/
packages/maptools/index.html).
Limitations of statistical modelling on a global scale. Although we performed 
cross-validations to test the accuracy of most of our statistical models, predictions 
might be limited by the vast diversity in soil microbiomes. For example, strong 
local variation in soil pH may lead to deviation from general patterns, which is a 
common limitation in environmental sciences. Given the large spatial scale and 
strong environmental gradient in our sampling design, and long-term persistence 
of DNA in soil79, seasonal variation in soils is expected to have a minor impact80 
(in contrast to the oceans). In addition, the vast majority of our samples were  
collected during the growing season, further reducing possible seasonal biases. 
We nevertheless tested the effect of sampling month and seasons and found no  
significant effect of seasonality on diversity indices (P > 0.05). We also compared 
the effect of seasons and years in a time series study in two of our sites, which 
revealed no seasonal effects on richness and composition (unpublished data). 
In particular, the relationship between bacterial phylogenetic diversity and pH, 
are strongly consistent with studies performed at the local to continental scales 
and within a single season6,7,81, which indicates the robustness of our results. 
Nonetheless, validation of the proposed models needs to be performed by other 
researchers with more data or an independent dataset, particularly by including 
samples from under-sampled regions (Extended Data Fig. 1a) and from differ-
ent seasons (to account for seasonality). Under-sampled regions in our dataset 
(for example, North Asia) lowered precision of our models for those regions. 
Unfortunately, there are no published global datasets with comparable sampling 
protocols that could be directly compared and used for model validation, and we 
encourage future studies that will make this possible.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. The pipeline to process metabarcoding samples is available 
under http://psbweb05.psb.ugent.be/lotus/. The pipeline to process shotgun 
metagenomic samples is available under https://github.com/hildebra/MATAFILER 
and https://github.com/hildebra/Rarefaction.
Data availability. All metagenomics and metabarcoding sequences have been 
deposited in the European Bioinformatics Institute Sequence Read Archive 
database: Estonian forest and grassland topsoil samples, accession numbers 
PRJEB24121 (ERP105926); 16S metabarcoding data of global soil samples, acces-
sion numbers PRJEB19856 (ERP021922); 18S metabarcoding data of global soil 
samples, accession numbers PRJEB19855 (ERP021921); Global analysis of soil 
microbiomes, accession numbers PRJEB18701 (ERP020652). The soil gene cata-
logue and dataset are available at http://vm-lux.embl.de/~hildebra/Soil_gene_cat/. 
The Tara Oceans data are available at http://ocean-microbiome.embl.de/compan-
ion.html. All other data that support the findings of this study are available from 
the corresponding authors upon request.
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Extended Data Fig. 1 | Distribution of topsoil samples and diversity 
patterns of phyla. a, A map of samples used for metagenomic and 
metabarcoding analysis. Colours indicate biomes as shown in the legend. 
Desert samples were only used in metabarcoding analysis and were 
excluded in comparative analysis of functional and taxonomic patterns. 
Black symbols refer to samples from an independent soil dataset (145 
topsoil samples; Supplementary Table 1) that were used for validation of 

our results. b, Relationship between the diversity of major microbial phyla 
(classes for Proteobacteria) and environmental variables across the global 
soil samples (n = 197 biologically independent samples). Only regression 
lines for significant relationships after Bonferroni correction are shown. 
Diversity was measured using Hellinger-transformed matrices on the basis 
of inverse Simpson index. Latitude, absolute latitude.
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Extended Data Fig. 2 | Contrasting microbial structure and function 
in major terrestrial biomes. a–d, The average total biomass normalized 
to organic carbon (a, n = 152 biologically independent samples) as well as 
richness (b), diversity (c) and phylogenetic structure including NRI and 
NTI (d) (n = 188 biologically independent samples) of fungi and bacteria 
across samples categorized into major terrestrial biomes, including tropical 
(moist and dry tropical forests and savannahs), temperate (coniferous and 
deciduous forests, grasslands and shrublands, and Mediterranean biomes) 
and boreal–arctic ecosystems. e–i, Relative abundance of major phyla 
(n = 188 biologically independent samples) and functional categories 

(n = 189 biologically independent samples) across biomes: bacterial phyla 
(classes for Proteobacteria) and archaea (e); fungal classes (f); functional 
categories of bacteria (g); functional categories of fungi (h); bacterial 
KEGG metabolic pathways (i). Biomass was measured on the basis of 
PLFA analysis. Different letters denote significant differences between 
groups (shown in the legend) at the 0.05 probability level on the basis of 
Kruskal–Wallis tests corrected for multiple testing. Additional details for 
these comparisons are presented in Supplementary Table 14. Taxonomic 
and gene functional diversity indices were calculated on the basis of 
inverse Simpson index. Data are mean ± s.d.
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Extended Data Fig. 3 | The significant decrease in the bacterial/
fungal biomass ratio with increasing latitude is driven by the joint 
effect of climate and soil fertility. a, The second order polynomial 
relationship between absolute latitude and the total biomass of bacteria 
(n = 152 biologically independent samples). b, The relationship between 
absolute latitude and the total biomass of fungi. c, The relationship 
between absolute latitude and the bacterial/fungal biomass ratio. d–f, The 
relationship between bacterial/fungal biomass ratio and MAP, MAT and 
C/N, as the main correlated environmental variables with bacterial/fungal 
biomass ratio. Linear regression analysis (Pearson’s correlation) was used 
in b–f (n = 152 biologically independent samples). g, Pairwise Spearman’s 
correlation matrix of biotic and abiotic variables in soil. h, Direct and 

indirect relationships and directionality between variables determined 
from best-fitting structural equation model. Determination coefficients 
(R2) are given for biomass and diversity factors (see Supplementary 
Table 5 for more details). Goodness of fit: bacteria, χ2 = 15.37, degrees 
of freedom  = 11, P = 0.166; RMSEA = 0.041, PCLOSE = 0.573, n = 189; 
fungi, χ2 = 7.74, degrees of freedom = 12, P = 0.805; RMSEA = 0.00, 
PCLOSE = 0.970, n = 189). Biomass (nmol g−1) was measured on the basis 
of PLFA analysis. pH, soil pH representing soil pH and its quadratic 
term; ∂15N, nitrogen stable isotope signature; ∂13C, carbon stable isotope 
signature; PET, potential of evapotranspiration; Fire, time from the last fire 
disturbance; NPP, net primary productivity.

© 2018 Springer Nature Limited. All rights reserved.



LetterreSeArCH

Extended Data Fig. 4 | The environment has a stronger effect on 
bacterial taxa and functions than on those of fungi. Correlation and 
best random forest model for major taxonomic (a, b; n = 188 biologically 
independent samples) and functional (c, d; n = 189 biologically 
independent samples) categories of bacteria (a, c) and fungi (b, d) in the 
global soil samples (n = 189 biologically independent samples). a, Relative 
abundance of major 16S-based bacterial phyla (class for Proteobacteria). 

b, Relative abundance of ITS-based fungal classes. c, d, Major orthologous 
gene categories of bacteria (c) and fungi (d). For variable selection and 
estimating predictability, the random forest machine-learning algorithm 
was used. Circle size represents the variable importance (that is, decrease 
in the prediction accuracy (estimated with out-of-bag cross-validation)) 
as a result of the permutation of a given variable. Colours represent 
Spearman correlations. pH, soil pH.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Niche differentiation between bacteria and  
fungi is probably related to precipitation and soil pH. Contrasting  
effect of pH and MAP on bacterial (16S; left column) and fungal  
(18S; right column) taxonomic (n = 188 biologically independent samples) 
and gene functional (n = 189 biologically independent samples) diversity in 
the global soil samples. a, b, Relationship between soil pH and taxonomic 
diversity of bacteria and fungi. c, d, Relationship between soil pH and 
gene functional diversity of bacteria and fungi. e, f, Relationship between 
MAP and taxonomic diversity of bacteria and fungi. g, h, Relationship 
between MAP and gene functional diversity of bacteria and fungi. Lines 
represent regression lines of best fit. The choice of degree of polynomial was 

determined by a goodness of fit. Colours denote biomes as indicated in the 
legend. Taxonomic and gene functional diversity indices were calculated on 
the basis of inverse Simpson index. i–l, NMDS plots of trends in taxonomic 
(16S and 18S datasets) and gene functional composition (orthologous 
groups from metagenomes) of bacteria and fungi on the basis of Bray–Curtis 
dissimilarity. i, Taxonomic composition of bacteria (16S). j, Taxonomic 
composition of fungi (18S). k, Gene functional composition of bacteria.  
l, Gene functional composition of fungi. i, Colours denote biomes as 
indicated in the legend. Vectors are the prominent environmental drivers 
fitted onto ordination.
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Letter reSeArCH

Extended Data Fig. 6 | Fungal biomass is significantly related to the 
relative abundance of ARGs. a, Increase in fungal biomass is related to 
ARG relative abundance. b, Bacterial biomass is unrelated to the relative 
abundance of ARGs. c, ARG relative abundance is inversely correlated 

with the bacterial/fungal biomass ratio. Biomass (nmol g−1) was measured 
on the basis of PLFA analysis. Spearman’s correlation was used (n = 152 
biologically independent samples).

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 7 | Topsoil and ocean bacterial phylogenetic 
diversity is negatively correlated with the abundance of ARGs.  
a, b, Spearman’s correlation between the relative abundance of ARGs 
and bacterial phylogenetic diversity (Faith’s index) in soil (a, n = 188 
biologically independent samples) and the oceans (b, n = 139 biologically 

independent samples) at the global scale. Similar trends were observed 
for richness (r = −0.219, P = 0.007 and r = −0.659, P < 10−15 in soil and 
ocean, respectively). c, Global map of observed bacterial phylogenetic 
diversity (Faith’s index) at the sampled sites. Note that hotspots of bacterial 
diversity do not correspond to ARG hotspots (See Extended Data Fig. 8).

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 8 | Relative abundance of ARGs within and between 
terrestrial and oceanic ecosystems. a, Heat map of the observed relative 
abundance of ARGs at the global scale. Squares and circles correspond to 
soil and to ocean samples, respectively. ARG abundance is given on three 
relative scales for these three datasets. b, Relative abundance of ARGs 
in ocean samples (across depths) declines with the distance from land 
(n = 139 biologically independent samples), a pattern that was significant 

at two water depths, including surface (red) and deep chlorophyll 
maximum (DCM; green), but not at mesopelagic (blue). Spearman’s 
correlation statistics for specified comparisons are given in the legends. 
Dotted lines display Spearman’s correlations across the whole dataset and 
within the three depth categories, respectively. n, number of biologically 
independent samples.
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Extended Data Fig. 9 | Relative abundance of ARGs in both ocean  
and topsoil samples can be modelled by the relative abundance of  
fungi and fungus-like protists. a, b, Correlation circle indicating the 
relationships among fungal classes and the relative abundance of ARGs 
as well as the first two PLS components in soil (a) and ocean (b). Length 
and direction of vectors indicate the strength and direction of correlations. 
Percentages show the variation explained by each PLS component.  
c, d, Linear (Pearson) correlations between observed and modelled ARG 
relative abundance on the basis of the relative abundance of fungal taxa 

in soil (c) and ocean (d). The two principal axes were chosen on the 
basis of leave-one-out cross-validation (LOOCV) and explained 40% 
(LOOCV: R2 = 0.381) and 71% (LOOCV: r2 = 0.684) of the variation of the 
relative abundance of ARGs in soil and the oceans, respectively. Only taxa 
significantly associated with the relative abundance of ARGs are shown. 
Cross-validation and LASSO regression confirmed this result. Soil dataset: 
r = 0.619, RMSE =  = 10−9, n = 189 biologically independent samples; 
ocean dataset, r = 0.832, RMSE = 10−9, n = 139 biologically independent 
samples.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 10 | Fungal classes are among the main taxa 
associated with the relative abundance, diversity and richness of ARGs 
in different habitats. a, b, Heat map derived from sPLS analysis showing 
correlation of total relative abundance, richness and diversity of ARGs to 
that of the main taxonomic classes in soil (a) and ocean (b) metagenomes 
(see also the Supplementary Discussion for analogous results in previously 
published soil (from grasslands, deserts agricultural soils) as well as 

human skin and gut samples). For statistical details and significance, 
see Supplementary Table 8. c, d, Heat maps showing correlation of total 
relative abundance of ARGs to that of the main eukaryotic and prokaryotic 
taxa in soil (c) and the ocean (d) on the basis of sPLS regression analysis. 
All matrices were normalized to library size and Hellinger transformation. 
Fungal and fungal-like classes are shown in bold text. See Supplementary 
Table 15 for ARG gene letter abbreviations.

© 2018 Springer Nature Limited. All rights reserved.
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Data collection For DNA sequencing, we used RTA Version 1.18.54 and bcl2fastq v1.8.4 from illumina. 

Data analysis For statistical analysis we used R version 3.3.2. SEM models were built using AMOS software (SPSS, Chicago, IL). The bioinformatic 
pipelines used to process metagenomes are available at https://github.com/hildebra/MATAFILER and https://github.com/hildebra/
Rarefaction. The pipeline to process amplicon sequences is available at http://psbweb05.psb.ugent.be/lotus/.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data availability All metagenomics and metabarcoding sequences have been deposited in the European Bioinformatics Institute-Sequence Read Archive database, 
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under accession numbers PRJEB24121 (ERP105926): Estonian forest and grassland topsoil samples; PRJEB19856 (ERP021922): 16S metabarcoding data of global soil 
samples; PRJEB19855 (ERP021921): 18S metabarcoding data of global soil samples; PRJEB18701 (ERP020652): Global analysis of soil microbiomes. The soil gene 
catalogue nucleotide and amino acid sequences as well as abundance matrix estimates are available at http://vm-lux.embl.de/~hildebra/Soil_gene_cat/.  The Tara 
Oceans data are available at http://ocean-microbiome.embl.de/companion.html. All other data that support the findings of this study are available from the 
corresponding authors upon request.  
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study uses high-throughput sequencing methods, soil chemistry and biomass analysis to characterize soil microbiomes across 
diverse locations and biomes in relation to environmental variables on a global scale.

Research sample We used shotgun sequencing and metabarcoding of global soil samples to investigate microorganisms present in samples based on 
their genetic signature, focusing on dominant soil microbial groups such as Bacteria and Fungi. All soil samples used for the main text 
were collected by us. All ocean samples are from the Tara Oceans expedition and available at EBI under the project identifiers 
PRJEB402 and PRJEB7988. All public soil samples (only mentioned in Supplement) are publicly available on MG-RAST or EBI, as 
specified in the Methods.

Sampling strategy We collected composite soil samples from 1450 sites worldwide. The sampling was conducted broadly across the most influential 
known environmental gradient (latitude), taking advantage of a global “natural laboratory” to study the impact of climate on diversity 
across vegetation, biome and soil types and to enable testing the effects of environmental parameters, spatial distance, and biotic 
interactions in structuring microbial communities. We carefully selected 189 representative sites for different vegetation types 
separated by spatial distances sufficient to minimize spatial autocorrelation and to cover most areas of the globe. No formal power 
analysis was undertaken but based on experiences from previous studies of soil and ocean metagenomes, the present sample size 
was deemed sufficient. 

Data collection Soil samples were metagenomically sequenced at the Estonian Genomics Center (Tartu, Estonia) (18S, metagenomics) and EMBL 
GeneCore facility (Heidelberg, Germany) (16S). Soil physical parameters were measured at the Estonian University of Life Sciences 
(Estonia). Soil PFLAs were measured at Lund University (Sweden) by Pål Axel Olsson and Nadejda A. Soudzilovskaia. Soil metagenomic 
and metataxonomic reads were demultiplexed (if required) and quality controlled with sdm (part of the LotuS and MATAFILER 
pipeline). For detailed description, please see Methods.

Timing and spatial scale Samples were collected between 2010 - 2014 (main global soil samples) and 2011-2016 (independent soil samples). No specific 
month was preselected and collection time depended on the availability of collaborators to collect samples. For detailed description, 
please see Methods.

Data exclusions Desert and mangrove samples were only used in metabarcoding analysis and were excluded in comparative analysis of functional and 
taxonomic patterns. Samples from desert (n=8: G4010,G4034,S357,S359,S411,S414,S418 and S421) and mangrove (n=1: G4023) 
biomes yielded sufficient DNA for metabarcoding, but not metagenomic sequencing; thus these samples were used for examining 
global trends of taxonomic diversity but excluded from all comparisons between functional and taxonomic diversity. One sample 
(S017) contained no 16S sequences; thus, altogether 197 and 189 samples were used for metabarcoding and metagenomics 
analyses, respectively. 

Reproducibility We used cross-validation where appropriate throughout the manuscript and included additional soil sites after initial analysis to 
support the main theories derived from the initial dataset. We could reproduce the main findings on independent datasets (i.e. using 
the independent or the public soil dataset to reproduce main ARG trends).

Randomization The statistics being mostly correlative, no randomization was necessary. For these involving group of soil sites, these were tested 
with the appropriate statistical tests.

Blinding Since this is an exploratory study without specified groups being compared, but rather a correlative analysis, no blinding was possible 
in data collection. We used cross-validation where appropriate throughout the manuscript and included additional sites after initial 
analysis to support the main theories derived from the initial dataset.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Field work was carried out in sites that were minimally affected by human disturbance, across various biomes and regions of the 

world. Temperature and rainfall were obtained for the soil samples from the climate database and did not influence sampling 
time nor location. For detailed description, please see Methods.
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Location The global soil samples were collected from around the world. The Tara Oceans samples were collected from all major oceans. 
The Forest samples were collected mostly in Estonia. The exact GPS coordinates for these samples are available Online.

Access and import/export All samples were collected in full accordance with local and international law, with negligible impact on the study sites, the 
required permissions have been documented in our previous study (Tedersoo, L. et al. 2014. “Global Diversity and Geography of 
Soil Fungi.” Science 346(6213)).

Disturbance Given the small size of soil cores (5 cm diam. to 5 cm depth), the sampling procedure (incl. trampling) caused minimal 
disturbance to the environment.

Reporting for specific materials, systems and methods
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Methods
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