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1
1.  Recurrent miscarriage

Recurrent miscarriage is defined as three or more consecutive miscarriages prior to the 20th 

week of gestation.1 It is a devastating condition, both from a medical and psychological 

point of view. Sporadic miscarriages occur frequently (about 10-15% of pregnancies 

end in a miscarriage), but recurrent miscarriage is only diagnosed after a couple has 

experienced at least three miscarriages, which is the case in 1 to 2% of all couples trying 

to conceive.1 Recurrent miscarriage is etiologically a highly heterogeneous condition. 

Possible etiologic factors include uterine anomalies, endocrine disorders, maternal 

inherited and acquired thrombophilia, and parental chromosomal abnormalities.2,3 

Whenever the diagnosis ‘recurrent miscarriages’ is established, an underlying cause may 

be identified in 25-50% of the patients.4 Although the underlying cause remains unclear 

in a high number of patients, therapeutic options have been widely investigated in the 

last decade. Unfortunately, medication like low dose of insulin, HCG, immunotherapy, 

and aspirin alone or in combination with low molecular weight heparin (LMWH) seems 

not to improve pregnancy rates in the studied populations.5-7 Also progesterone has not 

proven to be effective in patients with unexplained miscarriages.8

These rather disappointing results leaves 50-75% of couples with the burden of continuous 

uncertainty and leaves their clinicians without means to treat these women in a next 

pregnancy in order to prevent further miscarriages. 

Without any therapy the chance of a live birth after 3 miscarriages is generally assumed 

to be 75%, while in more recent studies live birth rates range from 57-95%.5,9-12 The 

large range found for live birth rate in women with recurrent miscarriages might also be 

explained by different definitions of recurrent miscarriage. Many studies on recurrent 

miscarriage include women with ≥2 miscarriages, have no clear classification of explained 

recurrent miscarriage, and mostly no clear definition of control subjects used.  

However, the main problem is that many of the women with unexplained recurrent 

miscarriage, will never be able to have a live birth. Since the fetus is a semi-allograft, which 

in normal pregnancy is tolerated by the maternal immune system, it has been suggested 

that an inadequate maternal allo-immune response to paternal antigens is responsible 

for a proportion of these unexplained miscarriages.13,14 

2.  Immunological tolerance in early pregnancy

The blastocyst reaches the uterine cavity and penetrates the epithelium of the uterus 8 

to 10 days after conception. At that moment fetal antigens make contact with maternal 
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peripheral mononuclear blood cells (PBMCs). The trophoblast cells from the outer layer 

of the placenta are in direct contact with maternal immune cells. Furthermore, entry of 

fetal material as fetal cells (microchimerism), synctiotrophoblast fragments, and fetal 

DNA into the maternal circulation occurs.15 To protect the fetus from immune mediated 

damage, a state of tolerance must be generated. Several immunological mechanisms 

at the implantation site contribute to a tolerogenic environment (Figure 1.1), in which 

HLA molecules play an important role. However, the actual immunological mechanisms 

by which the maternal immune system accepts the semi-allogeneic fetus is still not 

completely understood.     

2.1  HLA molecules 

Major histocompatibility complex (MHC) antigens, in human called the human leukocyte 

antigen (HLA), are highly polymorphic glycoproteins, of which the main function is peptide 

Figure 1.1  Immunological responses during implantation of the blastocyst leading to normal 
implantation, normal placentation, and fetal acceptance
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presentation to T cells. The MHC is located on the short arm of chromosome 6 and is 

divided in three regions; class I, II, and III. The class I region includes the classical genes, 

HLA-A, HLA-B, HLA-C, and the non-classical genes, HLA-E, HLA-F, and HLA-G. HLA class 

I molecules present antigens to CD8+ T cells and form ligands for receptors on natural 

killer (NK) cells. Classical HLA class I molecules are expressed on all nucleated cells and on 

platelets. HLA class II molecules, which include HLA-DR, HLA-DQ, and HLA-DP, are present 

on antigen presenting cells (APCs), like macrophages, dendritic cells (DCs), and B cells.  

The class III region contains a high density of non-HLA genes, like genes coding for 

complement components (C2,C4), heat shock protein (Hsp70), and cytokines (TNF).16   

2.1.1  HLA sharing 

It is believed that a high degree of HLA sharing between couples could decrease the 

trigger to develop an immunoregulatory response, as recognition of paternal antigens by 

the maternal immune system is essential for normal pregnancy. Therefore, the role of HLA 

sharing has extensively been investigated in recurrent miscarriage.17 Studies examining 

HLA sharing showed inconsistent results, probably because they tested a wide range of 

hypotheses, adopted various classifications for the same disease, used various control 

groups, and investigated different HLA alleles and loci. In a meta-analysis of selected case 

control studies a slightly increased and significant risk of recurrent miscarriage among 

couples who shared at least one allele at the HLA-DR locus was found.17 However, it remains 

unclear whether the HLA alleles themselves are the susceptibility factors, or whether other 

genes linked to HLA are the main causative agents for the onset of recurrent miscarriage.17

2.1.2  HLA alleles 

One of the mechanisms leading to acceptance of the allogeneic fetus, is that fetal 

cytotrophoblast cells do not to express HLA class II molecules and the HLA class I 

molecules, HLA-A and HLA-B. Therefore, direct triggering of CD4+ T cells and cytotoxic 

lysis of trophoblast cells by CD8+ T cells is prevented (Figure 1.2). 

Instead, extravillous cytotrophoblast cells express the non-classical oligomorphic 

HLA-G and E-molecules while, HLA-C is the only classical HLA I antigen expressed on 

trophoblast.18-20 HLA-C is highly polymorphic while both maternal and paternal alleles are 

expressed on the cell surface.21 The HLA-C molecules appear to be involved in regulation 

of the immune response at the fetal-maternal interface on the basis of allorecognition 

by killer immunoglobulin-like receptor (KIR) on both NK cells and T cells (Figure 1.3).22-28 
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HLA-C ligands specifically interact with inhibitory receptors or activating receptors on NK 

cells, both KIR. Although there are about 350 different KIR genotypes, there are 2 basic 

KIR haplotypes called the A and B haplotype. The B haplotype consists predominantly of 

activating receptors whereas the A haplotype mainly consists of inhibiting receptors. The 

HLA-C ligands are divided into two subtypes, namely HLA-C1 binds inhibitory KIR2DL2/3, 

while HLA-C2 binds inhibitory KIR2DL1 and activating KIR2DS1.29 The interaction between 

these two HLA-C subtypes and KIR receptors, resulting in a balance of inhibiting and activating 

NK cells, in (un)complicated pregnancy has been studied extensively for the past years.30-33 

In early pregnancy, approximately 70% of decidual leukocytes are uterine NK cells, these 

Figure 1.2  Absence of HLA-A and HLA-B and MHC class II molecules on trophoblast prevents 
direct lysis by CD8+ T cells

Figure 1.3  Interaction of HLA-G and HLA-C with KIR on NK cells regulates the maternal immune 
response
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numbers decrease during pregnancy until 3% at term.34 This suggests that NK cells play a 

crucial role in the development of the placenta.35 Uterine NK cells differ from peripheral 

blood NK cells, by their increased binding abilities to HLA-C and high CD56 levels and the 

absence of the marker CD16. Their immunological response is mainly based on cytokine 

supply and not on their cytotoxic potential.36 NK cells in the decidua play an important 

role in angiogenesis via the production of angiogenic factors such as TGF-β, angiopoietin 

1 and 2, vascular endothelial growth factor (VEGF), and placental growth factor (PIGF), 

since these factors enhance invasion of extravillous trophoblast (Figure 1.3).37 

The non-classical class I molecule HLA-G is characterized by its restricted tissue expression, 

including extravillous trophoblast cells, the thymus, eyes, and various types of tumour and 

stromal cells,38 and by its limited polymorphisms.39 Only 4 membrane bound (HLA-G1, 

G2, G3, and G4) and 3 soluble isoforms (sHLA-G5, G6, and G7) have been identified.40,41 

It has been postulated that the main function of HLA-G is interacting with NK cells, 

macrophages, T cells, and possibly B cells by binding with leukocyte immunoglobulin-

like receptor (LIR), immunoglobulin-like transcripts (ILT), and KIR.40,42,43 The interaction 

of HLA-G on the trophoblast with ILT expressed on DCs promotes regulatory T cells to 

downregulate the adaptive immune response in the uterus.44 The ILT2 receptor is also 

expressed in a small percentage of uterine NK cells and binds HLA-G at low affinity.45 

In addition, binding of HLA-G with KIR2DL4 receptor on uterine NK cells results in 

the production of various cytokines, chemokines, and angiogenic factors, stimulating 

trophoblast invasion and blood vessel development associated with normal implantation 

(Figure 1.3). Nevertheless, no differences in expression of HLA-G on the trophoblast were 

observed between women with recurrent miscarriage and control subjects.46-48 HLA-G 

gene expression is dependent on polymorphism in the promotor region or 5’upstream 

regulatory region. Insertion of a 14-basepair (bp) segment in the 3’untranslated region 

(3’UTR) of the HLA-G gene may affect HLA-G mRNA stability,49 which is associated with 

lower levels or even absence of soluble HLA-G (sHLA-G) in plasma.50-52 The HLA-G 3’UTR 

in exon 8 consists of eight single nucleotide polymorphisms (SNPs), which together 

generate eight distinct haplotypes.53,54 Although the level of sHLA-G is dependent of 

the HLA-G genotype, meta-analyses on the association of the 14-bp insertion with 

unexplained recurrent miscarriage have led to inconsistent results.55,56 Most likely, 14-

bp insertion is in linkage disequilibrium with other sequence variations that influence 

the level of soluble isoforms. This is in line with the hypothesis that sHLA-G expression 

is determined by the combination of multiple SNPs.53 sHLA-G is highly present in the 

maternal circulation during pregnancy57 and the trophoblast is able to produce sHLA-G. 

sHLA-G, especially sHLA-G5 and sHLA-G6, possess immunosuppressive functions by an 

apoptotic effect on activated CD8+ T cells58 and suppression of an alloimmune proliferative 
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response,59 which seems to be concentration-dependent.60 Furthermore, experimental 

data suggest that the development of a Th2 cytokine response (see paragraph 2.2) 

is associated with high concentration of sHLA-G and maintenance of pregnancy  

(Figure 1.4).60 

On the other hand, low levels of sHLA-G have been associated with spontaneous 

miscarriage,61 recurrent miscarriage,62 and miscarriage in IVF pregnancies.63

HLA-E is detected on extravillous trophoblast cells64-66 and binds to CD94/NKG2A on NK 

cells. HLA-E is an oligomorphic HLA molecule and only three variants can be distinguished 

at the protein level. As the E*01:04 allele is very rare, only the two non-synonymous alleles 

(E*01:01 and E*01:03) are of clinical importance. Affinity of HLA*01:01 for a nonamer 

peptide derived from HLA-G is lower than for HLA-E*01:03.67 Recently, co-expression of 

HLA-E and HLA-G at the surface of preimplantation embryos was detected, suggesting 

that these antigens, which both have ligands to bind with NK cells, are important in 

normal pregnancy.68 

Figure 1.4  The role of sHLA-G in maintenance of pregnancy
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2.2  T cell activation

Besides uterine NK cells (70%), the early decidua is comprised of T cells (10%), and 

APCs including macrophages (20%), and DCs (2%). T cells are a part of the adaptive 

immune system. After an initial response to a specific pathogen both CD4+ and CD8+ 

cells replicate and develop into memory cells that will lead to a more vigorous response 

to subsequent encounters with that pathogen. The T cell receptor (TCR) binds to short 

peptides in the binding groove of the MHC on the cell surface. T cell activation requires 

the interaction of the TCR with the appropriate MHC/peptide complex and interaction 

of co-stimulatory molecule CD28 with CD80/86 on APCs. Upon activation, T cells express 

the high affinity interleukin (IL)-2 receptor and produce IL-2, which drives clonal expansion. 

After this expansion, CD8+ T cells may differentiate into cytotoxic effector cells, whereas 

naïve CD4+T cells develop into T helper 1 (Th1), T helper 2 (Th2), regulatory T cells or 

T helper (Th17) cells,69 depending on the types of cytokines present in the environment 

where T cell activation occurs (Figure 1.5).

The development of Th1 or Th2 cells is influenced by the presence of pro-inflammatory 

cytokines such as IL-12 and Il-4. Th1 cells synthesize IL-2, interferon (IFN)-γ, and tumor 

necrosis factor (TNF)-β and thereby induce cellular immunity. Cellular immunity covers the 

activity by T cells, NK cells, mast cells, basophils, eosinophils, neutrophils, macrophages, 

and DCs.

Th2 cells synthesize IL-4, IL-5, IL-6, IL-10, and IL-13 which induce humoral immunity, which 

includes chemokines, cytokines, complement, and B cells and thus stimulate B cells to 

produce antibodies.70 Regulatory T cells develop under the influence of cytokines like 

TGF-β and IL-10, and in the absence of pro-inflammatory cytokines. If inflammatory 

cytokines IL-6 and/or IL-21 are present along with TGF-β the induction of regulatory cells 

is inhibited and Th17 cells are generated. The regulatory T cell is a specialized subset of 

T cells distinguished from the other classes by their role in tolerance. Regulatory T cells 

can be divided into the naturally occurring CD4+CD25bright regulatory T cell (Treg) derived 

from the thymus and the peripherally induced type 1 regulatory T cells (Tr1) and Th 3 

regulatory cells. Activated CD4+ T cells express intermediate levels of CD25 (CD25dim) 

and CD4+ T cells expressing high levels of CD25 (CD25bright) have regulatory capacity.71 

CD4+CD25bright regulatory T cells are able to control immune responsiveness to self- and 

allo-antigens and are able to suppress auto-immunity.72 FoxP3, the gene encoding the 

transcription factor Scurfin, is also a marker for Treg cells. Mice deficient for Scurfin, lack 

regulatory T cells and suffer from autoimmunity, whereas mice with overexpression of 

Foxp3 display increased immunosuppressive activity compared to wild type mice.73,74 Other 

markers to distinguish further between activated and regulatory T cells are cytotoxic T 
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lymphocyte associate protein 4 (CTLA-4), glucocorticoid-induced tumor necrosis factor 

receptor (GITR), CD95, and CD127, which is inversely correlated with Foxp3 expression.75,76 

However, all these surface markers can be dynamically expressed on other cell populations 

and functional tests remain necessary to distinguish Treg cells from related cells.

2.2.1  T cell activation in pregnancy

When the blastocyst is penetrating the epithelium of the uterus, the maternal innate 

immune system comes into action. This first line of defense against pathogens that 

penetrate the epithelial surface is always available, and does not improve with repeated 

exposure to the same pathogen. Cells of the innate immune system can interact with cells 

of the adaptive immunity. Fetal allo-antigens are picked up by invading APCs, which are 

the second largest subset of leukocytes in the early pregnancy, at the implantation site 

and transport the antigens to the uterine lymph nodes. There they activate the acquired 

Figure 1.5  T cell activation and differentiation of CD4+ T helper subsets at the implantation site  
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immune system. These APCs, especially DCs will interact with naïve T-helper cells and 

induce differentiation of these cells into T helper cells under the influence of different 

cytokines as described in paragraph 2.2 and Figure 1.5. 

The expansion of Treg cells will actively induce maternal tolerance to paternal antigens 

during pregnancy. Indeed, in mice Treg cells in the decidua are responsible for maternal 

tolerance to fetal allo-antigens by preventing rejection and facilitating a successful 

pregnancy.77,78 In an abortion prone mouse model, transfer of Treg cells from normal 

pregnant mice could inhibit proliferation and cytokine production of Th1 cells in the 

decidua, and prevent abortion.79,80 Likely Th2 cytokine production as IL-4 and IL-10 

was promoted by this transfer of Treg cells.81 Also in human, Treg cells are increased in 

the decidua during pregnancy.82 In women with complicated pregnancies as recurrent 

miscarriage and preeclampsia, decreased numbers of Treg cells were found in the decidua83 

and placenta,84 suggesting that Treg cells play a pivotal role in the maintenance of fetal 

acceptance, normal implantation, and placentation. The possible mechanisms by which Treg 

cells induce maternal immune tolerance towards fetal antigens are cell-to-cell interaction 

via membrane-bound TGF-β, LAG-3, Galectin 1, and CTLA-4, secondly by inhibiting T 

cell activation through production of cytokines such as IL-10 and TGF-β, and thirdly by 

inducing expression of indomelamine 2,3-dioxygenase (IDO) by APCs through CTLA-4.69 

IDO, a tryptophan-catabolizing enzyme, is also synthesized by the trophoblast and 

promotes maternal-fetal tolerance. In mice, the IDO inhibitor, 1-methyl-tryptophan (1-MT),  

induces fetal rejection by preventing IDO to suppress maternal T cell responses.85 

Moreover, by tryptophan depletion IDO protects the fetus by suppressing T cell-driven 

local inflammatory responses at the maternal-fetal interface.86 Under influence of IDO naïve 

T cells differentiate into cells with a regulatory phenotype, and in turn, these cells create 

other tolerogenic DCs through the induction of IDO expression by CTLA4 interactions.87 

In summary, IDO can mediate a suppressive effect directly on effector T cells and at the 

same time activate Tregs cells.88 

2.2.2  Seminal plasma and T cell activation 

Already during copulation, long before implantation, maternal tolerance towards future 

fetal allo-antigens is induced as was shown in mice studies.79,89 Normal seminal plasma 

facilitates spermatozoal transport and survival, and consequently increases fertility.90 It 

has been assumed that immunoregulatory factors in seminal plasma protect spermatozoa 

against a female allo-immune response. In normal sperm, different suppressive mechanisms 

are active and a range of inhibitors of the immune and inflammatory system has been 

identified. Also, human seminal plasma contains several types of immunoregulatory 
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factors such as cytokines, chemokines,91 and sHLA,92,93 which may modulate the maternal 

immune response (Figure 1.6).94,95 One of those cytokines, TGF-β, is highly present in 

human seminal plasma. TGF-β is thought to inhibit a type 1 immune response against 

the semi-allogeneic fetus, by initiating a type 2 or Treg-dominated immune response 

associated with partner-specific tolerance.96 

Soluble forms of HLA-G have been found in human seminal plasma and therefore paternal 

HLA-G may affect the maternal immune system before implantation of the embryo.97 

These allo-antigens present in seminal plasma may also be responsible for the Treg 

cells expansion as was previously shown in mice.98 In addition, within two days after 

insemination, Treg cells with an upregulation of Foxp3 expression can be found in the 

draining lymph nodes in mice.77 DCs are partly responsible for this antigen specific Treg 

expansion (Figure 1.6).99 

Figure 1.6  Expansion of Treg cells by immunoregulatory factors present in seminal plasma before 
implantation
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Another well-known route to induce immune tolerance is via oral exposure, possible 

because the gut has the most adequate absorption in the absence of an inflammatory 

environment.100,101 In transplantation models of rats, oral administration of MHC molecules 

prevents the occurrence of allograft rejection.102 Based on this knowledge, Koelman et 

al. hypothesized that a potent way of inducing tolerance towards paternal HLA of the 

fetus in pregnancy, would be exposure of these antigens to the mothers oral mucosa. In 

support of this theory, they showed that both oral sex and swallowing sperm diminished 

the prevalence of preeclampsia.93 Interestingly, in women with two miscarriages the 

incidence of oral sex practice was similar to a control population, but more women in the 

control group swallowed sperm compared to women with two miscarriages.103

2.3  B cell activation, antibodies, and complement

Besides T cells, B cells are also a part of the adaptive immune system. B cells produce 

antigen-specific antibodies; after uptake of antigen by the B cell receptor (BCR) and 

interaction with primed T cells and costimulation through CD40L-CD40 and specific 

cytokines.104 Essential for this antibody response is that the interacting T- and B cell 

recognize epitopes of the same antigen. Antibodies are glycoproteins and there are five 

classes or isotypes called IgA, IgD, IgE, IgG, and IgM. In addition, there are 4 subclasses 

of IgG and two subclasses of IgA. Of the five isotypes, IgM is always the first antibody 

to be secreted in an immune response, as this is the BCR on naïve B cells independent 

of T cell help. During differentiation so called ‘isotype switching’ takes place, which 

means that some B cells start to produce antibodies of a different class that mediate 

other effector functions at different locations.105 The main functions of antibodies are 

neutralization and opsonization. During neutralization, antibodies bind tightly to a site 

of the pathogen, thereby neutralizing its toxic activity, and preventing interaction with 

human cells. Opsonization is the process in which IgG antibodies coat the cell surface of 

a pathogen. The constant region of the antibody binds to receptors on a phagocyte and 

promotes ingestion and destruction by these phagocytes. 

Furthermore, IgM, IgG1, and IgG3 can activate the complement system. The complement 

system is the so called ‘first line of defense’ of the human immune system. Complement 

is activated by 3 mechanisms known as the classical, lectin, and alternative pathways. 

These three pathways converge by generating enzymes called C3 convertases, which 

cleave C3 into C3b and C3a. C3b binds to the surface of foreign cells and opsonizes the 

cells for phagocytosis. A tissue-biomarker for classical complement activation, which is 

activated by antibodies, is C4d, a non-functional split product of classical complement 

activation. C4d covalently attaches to cells and tissues, thereby acting as a footprint of 
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recent antibody-mediated tissue injury. Other biological functions of the complement 

system are achieved through the production of activation fragments (e.g., C3a, C5a, 

C5b-9) by forming the membrane attack complex (MAC). This complex can insert into 

membranes and has the potential to damage cells. Finally, antibodies bound to infected 

cells, allow NK cells to kill them through antibody-dependent cellular cytotoxicity.

A fraction of B cells do not differentiate into antibody secreting plasma cells but become 

B memory cells that are able to respond rapidly when the same antigen is encountered 

again.106

2.3.1  B cell activation, antibodies, and complement in pregnancy

When the maternal immune system recognizes the paternal HLA as different, this may 

lead to the production of allo-antibodies. 

Approximately 30% of healthy women develop anti-HLA antibodies during pregnancy. The 

presence of these antibodies increases after 28 weeks of pregnancy and antibodies can 

still be present at time of a new conception.107,108 Binding of antibodies to paternal HLA 

antigens of the fetus might lead to complement fixation and antibody-mediated rejection 

of the fetus. In women with recurrent miscarriages presence of anti-HLA antibodies is 

associated with a reduced chance of a live birth.109 In addition, in spontaneous preterm 

birth C4d deposition on fetal umbilical cord endothelium was associated with circulating 

maternal anti-HLA class I antibodies.110 

Also, autoantibodies can initiate local complement activation by the activation of the 

classical pathway, and recruitment of inflammatory cells which may lead to abnormal 

placental development in pregnancy. We have recently demonstrated that C4d is 

abundantly present in placentas of women with autoimmune mediated pregnancy losses 

caused by SLE and antiphospholipid syndrome.111 Placental C4d was found at the fetal-

maternal interface, and was strongly associated with intrauterine fetal death and severe 

forms of preeclampsia.112-116 

During normal pregnancy, uncontrolled complement activation is prevented by the 

three regulatory proteins: decay accelerating factor (DAF), membrane cofactor protein 

(MCP) and CD59, highly expressed on the surface of trophoblasts, as well as circulating 

complement regulatory proteins factor H, factor I, and C4b binding protein (Figure 1.7).117 

DAF accelerates the destruction of the C3 convertase enzymes that activate C3 and 

amplifies the classical and alternative complement pathways. MCP is a cofactor for 

Factor-I mediated degradation and inactivation of C3b and C4b, thereby preventing 

further activation and amplification of the complement cascade. Finally CD59 prevents the 
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assembly of MAC, thereby blocking the lysis effect of this complex.118 A recent cohort study 

of patients with severe preeclampsia demonstrated that 19% of women had mutations in 

complement regulatory genes, leading to inadequate inhibition of complement activation 

at the fetal-maternal interface.119 

4.  Outline of this thesis

The general aim of the studies described in this thesis was to further unravel the underlying 

mechanisms causing recurrent miscarriage of unknown etiology in order to identify these 

women earlier in their disease course, and to eventually develop more effective and 

more patient tailored treatment strategies. The focus of these present studies was on 

the detection of parameters leading to the causative mechanisms, with special emphasis 

on the role of the partner. 

Figure 1.7  Complement regulatory proteins prevent uncontrolled complement activation in 
pregnancy

sHLA‐G

Syncytiotrophoblast
IDO

Th2Th2
Th2

Th2

Th2Th2

TREG
Foxp3+
TREG

Foxp3+

TREG
Foxp3+ TREG

Foxp3+

TREG
Foxp3+

TREG
Foxp3+

Blastocyst

Cytotrophoblast

Epithelium

Stroma

IL‐10
TGF‐β

IL‐17
IL‐21

IL‐4
IL‐5
IL‐6
IL‐10
IL‐13

Th1

Th2

Th17

TREG
Foxp3+

IFN‐γ
TNF‐β
IL‐2

IL‐4
IL‐6Naive

CD4+ T

Dendritic cellMacrophage

APCs

HLA‐C,G,E

KIR

uNK

B cell

CD8+ T

HLA‐A,B
HLA‐II

X
X

Angiogenic factors

sHLA‐G

VEGF

TGF‐β

Chapter_1_Tess.indd   21 29-8-2018   17:39:33



Chapter 1

22

1
In chapter 2 we systematically reviewed whether HLA sharing between partners, specific 

HLA alleles or the 14-bp insertion in the 3’UTR of the HLA-G gene were associated with 

the occurrence of unexplained recurrent miscarriage. In a second study, chapter 3, we 

compared other polymorphisms in the HLA-G allele in women with recurrent miscarriage 

with women with uneventful pregnancy. 

As HLA-C is the only classical HLA antigen expressed on the trophoblast, we studied 

whether the immunogenicity of HLA-C plays a role in couples with unexplained recurrent 

miscarriage (chapter 4). The effect of anti-HLA antibodies on pregnancy complications is 

reviewed in chapter 5. The role of HLA-C specific antibodies in pregnancy complications 

has not been studied, while we know from transplantation settings that a proportion of 

alloantibodies cause rejection, mostly through their ability to activate complement.120 

Therefore, we investigated the presence of HLA-C antibodies in the first trimester of 

pregnancy (chapter 6), and the presence of C4d in products of conception (chapter 7), 

in women with recurrent miscarriage and compared them to women with uneventful 

pregnancy.

Seminal plasma contains a variety of immunological factors that can potentially influence 

the acceptance of the fetus by the maternal immune system. The immunomodulating effect 

of seminal plasma on human T cells was explored in chapter 8. Finally, we determined 

whether women with recurrent miscarriage had less oral sex with their partner than 

women with uneventful pregnancy as a possible explanation for the lack of tolerance to 

the paternal antigens (chapter 9).

Chapter 10 provides a general discussion of this thesis. Moreover, implications for clinical 

practice and future research are discussed.
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Abstract

Problem

The aim of this meta-analysis was to evaluate whether specific maternal HLA 

alleles and HLA sharing of couples are associated with the occurrence of recurrent 

miscarriage. 

Method

A systematic literature search was performed for studies that evaluated the 

association between HLA alleles, HLA sharing and recurrent miscarriage. Recurrent 

miscarriage was defined as three or more consecutive unexplained miscarriages 

and a control group was included of women with at least one live birth and no 

miscarriages in their history. Meta-analyses were performed and the pooled odds 

ratio (OR) was calculated. 

Results

We included 41 studies. Selection bias was present in 40 studies and information 

bias in all studies. Meta-analyses showed an increased risk of recurrent miscarriage 

in mothers carrying a HLA-DRB1*4 (OR 1.41, 95% CI 1.05-1.90), HLA-DRB1*15 (OR 

1.57, 95% CI 1.15-2.14), or a HLA-E*01:01 allele (OR 1.47, 95% CI .20-1.81), and a 

decreased risk with HLA-DRB1*13 (OR 0.63, 95% CI 0.45-0.89) or HLA-DRB1*14 

(OR 0.54, 95% CI 0.31-0.94). Pooling results for HLA sharing showed that HLA-B 

sharing (OR 1.39, 95% CI 1.11-1.75) and HLA-DR sharing (OR 1.57, 95% CI 1.10-

1.25) were both associated with the occurrence of recurrent miscarriage.

Conclusion

Although the present systematic review and meta-analysis demonstrates that 

specific HLA alleles and HLA sharing are associated with recurrent miscarriage, 

a high degree of bias was present and therefore observed results should be in-

terpreted carefully.
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Introduction

Approximately 1% of all couples will be confronted with recurrent miscarriage, which is 

defined as three or more consecutive miscarriages prior to the 20th week of gestation.1 

Recurrent miscarriage is a highly heterogeneous condition. Possible etiologic factors 

may include balanced translocations in the maternal or paternal DNA, uterine anomalies, 

acquired thrombophilia as anti-phospholipid syndrome (APS), and hereditary thrombo

philia.2,3 However, in many couples no causal factor can be identified.2,4 As the fetus is 

a semi-allograft, which escapes maternal immune rejection in normal pregnancy, many 

studies investigated whether the HLA system plays a role in unexplained recurrent 

miscarriage. 

Several authors investigated whether specific maternal HLA class II alleles,5,6 some of 

which associated with auto-immune disorders,7 are also associated with the occurrence 

of recurrent miscarriage. Other studies investigated the role of HLA-C, the only classical 

HLA antigen expressed on trophoblast, in recurrent miscarriage,8,9 with a special focus on 

the group of HLA-C2 alleles and their interaction with receptors on NK cells suggested 

to be associated with complicated pregnancies.10-13 In addition, the association between 

recurrent miscarriage and the non-classical HLA-E and HLA-G alleles, both present on the 

trophoblast were investigated.14,15 Although the invading throphoblast is derived from the 

fetus, most studies focused on associations of recurrent miscarriage and specific maternal 

HLA-C, -E and -G alleles likely since collecting and typing of miscarriage material is rather 

difficult due to logistical problems. Several studies focused on the association of recurrent 

miscarriage with the insertion of a 14-bp in HLA-G in the mother,16,17 which has been 

correlated with reduced mRNA levels of HLA-G18 and low levels or even absence of sHLA-G 

in plasma.19,20 As HLA sharing between couples could decrease the trigger to develop an 

immunoregulatory response, which may be associated with failure of implantation or fetal 

loss, the degree of HLA sharing was extensively investigated in recurrent miscarriage.21

Studies on the association of unexplained recurrent miscarriage with specific maternal 

HLA alleles and HLA sharing between couples have led to inconsistent results.21-24 This 

inconsistency is not surprising considering the various definitions of recurrent miscarriage 

and control groups, the analysis of different HLA alleles and loci, and the application of 

various HLA typing methods. 

In order to provide a complete and up-to-date overview on the possible role of the HLA 

system in recurrent miscarriage, we reviewed the literature on the association between 

specific maternal HLA alleles and HLA sharing between couples and the occurrence of 

recurrent miscarriage. 
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Material and methods

Search strategy

In November 2013 we searched in close collaboration with a trained librarian in the 

databases PubMed, Embase, Web of Science, and Cochrane for studies that evaluated 

the association between HLA alleles and HLA sharing with recurrent miscarriage 

(Supplementary data for the comprehensive search string, Table I). As search limit, only 

studies published in English and concerning humans were included. In addition, references 

of other narrative and systematic reviews were checked for relevant articles.

Eligibility criteria 

After the literature search, all titles and abstracts were independently assessed by two 

observers (TM and EL). The following eligibility criteria were applied: 

•	 Definition of recurrent miscarriage: Women with three or more consecutive 

unexplained miscarriages.1 The classification unexplained recurrent miscarriage 

was made for women without uterine anomalies and/or, parental chromosomal 

abnormalities and/or, acquired or hereditary thrombophilia2 or if the authors stated 

them as unexplained. 

•	 Definition of control subject: Women with at least one live birth and no miscarriages 

in the medical history. 

•	 Method of HLA typing: For the association of specific maternal HLA alleles with  

recurrent miscarriage only studies were included using molecular HLA typing 

methods. For the association between HLA sharing and recurrent miscarriage 

both studies using serological HLA typing methods as well as molecular methods 

were included. Complement dependent cytotoxicity (CDC) or two color 

fluorescence (TCF) as HLA typing methods were considered as serological methods. 

Restriction fragment length polymorphism (RFLP), PCR-RFLP, PCR-sequence 

specific priming (SSP), PCR-sequence specific oligonucleotides (SSO), and PCR-

Luminex, and PCR-sequence based typing (SBT) were considered as molecular  

methods.

•	 Design: cohort studies, case-control studies, or cross-sectional studies were in-

cluded in the analysis. Case-reports were not considered.
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Risk of bias assessment

Risk of bias was assessed according to an adaptation of the Newcastle-Ottawa scale 

(http://www.ohri.ca/programs/clinical_epidemiology/nosgen.pdf (downloaded 01-2013)) 

by two observers (TM and EL):

•	 Selection bias: studies were considered to have a high risk of selection bias if 

cases were not consecutive or randomly sampled from a defined hospital or clinic 

over a defined period of time (case-control studies). For the control group high 

risk of selection bias was considered if control subjects were not from the same 

population as the cases. Adequate control subjects must have had the chance to 

become a case (which defines a control in a case-control study). In cohort studies 

selection bias was considered if the cohort was not representative of the average 

fertile women in the general population and the non-exposed cohort was not 

drawn from the same population as the exposed cohort. 

•	 Information bias: studies were considered to have a high risk of information bias 

if the case description (primary recurrent miscarriage (recurrent miscarriage with 

no history of live births) or secondary recurrent miscarriage (recurrent miscarriage 

after (a) live birth(s)), gestational age of miscarriages, maternal age at time of 

diagnosis) was incomplete. As the diagnostic work-up to rule out verifiable causes 

for recurrent miscarriage (uterine anomalies, parental chromosomal abnormalities, 

acquired thrombophilia as APS) as recommended by international guidelines25-27 

was inadequate, the risk of bias was considered to be high. For the control 

subjects high risk of information bias was considered if the description of control 

subjects (number of live births, course of pregnancies, miscarriages in history) 

was incomplete. 

•	 Equal assessment of confounding factors in the case and control subjects: adequate 

description of ethnicity in cases and control subjects, as the frequency of HLA 

alleles varies amongst different populations.28 Furthermore defining adequately 

whether auto-immune diseases related with specific HLA types and associated 

with recurrent miscarriage such as systemic lupus erythematosus (SLE)29-32 and 

rheumatoid arthritis (RA)33-35 were present in cases and control subjects. 

•	 Description of laboratory procedures for HLA typing in studies: HLA typing 

performed by molecular methods is more reliable and sensitive than serological 

typing.36,37 Furthermore, molecular typing can be performed with low and high 

resolution; with the latter method a more specific typing with allele variations at 

the level of nucleotides is obtained. A result of comparing molecular typing with 

serological typing and comparing high resolution with low resolution typing is that 
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the change of finding HLA compatibility is smaller and therefore less HLA sharing 

is expected to be reported which could lead to heterogeneity between studies.  

•	 Specification of antigens and alleles used for HLA sharing: specifying which antigens 

and alleles are used for calculating HLA sharing in cases and control subjects 

is important because use of different antigens or alleles could lead to over- or 

underestimation of HLA sharing and therefore to heterogeneity between studies.

Disagreement about selection of studies and assessing risk of bias was resolved by 

consensus. If no agreement was obtained, the opinion of a third observer (KB) was asked 

to gain consensus. 

Data extraction

The following data were independently extracted by two observers (TM and EL): design 

of the study, definition of recurrent miscarriage, definition of control subject, number of 

case and control subjects, pregnancy with same partner or other partner(s), ethnicity, 

presence of auto-immune diseases, method of HLA typing, specific HLA allele frequencies, 

HLA allele phenotypic frequencies, and shared HLA antigens or alleles. We contacted the 

authors if variables or data was missing. Multiple studies published by the same author(s) 

were checked for overlap in included case subjects; we used the study with the largest 

dataset or the study with the best defined case or control group. 

Statistical analysis

The primary outcome of the meta-analysis was the pooled odds ratio (OR) and their 

95% confidence intervals (CI) for the association between the occurrence of recurrent 

miscarriage and specific HLA alleles or phenotypes and HLA sharing of the selected 

studies. HLA-G alleles were typed for the broad, split, and silent mutations in most studies. 

In order to combine the results of these studies we pooled these data on the broad and 

split, for example HLA-G*01:01:01 was pooled with HLA-G*01:01:03 and the combined 

data were used for meta-analysis.

As we expected a between-study heterogeneity a priori, due to different study popu

lations, we used the random effects model by default. For this analysis, a minimum of 

five studies is generally recognized to be required.38,39 Meta-analysis with less than five 

studies was performed in a fixed effects model. In addition, I² statistics were calculated, if 

substantial heterogeneity is present (I² >50%), meta-regression was performed to explore 

heterogeneity. Metaregression was performed between molecular typing used as screening 

method for HLA typing and serological typing, between studies which include APS screening 
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in their work-up to rule out women with explained recurrent miscarriage and studies which 

did not include APS screening, and finally between primary recurrent miscarriage and 

secondary recurrent miscarriage, as it is still postulated that primary recurrent miscarriage 

and secondary recurrent miscarriage could be two distinct entities with different underlying 

pathology.40 For ethnicity, population stratification was performed.

To assess small study effects in the meta-analyses, funnel plots were generated. We 

used the Egger’s test to explore this potential bias in case more than eight studies were 

included.38,39 All analyses were performed with STATA (StataCorp.2011. Stata Statistical 

Software, Release 10, College Station, TX, USA;StataC). 

Results

Study selection 

The literature search identified 334 records. After review based on title and abstract, 

131 records remained. References of other narrative and systematic reviews (n=50) were 

checked for relevant articles and 5 more studies could be identified. Therefore, a total of 

136 were selected for full text review. When reading full text, most studies were excluded 

because of duplications, studying HLA sharing in women with recurrent miscarriage in the 

context of treatment evaluation, expressing of HLA antigens on trophoblast, or reporting 

about linkage disequilibrium in women with recurrent miscarriage (n=43). We furthermore 

excluded 47 studies that did not meet our eligibility criteria for case and/or control group 

definitions (for example; a case group with at least 2 miscarriages and no separate data 

in the study available of women with ≥ 3 miscarriages (see Supplementary data, Table II). 

Three studies were excluded because data extraction for individual HLA alleles or HLA 

sharing proved impossible41-43 and two studies because data was not shown.12,44 We were 

not able to retrieve the latter data even after contact with the corresponding authors. 

Finally, 41 studies were included, all of them case-control studies (Figure 2.1). 

Risk of bias assessment

An overview of the risk of bias of the studies included is provided in Supplementary 

data, Table III. All included studies had a high risk of information bias because none 

of the selected studies provided a full definition of the cases, and five studies did not 

mention any of the case definitions (whether women had primary recurrent miscarriage or 

secondary recurrent miscarriage, the gestational age of the miscarriages and maternal age 

at diagnosis).17,45-48 Most studies included in their work-up investigations to rule out uterine 
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anomalies and parental chromosomal abnormalities (explained recurrent miscarriage). In 

15 studies out of 41 studies screening for APS was not part of their work-up. Furthermore 

none of the 26 studies which included screening for APS described whether they tested 

for APS on at least two separate occasions 12 weeks apart.49 Only six out of 41 studies 

fully described control sampling.17,50-52 

High risk of selection bias was present as most studies did not indicate whether cases 

were consecutive or randomly sampled from one hospital. In only two studies it was clear 

that control subjects were from the same source population as cases.6,53 

High risk of population stratification bias was present because the ethnicity of the 

participants was adequately reported in only 15 of the 41 studies and of these only 7 

studies matched cases and control subjects or adjusted for ethnicity.6,8,14,51,54-56 Stratification 

analysis was not possible because not enough studies were present for each specific 

ethnic origin. 

Only three studies adequately defined whether cases had no auto-immune diseases as 

SLE and RA.56-58 In addition, 10 studies measured ANA, anti-dsDNA, or rheumatoid factor 

Studies excluded no data 
extraction possible 

(n=5)

Records excluded 
(n=203)

Records screened 
(n=334)

Full-text articles excluded, 
with reasons

(n=90)

Additional records included after 
checking references of reviews 

(n=5)

Studies  included 
(n=41)

Full-text articles assessed for 
eligibility 
(n=136 )

Records after duplicates removed 
(n=232 ) 

Records through 
searching Embase 

(n=248)

Records through 
searching Pubmed

(n=259)

Records through 
searching Web of Science 

(n=57)

Records through 
searching Cochrane

(n=2)

Figure 2.1  Flowchart illustrating how the studies were selected for the meta-analysis
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without reporting clinical features. Furthermore, two studies measured anti-phospholipid 

antibodies in order to detect acquired thrombophilia during the work-up,45,59 leaving 25 

studies which did not define whether auto-immune diseases were present.

All studies clearly defined which method for HLA typing was used. All studies, which 

investigate HLA sharing and used molecular typing method, mentioned whether they used 

high or low resolution typing. Three studies used high resolution59-61 and five used low 

resolution.45,53,62-64 A greater risk for bias was that only 14 out of 21 studies which investigated 

HLA sharing defined adequately which antigens and alleles were used to calculate sharing. 

HLA association studies

For associations between specific HLA alleles and recurrent miscarriage, 24 studies were 

eligible using molecular HLA typing method (Table 2.1).5,6,8,9,14-17,45-48,51,52,57,60-63,65-69 The 

following HLA alleles were reported in selected studies:

-- Classical HLA I

•	 HLA-C2 

-- Classical HLA II

•	 HLA-DRB1*01-04,07-18 (16 alleles)

•	 HLA-DQA1*01-06 (6 alleles) 

•	 HLA-DQB1*01-09 (9 alleles)

•	 HLA-DPB*01-06,08-11,13,15-19 (16 alleles)

-- Non-classical HLA I

•	 HLA-G*01:01,03,04,05N,06 (5 alleles)

•	 HLA-E*01:01,03 (2 alleles) 

•	 HLA-G 14-bp polymorphism 

As HLA-DRB1*02,17,18, DQA1*05,06, DQB1*01,07-09, DPB*01-06,08-11,13,15-19 alleles 

were mentioned in only one study, they could not be considered for meta-analysis. All 

significant associations on specific alleles and recurrent miscarriage of individual studies 

can be found in Table 2.1. 	

The phenotypic frequency of HLA-C2 was investigated in couples with recurrent 

miscarriage, an overall fixed effects meta-analysis (2 studies) showed an OR of 1.04 with 

a 95% CI 0.81-1.34 (Figure 2.2a). One study investigated HLA-C2 allelic frequencies in 

women separately and showed an OR of 1.29 (95% CI 0.91-1.83, p=0.175).9 

For the HLA class II alleles, a significant association was observed for phenotypic fre-

quencies of HLA-DRB1*4 (OR 1.41, 95% CI 1.05-1.90), HLA-DRB1*13 (OR 0.63, 95% CI 

Chapter_2_Tess_regular.indd   37 29-8-2018   17:39:43



Chapter 2

38

2

Ta
b

le
 2

.1
 H

LA
 a

ss
oc

ia
ti

on
s 

in
 r

ec
ur

re
nt

 m
is

ca
rr

ia
g

e

A
ut

ho
r

St
ud

y 
d

es
ig

n

C
as

es
C

o
nt

ro
l s

ub
je

ct
s

E
th

ni
ci

ty
H

LA
 

b
io

m
ar

ke
r

St
ud

y 
fin

d
in

g
s

N
 

D
efi

ni
ti

o
n

N
D

efi
ni

ti
o

n
Si

g
ni

fic
an

t

C
la

ss
ic

al
 H

LA
 I 

1
Fa

ri
d

i e
t 

al
. 

(2
01

1)
C

as
e 

co
nt

ro
l

17
7

≥ 
3 

P
R

M
20

0
≥ 

2 
un

co
m

-
p

lic
at

ed
 li

ve
 

b
ir

th
s

E
th

ni
ca

lly
 

m
at

ch
ed

C
1,

C
2 

al
le

le
s 

in
 c

o
up

le
s 

(a
lle

lic
)

-

2
H

ib
y 

et
 a

l. 
(2

00
8)

 
C

as
e 

co
nt

ro
l

16
2

≥ 
3 

P
R

M
, fi

rs
t 

(9
2%

) a
nd

 
se

co
nd

 t
ri

m
es

te
r, 

sa
m

e 
p

ar
tn

er

26
9 

1 
liv

e 
b

ir
th

N
R

C
1,

C
2 

al
le

le
s 

in
 c

o
up

le
s 

(a
lle

lic
)

C
2

3
C

hr
is

ti
an

se
n 

et
 

al
. (

19
97

)
C

as
e 

co
nt

ro
l

70
≥ 

3 
R

M
 (2

0 
P

R
M

, 1
5 

SR
M

), 
b

ef
o

re
 2

8th
 

g
es

ta
ti

o
na

l w
ee

k

60
≥ 

2 
liv

e 
b

ir
th

s
C

au
ca

si
an

C
1,

C
2 

al
le

le
s 

in
 c

o
up

le
s 

(p
he

no
ty

p
ic

)

-

C
la

ss
ic

al
 H

LA
 II

4
A

ru
na

 e
t 

al
. 

(2
01

1)
C

as
e 

co
nt

ro
l

56
 

14
3 

co
up

le
s 

w
it

h 
≥ 

2 
R

M
 

(1
30

 P
R

M
, 1

3 
SR

M
) a

nd
 

56
 c

o
up

le
s 

w
it

h 
≥ 

3 
R

M
 

14
0

≥ 
1 

liv
e 

b
ir

th
E

th
ni

ca
lly

 
m

at
ch

ed
 

D
R

-
B

1,
D

Q
A

,D
Q

B
 

(a
lle

lic
)

D
Q

B
1*

03
:0

3:
02

a

D
Q

B
1*

03
:0

3:
03
↓b

5
K

ru
se

 e
t 

al
. 

(2
00

4)
 (s

tu
d

y 
II)

 
C

as
e 

co
nt

ro
l

35
4

≥ 
3 

R
M

 (2
12

 P
R

M
, 1

42
 

SR
M

), 
20

-4
5 

ye
ar

s
20

2
≥ 

1 
liv

e 
b

ir
th

C
au

ca
si

an
D

R
B

1,
D

Q
A

1,
D

Q
B

1 
(p

he
no

ty
p

ic
)

D
R

B
1*

04
b
 

D
R

B
1*

13
b
 

D
R

B
1*

14
b
 

D
Q

A
1*

01
:0

3b
 

D
Q

B
1*

03
:0

2b
 

D
Q

B
1*

06
:0

3/
06

:0
4b

 
(s

tu
d

y 
II)

 
6

Ta
ka

ku
w

a 
et

 a
l. 

(2
00

3)
  

C
as

e 
co

nt
ro

l
93

≥ 
3 

R
M

 (7
9 

P
R

M
, 1

4 
SR

M
) fi

rs
t 

tr
im

es
te

r, 
sa

m
e 

p
ar

tn
er

11
5

≥ 
2 

te
rm

 
d

el
iv

er
ie

s
Ja

p
an

es
e

D
R

B
1 

(p
he

no
ty

p
ic

)
D

R
B

1 
*1

5:
02

7
Sa

sa
ki

 e
t 

al
. 

(1
99

7)
  

C
as

e 
co

nt
ro

l
27

≥ 
3 

R
M

, fi
rs

t 
tr

im
es

te
r

22
≥ 

2 
te

rm
 

d
el

iv
er

ie
s

N
R

D
R

B
1 

(p
he

no
ty

p
ic

)
D

R
B

1*
04

Chapter_2_Tess_regular.indd   38 29-8-2018   17:39:43



HLA associations and HLA sharing in recurrent miscarriage

39

2

8
Ta

ka
ku

w
a 

et
 a

l. 
(1

99
9)

  
C

as
e 

co
nt

ro
l

30
≥ 

3 
P

R
M

, fi
rs

t 
tr

im
es

te
r, 

sa
m

e 
p

ar
tn

er
30

≥ 
2 

te
rm

 
d

el
iv

er
ie

s
D

P
B

 
(p

he
no

ty
p

ic
)

D
P

B
*0

4b
 

D
P

B
*0

4:
02

b
 

9
B

el
lin

g
ar

d
 e

t 
al

. 
(1

99
5)

  
C

as
e 

co
nt

ro
l

10
≥ 

3 
P

R
M

, m
ea

n 
ag

e 
33

.9
 

ye
ar

s
21

≥ 
2 

liv
e 

b
ir

th
s

N
R

D
R

B
1 

(a
lle

lic
 

&
 p

he
no

ty
p

ic
)

-

10
D

iz
o

n-
To

w
ns

o
n 

et
 a

l. 
(1

99
5)

  
C

as
e 

co
nt

ro
l

51
≥ 

3 
R

M
, c

o
ns

ec
ut

iv
e 

43
≥ 

7 
liv

e 
b

ir
th

s
C

au
ca

si
an

D
Q

A
1 

(a
lle

lic
)

-

11
Ta

ka
ku

w
a 

et
 a

l. 
(1

99
2)

  
C

as
e 

co
nt

ro
l

22
≥ 

3 
R

M
, s

am
e 

p
ar

tn
er

, 
fir

st
 t

ri
m

es
te

r
20

≥ 
2 

te
rm

 
d

el
iv

er
ie

s
N

R
D

Q
B

1 
(a

lle
lic

 
&

 p
he

no
ty

p
ic

)
-

N
o

n-
cl

as
si

ca
l H

LA
 II

12
C

hr
is

ti
an

se
n 

et
 

al
. (

20
12

) 
C

as
e 

co
nt

ro
l

33
9

≥ 
3 

R
M

 (1
54

 P
R

M
, 1

85
 

SR
M

), 
m

ed
ia

n 
ag

e 
at

 
re

fe
rr

al
 3

2-
33

 y
ea

rs

12
5

≥ 
2 

un
co

m
-

p
lic

at
ed

 li
ve

 
b

ir
th

s

N
R

H
LA

-G
 

(e
xo

n 
8)

G
14

b
p

 in
s/

in
s

13
Va

rg
as

 e
t 

al
.  

(2
01

1)
  

C
as

e 
co

nt
ro

l
(m

at
ch

ed
 

ag
e,

 s
o

ci
o


ec

o
no

m
ic

)

60
≥ 

3 
P

R
M

 (c
lin

ic
al

ly
 

ve
ri

fie
d

), 
b

ef
o

re
 2

0th
 

g
es

ta
ti

o
na

l w
ee

k,
 s

am
e 

p
ar

tn
er

, m
ea

n 
ag

e 
at

 
m

is
ca

rr
ia

g
e 

26
.4

 y
ea

rs

68
≥ 

2 
liv

e 
b

ir
th

s
E

th
no

-
g

eo
-

g
ra

p
hi

ca
lly

 
m

at
ch

ed

H
LA

-G
 

(e
xo

n 
2,

3,
8)

 
(a

lle
lic

)

H
LA

-G
 0

1:
01

A
 ↓

14
Zh

u 
et

 a
l. 

(2
01

0)
  

C
as

e 
co

nt
ro

l
51

≥ 
3 

R
M

 
25

1
≥ 

1 
liv

e 
b

ir
th

N
R

H
LA

-G
 

(e
xo

n 
8)

-

15
Su

ry
an

ar
ay

an
a 

et
 a

l. 
(2

00
8)

  
C

as
e 

co
nt

ro
l

16
9

≥ 
3 

P
R

M
, fi

rs
t 

tr
im

es
te

r
92

≥ 
1 

un
co

m
p

li-
ca

te
d

 p
re

g
na

n-
cy

 a
nd

 b
irt

h

E
th

ni
ca

lly
 

m
at

ch
ed

H
LA

-G
 

(e
xo

n 
2 

an
d

 8
) 

(a
lle

lic
)

-

16
X

ue
 e

t 
al

. 
(2

00
7)

  
C

as
e 

co
nt

ro
l

24
≥ 

3 
R

M
88

≥ 
1 

un
co

m
p

li-
ca

te
d

 p
re

g
na

n-
cy

 a
nd

 b
irt

h

N
R

H
LA

-G
 

(e
xo

n 
8)

G
14

 b
p

 in
s/

d
el

17
Ya

n 
et

 a
l. 

(2
00

6)
  

C
as

e 
co

nt
ro

l
79

≥ 
3 

R
M

10
7

≥ 
2 

un
co

m
p

li-
ca

te
d

 p
re

g
na

n-
cy

 a
nd

 b
irt

hs

N
R

H
LA

-G
 

(e
xo

n 
8)

G
14

 b
p

 in
s

Ta
b

le
 2

.1
 c

on
tin

ue
s 

on
 n

ex
t 

p
ag

e

Chapter_2_Tess_regular.indd   39 29-8-2018   17:39:44



Chapter 2

40

2

Ta
b

le
 2

.1
 C

on
ti

nu
ed

A
ut

ho
r

St
ud

y 
d

es
ig

n

C
as

es
C

o
nt

ro
l s

ub
je

ct
s

E
th

ni
ci

ty
H

LA
 

b
io

m
ar

ke
r

St
ud

y 
fin

d
in

g
s

N
 

D
efi

ni
ti

o
n

N
D

efi
ni

ti
o

n
Si

g
ni

fic
an

t

18
Ya

n 
et

 a
l. 

(2
00

6)
  

C
as

e 
co

nt
ro

l
69

≥ 
3 

R
M

14
6

≥ 
2 

un
co

m
p

li-
ca

te
d

 p
re

g
-

na
nc

y 
an

d
 

b
ir

th
s

N
R

H
LA

-G
 

(e
xo

n 
2,

3,
4)

 
(a

lle
lic

)

-

19
A

b
b

as
 e

t 
al

. 
(2

00
4)

  
C

as
e 

co
nt

ro
l

12
0

≥ 
3 

P
R

M
12

0
≥ 

3 
liv

e 
b

ir
th

s
N

R
H

LA
-G

 (e
xo

n 
2,

3)
 (a

lle
lic

)
H

LA
-G

 0
1:

01
:0

3

20
Tr

ip
at

hi
 e

t 
al

. 
(2

00
4)

  
C

as
e 

co
nt

ro
l

12
0

≥ 
3 

P
R

M
12

0
≥ 

3 
liv

e 
b

ir
th

s
N

R
H

LA
-G

 
(e

xo
n 

8)
 

G
14

 b
p

 in
s/

d
el

21
P

fe
iff

er
 e

t 
al

. 
(2

00
1)

  
C

as
e 

co
nt

ro
l

78
≥ 

3 
R

M
 (5

6 
P

R
M

, 2
2 

SR
M

), 
sa

m
e 

p
ar

tn
er

, 2
2-

42
 y

ea
rs

52
≥ 

1 
su

cc
es

sf
ul

 
p

re
g

na
nc

y
C

au
ca

si
an

H
LA

-G
 (e

xo
n 

2,
3)

 (a
lle

lic
)

H
LA

-E
 

(c
o

d
o

n 
10

7)
 

(a
lle

lic
)

-

22
M

o
sa

ad
 e

t 
al

. 
(2

01
1)

 
C

as
e 

co
nt

ro
l

10
8

≥ 
3 

P
R

M
, 1

9-
38

 y
ea

rs
12

0
P

ar
o

us
Sa

m
e

H
LA

-E
 

(c
o

d
o

n 
10

7)
 

(a
lle

lic
)

H
LA

-E
 0

1:
01

H
LA

-E
 0

1:
03
↓

H
LA

-E
 0

1:
01

/ 
H

LA
-E

 
01

:0
1

23
Tr

ip
at

hi
 e

t 
al

. 
(2

00
6)

  
C

as
e 

co
nt

ro
l

12
0

≥ 
3 

P
R

M
, 2

2-
40

 y
ea

rs
12

0
≥ 

3 
liv

e 
b

ir
th

s
N

R
H

LA
-E

 (a
lle

lic
)

H
LA

-E
 0

1:
01

H
LA

-E
 0

1:
01

/ 
H

LA
-E

 
01

:0
1

24
K

an
ai

 e
t 

al
. 

(2
00

1)
  

C
as

e 
co

nt
ro

l
30

≥ 
3 

P
R

M
, fi

rs
t 

tr
im

es
te

r
38

≥ 
1 

un
co

m
-

p
lic

at
ed

 p
re

-
g

na
nc

y 
an

d
 

liv
e 

b
ir

th

Ja
p

an
es

e
H

LA
-E

 (a
lle

lic
)

-

a N
o

t 
in

cl
ud

ed
 in

 m
et

a-
an

al
ys

is
, 

si
g

ni
fic

an
t 

af
te

r 
co

rr
ec

ti
o

n 
fo

r 
m

ul
ti

p
le

 t
es

ti
ng

, 
b
N

o
t 

in
cl

ud
ed

 in
 m

et
a-

an
al

ys
is

, 
no

t 
si

g
ni

fic
an

t 
af

te
r 

co
rr

ec
ti

o
n 

fo
r 

m
ul

ti
p

le
 

te
st

in
g

, R
M

; r
ec

ur
re

nt
 m

is
ca

rr
ia

g
e,

 P
R

M
; p

ri
m

ar
y 

re
cu

rr
en

t 
m

is
ca

rr
ia

g
e,

 S
R

M
; s

ec
o

nd
ar

y 
re

cu
rr

en
t 

m
is

ca
rr

ia
g

e,
 N

R
; n

o
t 

re
p

o
rt

ed
, n

s;
 n

o
t 

si
g

ni
fic

an
t.

Chapter_2_Tess_regular.indd   40 29-8-2018   17:39:44



HLA associations and HLA sharing in recurrent miscarriage

41

2

0.45-0.89), HLA-DRB1*14 (OR 0.54, 95% CI 0.31-0.94), HLA-DRB1*15 (OR 1.57, 95% CI 

1.15-2.14) and recurrent miscarriage in a fixed effects meta-analysis (Figure 2.2b). 

Of all HLA II alleles which were only reported once in literature, only HLA-DQB1*03:03:02 

was associated with recurrent miscarriage after correction for multiple testing (Table 

2.1).5 Observed heterogeneity for HLA-DRB1*09 (71.8%) could not be explained in a 

meta-regression by APS included in the work-up (p=0.552). As only one study reported 

separate data for women with primary and secondary recurrent miscarriage,65 it was not 

possible to perform a meta-regression by primary recurrent miscarriage and secondary 

recurrent miscarriage.

For the presence of allelic frequencies of HLA-G*01:01, HLA-G*01:03, HLA-G*01:04, and 

the null allele G*01:05N in the mother no association was found with recurrent miscarriage 

Odds ratio with 95% CI are shown of a meta-analysis in a fixed effects model. For individual meta-analysis see 
supplementary data, figures 1-3.

Figure 2.2  Associations of classical HLA I (a) and classical HLA II (b) in recurrent miscarriage
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in a fixed effects model (respectively OR 0.90, 95% CI 0.71-1.14, OR 0.97, 95% CI 0.68-

1.140, OR 1.32, 95% CI 1.00-1.76, OR 0.88, 95% CI 0.56-1.39) (Figure 2.3a). Pooled 

analysis of studies on the carrier ship of HLA-E*01:01 in the mother (4 studies) showed 

an association with recurrent miscarriage in a fixed effects meta-analysis (OR 1.50, 95% 

CI 1.20-1.88). Because HLA-E has only two non-synonymous alleles, for HLA-E*01:03 a 

fixed-effects meta-analysis showed an OR of 0.66 (95% CI 0.53-0.83) (Figure 2.3a).

For HLA-G*01:04 high heterogeneity was observed (69.2%). Only two studies showed 

data on HLA-G*01:04 in women with primary recurrent miscarriage14,66 and none of the 

studies in women with secondary recurrent miscarriage. We could therefore not explore 

the heterogeneity by meta-regression. In addition, all studies in this meta-analysis included 

screening for APS in their work-up. 

In total 7 studies investigated the HLA-G 14-bp polymorphism in women with recurrent 

miscarriage. Pooled analysis in a random effects model of 14-bp insertion alleles and 

recurrent miscarriage showed an OR of 1.20 (95% CI 0.96-1.50). Studies on 14-bp genotype 

showed for 14-bp insertion/insertion an OR of 1.38 (95% CI 0.85-2.26), for 14-bp insertion/
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Except for 14-bp polymorphism, odds ratio with 95% CI are shown of a meta-analysis in a fixed effects model. 
For 14-bp polymorphism odds ratio with 95% CI are shown of a meta-analysis in a random effects model. For 
individual meta-analysis see supplementary data, figures 4-7.

Figure 2.3  Associations of non-classical HLA I alleles (a) and 14-bp polymorphism (b) in recurrent 
miscarriage
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deletion an OR of 1.31 (95% CI 0.84-2.05), and for 14-bp deletion/deletion an OR of 0.86 

(95% CI 0.54-1.36) with recurrent miscarriage (Figure 2.3b).

Meta-analyses on 14-bp genotype showed high heterogeneity, which could not be 

explained by meta-regression for primary recurrent miscarriage and secondary recurrent 

miscarriage for 14-bp insertion homozygosity, for 14-bp heterozygosity and for 14-bp 

deletion homozygosity (respectively p=0.315, p=0.621, p=0.570). All studies included for 

meta-analyses on 14-bp genotype included screening for APS and therefore this could 

not explain the heterogeneity observed. 

HLA sharing studies

In total 21 eligible studies reported on classical HLA I sharing (HLA-A, HLA-B, HLA-C 

sharing) and classical HLA II sharing (HLA-DR, HLA-DQ, HLA-DP sharing) in couples with 

recurrent miscarriage.45,50,53-56,58-64,70-77 

For HLA-A, B, C sharing most studies used serological typing method, except one study61 

which used molecular method to define HLA-C alleles. For HLA-DR and HLA-DQ sharing 

both molecular and serological typing methods were used in the included studies and 

for HLA-DP sharing only molecular typing method was used (Table 2.2). 

Sharing of HLA-B and HLA-DR were both associated with recurrent miscarriage in a random 

effects meta-analysis (respectively OR 1.39, 95% CI 1.11-1.75, OR 1.57, 95% CI 1.10-1.25). 

Pooled analysis for HLA-A and HLA-C in a random effects model showed no association 

with recurrent miscarriage (respectively OR 1.11, 95% CI 0.71-1.74, OR 0.99, 95% CI 

0.73-1.35) (Figure 2.4). Egger’s test indicating that these meta-analyses were not biased 

because of small studies reporting large effects (see Supplementary data, figures13-15).

A fixed effects model showed an OR of 1.62 (95% CI 0.99-2.63) and an OR of 1.60 (95% 

CI 1.00-2.56) for HLA-DQB1 and HLA-DQ sharing and not for HLA-DQA1 (OR 0.99, 95% 

CI 0.56-1.75) with recurrent miscarriage (Figure 2.4). Only one study investigated DPB1 

sharing in women with recurrent miscarriage, this study reported an OR of 1.14.60 

For HLA-A sharing, APS included in the work-up, meta-regression for primary recurrent 

miscarriage and secondary recurrent miscarriage could not explain heterogeneity 

(respectively p=0.746, p=0.989). In addition, observed heterogeneity for HLA-DR was not 

explained in a meta-regression by method of HLA typing, APS included in the work-up, or 

primary recurrent miscarriage and secondary recurrent miscarriage (respectively p=0.664, 

p=0.354, p=0.960). For HLA-DQ and DQA1-sharing only two studies were eligible for 

meta-analysis and meta-regression could not be performed. Considering primary recurrent 
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miscarriage and secondary recurrent miscarriage, none of the studies reported separate 

data for DQA1 sharing and for HLA-DQ sharing only one study reported separate data,78 

therefore heterogeneity could not be explored by meta-regression.

Discussion

In this meta-analysis we investigated the association of HLA alleles with the prevalence 

of recurrent miscarriage in a pre-specified population. Although associations between 

specific HLA alleles and HLA sharing with recurrent miscarriage were found, no consistent 

conclusions can be drawn since observed ORs were relatively small and high risk of 

selection and information bias was present in selected studies.

In comparison to previous reviews and meta-analyses,21-24 the current meta-analysis gives 

a complete overview of all possible associations between HLA alleles in the mother and 

HLA sharing between couples with the occurrence of recurrent miscarriage. To obtain a 

more homogenous group of women with unexplained recurrent miscarriage, only women 

with at least three previous miscarriages should be taken into account and women with 

possible explanatory factors should be excluded.79 However, previous meta-analyses also 

included studies with women with ≥ 2 or more miscarriages in the case group and/or did 

not define whether these miscarriages were unexplained or not.22-24 In a previous meta-

analysis by Beydoun et al.21 on HLA sharing and recurrent miscarriage it was indicated 

that difficulties arise when comparing studies with different definitions for the same 

HLA-A

HLA-B

HLA-C

HLA-DR

HLA-DQ

HLA-DQA1

HLA-DQB1

0.1 1 10decreased risk increased risk
Odds ratio (95% Cl)

studies
(#)

cases 
(n/N)

control subjects 
(n/N)

13

13

7

15

2

2

3

444/940

293/939

195/437

424/981

157/209

65/119

90/148

291/755

186/753

154/330

246/762

99/151

44/79

64/130

p-value I² 
(%)

Egger’s test 
(p-value)

0.644

0.005

0.990

0.014

0.047

0.965

0.051

74.7

0.0

0.0

60.7

67.5

62.1

0.0

0.078

0.248

na

0.546

na

na

na

Classical HLA II

Classical HLA I

For HLA-A, B, C, DR sharing odds ratio with 95% CI are shown of a meta-analysis in a random effects model and 
for HLA-DQ, DQA1, DQB1 sharing in a fixed effects model. For individual meta-analysis see supplementary data, 
figures 8-12.

Figure 2.4  HLA-A, B, C, DR, DQ, DQA1, DQB1 sharing in recurrent miscarriage
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disease, with various control groups, and different techniques for HLA typing. Therefore, 

we corrected for these disturbing factors by applying strict inclusion criteria both for the 

case and the control group. Moreover, as current HLA typing performed by molecular 

methods is more reliable and sensitive compared to serological methods used in the 

past,36,37 we only included studies which used molecular HLA typing for our analysis on 

the possible association between HLA alleles and the occurrence of recurrent miscarriage.

All studies included in the present meta-analysis were case-control studies with small 

sample sizes, which implies a high risk of selection and information bias (Supplementary 

Table III). Furthermore different methods were used to diagnose uterine anomalies 

and only a few studies screened for the presence of APS in a correct way.49 None of 

the studies mentioned whether control subjects were screened for uterine anomalies, 

parental chromosomal abnormalities, and APS. Though this information was lacking, it is 

unlikely that these conditions have affected the outcome because of the low prevalence 

in general population.

By including only data from published papers, there is a risk of publication bias. Although 

funnel plots showed no publication bias in this review, only 3 out of the 34 meta-analyses 

were performed with more than eight studies and funnel plots could be generated.

Although meta-regression could not explain the observed heterogeneity, not always 

sufficient data was available to perform meta-regression and therefore definite conclusions 

cannot be drawn. Subgroup analysis for classifying antigens or alleles for sharing and for 

high or low resolution molecular typing could not be performed as too little data were 

available in selected studies.  

Differences found in HLA specificity could be purely dependent on genetic differences 

between populations. However, population stratification in the meta-analysis was not 

possible since only few studies mentioned ethnicity.

Most studies focused on couple sharing and only few studies have investigated whether 

homozygous fetuses are preferentially miscarried. Still, HLA sharing between couples is 

the nearest approach to identify sharing of HLA antigens at the fetal-maternal interface 

since typing of miscarriage material is rather difficult due to logistical problems. In future 

research typing of living children from women with recurrent miscarriage could help 

unravel whether incompatible fetuses have a higher survival rate in women with recurrent 

miscarriage. 

It would be clinically more relevant to study specific HLA-C,E,G alleles expressed on the 

trophoblast as these alleles are important for maternal immune recognition of the fetus. 
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However, most studies focused on the maternal alleles probably because it is difficult to 

collect and type trophoblast tissue. 

The presence of fetal HLA-C2 in combination with maternal KIRAA is suggested to be 

associated with complicated pregnancies.13 In our meta-analysis maternal HLA-C2 was 

not associated with recurrent miscarriage, but the frequency of the male HLA-C2 is also a 

determinative factor for the chance that a fetus will be HLA-C2 positive. Only one selected 

study investigated HLA-C2 frequencies in males and reported an increased frequency of 

C2 alleles in males of couples with recurrent miscarriage.9 

In line with studies that found no differences in expression of HLA-G on the trophoblast80-82 

between women with recurrent miscarriage and control subjects, our meta-analysis 

revealed no association of specific HLA-G alleles with recurrent miscarriage. HLA-E*01:01 

surface expression on transfected cells and peptide affinity of HLA*01:01 for a nonamer 

sequence with HLA-G is lower than for HLA-E*01:03.83 This may explain the increased 

presence of the HLA- E*01:01 allele in women with recurrent miscarriage although the 

actual expression of HLA-E was not decreased in women with recurrent miscarriage.80-82,84 

Pooled analysis for HLA-G 14bp insertion allele showed no significant association with 

recurrent miscarriage in our meta-analysis. This is in line with the hypothesis that the 

expression of HLA-G depends on the combination of several polymorphisms.85 Future 

research in recurrent miscarriage should focus on these haplotypes rather than only on 

14-bp polymorphism.

HLA class II alleles are known to be associated with auto-immune disorders.7 The 

occurrence of recurrent miscarriage is strongly associated with APS2 and possible with 

RA.34 Only one study showing an association between HLA-DRB1*04 and recurrent 

miscarriage, excluded cases with APS and other auto-immune disorders.57 Therefore it 

is not clear whether the association found in our meta-analysis for specific HLA-DRB1 

alleles and recurrent miscarriage can be explained by underlying auto-immune disorder(s) 

in women with recurrent miscarriage or by another mechanism.

The association between HLA-B sharing and recurrent miscarriage observed in this meta-

analysis is in line with observations by Ober et al. who found that fetal loss rates were 

increased among couples matched for HLA-B.86 However, classical HLA class I and II, with 

exception of HLA-C, are not expressed on trophoblast tissues and therefore unlikely to 

be directly involved in the key mechanism that leads to a detrimental maternal immune 

response to the fetus. The gene for HLA-B is closely linked with that coding for HLA-C, 

the products of which play an important role in the interaction between uterine NK cells 

and trophoblast HLA-C, which is relevant for a proper placentation. 
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Incompatibility of HLA-DR between couples could facilitate the occurrence of a normal 

pregnancy. The immunogenetic conditions for a successful pregnancy seem to have 

similarities with those associated with the beneficial effect of a pre-transplant blood 

transfusion in transplantation. One HLA-DR antigen has to be shared between blood 

transfusion donor and recipient in order to induce a beneficial (tolerating) effect on the 

course of a subsequent renal transplantation87 while incompatibility for the other HLA-

DR antigen enhances a stable, rejection-free, allograft function.88 CD4+ regulatory T 

cells are suggested to play a pivotal role in this beneficial effect of blood transfusions 

on graft survival.89 In accordance with this blood transfusion effect, the pregnant mother 

has to accept the semi-allogeneic fetus and CD4+ regulatory T cells are needed for the 

maintenance of early pregnancy.90 Indeed in this meta-analysis HLA-DR couple sharing 

was associated with recurrent miscarriage, which is in line with the results of a previous 

meta-analysis.21

The questions remains whether HLA sharing and HLA specificity itself is related with 

recurrent miscarriage or whether these genes are linked with susceptibility genes that 

influence reproductive outcome. In an inbred population of European descent matching 

for the entire 16-locus haplotype was clearly associated with the occurrence of recurrent 

miscarriage.86 

Although many studies were conducted on HLA associations and recurrent miscarriage, 

no consistent conclusions can be drawn. Although strict inclusion criteria were applied 

in this meta-analysis, a high risk of information and selection bias was still present in the 

selected studies. Future studies on the association between HLA alleles and maternal 

immune recognition of the fetus should use strict inclusion criteria, including ethnicity, 

and should focus on the combination of HLA alleles expressed on the trophoblast and 

the maternal HLA alleles.
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Abstract

Problem

HLA-G expressed by trophoblasts at the fetal-maternal interface and its soluble 

form have immunomodulatory effects. HLA-G expression depends on the 

combination of DNA polymorphisms. We hypothesized that combinations of 

specific single nucleotide polymorphisms (SNPs) in the 3’untranslated region 

(3’UTR) of HLA-G play a role in unexplained recurrent miscarriage. 

Method

In a case control design, 100 cases with at least three unexplained consecutive 

miscarriages prior to the 20th week of gestation were included. Cases were at 

time of the third miscarriage younger than 36 years, and they conceived all their 

pregnancies from the same partner. The control group included 89 women with an 

uneventful pregnancy. The association of HLA-G 3’UTR SNPs and specific HLA-G 

haplotype with recurrent miscarriage was studied with logistic regression. Odds 

ratios (OR) and 95% confidence intervals (95% CI) were reported. 

Results

Individual SNPs were not significantly associated with recurrent miscarriage 

after correction for multiple comparisons. However, the presence of the UTR-4 

haplotype, which included +3003C, was significantly lower in women with recurrent 

miscarriage (OR 0.4, 95% CI 0.2-0.8, p=0.015).

Conclusion

In conclusion, this is the first study to perform a comprehensive analysis of HLA-

G SNPs and HLA-G haplotypes in a well-defined group of women with recurrent 

miscarriage and women with uneventful pregnancy. The UTR-4 haplotype was 

less frequently observed in women with recurrent miscarriage, suggesting an im-

munoregulatory role of this haplotype for continuation of the pregnancy without 

complications. Thus, association of HLA-G with recurrent miscarriage is not related 

to single polymorphisms in the 3’UTR, but is rather dependent on haplotypes.
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Introduction

About 1% of all couples trying to conceive, are confronted with recurrent miscarriage, which 

is defined as three or more consecutive pregnancies prior to the 20th week of gestation.1 

Possible etiologic factors include uterine anomalies, endocrine disorders, maternal inherited 

and acquired thrombophilia, and parental chromosomal abnormalities.2,3 However, in only 25-

50% of the couples an underlying cause for recurrent miscarriage can actually be identified.4,5

Since the fetus is a semi-allograft, which normally escapes maternal immune rejection, it 

has been suggested for many years that unexplained recurrent miscarriage is associated 

with specific maternal human leukocyte antigens (HLA) alleles or with the degree of HLA 

mismatching between mother and child. Since the role of classical HLA alleles remains 

controversial,6 more attention has been drawn to non-classical HLA antigens expressed on 

the trophoblast, which interact directly with maternal immune cells. 

The non-classical class I molecule HLA-G is characterized by its restricted expression on 

human extravillous trophoblast cells and by limited polymorphism of the HLA-G DNA 

sequence.7 The HLA-G 3’ untranslated region (3’UTR) in exon 8 consists of eight single 

nucleotide polymorphisms (SNPs), which together generate eight distinct haplotypes.8,9 

Insertion of 14 bp at the 3’UTR may affect HLA-G mRNA stability,10 which is associated with 

lower levels or even absence of soluble HLA-G (sHLA-G) in plasma.11-13 sHLA-G is highly 

present in the maternal circulation during pregnancy.14 sHLA-G possess immunosuppressive 

functions,15 which seem to be concentration-dependent.16 Low levels of sHLA-G have been 

associated with spontaneous miscarriage,17 recurrent miscarriage,18 and miscarriage in IVF 

pregnancies.19 Although the level of sHLA-G likely results from the HLA-G genotype, meta-

analyses on the association of the 14-bp insertion with unexplained recurrent miscarriage 

have led to inconsistent results.6,20,21 Most likely 14-bp insertion is in linkage disequilibrium 

with other sequence variations that influence the level of soluble isoforms. This is in line with 

the hypothesis that HLA-G expression is determined by the combination of multiple SNPs.8 

For this reason we studied the HLA-G 3’ UTR in exon 8, thereby including the combination 

of SNPs to compose UTR haplotypes, in women with recurrent miscarriage and in women 

with uneventful pregnancy. 
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Material and methods

Case group

In this case control study, eligible cases were couples with recurrent miscarriage, who 

visited the recurrent miscarriage clinic of the department of Obstetrics and Reproductive 

Medicine at the Leiden University Medical Centre (LUMC), a tertiary referral centre in 

the Netherlands, from 2000 onwards. The clinical work-up includes documentation of 

a standardised history from the couple, karyotyping, an ultrasound or hysteroscopy, 

and thrombophilia screening. Hereditary thrombophilia was defined by the presence 

of a factor V Leiden mutation, factor II mutation (prothrombin gene mutation), protein 

C or S deficiency, high factor VIII, or antithrombin deficiency. Acquired thrombophilia 

(anti-phospholipid syndrome) was defined by the presence of IgG or IgM anticardiolipin 

antibodies or lupus anticoagulant in repeated samples taken 3 months apart and at least 

6 weeks after pregnancy.22 After revision of the classification criteria the presence of IgG 

or IgM β2-glycoprotein I antibodies was added to the work-up.23 Most of the women 

who visited the clinic were counselled to participate in randomized controlled trial such 

as the Habenox (NCT0095962)22 and Promise (ISRCTN92644181)24. In the Habenox trial, 

women were randomly allocated to one of three intervention groups (enoxaparin 40 mg, 

or enoxaparin 40 mg and aspirin 100 mg, or aspirin 100 mg). In the Promise trial, women 

were allocated to a group receiving vaginal progesterone or a placebo.

To obtain a homogenous case group, we only included women who had had three or 

more consecutive miscarriages prior to the 20th week of gestation with the same partner, 

and who were younger than 36 years at the time of their third consecutive miscarriage. 

Cases with known causes for miscarriage such as uterine anomalies, parental chromosomal 

abnormalities, and anti-phospholipid syndrome were not eligible. Women with hereditary 

thrombophilia were not excluded, because the evidence that hereditary thrombophilia is 

associated with recurrent miscarriage is less clear.3,25 Both women with primary recurrent 

miscarriage (no history of live birth) and secondary recurrent miscarriage (history of live 

birth) were eligible.

From the 433 couples who visited the clinic, 304 women met the inclusion criteria and 

were asked to participate by filling in one digital or paper questionnaire. The questionnaire 

was made using ProMISe, an internet based application for the design, maintenance, and 

use of data management projects. Data were entered and stored in a clinical database 

(ProMISe Database, https://www.msbi.nl/promise/). From the 304 women, a total of 100 

women were eligible, and blood samples were taken after inclusion (Figure 3.1). 

Chapter_3_Tess_regular.indd   60 29-8-2018   17:39:55



HLA-G haplotypes in recurrent miscarriage

61

3

Control group

Control subjects were women with an uneventful pregnancy, who gave birth at the 

department of Obstetrics at the LUMC between 2004 and 2007. Women were included 

when they had one or more uneventful pregnancies, i.e., not suffering from pregnancy 

complications such as recurrent miscarriage, pregnancy induced hypertension, 

preeclampsia, Hemolysis Elevated Liver enzymes and Low Platelets (HELLP) syndrome, 

preterm birth, fetal growth restriction, and perinatal death in their history. Pregnancy 

induced hypertension was defined as systolic blood pressure above 140 mmHg and/or 

diastolic pressure above 90 mmHg combined with proteinuria (≥ 300mg/day or a spot 

urine protein/creatinine ratio ≥ 30 mg protein/mmol) as preeclampsia.26 Preterm birth 

was defined as a delivery between 24 and 37 weeks gestation, fetal growth restriction 

as birth weight below the 2.3th percentile for gestational age and sex,27 and perinatal 

death as fetal loss after 22 weeks of gestation till 7 days after birth. A total of 89 control 

subjects donated blood for genotyping. 

Variables and definitions

Data were collected from the obstetrical records and ProMISe Database (questionnaires). 

Information about medical history, use of medication, intoxications, and pregnancy 

outcome was cross-checked in obstetrical records to overcome recall bias. The data of 

Figure 3.1  Flowchart of cases

Eligible women with recurrent 
miscarriage n=304

Non‐responders
n=103 

Declined to participate due to emotional reasons
n=65 

Cases n=136

Excluded from analysis 
‐ Incomplete questionnaire n=5
‐ Did not meet inclusion criteria n=31

Cases n=100
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the obstetrical records were used in case of discrepancies between the ProMISe Database 

and obstetrical records. The following data were collected: personal characteristics, 

intoxications (smoking, alcohol, drugs), use of medication, general disease history, 

outcome and complications of all pregnancies, and neonatal characteristics. Maternal age 

in the case group was defined as the age at time of the third consecutive miscarriage, and 

in the control group as the age at time of the delivery of the first uncomplicated pregnancy.

Ethnicity was divided into four groups according to the definitions of the Central Bureau 

of Statistics of the Netherlands (CBS). All persons of whom the mother was born in 

Europe (excluding Turkey), Indonesia, Japan, North-America, and Oceania were defined 

as native or Caucasian ethnic origin. Persons of whom the mother was born in Morocco 

or Turkey were from Moroccan or Turkish ethnic origin, and for Surinamese and Antillean 

it was Surinamese or Antillean ethnic origin. All persons of whom the mother was born 

in Africa, Asia (exclusive Indonesia and Japan) and South-America were defined as other 

non-Caucasian ethnic origin. 

Detection of HLA-G 3’UTR polymorphisms and composition of haplotypes

DNA was isolated from EDTA blood to sequence a 590-bp fragment covering the 3’UTR 

of exon 8, starting at the 14-bp insertion/deletion and ending 585 bp further downstream. 

To sequence and determine the haplotype on each of the two alleles, amplification 

reactions were performed in two steps. First, the 14-bp insertion/deletion was determined 

in a SybrGreen-based qPCR reaction using a specific 5’-primer that detected either the 

insertion or deletion, in combination with a generic 3’-primer. Second, in case of Ins-Del 

heterozygosity (47.6%), two sequencing reactions were performed using the 5’-primers 

in combination with the generic 3’-primer that was tailed with a M13 sequence to cover 

the 3’UTR region of HLA-G, as described previously.28 In case of homozygosity (52.4%), 

one sequencing reaction was performed using either the insertion- or deletion-specific 

5’-primer together with the M13-tailed 3’-primer.  

The following SNPs were identified: the 14-bp insertion/deletion (rs371194629), +3003C/T 

(rs1707), +3010C/G (rs1710), +3027A/C (rs17179101), +3035C/T (rs17179108), +3142C/G 

(rs1063320), +3187A/G (rs9380142), and +3196C/G (rs1610696. Eight distinct UTR 

haplotypes were defined as described previously.8 Interpretation of the sequencing data, 

alignment, and conversion to UTR-haplotypes was carried out using a specialized software 

tool (SBT Engine, GenDX, Utrecht, The Netherlands).

As an additional Dutch reference group, the genotype frequencies of rs371194629 and 

rs1707 and the haplotype frequencies of the HLA-G 3’ UTR were obtained from the 
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Genome of the Netherlands (GoNL) reference panel (http://www.nlgenome.nl/). In total, 

499 persons of Dutch ancestry have been whole-genome sequenced for this reference 

panel.29 The samples were collected without phenotypic ascertainment, but due to the 

trio-based design of the study, all women in the GoNL had at least one successful live birth. 

Statistical analyses

For comparison of baseline characteristics between cases and control subjects the Mann 

Whitney U test was performed. For categorical variables the Chi-squared test was used, 

and if expected counts were less than five the Fisher’s exact test was used. 

To exclude the possibility of a selection of a certain genotype within our groups, the 

Hardy-Weinberg equilibrium30,31 was assessed for genotypes and haplotypes of the HLA-G 

3’UTR in cases and control subjects using Pypop Software 0.7.0.

The association between the presence of different HLA-G genotypes and haplotypes 

and recurrent miscarriage was studied with univariate logistic regression. Per HLA-G 

genotype the highest prevalence was defined as the reference group. If percentages 

in a group were below 5%, no calculations were performed. For the calculations on the 

HLA-G genotypes Bonferroni adjustment was used to correct for multiple comparisons.  

For the HLA-G haplotypes two specific calculations were performed, the presence of the 

haplotype in percentage was calculated and the frequency per haplotype was calculated in 

the case and control group. Furthermore, subgroup analyses were performed to evaluate 

the presence of different HLA-G genotypes and haplotypes in Caucasian women in the 

case group compared to control subjects. As it is still postulated, that primary recurrent 

miscarriage and secondary recurrent miscarriage could be two distinct entities with 

different underlying pathology,32 subgroup analysis of primary recurrent miscarriage and 

secondary recurrent miscarriage was performed.

Statistical analysis was performed using SPSS Statistics (version 24.0, IL, USA). Descriptive 

statistical analysis was performed using GraphPad Prism version 5.04 for Windows 

(GraphPad Software, CA, USA, www.graphpad.com).

Ethical approval

The protocol was approved by the Ethics committee of the LUMC (P12.099) and all 

participants gave informed consent before inclusion in this study. The study was registered 

with the Dutch trial registry NTR 3402. 

Chapter_3_Tess_regular.indd   63 29-8-2018   17:39:55



Chapter 3

64

3

Results

Baseline characteristics of subjects 

Baseline characteristics of women with recurrent miscarriage and women with an 

uneventful pregnancy are depicted in Table 3.1. 

Table 3.1  Baseline characteristics of subjects

Recurrent 
miscarriage
(N=100)

Uneventful 
pregnancy
(N=89) P-value

Maternal age at time of 3rd 
miscarriage or 1st uneventful delivery 
(years;median[IQR])¬

31.0 (28.0-33.0) 30.0 (26.7-33.0) 0.368

BMI (Kg/m2;median[IQR]) ± 23.3 (21.0-27.1) 24.1 (21.3-28.2) 0.415

Ethnic origin (n(%))§ 0.916
Native/Caucasian 89 (89.0) 79 (90.8)
Turkish/Moroccan 2 (2.0) 2 (2.3)
Antillean/Surinamese 2 (2.0) 2 (2.3)
Other non-Caucasian 7 (7.0) 4 (4.6)

Gravidity (median[IQR]) 6 (5-8) 3 (2-4) <0.001
Gravidity at time of inclusion 5 (4-6.7) 3 (2-3) <0.001

Parity (median[IQR]) 1.5 (1-2) 2 (2-3) <0.001
Parity at time of inclusion 0 (0-0) 1 (0-2) <0.001

All χ² tests or Mann-Whitney U-test. IQR; interquartile range, BMI; Body mass index. ¬2.1% missing 
values (1 of 100 cases and 3 of 89 control subjects), ±4.7% missing values (2 of 100 cases and 7 of 89 
control subjects), §1% missing values (0 of 100 cases and 2 of 89 control subjects).

In the case group, 69 women (69.0%) had primary recurrent miscarriage and 31 (31.0%) 

women had secondary recurrent miscarriage. Most women had 4 or more consecutive 

miscarriages (71.0%), and 41 (41.0%) had 5 or more miscarriages. A total of 11 (11.0%) 

cases had thrombophilia, i.e., factor V Leiden (n=4), prothrombin gene mutation (n=4) 

or high factor VIII (n=5). None had protein C or S deficiency. Out of 100 cases, 75 had at 

least one live birth after the consecutive miscarriages.

In the case and control subjects all genotypes and haplotypes for HLA-G 3’UTR were in 

Hardy-Weinberg equilibrium (Supplementary data, Table I).
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HLA-G polymorphisms

As far as individual SNPs in the HLA-G 3’UTR exon 8 region are concerned no significant 

differences were seen after correction for multiple comparisons between women with 

recurrent miscarriage and women with uneventful pregnancy (Table 3.2). In the subgroup 

analyses similar results were seen (supplementary data, Table II, III, and IV).

Table 3.2  HLA-G 3’UTR genotypic polymorphisms in women with recurrent miscarriage and 
uneventful pregnancy

SNP

Recurrent 
miscarriage 
(N=100)

Uneventful 
pregnancy
(N=89) OR 95% CI P Pc

14-bp InsIns 21 (21%) 12 (13.5%) 1.2 0.5-2.9 0.558 1.000
InsDel 52 (52%) 38 (42.7%) ref
DelDel 27 (27%) 39 (43.8%) 0.5 0.2-0.9 0.038 0.304

+3003 CC 3 (3%) 3 (3.4%) nc
CT 17 (17%) 29 (32.6%) 0.4 0.2-0.8 0.013 0.104
TT 80 (80%) 57 (64%) ref

+3010 CC 30 (30%) 20 (22.5%) 1.1 0.5-2.3 0.662 1.000
CG 50 (50%) 39 (43.8%) ref
GG 20 (20%) 30 (33.7%) 0.5 0.2-1.0 0.069 0.552

+3027 AA 0 (0%) 0 (0%) nc
AC 16 (16%) 13 (14.6%) 1.1 0.5-2.4 0.791 1.000
CC 84 (84%) 76 (85.4%) ref

+3035 CC 76 (76%) 73 (82%) ref
CT 24 (24%) 15 (16.9%) 1.5 0.7-3.1 0.243 1.000
TT 0 (0%) 1 (1.1%) nc

+3142 CC 20 (20%) 30 (33.7%) 0.5 0.2-1.0 0.069 0.552
CG 50 (50%) 39 (43.8%) ref
GG 30 (30%) 20 (22.5%) 1.1 0.5-2.3 0.662 1.000

+3187 AA 49 (49%) 43 (48.3%) ref
AG 41 (41%) 34 (38.2%) 1.0 0.5-1.9 0.856 1.000
GG 10 (10%) 12 (13.5%) 0.7 0.2-1.8 0.511 1.000

+3196 CC 43 (43%) 50 (56.2%) ref
CG 44 (44%) 31 (34.8%) 1.6 0.8-3.0 0.110 0.880
GG 13 (13%) 8 (9.0%) 1.8 0.7-4.9 0.199 1.000

Data are all n (%). All univariate logistic regression analysis. Per HLA-G genotype the highest preva-
lence was defined as the reference group. If percentages in a group were below 5%, no calculations 
were performed. P; p-value, Pc; p-value corrected for multiple comparisons, OR; odds ratio, 95% 
CI; 95% confidence interval, nc; not calculated, ref; reference group.
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Figure 3.2  The presence of HLA-G 3’UTR haplotypes in women with recurrent miscarriage 
compared to women with uneventful pregnancy

For cases and control subjects UTR-1 51% vs. 52.8% (OR 0.9, 95% CL 0.5-1.6, p=0.804), for UTR-2 57% vs. 43.8% 
(OR 1.6, 95% CL 0.9-3.0, p=0.071), for UTR-3 15% vs. 16.9% (OR 0.8, 95% CL 0.3-1.9, p=0.728), for UTR-4 20% 
vs. 36% (OR 0.4, 95% CL 0.2-0.8, p=0.015), for UTR-5 7% vs. 3.4% (OR 2.1, 95% CL 0.5-8.6, p=0.276), for UTR-6 
5% vs. 5.6% (OR 0.8, 95% CL 0.2-3.1, p=0.850), for UTR-7 16% vs. 14.6% (OR 1.1, 95% CL 0.5-2.4, p=0.791), 
for UTR-8 not applicable. All univariate logistic regression analysis. n.s; not significant, n.a; not applicable. In the 
sensitivity analysis for ethnicity similar results were seen for the presence of HLA-G 3’UTR haplotypes as showed 
in Figure 3.1 between Caucasian cases and control subjects (data not shown). 

The presence of the UTR-4 haplotype was significantly lower in women with recurrent 

miscarriage compared to women with an uneventful pregnancy (20% vs. 36%, OR 0.4, 

95% CI 0.2-0.8, p=0.015) (Figure 3.2). 

These differences were also observed in haplotype frequencies (0.116 vs. 0.198, OR 

0.5, 95% CI 0.3-0.9, p=0.036) (Table 3.3). The UTR-4 haplotype frequency in the Dutch 

genomic reference population is 0.157.  

Differences in the UTR-4 haplotype frequency between cases and control subjects were 

similarly observed in the subgroup of Caucasian women (supplementary data, Table V). 

Data of haplotypes in women with primary recurrent miscarriage compared to control 

subjects are depicted in supplementary data, Table VI and VII.

Besides the observation of a significantly lower haplotype frequency of UTR-4 haplotype in 

women with secondary recurrent miscarriage compared to control subjects, the frequency 

of UTR-2 haplotype was significantly higher (0.403 vs. 0.280, OR 1.9, 95% CI 1.0-3.6, 

p=0.037) (supplementary data, Table VIII). Similar results were observed in the presence 

of the UTR-2 haplotype in women with secondary recurrent miscarriage compared to 

women with an uneventful pregnancy (supplementary data, Table VIIII).
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Discussion

The HLA-G UTR-4 haplotype was less frequently observed in women with recurrent 

miscarriage, whereas single polymorphisms in the 3’UTR region of HLA-G were not 

significantly associated with outcome. 

The strength of the study is that a large homogenous well-defined case group of women 

with at least three consecutive unexplained recurrent miscarriages within 20 weeks of 

gestation with the same partner was included. Such a clear definition was not used in 

previous studies.6,33

Furthermore, in contrast to many other studies in women with recurrent miscarriage 

investigating exclusively the 14-bp insertion polymorphism,6 we analyzed all individual 

SNPs to distinguish eight different haplotypes of the 3’UTR in exon 8. This is crucial, since 

the expression of soluble and membrane-bound forms of HLA-G most likely depends on 

the combination of several polymorphisms at the 3’UTR.8

A limitation of the study may be that the link between genetic polymorphisms and levels 

of soluble or membrane-bound forms of HLA-G in the case and control group could not be 

studied. Peripheral blood levels of sHLA-G vary substantially between non-pregnant and 

pregnant individuals, and they decline in pregnant individuals during the third trimester.34 

As blood sampling by most control subjects was performed directly after delivery and 

most cases were not pregnant in our study, it was not justified to assess sHLA-G levels 

and correlate these to the polymorphisms studied. Therefore, the exact mechanism, by 

which these polymorphisms may affect the occurrence of recurrent miscarriage remains 

to be established. Nevertheless, most polymorphisms in the 3’UTR determined in this 

study were previously found to be related to the extent of HLA-G expression.10,35,36 Both 

HLA-G expressed at the fetal-maternal interface and sHLA-G possess immunosuppressive 

functions.15,37 It is therefore not surprising that low levels of sHLA-G have been recently 

associated with recurrent miscarriage.18 However, no differences in expression of HLA-G 

on the trophoblast were observed between women with recurrent miscarriage and control 

subjects.38-40

At the moment, the role of HLA-G in complicated pregnancy is not easily comprehensible, 

and it is not clear whether all variations in the HLA-G gene, which affect HLA-G expression, 

have been identified. For the HLA-G coding region a lower degree of polymorphisms 

has been observed than at the 3’UTR. Although some HLA-G alleles in the coding 

region, including HLA-G*01013, HLA-G*0105N, and HLA-G*01041, are associated with 

expression of soluble HLA-G,41 these associations could also be explained by the fact 

that these HLA-G alleles are in linkage disequilibrium with 3’UTR haplotypes.8 Recently 
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Di Cristofaro et al. showed that the HLA-G*0104 allele was in linkage disequilibrium with 

the presence of the UTR-3 haplotype.42 

For the HLA-G 3’UTR, Castelli et al. characterized the variability and its haplotype structure 

in one of the most heterogeneous populations of the world.8 In their population only less 

than 1% of haplotypes was undefined, which is in line with our data, and most likely not 

clinically relevant. The allelic and haplotype frequencies of our control group were similar 

to those described for European populations.43 

Among the eight haplotypes, UTR-4 was less frequently seen in recurrent miscarriage, 

and more frequently in uneventful pregnancy, suggesting a protective effect of this 

haplotype in pregnancy. In contrast to pregnancy where a high HLA-G expression seems 

to be beneficial, HLA-G expression in tumour cells contributes to the escape of tumour 

cells from a tumour specific immune response.44 In line with our data, in prostate cancer 

UTR-4 was associated with an increased risk in disease development and supports the 

idea that the presence of UTR-4 haplotype influences HLA-G expression.45 Conversely, 

UTR-4 was associated with a lower risk of colorectal carcinoma, although after adjustment 

for possible confounders no significance was reached.46

The UTR-4 haplotype is the only haplotype bearing the +3003C allele, which was 

also increased in women with uneventful pregnancy. The +3003C allele is in linkage 

disequilibrium with the allele -725G at the promotor region.43 Although this allele was 

previously associated with increased risk for miscarriage in couples,47 it was also found 

to be related with a higher HLA-G expression, as compared to the -725C or T allele.48 

The affinity of microRNAs binding to this region is probably dependent on the type 

of nucleotide present at this +3003 position.49 In our study, women with recurrent 

miscarriage had more often the genotypic variants +3010CC and +3003TT. The presence 

of +3003T, in combination with +3010C, shows low affinity for miR-513a compared to 

the +3003C/+3010G haplotype.49 The combination of the polymorphisms +3010C and 

+3003T are part of the UTR-2, UTR-3, UTR-5, and UTR-7 haplotypes, of which only 

the UTR-3 haplotype contains the 14-bp insertion. The UTR-2, UTR-5 and UTR-7 were 

found to be associated with lower expression of sHLA-G.13 Interestingly, in the subgroup 

analysis in the current study the frequency of UTR-2 was significantly higher in women 

with secondary recurrent miscarriage compared to control subjects. In addition, UTR-4 

was only significantly associated with uneventful pregnancy compared to women with 

secondary recurrent miscarriage, and not with women with primary recurrent miscarriage. 

Although the size of this group was limited, this finding may support the idea that 

secondary recurrent miscarriage has different underlying pathology than primary recurrent 

miscarriage.32 It could be that in women with secondary recurrent miscarriage a previous 
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live birth increases immunity to fetal antigens in the next pregnancy by for example the 

presence of HLA antibodies or H-Y antibodies.50,51 Hypothetically, women with secondary 

recurrent miscarriage and an UTR-2 haplotype could have less immunomodulatory 

capacity during implantation and therefore possibly an increased risk of miscarriage due 

to increased immunity by the presence of antibodies from a previous live birth. Although 

the presence of HLA antibodies increases after 28 weeks of pregnancy and antibodies can 

still be present at time of a new conception,52,53 no significant differences were observed 

in paternal-specific HLA antibodies between women with primary recurrent miscarriage 

and women with secondary recurrent miscarriage in a recent study.54 These differences 

between primary recurrent miscarriage and secondary miscarriage should be subject for 

further studies.

Furthermore, the UTR-2, UTR-5, and UTR-7 haplotypes share three genotypic variants 

which have previously been associated with decreased HLA-G levels: 1.) the 14-bp 

insertion influencing mRNA stability,10 resulting in lower levels or even absence of sHLA-G 

in plasma11-13; 2.) the +3142G allele, which increases the affinity of several microRNAs, 

including miR-148a, miR148b, and miR152, leading to downregulation of HLA-G 

expression36; and 3.) the +3187A allele, which is related to decreased HLA-G expression 

due to increased number of adenines in AU-rich motif mediating mRNA degradation.35 In 

line with these data we observed a decreased frequency of the 14-bp deletion/deletion 

in women with recurrent miscarriage (27%) compared to the control group (43.8%), the 

latter being comparable to the Dutch genome reference group (37.1%) (data not shown). 

The current study shows that the 3’UTR HLA-G haplotype, rather than single polymorphisms 

in the 3’UTR region of HLA-G, is most significantly associated with recurrent miscarriage. 

On the basis of these data we hypothesize that a combination of polymorphisms in 

the 3’UTR region of the HLA-G gene affects the degree of microRNA binding to these 

regions, which influences HLA-G expression. If this is the case, microRNAs may be used 

in the future as biomarkers and possible targets for therapeutic strategies, aiming at the 

induction of a higher HLA-G expression and improved pregnancy outcome.
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Abstract

Problem

HLA-C is the only classical HLA I antigen expressed on trophoblast. We hypothesized 

that the alloimmune response to paternal HLA-C plays a role in unexplained recurrent 

miscarriage. 

Method

In a case control design, we included 100 women with at least three unexplained 

consecutive miscarriages along with their partners and children. For the first control 

group we included 90 women with an uneventful singleton pregnancy without 

pregnancy complications in their history along with their children. The second 

control group consisted of 425 families. HLA-C*07 and HLA-C*17 frequencies, 

which are the most immunogenic HLA-C antigens, along with HLA-C mismatches, 

and the presence of specific HLA antibodies in the mother were determined. 

Results

HLA-C and HLA-C*07 mismatches were significantly increased in couples with 

recurrent miscarriage compared to control subjects (p=0.016, p=0.008, respectively). 

The incidence of child-specific HLA-C*07/HLA-C*17 antibodies was increased in 

women with recurrent miscarriage (p=0.007).

Conclusion

The results show that HLA-C incompatibility between couples is significantly 

associated with unexplained recurrent miscarriage.
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Introduction

About 1% of all couples are confronted with recurrent miscarriage, which is defined as three 

or more consecutive pregnancies prior to the 20th week of gestation.1 Possible etiologic 

factors include uterine anomalies, endocrine disorders, maternal inherited and acquired 

thrombophilia, and parental chromosomal abnormalities.2 In only 50% of the couples an 

underlying cause for recurrent miscarriage can be identified.3 

As the fetus is a semi-allograft, which escapes maternal immune rejection in normal pregnancy, 

it has been proposed that unexplained recurrent miscarriage is associated with the presence 

of specific maternal HLA alleles and with the degree of HLA mismatching between mother 

and child. As the role of classical HLA alleles remains controversial,4 more attention has been 

drawn to antigens expressed on the trophoblast, which can interact directly with maternal 

immune cells. The only classical HLA antigen expressed on the trophoblast is HLA-C, and 

both the maternal and paternal HLA-C allele are expressed by the trophoblast.5 

HLA-C*07 and C*17 are the most immunogenic antigens of the HLA-C alleles as they contain 

the highest number of epitope mismatches compared to other HLA-C alleles.6 Women 

with recurrent miscarriage develop significantly more often HLA-C antibodies in the first 

trimester,6 suggestive for a higher incidence of paternal HLA-C mismatches in couples with 

recurrent miscarriage.

Here, we investigated the role of paternal HLA-C in couples with unexplained recurrent 

miscarriage and with uneventful pregnancy. Thereby, we determined frequencies of HLA-C*07 

and C*17 alleles, paternal HLA-C mismatches, and the presence of specific maternal HLA-C 

antibodies. 

Material and methods

Case group

Cases were couples with recurrent miscarriage, who visited the recurrent miscarriage 

clinic of the department of Obstetrics and Reproductive Medicine at the Leiden University 

Medical Center (LUMC) in the Netherlands from 2000 onwards. The clinical work-up 

includes documentation of a standardised history from the couple, karyotyping, an 

ultrasound or hysteroscopy, and thrombophilia screening. Hereditary thrombophilia was 

defined by the presence of a factor V Leiden mutation, factor II mutation (prothrombin 

gene mutation), protein C or S deficiency, high factor VIII, or antithrombin deficiency. 

Acquired thrombophilia (anti-phospholipid syndrome) was defined by the presence of 
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IgG or IgM anticardiolipin antibodies or lupus anticoagulant in repeated samples taken 

3 months apart and at least 6 weeks after pregnancy.7 After revision of the classification 

criteria the presence of IgG or IgM β2-glycoprotein I antibodies was added to the work-up.8

Most of the women who visited the clinic were counselled to participate in randomized 

controlled trials such as the Habenox (NCT0095962)7 and Promise (ISRCTN92644181).9 In 

the Habenox trial, women were randomly allocated to one of three intervention groups 

(enoxaparin 40 mg, or enoxaparin 40 mg and aspirin 100 mg, or aspirin 100 mg). In the 

Promise trial, women were allocated to a group receiving vaginal progesterone or a 

placebo.

To obtain a homogenous study group, we only included women with three or more 

consecutive miscarriages prior to the 20th week of gestation with the same partner. The 

women had to be younger than 36 years of age at the time of their third consecutive 

miscarriage. Cases with known causes for miscarriage such as uterine anomalies, parental 

chromosomal abnormalities, and anti-phospholipid syndrome were not eligible. Women 

with hereditary thrombophilia were not excluded because the evidence that hereditary 

thrombophilia is associated with recurrent miscarriage is less clear.10,11 Both women with 

primary recurrent miscarriage (no history of live birth) and secondary recurrent miscarriage 

(history of live birth) were eligible.

From the 433 couples who visited the clinic, 304 couples met the inclusion criteria 

and they were asked to participate by filling in one digital or paper questionnaire. The 

questionnaire was made using ProMISe, an Internet-based application for the design, 

maintenance, and use of data management projects. Data of the women were stored in 

a clinical database (ProMISe Database, https://www.msbi.nl/promise/). 

From the 304 couples, 31 couples did not meet the inclusion criteria. Finally, 100 eligible 

women were included (Figure 4.1). Analysis with regard to baseline characteristics between 

the 100 included women and 173 eligible women, who did not participate, is depicted 

in Supplementary data, Table I.

Of the 100 women included, 69 had primary recurrent miscarriage and 31 women 

had secondary recurrent miscarriage. From the 31 women with secondary recurrent 

miscarriage, only the last living child before the consecutive miscarriages was asked to 

participate, in total 20 children could be included. From the 100 women, 94 partners 

could be included. Out of 100 cases, 75 had at least one live birth after the consecutive 

miscarriages. Only the living child directly born after the consecutive miscarriages was 

included (n=64, 11 children were missing) (Figure 4.1).
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After inclusion, blood samples from women and their partner were obtained and the 

children were asked to donate buccal mucous membrane for HLA genotyping (Oragene 

Discover, DNA Genotek, Ontario, Canada). 

Control groups

Two control groups were selected. The first control group consisted of 90 nulliparous and 

multiparous women with an uneventful pregnancy, who gave birth at the department of 

PRM; primary recurrent miscarriage, SRM; secondary recurrent miscarriage.

Figure 4.1  Flowchart of cases

Eligible women with 
recurrent miscarriage n=304

Non‐responders
n=103 

Declined to participate due to emotional reasons
n=65 

Cases n=136

Excluded from analysis 
‐ Incomplete questionnaire n=5
‐ Did not meet inclusion criteria n=31

Cases 
n=100

PRM n=69, SRM n=31

Men 
n=94 

Complete couple
n=94 

(Missing 6)

Last living child before recurrent miscarriage
n=20 

(Missing 11)

RECURRENT MISCARRIAGE

First child after recurrent miscarriage 
n=64 

(Missing 11)

Complete family 
n=60

(Missing 15)
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Obstetrics at the LUMC between 2004 and 2007. Women were included in case they had 

one or more uneventful pregnancies, that is, not suffering from pregnancy complications 

such as recurrent miscarriage, pregnancy-induced hypertension, preeclampsia, hemolysis 

elevated liver enzymes and low platelets (HELLP) syndrome, preterm birth, fetal growth 

restriction, and perinatal death in their history. Pregnancy-induced hypertension was 

defined as systolic blood pressure above 140 mmHg and/or diastolic pressure above 90 

mmHg combined with proteinuria (≥300 mg/day or a spot urine protein/creatinine ratio ≥30 

mg protein/mmol) as preeclampsia.12 Preterm birth was defined as a delivery between 24 

and 37 weeks gestation, fetal growth restriction as birth weight below the 2.3th percentile 

for gestational age and sex,13 and perinatal death as fetal loss after 22 weeks of gestation 

till 7 days after birth. All control subjects donated blood within 48 hours after labor.

The second control group consisted of 425 families who had been typed for HLA-A, HLA-B, 

HLA-C, HLA-DQB1, and HLA-DRB1, and who had a screening and work-up for stem cell 

transplantation for a child with leukemia. We selected these families as the occurrence 

of leukemia is not linked to specific HLA types. From all the living children who had been 

screened in these families, the child that was screened for stem cell transplantation was 

used in the analyses.

Variables and definitions

Data were collected from the obstetrical records and the ProMISe database (question

naires). Information about medical history, use of medication, intoxications, and pregnancy 

outcome was cross-checked in obstetrical records to overcome recall bias. The data of 

the obstetrical records were used in case of discrepancies between the ProMISe database 

and obstetrical records. The following data were collected: personal characteristics, 

intoxications (smoking, alcohol, drugs), use of medication, general disease history, 

outcome and complications of all pregnancies, and neonatal characteristics. Maternal age 

in the cases was defined as the age at time of the third consecutive miscarriage, and in the 

first control group as the age at time of the delivery of the first uncomplicated pregnancy.

Ethnicity was divided in 4 groups according to the rules of the Central Bureau of 

Statistics of the Netherlands (CBS). All persons of whom the mother was born in Europe 

(excluding Turkey), Indonesia, Japan, North-America, and Oceania were defined as 

native or Caucasian ethnic origin. Persons of whom the mother was born in Morocco or 

Turkey were from Moroccan or Turkish ethnic origin, and for Surinamese and Antillean it 

was Surinamese or Antillean ethnic origin. All persons of whom the mother was born in 

Africa, Asia (exclusive Indonesia and Japan), and South-America were defined as other 

non-Caucasian ethnic origin. 
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HLA typing

The samples from the case group, the first control group, and the second control group 

(only the maternal and paternal samples from this last group) were typed at intermediate 

resolution level for the loci HLA-A, HLA-B, and HLA-C with a PCR-based reversed sequence 

specific bead hybridization assay (Lifecodes HLA-SSO Typing Immucor Norcross, Georgia), 

which involves PCR amplification of targeted regions within the MHC class I regions with 

group specific primers, followed by a process of probing the amplicon with Luminex beads, 

each coated with sequence-specific oligonucleotide probes to identify the presence or 

absence of specific alleles. The assignment of HLA type is then based on the reaction 

pattern observed, compared to patterns associated with published sequences (Lifecodes 

HLA-SSO Typing Immucor Norcross, Georgia USA).

The samples from the children from the second control group taken before 2004 were 

typed at high resolution level for HLA-A, HLA-B, and HLA-C loci using the PCR-SSP 

technique14 with commercially available HLA-primer sets (Dynal, Oslo, Norway). Those 

taken after 2004 were typed by the sequence-based Typing (PCR-SBT) technique.

HLA antibody screening

HLA antibody screening was performed with maternal sera obtained from the case group 

and the first control group. The detection of HLA class I antibodies in maternal sera was 

performed by an enzyme-linked immunosorbent assay (ELISA) (LAT TM, One Lambda, CA, 

USA) with readouts at 630 nm, detecting both complement fixing and non-complement 

fixing antibodies, or by Luminex-based method (Luminex Corporation, Texas, USA). 

Positive sera (ratio patient/control >2.0) by ELISA or Luminex were further tested for HLA 

antibody class I specificity with single-antigen beads (SAB) by the Luminex method (Gen 

Probe, Stamford, CT, USA), following the manufacturer’s instructions. Purified anti-human 

C1q was used in the IgG SAB assay to detect complement fixing antibodies. An MFI 

(median fluorescence intensity) >1000 was considered positive, as reported elsewhere.15,16 

Statistical analyses

For descriptive analysis of baseline characteristics between cases and control subjects 

the Mann-Whitney U test was performed. For categorical variables, the chi-squared test 

was used, and if expected counts were less than five, the Fisher’s exact test was used. 

To exclude the possibility of a selection of a certain genotype within our groups, the Hardy-

Weinberg equilibrium17,18 was assessed for all genotypes of the HLA-C allele using Pypop 

Software 0.7.0. Statistical analysis was performed using SPSS Statistics (version 24.0, IL, 
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USA). Descriptive statistical analysis was performed using GraphPad Prism version 5.04 

for Windows (GraphPad Software, CA, USA, www.graphpad.com).

The following comparisons between cases and control subjects were performed: 

frequencies of HLA-C*07 and HLA-C*17 alleles in mother, father, and children, the 

incidence of paternal HLA-C mismatches, and the incidence of (child-specific or paternal-

specific) HLA class I, HLA-C, and HLA-C*07/17 antibodies

As previously described using the HLAMatchmaker program developed by Duquesnoy,19 

HLA-C*07 and C*17 showed the highest mean of epitope mismatches with other alleles 

within the HLA-C locus.6 Therefore frequencies of HLA-C*07 and HLA-C*17 in cases and 

control subjects were determined. Odds ratio (OR) and confidence interval (CI) were 

calculated with the Woolf-Haldane method,20,21 p-values were calculated with the Fisher’s 

exact test. In cases, expected number of HLA-C*07 and HLA-C*17 alleles of the child 

was calculated on basis of the actual data from mother and father. For example, in case 

of maternal C*07C*x and paternal C*xC*x typing, the chance of a C*07 child is 0.5. All 

these chances were added and divided by the number of children. 

The number of paternal HLA-C mismatches between mother and father or child was 

determined on basis of two-digit HLA typing. For the analysis of HLA-C*07 or C*17 

mismatches, only mothers were selected who were negative for HLA-C*07 or C*17. 

Furthermore, child-specific or paternal-specific HLA class I antibodies, HLA-C antibodies, 

and HLA-C*07/17 antibodies were assigned by comparing the HLA antigen of the child 

or father with the specificity of the maternal HLA-C antibody and class I antibody.

Ethical approval

The protocol was approved by the Ethics committee of the LUMC (P12.099) and all 

participants gave informed consent before inclusion in this study. The study was registered 

with the Dutch trial registry NTR 3402. All participants included in the control groups gave 

informed consent that samples, which were obtained, could be used in future studies. 

Results

Baseline characteristics of subjects 

Baseline characteristics of women with recurrent miscarriage and women with an un-

eventful pregnancy are depicted in Table 4.1. Out of 100 cases, 75 had at least one live 

birth after the consecutive miscarriages (Figure 4.1). From the 75 children directly born 
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after recurrent miscarriage, 29 were boys (38.7%) and 46 were girls (61.3%). From the 31 

children born before the consecutive miscarriages, 18 were boys (58.1%) and 13 were 

girls (41.9%).

Table 4.1  Baseline characteristics of subjects

Recurrent 
miscarriage
(N=100)

Uneventful pregnancy
(Control group 1)
(N=90) P-value

Maternal age at time of 3rd 
miscarriage or 1st uneventful 
delivery (years;median[IQR])a

31 (28-33) 30 (26-33) 0.368

BMI (Kg/m2;median[IQR]) b 23.3 (21.0-27.1) 24.1 (21.2-28.2) 0.415

Ethnic origin (n(%))c

Caucasian
Turkish/Moroccan
Antillean/Surinamese
Other non-Caucasian   

89 (89)
2 (2)
2 (2)
7 (7)

79 (89.8)
2 (2.3)
2 (2.3)
5 (5.7)

0.916

Gravidity (median[IQR]) 6 (5-8) 3 (2-4) <0.001

Parity (median[IQR]) 1.5 (1-2) 2 (2-3) <0.001

Miscarriages (median[IQR]) 4 (3-6) 0 (0-1) <0.001

Children for whom DNA was 
available (n(%))                                                            

64 (64) 89 (98.8)

Gravidity (median[IQR]) 5 (4-6.7) 3 (2-3.2) <0.001

Parity (median[IQR]) 0 (0-0) 1 (0-2) <0.001

Nulliparous (n(%)) 51 (79.7) 25 (27.8) <0.001

Gestational age 
(days;median[IQR])      	

273 (266-280)                    275 (270-283)  0.836

Birthweight (gram;median[IQR])             3495 (3039.5-3775.0)                          3555 (3111.2-3870.0)                   0.298

Gender (n(%))d

Boy
Girl

24 (37.5)
40 (62.5)

37 (42.5)
49 (57.0)

0.496

Complications (n(%))                                                                                                                           
Preterm birth                                                   
Fetal growth restriction                                                    
Preeclampsia
Perinatal death

11 (17.2)                                                                                              
8 (8)                              
5 (5)                                  
2 (2)                                         
0

0 na

All chi-squared tests or Mann-Whitney U test. IQR; interquartile range, na; not applicable. BMI; 
Body mass index.
a2.1% missing values (1 of 100 cases and 3 of 90 control subjects).
b4.7% missing values (2 of 100 cases and 7 of 90 control subjects). 
c1% missing values (0 of 100 cases and 2 of 90 control subjects).
d1.9% missing values (3 out of 89 control subjects).
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Frequencies for HLA-C*07 in maternal case group and control group 1: 55% vs. 51.1% (OR 1.1, 95% CI 0.6-2.0, 
p=0.661) and control group 2: 55% vs. 50.8% (OR 1.1, 95% CI 0.7-1.8, p=0.505). For paternal case group and 
control group 2: 68.8% vs. 50.6% (OR 2.1, 95% CI 1.3-3.4, p=0.002). For children in case group and control group 
1: 57.8% vs. 59.6% (OR 0.9, 95% CI 0.4-1.7, p=0.869) and control group 2: 57.8% vs. 52.5% (OR 1.2, 95% CI 0.7-
2.0, p=0.502). 
Frequencies for HLA-C*17 in maternal case group and control group 1: 4% vs. 1.1% (OR 2.7, 95% CI 0.4-17.6, 
p=0.374) and control group 2: 4% vs. 1.4% (OR 3.0, 95% CI 0.8-10.2, p=0.103). For paternal case group and 
control group 2: 3.2% vs. 2.8% (OR 1.2, 95% CI 0.3-4.2, p=0.739). For children in case group and control group 
1: 1.6% vs. 3.4% (OR 0.5, 95% CI 0.0-4.0, p=0.640) and control group 2: 1.6% vs. 2.1% (OR 1.0, 95% CI 0.1-5.9, 
p=1.000). Odds ratio (OR) and confidence interval (CI) were calculated with the Woolf-Haldane method, p-values 
were calculated with the Fisher’s exact test.

Figure 4.2  Phenotype frequencies of HLA-C*07 and C*17 in women with recurrent miscarriage 
compared to control groups

Most women had 4 or more consecutive miscarriages (71%), and 41 (41%) 5 or more 

miscarriages. A total of 11 cases had inherited thrombophilia, that is, factor V Leiden 

(n=4), prothrombin gene mutation (n=4), or high factor VIII (n=5). None had protein C, 

or S deficiency. 

In the case group and the first control group, numbers were too small to assess Hardy-

Weinberg equilibrium for all genotypes of HLA-C alleles. In the case and both control 

groups all loci for homozygotes and heterozygotes genotypes and in the second 

control group, all genotypes of the HLA-C allele were in Hardy-Weinberg equilibrium 

(Supplementary data, Table II).

Phenotype frequencies of HLA-C*07 and HLA-C*17 

The incidence of HLA-C*07 was significantly increased in paternal cases compared to 

paternal control subjects (OR 2.1, CI 1.3-3.4, p=0.002). No significant differences were 

present with regard to the frequencies of HLA-C*07 and HLA-C*17 in mother and child 

between cases and control subjects (Figure 4.2). 
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Figure 4.3  Phenotype frequencies of HLA-C*07 in children from women with recurrent miscarriage

Expected percentages were calculated from parental haplotypes of HLA C*07. RM; recurrent miscarriage.

HLA-C*07 phenotype frequency of the last living child born before the occurrence 

of recurrent miscarriage was 70% (14 out of 20 children). The expected frequency of 

HLA-C*07 in this group was 59%, and the frequency of HLA-C*07 of children born after 

recurrent miscarriage was 57.8% (37 out of 64 children) (Figure 4.3).

HLA–C mismatches 

The number of paternal HLA-C mismatches was significantly different between cases and 

control subjects (Table 4.2). Significantly more paternal C*07 mismatches were observed in 

women with recurrent miscarriage (67.5%) compared to control subjects (44.5%) (p=0.008). 

Accordingly, mismatches for HLA-C*07 between mother and child were increased in the 

case group compared to the second control group (p=0.040). 

HLA antibody formation

Information on time of blood sampling is depicted in Table 4.3. Three cases were pregnant 

at time of blood sampling, of which two were in their first trimester and one woman in 

her third trimester. As all control subjects donated blood within 48 hours after labor, 

they had significantly more previous live births than cases at the time of blood sampling. 

For that reason, significantly more nulliparous women were included in the case group. 

Nevertheless, the incidence of HLA class I antibodies was significantly higher in women 

with recurrent miscarriage (p=0.008) (Table 4.3). 

HLA class I antibodies against the first child born after recurrent miscarriage were more 

often detected in women with recurrent miscarriage compared to women with uneventful 

pregnancies (p=0.022). Especially the incidence of child-specific HLA-C*07 and HLA-C*17 

antibodies was significantly increased in cases compared to control subjects (p=0.007) 
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(Table 4.3). HLA-C antibodies were C1q fixing antibodies in 3 of 8 women with recurrent 

miscarriage compared to 4 of 5 women with uneventful pregnancy (p=0.266).

In the pregnancies of the first living child born after recurrent miscarriage, where antibodies 

against HLA class I were present, 60.0% of the women used anticoagulants as aspirin (n=4) 

or LMWH (n=7). In women with child-specific HLA-C antibodies, 62.5% used anticoagulants 

as aspirin (n=2) or LMWH (n=3). In women with child-specific HLA-C*07 or HLA-C*17 

antibodies 50.0 % used anticoagulants (aspirin (n=1) or LMWH (n=2)). 

No significant differences were observed in paternal-specific HLA class I, HLA-C or 

HLA-C*07/17 antibodies between women with primary recurrent miscarriage and women 

Table 4.3  Presence of HLA antibodies

Recurrent 
miscarriage

N=100

Uneventful 
pregnancy
(Control group 1)
N=82b P-value

At the time of blood sampling:
Gravidity (median[IQR]) 6 (5-8) 3 (2-3.2) <0.001
Parity (median[IQR]) 1 (1-2) 2 (1-3) <0.001
Nulliparous 14 (14) 0 (0) <0.001a

Miscarriages (median[IQR]) 4 (3-6) 0 (0-1) <0.001
Pregnant 3 (3) 0 0.253a

Blood transfusionc 5 (5) 11 (12.6) 0.069

Presence of HLA antibodies
Presence of HLA-I antibodies 33 (33) 13 (15.9) 0.008
Presence of HLA-C antibodies 12 (12) 10 (12.2) 0.968
Presence of HLA-C*07/17 antibodies 7 (7) 5 (6.1) 0.807

Presence of specific HLA antibodies (n) 64 79d

Presence of child-specific HLA-I antibodies 20 (31.3) 12 (15.2) 0.022
Presence of child-specific HLA-C antibodies 8 (12.5) 5 (6.3) 0.202
Presence of child-specific HLA-C*07/17 
antibodies 

6 (9.4) 0 (0.0) 0.007a

Presence of specific HLA antibodies (n) 94
Presence of paternal-specific HLA-I antibodies 32 (34) - -
Presence of paternal-specific HLA-C antibodies 9 (9.6) - -
Presence of paternal-specific HLA-C*07/17 
antibodies 

6 (6.4) - -

Data are n(%) unless otherwise indicated. All Mann-Whitney U test or chi-squared test except for 
aFisher’s exact test. 
bIn 8 control subjects, no serum was available to detect HLA antibodies. 
c2.6% missing values (2 of 100 cases and 3 of 90 control subjects).
dFor 3 of 90 children of the control subjects, HLA typing was incomplete and therefore not included.
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with secondary recurrent miscarriage (p=0.257, p=0.471, and p=0.392, respectively). 

Also, no significant differences were seen in paternal-specific HLA class I, HLA-C or 

HLA-C*07/17 antibodies between couples who had at least one living child born after 

recurrent miscarriage and couples who had no living child after recurrent miscarriage 

(p=0.279, p=0.106, p=0.332, respectively).

Discussion

The frequency of HLA-C*07, one of the most immunogenic HLA-C alleles, was significantly 

increased in partners of women with recurrent miscarriage compared to control subjects. 

Accordingly, an increased number of mismatches for paternal HLA-C*07 was found. The 

incidence of HLA-C*07 mismatches was significantly higher between mother and father 

compared to mother and child, which is not surprising as in only half of the cases the 

mismatched HLA-C*07 was inherited by the child. This is in accordance with Mendelian 

segregation. However, the consequence of the high incidence of HLA-C*07 in the father 

is that in all previous pregnancies the incidence of HLA-C*07 in the child has been higher 

than in the control populations. The presence of HLA antibodies, including antibodies 

against the high immunogenic HLA-C*07/17, was increased in women with recurrent 

miscarriage compared to women with uneventful pregnancy. 

The strength of the study is that a large homogenous group of women with a history of 

recurrent miscarriage was selected and compared to women with uneventful pregnancy. 

Furthermore, analyses of cases could be compared with a large cohort of complete 

families which were found to be in Hardy-Weinberg equilibrium, indicating that there was 

no selection of a certain genotype within these families. Furthermore, in comparison with 

recent studies,6,22 by including complete families in combination with antibody screening, 

specificity of these antibodies could be determined.

A possible limitation is that this study is subject to selection bias, as couples, that did not 

participate in this study had overall significantly fewer children and fewer live births after 

they had recurrent miscarriages. However, this suggests that the observed effects are 

rather an underestimation due to the fact that the group with worse outcome amongst 

the recurrent miscarriage cases did not participate. 

Furthermore, most women with recurrent miscarriage included in this study took part in 

the Habenox trial and were therefore randomly assigned to use anticoagulants as LMWH, 

aspirin, or a combination of both during pregnancy. In case of anti-phospholipid antibodies 

treatment with heparin is beneficial, and protects mice from pregnancy complications, 
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because it inhibits complement activation.23 More C4d deposition was found at the 

maternal-fetal interface in women with unexplained recurrent miscarriage, which may 

reflect antibody-mediated rejection in these women.24,25 In spontaneous preterm birth 

the presence of C4d in fetal cord endothelium was associated with circulating maternal 

anti-HLA-I antibodies.26 In addition, HLA antibodies in early pregnancy are associated 

with lower chance of a live birth in women with recurrent miscarriage.27 Although recent 

studies show no significant effect of LMWH in women with unexplained recurrent 

miscarriage,28-30 the effect of LMWH in a homogenous group of women with unexplained 

recurrent miscarriage has not been studied yet. Therefore, the use of anticoagulants as 

LMWH, aspirin, or a combination of both could have influenced outcome in our study. 	

In addition, in women with recurrent miscarriage having anti-phospholipid antibodies, 

prophylactic use of heparin and low-dose aspirin may reduce pregnancy loss by 50%.31 

Activation of the complement cascade by anti-phospholipid antibodies is a specific trigger 

provoking a thrombotic event.32,33 Whether HLA antibodies are capable of precipitating 

the coagulation pathway by the same mechanism as anti-phospholipid antibodies needs 

to be further investigated. In addition, it remains to be established in future studies 

whether aspirin induces similar anticoagulant effect and thereby reduces pregnancy loss 

in women with recurrent miscarriage and presence of HLA antibodies. 

Although in a recent study HLA-C-specific antibodies were found more often in women 

with recurrent miscarriage,6 the present study showed that HLA class I antibodies, but 

not particularly HLA-C antibodies, were significantly increased in women with recurrent 

miscarriage. In the present study, blood sampling in control subjects was performed 

directly after delivery and control subjects were more often multiparous. Therefore the 

presence of HLA antibodies in control subjects could have been overestimated with respect 

to cases, as HLA antibodies against the paternal antigens are only demonstrable after 

the pregnancy has reached a gestational age of 28 weeks6,34 and the highest incidence 

of HLA antibodies is after delivery.34 Moreover, Adeyi et al. showed that donor-specific 

antibodies could be undetectable, since the graft had absorbed them. After removal of 

the graft, these antibodies became more readily detectable.35 In the same line, child-

specific antibodies detected postpartum could be higher as a result of absorption by 

the placenta during pregnancy. Despite the fact that control subjects were more often 

multiparous, significantly more child-specific HLA class I and HLA-C*07/17 antibodies 

were present in women with recurrent miscarriage. 

Not all HLA-C antibodies in cases were complement fixing, and we know from trans-

plantation settings that only a proportion of allo-antibodies cause rejection, especially 

those with the ability to activate complement and a high avidity for the antigenic target.36 
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Possibly, the presence of HLA antibodies in women with recurrent miscarriage can be 

considered as a marker for a broader immune response, as was previously shown in HLA 

identical family transplantations.37 In that study the presence of HLA antibodies was a risk 

factor for worse outcome, although HLA antibodies themselves could not have caused 

any harm. Alternatively, preformed HLA antibodies, which can be present at time of new 

conception,34,38 may induce platelet activation by placental thromboxane production 

causing pregnancy complications.39

In conclusion, this study demonstrates that in a proportion of women with recurrent miscar-

riage an immune response to the paternal HLA-C allele may play a role in the occurrence 

of so far unexplained recurrent miscarriage. Our study confirms recent findings,6,24 that 

humoral rejection of the fetal allograft may indeed be present in a subgroup of women 

with recurrent miscarriage, thereby shedding new light on current theories about the 

pathophysiology of this devastating condition. A possible next step might be the use of 

complement inhibitors or aspirin in the subsequent pregnancy in this specific subgroup 

of women with recurrent miscarriage.
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Supplementary data

Table I  Characteristics of included and excluded cases

Included cases
(N=100)

Excluded cases
(N=173) P-value

Gravidity (median[IQR]) 6 (5-8) 5 (4-6) <0.001

Parity (median[IQR]) 1.5 (1-2) 1 (0-1) <0.001

Miscarriages (median[IQR]) 4 (3-6) 3 (3-4) <0.001

Consecutive miscarriages 4 (3-5) 3 (3-4) <0.001

Primary recurrent miscarriage
Secondary recurrent miscarriage

69 (69%)
31 (31%)

100 (57.8%)
73 (42.2%)

0.066

Live birth after miscarriages 75 (75%) 23 (13.3%) <0.001

Table II  Hardy Weinberg analyses for homozygotes and heterozygotes C allele in the case and 
control groups

Maternal Paternal Child

C allele Obs Exp P-value Obs Exp P-value Obs Exp P-value

Case group hom 
het

17
83

16.5
83.5

0.903
0.957

18
75

20.9
72.1

0.525
0.732

5
59

9.9
54.1

0.122
0.509

Control group 1 hom 
het

21
67

15.8
72.2

0.187
0.538

-
-

-
-

-
-

18
71

18.5
70.5

0.905
0.951

Control group 2 hom 
het
all

58
367

62.0
363.0

0.609
0.832
0.155

72
353

64.6
360.4

0.358
0.697
0.302

73
352

68.2
356.8

0.558
0.798
0.416 

Hom; homozygote, het; heterozygite, obs; observed, exp; expected.
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Abstract

Problem

During pregnancy antibodies are induced that target the paternal human leukocyte 

antigens of the semi-allogeneic fetus. The level and presence of these antibodies 

have been reported elevated as well as decreased for a variety of pregnancy 

complications; the clinical relevance and consequences of these antibodies is not 

very clear. Therefore, the objective of this review is to determine whether the 

presence of anti-paternal antibodies influences pregnancy outcome. 

Method

We performed a systematic search of studies that described the effect of anti-

paternal antibodies on pregnancy complications. The primary outcome was the 

risk ratio for HLA Class I and Class II antibodies on pregnancy complications. 

Furthermore, we calculated the risk for first and third trimester complications. 

Results

The seventeen studies which were selected for meta-analysis showed high level of 

statistical and clinical heterogeneity. In the meta-analysis we found no significant 

effect of HLA Class I or Class II antibodies on pregnancy outcome.

Conclusions

No consistent conclusions can be drawn from the meta-analysis. Discrepancies 

in the meta-analysis are the result of different screening techniques, varying 

time points of screening and use of incorrect control groups. Furthermore, more 

detailed analyses of the characteristics and specificity of the antibodies involved 

are essential.

Chapter_5_Tess.indd   96 29-8-2018   17:42:18



Anti human leukocyte antibodies and pregnancy outcome

97

5

Introduction

During pregnancy the maternal immune system has to tolerate the persistence of semi-

allogeneic fetal cells in maternal tissue, both locally at the fetal-maternal interface, as well as 

systematically. The entry of fetal material into the maternal circulation exists as microparticles 

are released from the syncytiotrophoblasts and shed into the maternal peripheral blood.1,2 

Furthermore, fetal cells (microchimerism),3 fetal DNA, and debris from apoptotic cells 

flow into the circulation. The presence of these fetal antigens, as well as processing and 

presenting of major histo-compatibility complex (MHC) alloantigens by macrophages, 

enables fetus-specific antigen recognition by the maternal adaptive immune system. 

Indeed, primed T cells to paternal HLA antigens and fetus-specific minor histocompatibility 

complexes, like HY, have been demonstrated in the peripheral blood of pregnant women.4-6 

In addition, studies by our group show that the CD4+CD25dim (activated) T-cell population 

increases in maternal peripheral blood during pregnancy.7

B cell activation occurs after uptake of antigen by the B cell receptor, followed by 

interaction with the primed T cells and costimulation through CD40L-CD40, producing 

anti-paternal antibodies.8 Anti-paternal antibodies have been first described by van 

Rood et al.9 and Payne et al.10 in 1958. These antibodies are developed in 10-30% of 

healthy women during pregnancy11 and their incidence is increased after 28th week of 

pregnancy.12 The number of pregnancies enhances the prevalence of HLA antibodies, 

although the result of the immunizing effect appears to be the strongest in the first two  

pregnancies.13 

The immunogenicity of the paternal HLA antigens during pregnancy is affected by the HLA 

antigens of the mother14 and more recent studies showed that the induction of antibodies 

to paternal HLA is directly correlated with the number of foreign epitopes, triplets of 

amino acid sequences accessible for antibodies on the paternal HLA antigens.15,16 There 

is a loss of detectable antibodies months to years after immunization,5 though primed 

cytotoxic T lymphocytes specific for these antigens can persist for more than 10 years, 

even if the antibodies have disappeared.17 

A number of important clinical effects of HLA antibodies have been clearly established 

in transplantation and transfusion settings, including acute and chronic graft failure,18 

platelet transfusion refractoriness19 and transfusion-related acute lung injury (TRALI) 

syndrome.20 For pregnancy however the clinical relevance of these antibodies is 

controversial; both the presence and absence of HLA- or paternal antibodies have been 

described in the context of pregnancy complications. Moreover, increasing evidence 

suggests a role of anti-paternal antibodies in the pathogenic mechanism of pregnancy 
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complications such as preeclampsia21 and recurrent miscarriage.22 We therefore reviewed 

the literature to determine the effect of presence of anti-paternal antibodies on pregnancy  

outcome. 

Method

Criteria for eligibility

A search in the National Centre for Biotechnology Information Pubmed database was 

performed in June 2012 using the Medical Subject Headings (MeSH) terms ‘HLA antigens’, 

‘antibodies’ and ‘major histo-compatibility complex’ in combination with ‘pregnancy 

complications’ and ‘pregnancy outcome’. As a search limit English-language publications 

and human research was used. Additional articles were identified from the Embase 

and Web of Science databases. Detailed search strategy is displayed in Appendix 1. 

We selected all reports with data of HLA antibodies in respect to pregnancy complications. 

The pregnancy complications studied were preeclampsia, recurrent miscarriage, placental 

abruption, gestational diabetes, growth restriction and preterm labor. These various 

complications are defined in Appendix 2. The definition of presence of HLA antibodies 

was based on the criteria used by the various authors. Only studies with a comparative, 

uncomplicated pregnant control group were included for the meta-analysis. Exclusion 

criteria were: case reports, letters, comments and articles focusing on anti-paternal 

antibodies after paternal leukocyte immunization.

Quality assessment

Two authors (E.L. and T.M.) independently assessed for inclusion all potential studies of 

the search strategy. These authors also assessed quality and risk of bias, according to the 

Newcastle-Ottawa scale (http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp 

maximum score 9 points), and carried out data extraction (Appendix 3). Disagreement 

was resolved by consensus. Low methodological quality was not an exclusion criterion.

Data analysis

The following data were extracted from the reports for the meta-analysis: design of the 

study, definition of the pregnancy complication, total numbers of pregnancies, births and 

miscarriage, number of patients and healthy controls in the study, number of patients 

and controls with HLA antibodies, the technique and timing of screening for anti-paternal 

antibodies, the ethnicity and the specificity of the antibodies. We contacted the authors if 
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the variables were missing. When available, history of blood transfusion or transplantation 

was also noted.

The primary outcome of the meta-analysis was the pooled risk ratio for HLA Class I and 

Class II antibodies on pregnancy complications. In further analyses we calculated the 

pooled risk for first and third trimester complications.

Furthermore, we expected statistical heterogeneity, so we used the random effects 

model for the meta-analysis; the heterogeneity was calculated with the I² statistics. This, 

with all of the other analyses was performed with Review Manager (RevMan) Version 5.1. 

Copenhagen: The Nordic Cochrane Centre, the Cochrane Collaboration, 2011. 

Results

Literature search 

The main search identified 332 potentially relevant studies. Figure 5.1 shows the flow 

chart, leading to the final 17 references included in this review. A total of 316 studies 

were not relevant for the research question and were excluded. One study was identified 

in the reference list of an excluded article and was added to the final number.

In one study23 two complications, placental abruption and preterm labor, were compared 

with uncomplicated pregnancies. All other studies focused on one pregnancy complication. 

The design of the seventeen studies included23-39 was a case control study. Only three 

groups mentioned the ethnicity of participants which was Hispanic24,25 and Italian 

respectively32; one study only stated that the participants and controls came from the 

same geographic area.30 Different techniques for detecting HLA antibodies were used; the 

standard NIH complement dependent cytotoxicity (CDC) assay40 detected antibodies in 

twelve studies,26,29-39 the enzyme-linked immunosorbent assay (ELISA) was the technique 

used in three studies.23,26,28 In one study both the CDC assay and the ELISA was applied,26 

Coulam et al.33 made use of the standard CDC and a complement dependent cytotoxicity 

assay with 51Cr release. Finally, flowcytometry was used in three studies24,25,27; Bartel et 

al.27 used both flowcytometry and Luminex. 

For antibody detection and specificity determination a panel with HLA typed individuals 

was used for five studies though the size of these panels differed (Appendix 3). The 

CDC assay was tested against only paternal lymphocytes in five studies,29,33,35,37,39 both 

paternal lymphocytes as a panel of donors were used in the study of Jenkins et al.31 and 

no information was present in the study of Sargent et al.36 and Shankarkumar et al.38 HLA 
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positivity was differently defined (Appendix 3) within all the study groups, though the 

same definition (and technique) was used for both patients as controls.

Nine studies not only detected HLA antibodies, but also determined the specificity of 

these antibodies.24-28,30,32,36 Finally the timing of measurement differed among the studies 

(Appendix 3); for four studies the moment of detection was not described,29,33,38,39 for two 

studies this was only described for the control group.32,37

Earlier blood or tissue transplant was mentioned only in the study of Nielsen et al.26 and 

Sargent et al.36 as an exclusion criterion.

In Appendix 3 the assessment of methodological quality according to the Newcastle-

Ottawa scale is summarized. Five studies showed high quality scoring seven or six 

points out of nine.24-26,29,33 Mediate quality was scored by three studies27,28,39 and nine 

studies23,30-32,34-38 scored four points or less, indicating low quality. 

Figure 5.1  Flow chart depicting selection of articles for systematic review

* Major causes for exclusion were: no determination of HLA antibodies, articles focusing on paternal leukocyte 
immunization, articles focusing on techniques of screening, articles focusing on solid organ transplantation and 
case reports, letters or comments.
** Major causes for exclusion were: non-comparative studies and no well-defined complication group.

Studies identified by the 
main search (n=332)

Studies excluded on title 
basis and abstract (n=292)*

Studies included (n=1)

Studies excluded after 
reading full text (n=24)**

Studies included in the 
systematic review (n=17)

Studies for which full text 
was used (n=40)
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Meta-analysis

To check for the existence of publication bias a funnel plot was drawn, which showed 

a symmetrical shape, indicating the absence of publication bias (data not shown).  

From all included studies we calculated the Odds Ratio (OR) with its accompanying standard 

error (Table 5.1). The OR from the seventeen studies with class I antibodies ranged from 

9.00 to 0.04; this was plotted in Figure 5.2. In the study of Souza et al.39 no HLA antibodies 

were detected in patients or controls; the OR could therefore not be determined.

The pooled OR was 1.02 (95% confidence interval 0.52-2.01), showing no significant effect 

of HLA antibodies Class I on pregnancy complications in general. The I² showed high 

Table 5.1  Characteristics and outcome of the 17 included studies

Study Year of 
publi-
cation

Complication Participants 
(n)

Odds Ratio 
(95% CI) 
HLA Class I 
antibodies

Odds Ratio 
(95% CI) 
HLA Class II 
antibodies

Lee 
et al.25

2011 CCA Patients 100 
Controls 150 

 7.39 [4.18-13.05] 2.81 [1.56-5.09]

Lee 
et al.24

2011 Preterm 
labor

Patients 140 
Controls 140

1.99 [1.23-3.24] 1.10 [0.61-1.99]

Nielsen 
et al.26

2010 RM Patients 69 
Controls 24

3.85 [1.19-12.45] 0.8 [0.25-2.57]

Bartel 
et al.27

2011 RM Patients 112 
Controls 96

0.32 [0.16-0.65] 0.20 [0.08-0.46]

Steinborn 
et al.28

2006 Gestational 
diabetes

Patients 47 
Controls 62

1.29 [0.53-3.17] 3.48 [1.12-10.85]

Steinborn 
et al.23

2004 Placental 
abruption

Patients 17 
Controls 60

3.21 [1.03-9.98]

  Preterm 
labor

Patients 29 
Controls 60

0.58 [0.17-1.96]

Kishore 
et al.29

1996 RM Patients 79 
Controls 100

0.40 [0.21-0.75]

Fujisawa 
et al.30

1985 Preeclampsia Patients 11 
Controls 7

9.00 [0.41-198.21] 0.43 [0.06-2.97]

Jenkins 
et al.31

1977 Preeclampsia Patients 27 
Controls 21

0.04 [0.002-0.66]

Bolis 
et al.32

1987 Preeclampsia Patients 26 
Controls 245

1.40 [0.58-3.39] 0.85 [0.11-6.87]

Coulam 
et al.33

1992 RM Patients 609 
Controls 43

0.21 [0.11-0.40]
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Figure 5.2  Meta-analysis of studies on the risk of HLA Class I antibodies with pregnancy 
complications

Events = number of patients with complication, Total = number of patients and controls.

Figure 5.3  Meta-analysis of studies on the risk of HLA Class I antibodies with first (a) and third (b) 
trimester complications

Events = number of patients with complication, Total = number of patients and controls.
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heterogeneity (88% p<0.00001) among the studies. Pooling all pregnancy complications 

with different gestational ages this heterogeneity was expected. Therefore we also 

calculated the risk of HLA Class I antibodies for first and third trimester complications 

(Figure 5.3). The pooled OR for first trimester complications was 0.66 (95% confidence 

interval 0.29-1.50) with high heterogeneity (I²=82% p<0.00001). For third trimester 

complications a pooled odds ratio of 1.77 (95% confidence interval 0.83-3.77, I²=79% 

p<0.0001) was calculated, showing no effect of HLA Class I antibodies on late pregnancy 

complications and high heterogeneity.

Moreover, we calculated the pooled risk for HLA Class II antibodies on pregnancy 

complications. Seven studies24-28,30,32 screened and detected Class II antibodies, by 

Figure 5.4  Meta-analysis of studies on the risk of HLA Class II antibodies with pregnancy 
complications

Events = number of patients with complication, Total = number of patients and controls.

Figure 5.5  Meta-analysis of studies on the risk of HLA Class II antibodies with first (a) and third (b) 
trimester complications

Events = number of patients with complication, Total = number of patients and controls.
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flowcytometry, ELISA, Luminex or CDC (B lymphocytes). The odds ratio of Class II 

antibodies ranged from 3.48 to 0.2 with high heterogeneity (I²=80% p<0.0001); plotted 

in Figure 5.4. No significant effect was found of HLA Class II antibodies on pregnancy 

complications. As described above, we also calculated the OR for first trimester and third 

trimester complications (Figure 5.5). The OR for first and third trimester complications was 

0.37 (95% confidence interval 0.09-1.47) respectively 1.65 (95% confidence interval 0.85-

3.22), showing no effect of HLA Class II antibodies on first or third trimester complications. 

The I² was 73% p=0.06 and 54% p=0.07; high to medium heterogeneity.

Discussion

In human pregnancy the presence of antibodies against red blood cell or platelet antigen 

are associated with serious complications, resulting in hemolytic disease of the fetus and 

fetal/ neonatal allo-immune thrombocytopenia (FNAIT) respectively. In contrast with these 

fetal blood cell antigens, the role of HLA antibodies is not that clear as both harmful and 

beneficial effects have been described. In this systematic review we found no significant 

effect of HLA antibodies on pregnancy outcome (Figure 5.2 and 5.4). The seventeen 

studies included however showed high statistical and clinical heterogeneity.

As we pooled all different pregnancy complications we expected a certain level of 

heterogeneity. Therefore, we separated the complications based on the time of onset, 

which resulted in a first trimester complication group and a late pregnancy complication 

group. The latter included chronic chorioamnionitis, preterm labor, preeclampsia, placental 

abruption and gestational diabetes. Though an immunological patho-mechanism is 

described for all of these different complications, pooling them could contribute to the 

reported heterogeneity. Unfortunately, too little data exist to execute a meta-analysis 

for each complication separately. On the other hand, the first trimester group consisted 

of the same pregnancy complication (recurrent miscarriage) and still showed high level 

of heterogeneity.

The methodological quality ranged from 3 points until 7 points maximally, with a median 

of 4 points which implies a low quality of the majority of studies. The largest weight in the 

meta-analysis was provided by a high quality study with a large patient group included.  

For the meta-analysis we included data from published papers only. The funnel plot actually 

showed a symmetric scatter plot, which indicated no publication bias (data not shown).

The ethnicity of the participants was mentioned in only two studies. Knowledge of 

the race or ethnicity is of importance though as the haplotype frequencies of HLA 
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vary amongst different populations41 and certain combinations of fetal-maternal HLA 

generate significantly more antibodies.14 Therefore it is not surprising that there is also a 

wide variation in incidence of anti-HLA antibodies in the sera of healthy women among 

different populations.37 

The timing of screening was different amongst the included studies, ranging from a 

gestational age of 4 weeks until 12 months postpartum. Regan et al.12 was the first to 

document the incidence and development of HLA antibodies measured throughout the 

pregnancy in a healthy population. They detected HLA antibodies only after the pregnancy 

has reached a gestational age of 28 weeks, probably since the influx of fetal material 

into the circulation peaks in the last trimester. One study included in our meta-analysis 

showed indeed higher IgG HLA class I and II positivity in samples obtained at time of 

delivery than before a gestational age of 16 weeks both for uncomplicated as complicated 

pregnancies.25 Regan et al. further showed that the cumulative frequency of positive HLA 

antibody sera increased even more after delivery, at 4 weeks postpartum.12 This means 

that the highest incidence of HLA antibodies is after delivery, when fetal material entry 

into the maternal circulation is at maximum, in coincidence with Rhesus antibodies. 

Moreover, during graft rejection donor-specific antibodies may be undetectable by routine 

serum screening because the graft has absorbed them. After removal of the antigen 

source these antibodies become more readily detectable.42 Therefore, the level of child 

specific antibodies detected postpartum could be higher as a result of absorption by the 

placenta during pregnancy. Six studies in our meta-analysis did not mention the timing of 

screening for their patient and control group. In two other studies non-pregnant women 

were used as control group, within 2 years after their last pregnancy, while their patients 

were screened during pregnancy.26,35 These differences may have impact on their results.

HLA specific antibodies formed during a previous pregnancy can be present at time of 

new conception12 and studies that report a beneficial effect of HLA antibodies suggest 

these antibodies enhance the development of maternal-fetal immunologic tolerance. 

This is in line with epidemiological studies that a prior birth confers a protective effect 

against pre-eclampsia and IUGR.43 Furthermore, exposure to new or different paternal 

antigens as a result of changed paternity is associated with an altered risk for pre-

eclampsia.44 However, it is not clear whether this beneficial effect can be attributed to 

the HLA antibody itself, or, for example to the period of semen exposure.45 It is assumed 

that semen contains a variety of immune factors which can support the induction of 

maternal immunomodulation46 and an association was found between short duration of 

sexual intercourse and preeclampsia.45,47 Still, stratification according to the presence or 

absence of previous pregnancies is required to rule out the effect of earlier formed HLA 
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antibodies; this was only mentioned in the study of Lee et al.25 They observed similar 

results in nulliparous and multiparous women though. 

For primary recurrent miscarriage, almost all the included studies used healthy multiparous 

women as control group. However, since the incidence of HLA antibodies in multiparous 

is per definition higher than in first trimester pregnancies, only nulliparous women with 

recurrent (≥3) elective abortions, as Biddle et al.34 stated, would reflect the appropriate 

control group. Interestingly, in the study of Nielsen et al.26 a subgroup of secondary 

recurrent miscarriages with a boy prior to the miscarriage showed a significant higher 

prevalence of HLA antibodies compared to healthy multiparous controls. The authors 

explain this higher prevalence of HLA antibodies as the result of a higher degree of 

microchimerism. Microchimerism occurs within 50-70% of pregnant women3 and can 

persist until 27 years after delivery.48 The traffic of fetal cells into the maternal circulation 

microchimerism may lead to its activation. Indeed, a reproductive history including elective 

termination of pregnancy49 or early fetal loss50 is associated with a higher incidence of 

microchimerism in maternal tissues. Also for preeclampsia a significant increase of fetal 

erythroblasts was seen compared to normotensive pregnant women,51,52 as with intra-

uterine growth restriction.53,54 This enhanced cell trafficking however may be a result of the 

pathological condition of the placenta rather than as a cause for these complications. A 

higher level of HLA antibodies may thus be just a result of higher level of microchimerism, 

without a causal link and without any clinical relevance. Furthermore, regarding the study 

of Nielsen et al., no data exists about the kinetics of appearance of HLA antibodies around 

abortion or at 2 years post delivery, the time points of screening in their study.

To detect HLA antibodies five different techniques were used: the standard NIH CDC 

assay, the ELISA, complement dependent cytotoxicity assay with 51Cr release, Luminex 

and flowcytometry. The CDC assay is based on complement activation and requires 

immunoglobulins that bind to complement. Immunoglobulins that are not bound will 

thus not be detected.55 The indirect immunofluorescence method (flowcytometry) is 

independent of complement fixation and can detect all antibodies. This technique 

is used in the studies of Lee et al. and Bartel et al.24,25,27 Furthermore, the CDC assay 

uses lymphocytes as target for HLA antibodies, which implies that also other irrelevant 

cell membrane structures may be targets for antibody reactivity as well,56 possibly 

overestimating the actual level of HLA antibodies. To increase the sensitivity and specificity 

of HLA antibody detection, Luminex and flowcytometric assays are introduced that use 

isolated HLA molecules on beads. Indeed, Lee et al. and Bartel et al.25,27,57 made use of 

these single-antigen beads. With the binding of HLA molecules to microspheres however 

a conformational change in the HLA molecule may occur, unmasking ‘hidden’ epitopes, 
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which may lead to the detection of unexpected antibody reactivity.58,59 Furthermore, 

whether the detected antibodies are directed against the paternal HLA of the fetus was 

not mentioned,24,27 or only for certain cases.25 This child-specificity was also not mentioned 

in studies that used the CDC assay serum with lymphocytes from a panel of donors,30,32,34 

with the exception of the study by Nielsen et al. Using paternal lymphocytes as donor 

to determine the extent of immunization will generate only child-specific antibodies.

The question remains nevertheless, what the clinical relevance of these (non) child-specific 

antibodies is. Extravillous trophoblasts, interacting with maternal cells at the decidua 

basalis, express only HLA-C and the non-classical HLA-E, -F and -G. Antibodies directed 

against these human leukocyte antigens in theory may have a detrimental effect. However, 

HLA-C mismatches are low in immunogenicity and the detection of HLA-C antibodies with 

CDC assay is not reliable; the expression of HLA-C on nucleated cells is lower than HLA-A 

or -B and there is linkage disequilibrium with HLA-B antigens.60 In fact, all IgG type HLA 

antibodies are able to cross the placenta; HLA antibodies were demonstrated in the fetal 

circulation61 and neonatal thrombocytopenia by maternal HLA antibodies was reported 

as side effect following leukocyte immunization in a woman with recurrent miscarriages.62 

The clinical relevance of HLA antibodies is also a matter of debate in transplantation 

setting.55 Preceding organ transplantation, screening for HLA antibodies is performed 

as routine. The detection of donor specific HLA antibodies with CDC was considered 

a contraindication for transplantation, as these antibodies were associated with graft 

failure after transplantation,18 With the introduction of newer screening techniques the 

sensitivity is increased, however to determine the individual risk factor for a patient before 

transplantation appears impossible; the debate concerning interpretation still continues.55

Conclusion

In this systematic review and meta-analysis we found no significant effect of HLA antibodies 

class I and/or II on pregnancy complications. Notably, the included studies showed high 

heterogeneity, both clinical as statistical. The discrepancies in the meta-analysis are the 

result of different screening techniques, varying time points of screening and use of 

incorrect control groups. Furthermore, analyses of the characteristics of the antibodies 

involved are essential; these include their (child) specificity, capacity to fix complement, 

their titer and the HLA epitopes16 recognized. Large, observational studies, considering 

these characteristics are necessary to determine whether there is a beneficial or harmful 

effect of HLA antibodies, or that it is simply an epiphenomenon of any pregnancy.
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Abstract

Problem

HLA-C is the only polymorphic classical HLA I antigen expressed on trophoblast 

cells. It is known that higher incidence of C4d deposition on trophoblast cells is 

present in women with recurrent miscarriages. C4d is a footprint of antibody-

mediated classical complement activation. Therefore, this study hypothesize 

that antibodies against HLA-C may play a role in the occurrence of unexplained 

consecutive recurrent miscarriage. 

Method

Present case control study compared the incidence of HLA-C specific antibodies 

in 95 women with at least three consecutive miscarriages and 105 women with 

uneventful pregnancy. In the first trimester of the next pregnancy, presence and 

specificity of HLA antibodies were determined and their complement fixing ability. 

The incidence of HLA antibodies was compared with uni- and multivariate logistic 

regression models adjusting for possible confounders. 

Results

Although in general a higher incidence of HLA antibodies was found in women 

with recurrent miscarriage 31.6% versus in control subjects 9.5% (adjusted OR 4.3, 

95% CI 2.0-9.5), the contribution of antibodies against HLA-C was significantly 

higher in women with recurrent miscarriage (9.5%) compared to women with 

uneventful pregnancy (1%) (adjusted OR 11.0, 95% CI 1.3-89.0). In contrast to the 

control group, HLA-C antibodies in the recurrent miscarriage group were more 

often able to bind complement.

Conclusion

The higher incidence of antibodies specific for HLA-C in women with recurrent 

miscarriages suggests that HLA-C antibodies may be involved in the aetiology of 

unexplained consecutive recurrent miscarriage.
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Introduction

About 1-3% of all couples are confronted with recurrent miscarriage, which is internationally 

defined as ≥3 consecutive miscarriages before 20 weeks of gestation.1 Recurrent miscarriage 

is a heterogeneous disorder. Possible etiologic factors include uterine anomalies, endocrine 

disorders, acquired thrombophilia (anti-phospholipid syndrome), hereditary thrombophilia, 

or balanced translocations in the maternal or paternal DNA.2,3 However, in many couples 

no causal factor can be identified.2,4

During pregnancy the maternal immune system has to tolerate the persistence of the semi-

allogeneic fetal cells. The extravillous trophoblasts, which is in direct contact with maternal 

cells, expresses only HLA-C and the non-classical HLA-E, -F, and -G. Chimeric fetal cells in 

the peripheral circulation express all classical HLA class I and II antigens. Approximately 

30% of healthy women develop HLA antibodies during pregnancy, the presence of these 

antibodies increases after 28 weeks of pregnancy and antibodies can still be present at time 

of a new conception.5,6 Therefore, the incidence of HLA antibodies in the first trimester is 

higher in multiparous women than in nulliparous women.6 

Binding of antibodies to paternal HLA antigens of the fetus might lead to complement 

fixation and antibody-mediated rejection of the fetus. In women with recurrent miscarriage 

an increased deposition of C4d, a marker of classical complement activation, was found 

at the maternal-fetal interface.7 In spontaneous preterm birth C4d in fetal umbilical cord 

endothelium was associated with circulating maternal anti-HLA class I antibodies.8 A recent 

meta-analysis showed no significant association between HLA antibodies and the occurrence 

of recurrent miscarriage,9 however the included studies showed a high level of clinical and 

statistical heterogeneity. Interestingly, the role of HLA-C specific antibodies has not been 

studied yet, while from transplantation settings we know that a proportion of allo-antibodies 

cause rejection, amongst others depending on their ability to activate complement.10 

We hypothesize that antibody-mediated reactivity plays a role in unexplained recurrent 

miscarriage. Therefore, the incidence of HLA antibodies, especially those directed against 

the only polymorphic classical HLA I antigen expressed on trophoblast (HLA-C), is compared 

between women with recurrent miscarriage and women with uneventful pregnancy. 

Material and methods

Subjects

We performed a case control study. The case group was selected from the Habenox trial 

(NCT0095962),11 a multicentre multinational trial which investigated thrombophylaxis 
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(enoxaparin (low molecular weight heparin (LMWH)), aspirin, or combination of both) for 

women with recurrent miscarriage with and without thrombophilia. The clinical work-up 

included documentation of a standardised history from the couple, karyotyping of the 

couple, an ultrasound or hysteroscopy, and thrombophilia screening. Exclusion criteria 

for the Habenox trial were a history of thromboembolism or bleeding disorders, allergy 

to aspirin or enoxaparin, uterine anomalies, cervical insufficiency, untreated thyroid 

disease, poorly regulated diabetes mellitus, parental chromosomal abnormalities, and 

pregnancies achieved by assisted reproductive techniques. Hereditary thrombophilia was 

defined by the presence of a factor V Leiden mutation, increased factor II (prothrombin 

gene mutation), protein C or S deficiency, increased factor VIII, or antithrombin 

deficiency. Acquired thrombophilia (anti-phospholipid syndrome) as the presence of IgG 

anticardiolipin antibodies or lupus anticoagulant or IgG β2-glycoprotein I antibodies in 

repeated samples taken 3 months apart and at least 6 weeks after pregnancy.12 

To obtain a more homogenous case group in this case control study, only women with 

three or more, consecutive miscarriages prior to the 20th week of gestation without 

uterine anomalies and parental chromosomal abnormalities were selected. Women with 

hereditary thrombophilia were not excluded, as the evidence that hereditary thrombophilia 

is associated with recurrent miscarriage is less clear.3,13 

The presence of HLA antibodies can be considered as a marker for a broader immune 

response.14 Although the presence of anti-phospholipid antibodies is highly associated 

with recurrent miscarriage,3,15 women with acquired thrombophilia were not excluded 

since anti-phospholipid antibodies are potential candidates for this broader antibody 

response. Sensitivity analyses were performed to evaluate the presence of HLA antibodies 

in women with and without acquired thrombophilia in the case group compared to control 

subjects. 	

Both women with primary recurrent miscarriage (no history of live birth) and secondary 

recurrent miscarriage (history of (a) live birth(s)) were included. The Finnish women were 

selected, since blood samples were available from this group. Samples were taken at 

the first antenatal visit before enrolment in the Habenox trial, and every 4 weeks, till the 

pregnancy ended. This pregnancy was indicated as the index pregnancy. In the Habenox 

trial, 114 Finnish women were consecutive enrolled from January 2002 until December 

2007 and 95 cases were eligible for this case control study (Figure 6.1). 

The control group consisted of women who had an uncomplicated index singleton 

pregnancy, ending in an uncomplicated live birth without congenital abnormalities, 

delivering at the department of Obstetrics at the Leiden University Medical Centre 
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(LUMC) in the Netherlands between June 2003 and June 2012. In total 105 women were 

eligible and consisted of both nulliparous and multiparous women. All these women had 

no recurrent miscarriage or complicated pregnancy (preeclampsia, Hemolysis Elevated 

Liver enzymes and Low Platelets syndrome, preterm birth, preterm rupture of membranes, 

fetal growth restriction, perinatal death, or maternal death defined as described below) 

in history and current pregnancy. Women were at the time of inclusion healthy individuals 

with an uneventful medical history. Samples were taken in the first trimester during 

pregnancy, which was indicated as the index pregnancy. 

Variables and definitions

From the cases and control subjects data was collected from medical files. The following 

data was collected: personal characteristics, intoxications, use of medication, general 

medical history, information on previous blood transfusions and transplantations, outcome 

and complications of all previous pregnancies before the index pregnancy, gender of 

previous children, treatment for previous miscarriages, gestational age at blood sampling, 

outcome and complications of index pregnancy, medication use during index pregnancy, 

and neonatal characteristics. 

Pregnancy induced hypertension was defined as systolic blood pressure above 140 mmHg 

and/or diastolic pressure above 90 mmHg, combined with proteinuria as preeclampsia, 

preterm birth as a delivery between 24 and 37 weeks gestation, fetal growth restriction 

as birth weight below the 2.3th percentile for gestational age and sex,16 perinatal death as 

fetal loss after 22 weeks of gestation till 7 days after birth, and postpartum haemorrhage 

as blood loss above 1000 mL in the 24hrs postpartum. 

Figure 6.1  Flow chart of the case group

Finnish cohort Habenox‐
trial (114)

Excluded if: 
• ≤ 2 miscarriages or not consecutive (n=5)
• Miscarriage > 20th weeks gestation (n=4)
• Uterine anomaly (n=1)
• Parental chromosomal abnormalities (n=0)

Eligible cases (n=95 )

No blood samples available (n=9)
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Antibody screening

The presence of HLA antibodies was determined in the first trimester (till 13 weeks 

gestation) of the index pregnancy, both in cases and control subjects. The detection 

of HLA class I and II antibodies in maternal sera was performed by an enzyme-linked 

immunosorbent assay (LAT TM, One Lambda, CA) with readouts at 630 nm, detecting 

both complement fixing and non-complement fixing antibodies. Positive sera (ratio 

patient/control >2.0) was further tested for HLA antibody specificity by the standard NIH 

complement dependent cytotoxicity assay17 against a panel of 54 HLA-typed individuals 

and for their class I and II specificity with Luminex single antigen beads (Gen Probe, 

Stamford, CT) following the manufacturer’s instructions. Purified anti-human C1q was used 

in the IgG SAB assay to detect complement fixing antibodies. An median fluorescence 

intensity >1000 was considered positive as reported elsewhere.18,19

Statistical analyses 

For descriptive analysis of baseline characteristics between cases and control subjects 

the Mann Whitney U test was performed and for categorical variables the Chi-squared 

test, if expected counts were less than five Fisher’s exact test was used. 

HLA antibody presence and specificity (HLA-A, HLA-B, HLA-C, HLA class I and II antibodies) 

were compared between cases and control subjects.

Bias can arise due to genetic differences between the Finnish case group and the Dutch 

control group. As we had special interest in HLA antibodies against the most polymorphic 

antigen on trophoblast the HLA-C antigen, we determined the relative immunogenicity 

of the different HLA-C antigens using the HLAMatchmaker program developed by 

Duquesnoy20 as previously described for HLA-A and HLA-B.21 The number of epitope 

(triplet) mismatches was calculated on basis of polymorphic amino acid configurations 

that represent defined areas of HLA epitopes on protein sequences of HLA-A, HLA-B, and 

HLA-C chains accessible to allo-antibodies and depicted in a cross-analysis. HLA-C*07 and 

C*17 showed the highest mean of triplet mismatches within the HLA-C allele (Figure 6.2), 

suggesting that these are the most immunogenic antigens. The frequencies of the HLA-C 

alleles in the Finnish and Dutch population were compared using www.allelefrequencies.

net and appeared to be comparable i.e. HLA-C*07 (0.30 vs. 0.33) and C*17 (0.022 vs. 

0.004) between the Finnish and Dutch population.

Furthermore, potential confounding factors for the presence of HLA antibodies and 

the occurrence of recurrent miscarriage include an older age, acquired thrombophilia, 

thyroid autoimmunity, previous pregnancy complications, and having a boy prior to the 
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index pregnancy. More pregnancy complications are observed prior and subsequent to 

the miscarriages in women with recurrent miscarriage.22,23 In a recent meta-analysis no 

beneficial or harmful effect of HLA allo-antibodies was observed in pregnancy, however 

more studies are necessary to determine definite effect of HLA antibodies on pregnancy 

outcome,9 and therefore pregnancy complications could still be a potential confounder 

for the presence of HLA antibodies. Furthermore, previous studies showed that recurrent 

miscarriage is more often preceded by a firstborn boy than girl.24,25 A boy prior to the 

index pregnancy is related with presence of HLA antibodies,26 due to the higher incidence 

of pregnancy complications, if the child preceding the secondary recurrent miscarriage 

is a boy compared to a girl.23 Acquired thrombophilia was not measured in the control 

group, none of the cases and control subjects had thyroid disease, and control subjects 

were selected on basis of uncomplicated previous pregnancies. All these possible 

confounding factors, including having a boy prior to the index pregnancy, could not be 

included in the multivariate analysis. Therefore, the association between the presence of 

HLA antibodies and recurrent miscarriage was studied with uni- and multivariate logistic 

regression, adjusting for age as continuous variable in a multivariate logistic regression 

analysis using the enter method. 

Figure 6.2  Cross-analysis of single HLA-C antigen for triplet mismatches shown in a heatmap

The median number of triplet mismatches is colored white, increasing number of triplets are colored red and 
decreasing are colored blue. Mean triplet mismatches ( TMM) of specific HLA-C alleles towards all the other 
HLA-C alleles and clustering between group using average linking are given.
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In the sensitivity analysis for parity the presence of HLA antibodies was compared between 

nulliparous, multiparous cases and control subjects. Gravidity was not included in a 

sensitivity analysis because antibodies are rarely demonstrable before 28 weeks gestation.5 

Of the 50 pregnancies ending in a spontaneous miscarriage, only two women developed 

antibodies during the index pregnancy.5 As previous curettages and the gestational age 

at the time of blood sampling can hypothetically affect the incidence of HLA antibodies, 

these parameters were included in sensitivity analyses.

Statistical analysis was performed using SPSS Statistics (version 20.0, IL, USA). Descriptive 

statistical analysis was performed using GraphPad Prism version 5.04 for Windows 

(GraphPad Software, CA, USA, www.graphpad.com).

Ethic statements

Approval to use blood samples for research from the Finnish women in the case group 

was given (NCT0095962). The determination of HLA antibodies in serum of women with 

uneventful pregnancies was approved by the Ethic Committee of the LUMC (P13.048). 

Results

Baseline characteristics of subjects 

No differences between the cases and control subjects were observed with respect to 

maternal age, BMI, smoking habits, and parity (Table 6.1). In both groups the proportion 

of nulliparous women was equal. None of the cases and control subjects had blood 

transfusions or transplantation in their medical history. 

In the case group the median consecutive miscarriage rate was 3, while 33 patients 

(34.4%) had 4 or more consecutive miscarriages. Of the 105 control subjects, 23 women 

(21.9%) had at least one miscarriage and 12 women (11.5%) had at least one termination 

of pregnancy before the index pregnancy. Overall no differences were observed in 

pregnancy complications between cases and control subjects (Table 6.2).

The incidence of HLA antibodies is higher in women with recurrent miscarriage 

The incidence of HLA antibodies in the first trimester was significantly higher in women 

with recurrent miscarriage 31.6% versus in control subjects 9.5% (OR 4.3, 95% CI 2.0-

9.5) (Figure 6.3a). After adjustment for age, in multivariate analysis, the estimator of 

interest did not change (adjusted OR 4.3, 95% CI 2.0-9.5). The contribution of HLA-C 
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antibodies to the humoral sensitization was significantly higher in women with recurrent 

miscarriage i.e. 9 out of 95 cases compared to only one out of 105 control subjects (OR 

10.8, 95% CI 1.3-87.6 and adjusted OR 11.0, 95% CI 1.3-89.0) (Figure 6.3b). In 5 out of 9 

women with recurrent miscarriage these HLA-C antibodies were C1q fixing antibodies, 

the HLA-C antibodies found in the women with an uneventful pregnancy were non-C1q 

fixing antibodies. 

As anti-phospholipid antibodies had not been measured in the control subjects, we 

could not correct in multivariate logistic regression for the presence of anti-phospholipid 

Table 6.1  Baseline characteristics of subjects

Recurrent miscarriage
(N=95)

Uneventful pregnancy
(N=105)

Maternal age (years; median[IQR]) 32 (29-35) 32 (27.5-35)

BMI (Kg/m2; median[IQR])± 22.6 (20.7-25.3) 23.2 (20.7-26.0)

Maternal smoking§ 10 (11.2) 9 (8.6)

Blood transfusions 0 0

Transplantation 0 0

Thrombophilia
V Leiden mutation 
Prothrombin gene mutation	
Protein C or S deficiency
High factor VIII 
Anti-thrombin deficiency
Anti-phospholipid syndrome

24                                                   
8                                                     
2 
1                                                  
0 
0                                                  
17 

nt

Gravidity (median[IQR]) 5 (4-6)a 2 (1-3)

Parity (median[IQR]) 0 (0-1) 1 (0-1)

Nulliparous 55 (57.9) 51 (48.6)

Previous miscarriages
(range)

95 (100)
3-8

23 (21.9) 
0-2       

Previous termination of pregnancy 
(range)

6 (6.2)
0-2

12 (11.5)
0-2    

Curettage 73 (76.8)a 14 (13.3)

Gestation blood sampling (days; median[IQR]) 67.5 (44.5-70)a 77 (71-84.5)

Having a boy prior to the index pregnancy 26 (65.0)                             34 (63)                                      

Data are n (%) unless otherwise indicated, IQR; interquartile range, nt; not tested, BMI; body mass 
index. All chi-squared tests or Mann-Whitney U-test, ±11% missing values (4 of 95 cases and 18 of 
105 controls), §4% missing values (6 of 95 cases and 2 of 105 controls).
acompared with women with uneventful pregnancy p<0.001.
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antibodies, but even after exclusion of the 17 cases with anti-phospholipid syndrome, 

the incidence of HLA antibodies was still higher in the recurrent miscarriage group (OR 

3.0, 95% CI 1.3-7.0).

Sensitivity analysis for parity showed that HLA antibodies were more often present 

in nulliparous cases than in nulliparous control subjects (29.1% vs. 0%, p<0.001). In 

nulliparous cases four women had HLA-C antibodies compared to none of the control 

subjects (p=0.050). Furthermore, multiparous cases had significantly more often HLA-C 

antibodies than control subjects (12.5% vs. 1.9%, p=0.037). 

Previous curettage was not associated with an increase of HLA antibodies, neither in 

cases nor in control subjects (Figure 6.4). In addition, no HLA antibodies were detected in 

nulliparous control subjects, although 7 control subjects had a termination of pregnancy 

before the index pregnancy and one control subject had two terminations of pregnancy. In 

the case group the mean gestational age at the time of blood sampling was comparable 

in women with and without HLA antibodies (61.4 vs. 58.0 days, p=0.391). In the control 

group gestational age at time of blood sampling was significantly later in women with 

HLA antibodies (81.8 vs. 76.6 days, p=0.035). 

Table 6.2  Characteristics of the ongoing index pregnancy in subjects

Recurrent miscarriage
(N=95)

Uneventful pregnancy
 (N=105)

Live births
Gestational age (days;median[IQR])
Birthweight (gram;median[IQR])

60 (63.2)
281 (271-288)                    
3372.5 (3137.7-3957.5)                            

105 (100)                    
281 (276-287)   
3460 (3147.5-3802.5)                     

Blood pressure (mmHg;median[IQR])¬
Systolic
Diastolic

                                              
120 (115-130) 
78 (73-90)

                                
123 (120-130)               
78 (71.2-80)

Complications
Preterm birth
Fetal growth restriction
Fluxus
Pregnancy induced hypertension 
Preeclampsia
HELPP syndrome
Perinatal death
Maternal death

19 (31.7)                                                           
4 (6.8) a                                                        
0  
8 (14.3) b                                             
10 (16.7) 
1 (1.7)                                
0 
0 
0

17 (16.2)                                         
0 (0.0)
0 
1 (1.0)                         
16 (15.2) 
0 
0             
0     
0               

Data are n (%) unless otherwise indicated, IQR; interquartile range, HELLP; Hemolysis Elevated 
Liver enzymes and Low Platelets. All chi-squared tests or Mann-Whitney U-test, ¬6.0% missing 
values (9 of 60 cases and 1 of 105 controls).
acompared with women with uneventful pregnancy p<0.05.
bcompared with women with uneventful pregnancy p<0.001.
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Figure 6.3  Presence of HLA antibodies (a) and specific HLA antibodies (b) in cases and control 
subjects

HLA antibodies in the first trimester were significantly higher in women with recurrent miscarriage 31.6% versus 
in control subjects 9.5% (a). For specific HLA antibodies, especially those directed against the only polymorphic 
classical HLA I antigen expressed on trophoblast (HLA-C) were increased. In 9 out of 95 cases HLA-C antibodies 
were detected compared to only one out of 105 control subjects (b).

Figure 6.4  Presence of HLA antibodies in cases and control subjects with and without previous 
curettages

No association between the presence of HLA antibodies in the cases or in the control subjects (p=0.123 and 
p=0.352 respectively).
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Discussion

The incidence of HLA-antibodies in the first trimester was found to be significantly 

increased in women with recurrent miscarriage. Particular relevant for the local situation 

in the placenta, is the observation that significantly more often HLA antibodies specific 

for HLA-C are found in women with recurrent miscarriage. 

The strength of the study is that, in comparison to other studies,9 a large homogenous 

case group of women with a history of recurrent miscarriage were selected. In addition 

sensitivity analysis for parity was performed. Finally, the detection of the HLA-C specificity 

of the HLA antibodies is important, considering that HLA-C is the only classical HLA 

antigen expressed on the trophoblast. Furthermore, by analysing the ability of the HLA-C 

antibodies to fix complement, a possible link can be made with the previously observed 

increased C4d deposition on the trophoblast in recurrent miscarriages.7

HLA-antibodies in early pregnancy are associated with lower chance of a live birth in 

women with recurrent miscarriage.26 However, in our study we could not evaluate presence 

of HLA antibodies related to pregnancy outcome because the use of medication. In 

our case group, all women used medication as part of the randomized control trial, 

i.e. enoxaparin, aspirin, or a combination of these two, during blood sampling for this 

study, which could influence pregnancy outcome. In vivo studies in mice showed that 

treatment with heparin prevents complement activation and protects mice from pregnancy 

complications induced by anti-phospholipid antibodies.27 Recently, a similar effect of 

LMWH in women with at least two consecutive miscarriages or one late miscarriage has 

not been observed,28,29 however the effect of LMWH in a homogenous group of women 

with recurrent miscarriage has not been studied yet. 

Furthermore, the HLA typing of the fetus or products of conception from the index 

pregnancy was unknown, which made it impossible to determine whether the HLA 

antibodies were specific for the index pregnancy. Future research in a different group 

of women with recurrent miscarriage, without using medication, should focus on the 

presence of HLA antibodies in first trimester, whether these antibodies are child specific, 

and relate this to pregnancy outcome. 

The fact that the gestational age at blood sampling was significantly higher in control 

subjects than in cases, could have affected the results. However, a later gestational age 

is supposed to be associated with a higher production of HLA antibodies,5 whereas less 

HLA antibody production was seen in the controls subjects, suggesting that the observed 

difference might even be an underestimation.
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The presence of HLA antibodies can be considered as a marker for a broader immune 

response, as was previously shown in HLA identical family transplantations, where the 

presence of HLA antibodies was a risk factor for worse outcome, although HLA antibodies 

themselves could not have caused any harm.14 Anti-phospholipid antibodies, which are 

highly associated with recurrent miscarriage,3 are potential candidates for this broader 

antibody response. No correction could be made in multivariate logistic regression for the 

presence of anti-phospholipid antibodies since these antibodies were not measured in the 

control subjects. However, even after exclusion of cases with anti-phospholipid syndrome, 

a significant association between the presence of HLA antibodies and occurrence of 

recurrent miscarriage was present.

Some studies suggest that the presence of specific antibodies directed to the paternal 

HLA could be beneficial for a pregnancy by enhancing the development of maternal-fetal 

immunologic tolerance,30-34 others demonstrate that HLA antibodies against the paternal 

antigens are rarely demonstrable before 28 weeks gestation in uneventful pregnancy,5 

which is in line with our finding that none of the nulliparous control subjects had HLA 

antibodies. In contrast, almost one third of the women with primary recurrent miscarriage 

produced HLA antibodies in the first trimester. The presence of HLA-C antibodies in 

women with primary recurrent miscarriage may partly explain the high incidence of C4d 

found in women with primary recurrent miscarriage shown previously.7 However, from 

transplantation settings it is known that not all allo-antibodies cause rejection and that 

their ability to activate complement might play a determinative role.10 The majority of the 

HLA-C antibodies in the case group were able to fix complement, whereas no complement 

fixing HLA-C antibodies were found in the control group. 

In conclusion, in this study which included a homogenous well-defined group of women 

with recurrent miscarriage, a higher incidence of HLA antibodies was observed compared 

to women with an uneventful pregnancy. Especially, the presence of complement fixing 

HLA-C antibodies in relation to the selective expression of HLA-C on trophoblast tissue 

might explain the aetiology in a proportion of the women with recurrent miscarriage.
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Abstract

Problem

C4d is a footprint of antibody-mediated classical complement activation, and 

has evolved as a useful diagnostic marker of antibody-mediated rejection. It is 

unknown if complement activation, as reflected by C4d deposition plays a role in 

unexplained recurrent miscarriage. 

Method

In a case-control study products of conception of 35 women with three or more 

unexplained consecutive miscarriages within 20 weeks of gestation with the same 

partner (case group), 22 women with one spontaneous sporadic miscarriage and 

no history of complicated pregnancy(ies) (control group 1), and 40 women who 

underwent an elective abortion for psychosocial reasons (control group 2) were 

included. Immunohistochemical staining for C4d was performed on products of 

conception. Positivity for C4d was scored semi-quantitatively. 

Results

C4d deposition was present in products of conception of 14 out of 35 women with 

unexplained recurrent miscarriage (40.0%), compared to 6 out of 22 women with 

a sporadic miscarriage (27.3%), and 4 out of 40 women with an elective abortion 

(10.0%) (p=0.020).

Conclusion

C4d is increased at the maternal-fetal interface in women with unexplained re-

current miscarriage, which may reflect an aberrant anti-fetal immunity in these 

women. Further knowledge of the specific pathogenic mechanism may lead to 

the development of new treatment strategies for this group of women.
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Introduction

About 1-3% of all couples are confronted with recurrent miscarriage, which is defined 

as ≥3 consecutive miscarriages before 20 weeks of gestation.1 Recurrent miscarriage is 

a heterogeneous condition. Possible etiologic factors for recurrent miscarriage include 

uterine anomalies, endocrine disorders, acquired thrombophilia (antiphospholipid 

syndrome), hereditary thrombophilia, or balanced translocations in the maternal or 

paternal DNA.2,3 However, in many couples no causal factor can be identified.2,4 This 

uncertainty has a major impact on women and their partners.5 For clinicians, the lack of 

etiological insight and nonexistent evidence based therapeutic interventions makes the 

management of these women complex and sometimes frustrating.

In analogy with solid organ transplantation it has been hypothesized that unexplained 

recurrent miscarriage is a form of maternal anti-fetal allograft rejection.6 In transplantation, 

antibody mediated rejection has gained much attention since the discovery of C4d. C4d is 

a non-functional split product of classical complement activation that covalently attaches to 

cells and tissues, thereby acting as a footprint of recent antibody mediated tissue injury.7-9 

In unexplained recurrent miscarriage complement activation could be caused by excessive 

allo- or auto-antibody reactivity. Auto-antibodies could for instance be antiphospholipid-

like antibodies that are not picked up by current assays. Allo-antibodies could be anti-

HLA antibodies directed to paternal HLA antigens of the fetus. We hypothesize that if an 

ongoing antibody-mediated process is responsible for miscarriage, C4d should be present 

at the maternal-fetal interface. A recent study showed more C4d deposition in products 

of conception of women with two or more previous miscarriages compared to sporadic 

miscarriages.10 In this study it was not clear whether the miscarriages of the small study 

group were unexplained, consecutive and the same partner was involved.

We therefore investigated the incidence of C4d deposition on trophoblast tissue in a well-

defined homogenous large case group of women with at least three consecutive unexplained 

recurrent miscarriages within 20 weeks of gestation with the same partner compared to 

control subjects. 

Material and methods

Subjects

We studied products of conception of 97 women, which were available in the archives 

of the pathology department of the Leiden University Medical Center (LUMC), the 
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Netherlands. They were divided into three groups: a case group of 35 women with 

recurrent miscarriage, a first control group of 22 women with only one spontaneous 

miscarriage (sporadic miscarriage group), and a second control group of 40 women who 

underwent elective abortion for psychosocial reasons (elective abortion group). In 12 

of the latter control subjects, the tissue samples were derived from an abortion clinic.

The case group consisted of women with recurrent miscarriage who visited the recurrent 

miscarriage clinic of the department of Obstetrics and Reproductive Medicine at the LUMC 

in the Netherlands, from 2000 onwards. The clinical work-up includes documentation 

of a standardised history from the couple, karyotyping of the couple, a standard blood 

check including glucose, and thyroid function and antibodies, thrombophilia screening, 

and an ultrasound or hysteroscopy. Some of these women participated in the Habenox 

trial (NCT0095962).11 In the Habenox trial women were randomly allocated to three 

intervention groups. The first group received enoxaparin 40mg (low molecular weight 

heparin (LMWH)), the second group enoxaparin 40mg and aspirin 100mg, and the third 

group received aspirin 100mg. 

To obtain a homogenous case group, we only included women with at least three 

consecutive miscarriages within 20 weeks of gestation with the same partner. Both 

women with primary recurrent miscarriage (no history of live births) and secondary 

recurrent miscarriage (history of (a) live birth(s)) were included. As parental chromosomal 

abnormalities, acquired thrombophilia, uterine anomalies, and thyroid autoimmunity are 

associated with recurrent miscarriage,3,12,13 women with at least one of these factors were 

excluded. Acquired thrombophilia was defined as the presence of IgG anticardiolipin 

antibodies or lupus anticoagulant or IgG β2-glycoprotein I antibodies in repeated samples 

taken 3 months apart and at least 6 weeks after a delivery or miscarriage.14 Women with 

hereditary thrombophilia or hyperhomocysteinemia were not excluded, as the evidence 

that hereditary thrombophilia or hyperhomocysteinemia is associated with recurrent 

miscarriage is less clear.3,15 Hereditary thrombophilia was defined by the presence of a 

factor V Leiden mutation, factor II (prothrombin) gene mutation, protein C or S deficiency, 

or antithrombin deficiency. 

The first control group included 22 healthy women who experienced a spontaneous 

miscarriage and had no history of recurrent miscarriage or complicated pregnancies as 

preeclampsia, Hemolysis Elevated Liver enzymes and Low Platelets (HELLP) syndrome, 

preterm birth, intra-uterine growth restriction (IUGR), or perinatal death. Preeclampsia 

was defined as systolic blood pressure above 140 mmHg and/or diastolic pressure above 

90 mmHg combined with proteinuria,16 preterm birth as a delivery between 24-37 weeks 

gestation, intra-uterine growth restriction as birth weight below the 10th percentile for 
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gestational age and sex according to the Netherlands Perinatal Registry birth weight 

percentiles,17 perinatal death as fetal loss after 22 weeks of gestation till 7 days after birth. 

The second control group included 40 women with elective abortion due to psychosocial 

indications. 

Tissue samples of products of conception

All products of conception, except for 12 tissue samples received from the abortion clinic 

in Leiden, were collected in the LUMC. In 52 out of 57 women with recurrent miscarriage 

and women with a sporadic miscarriage an ultrasound was performed (91.3%) to detect 

a fetal demise (68.5%) or blighted ovum (12.3%), and in 10.5% ultrasound findings were 

unknown. In 95 out of 97 women (97.9%) a curettage was performed by a gynecologist 

either at the LUMC (83 cases) or at the abortion clinic (12 cases). Two women used vaginal 

misoprostol and collected products of conception at home. In 93% of the cases products 

of conception were fixed in 4% buffered formalin and embedded in paraffin within 48 

hours at the department of Pathology in the LUMC, in two cases products of conception 

were fixed within three days, one case within four days, and one case within five days. 

Sequential serial sections (4μm-thick) were cut on adhesive coated glasses and dried 

overnight at 37°C. Paraffin sections were routinely stained with HE. To study classical 

complement activation, immunohistochemically staining was performed for C4d (BI-

RC4d, Biomedica Gruppe, Austria). In short, tissue sections were deparaffinized and 

hydrated by xylene and decreasing alcohol concentration to demi-H2O. Optimal antibody 

dilutions and incubation times for the different antibody were pre-determined by means 

of titration on positive control sections. Endogenous peroxidase activity was blocked 

with 3% hydrogen peroxide for 20 minutes. After a wash step with demi-H2O, antigen 

retrieval was performed by boiling the sections for 10 minutes in 10mM/1mM TRIS/EDTA 

(pH9.0). A polyclonal rabbit anti-human C4d antibody (Biomedica Gruppe, Austria), was 

applied at a dilution of 1:80 in 1% BSA/PBS, and slides were incubated for one hour at 

room temperature. The slides were then incubated with a secondary antibody (anti-rabbit 

EnVision, K5007, Dako Cytomation, Denmark) for 30 minutes. Staining was visualized 

with diaminobenzidine (Dako Cytomation, Denmark) as a chromogen and Demi-H2O 

was used to stop the reaction. Subsequently tissue sections were counterstained with 

Haematoxylin (SIGMA, Switzerland, Steinheim). The slides were mounted in mounting 

medium (Surgipath Medical Ind., Inc. Richmond) and covered. A tissue sample from a 

placenta of a woman with preeclampsia with C4d-positive staining used in a previous 

study served as a positive control.18 As negative control Rabbit immunoglobulin fraction 
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(Solid-Phase Absorption, X0936, Dako) was used. Four batches were needed to stain all 

slides, and in every single batch positive and negative controls were included.

Quantification of morphology and immunohistopathology

Sections were independently evaluated by two experienced observers (TM and GS), who 

scored the sections blinded to the clinical data of the women. Differences in scorings 

were resolved by re-reviewing the sections with a third observer to obtain consensus 

(KV). In three cases the third observer (KV) was involved in the evaluation in order to 

obtain consensus. From most products of conception only one section was available, if 

more sections were available, we scored every single section and combined the results 

of these sections. C4d stains brown and was defined as positive when present at the 

maternal-fetal interface, on the maternal side of the syncytiotrophoblast suggesting a 

maternal origin of complement activation. The degree of C4d deposition of the section(s) 

was scored semi-quantitatively. The different staining patterns are shown in Figure 7.1.19

Because direct binding of C1q to apoptotic cells can cause C4d deposition,20 we performed 

a subgroup analysis of C4d presence in non-apoptotic trophoblast cells. All trophoblast 

cells were counted and the percentages of non-apoptotic and apoptotic trophoblast cells 

were determined (Figure 7.2). Only sections with at least 10 non-apoptotic trophoblast 

cells were included. From 97 women, who were eligible, 8 women (1 from case group, 

1 from first control group, 6 from second control group) had to be excluded for this 

subgroup analysis, because sections did not contain sufficient non-apoptotic trophoblast 

cells. For this subgroup analysis C4d deposition exclusively on non-apoptotic trophoblast 

cells was defined per women. 

Statistical analysis

For descriptive analysis of baseline characteristics the Mann Whitney U test was performed 

and for categorical variables the Chi-square test, if expected counts were less than five 

Fisher’s exact test was used. 

C4d deposition was compared between cases and control subjects using the Chi-square 

test and its trend version (linear-by-linear analysis) was used in analyzing C4d staining 

divided in absent, focal, or diffuse C4d staining. All analyses were performed using SPSS 

statistical software package (version 20.0; IL, USA). A p-value less than 0.05 was considered 

statistically significant. Descriptive statistical analysis was performed using GraphPad Prism 

version 5.04 for Windows (GraphPad Software, California, USA, www.graphpad.com).
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Ethics statement

All tissue samples were handled in a coded and anonymized fashion, according to the 

Dutch National Ethical guidelines (Code for Proper Secondary Use of Human Tissue).21 

This national guideline enables scientists to perform research with human material that 

came available within the framework of patient care. Consequently, when properly coded 

and anonymized, human material can be used for research purposes without patient’s 

informed consent and without additional approval by an ethics committee. 

A. Absent C4d staining, 0-10% of vital trophoblast cells showing linear C4d staining per section.
B. Focal C4d staining, 10-50% of vital trophoblast cells showing linear C4d staining per section.
C. Diffuse C4d staining, >50% of vital trophoblast cells showing linear C4d staining per section.

An apoptotic throphoblast cell (A) and a non-apoptotic throphoblast cell (B). Trophoblast cells containing few 
nuclei, which were hydropic, and had ruptures in their cell membrane were defined as apoptopic throphoblast 
cells.

Figure 7.2  Typical example of an apoptotic throphoblast cell

Figure 7.1  Examples of immunohistochemical staining patterns of C4d
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Table 7.1  Baseline characteristics

Recurrent 
miscarriage 
(N=35)

Sporadic 
miscarriage
(N=22)

Elective 
abortion 
(N=40)^

Maternal age (years;median[IQR]) 31 (28-36)b 31.5 (24.7-36.2) 26 (20-31)

Thrombophilia (n)
Factor V Leiden mutation	
Factor II (prothrombin) gene 
mutation
C or S protein
Antithrombin
Hyperhomocysteinemia

4
1
2

1
0
5

 na na

Gravidity (median[IQR])~ 7 (5-8)a, c 3 (2-3.2) 2 (1-3)
At time of index pregnancy 
(median[IQR])~

4 (3-6)a, c 2 (1-3) 2 (1-3)

Parity (median[IQR])~ 2 (1-2)b 1.5 (1-2.2) 1 (0-1.5)

Live births before index pregnancy 
(n(%))~
(median[IQR])

18 (51.4) 
0.5 (0-1)

 
12 (54.5)
1 (0-2)

 
9 (42.8)
0 (0-1.5)

Miscarriages (median[IQR])	 5 (4-6)a, c 1 (1-1) 0

Miscarriages before index pregnancy 
yes/no (n(%))
(median[IQR])

 
32 (91.4) 
2 (1-4)

 
0 

 
1 (3.6)

Gestational age at miscarriage or 
abortion (days; median[IQR])

64 (59-73)b 72.5 (66-79) 56 (43.7-70)

Time between determination with 
ultrasound of fetal demise and actual 
fetal loss (days; median[IQR])*

6 (4-12) 5 (2-12) na

Fixation within 24 hours after 
curettage or abortion 

(n(%))
(days; median[IQR])

 
25 (71.4)
0 (0-1)

 
14 (63.6)
0 (0-1)

 
23 (82.1)
0 (0-0)

Non-apoptotic trophoblast cells 
(%; median[IQR]) 

(number; median[IQR])

 
50 (30-75)b

142.5 (33-247)

 
52.5 (27.5-71.2)
183.7 (33.7-434.2)

 
37.5 (18.7-60.0)
67.5 (17-158.7)

Fetal loss (n(%))
Spontaneous
Curettage
Vaginal misoprostol
Curettage because unsuccessful 
vaginal misoprostol

0
30 (85.7)
2 (5.7)
3 (8.6)

0
22 (100)
0
0

0
40 (100)
0
0

^In all variables, except for gestational age, clinical data of 12 control subjects of which tissue samples were 
received from the abortion clinic is missing, ~25.0% missing values (7 out of 28 control subjects with elective 
abortion in the Leiden University Medical Centre), *22.8% missing values (4 out of 35 patients with recurrent 
miscarriage and 7 out of 22 control subjects with sporadic miscarriage), IQR; interquartile range, na; not available, 
na; not applicable. acompared with elective abortion p<0.001. bcompared with elective abortion p<0.05. 
ccompared with sporadic miscarriage p<0.001.
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Results

Clinical characteristics 

Table 7.1 shows the clinical characteristics between the case and the control groups. In 

the case group median maternal age at the time of the third consecutive miscarriage 

was 31 years. Five women with recurrent miscarriage, participating in the Habenox trial, 

were treated with anticoagulant therapy; a prophylactic dose of LMWH in one case 

(2.8%), aspirin in two cases (5.7%), a combination of both in two cases (5.7%). LMWH 

was administered to one woman with a prothrombin gene mutation and to one woman 

experimentally. None of the women with sporadic miscarriage used any medication during 

pregnancy. In the elective abortion group this information was not available, but it is very 

unlikely that these women used anticoagulants.

C4d deposition 

C4d deposition was present in 14 out of 35 women with recurrent miscarriage (40.0%), 

compared to 6 out of 22 women with a sporadic miscarriage (27.3%), and 4 out of 40 

women with an elective abortion (10.0%) (p=0.010) (Figure 7.3A). In addition, C4d staining 

Presence of C4, including focal and diffuse C4d staining, on trophoblast cells (A) and non-apoptotic trophoblast 
cells (B).

Figure 7.3  Presence of C4d in women with unexplained recurrent miscarriage, women with 
sporadic miscarriage and women with elective abortion
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Table 7.2  Recurrent miscarriage and C4d staining patterns in trophoblast cells

 
Absent C4d 
deposition

Focal C4d 
deposition

Diffuse C4d 
deposition Total

Recurrent miscarriage n(%) 21 (60.0) 10 (28.6) 4 (11.4) 35

Sporadic miscarriage n(%) 16 (72.7) 2 (9.1) 4 (18.2) 22

Elective abortion n(%) 36 (90.0) 3 (7.5) 1 (2.5) 40

p=0.006 in a chi-square linear-by-linear association analysis.

Table 7.3  Recurrent miscarriage and C4d staining patterns in non-apoptotic trophoblast cells

 
Absent C4d 
deposition

Focal C4d 
deposition

Diffuse C4d 
deposition Total

Recurrent miscarriage n(%) 16 (47.1) 12 (35.3) 6 (17.6) 34

Sporadic miscarriage n(%) 14 (66.7) 3 (14.3) 4 (19.0) 21

Elective abortion n(%) 27 (79.4) 6 (17.6) 1 (2.9) 34

p=0.006 in a chi-square linear-by-linear association analysis.

patterns differed significantly among the three groups in a chi-square linear-by-linear 

analysis (p=0.006) (Table 7.2). 

In 47.1% of women with primary recurrent miscarriage C4d deposition was found 

compared to 33.3% women with secondary recurrent miscarriage (p=0.407). C4d was 

present in 47.1% of women with primary recurrent miscarriage compared to 13.6% of 

women without a prior live birth in the control groups (p=0.033). 

Analysis of the case group showed that in 44.4% of the women with thrombophilia 

or hyperhomocysteinemia C4d was present compared to 38.5% of women without 

thrombophilia or hyperhomocysteinemia (p=1.000). In 57.1% of women using 

anticoagulants (LMWH, aspirin, or a combination) C4d was found compared to 35.7% 

of women using no anticoagulants. Significantly more women with thrombophilia or 

hyperhomocysteinemia used anticoagulants compared to women without thrombophilia 

or hyperhomocysteinemia (44.4% vs. 11.5%, p=0.033). After exclusion of women with 

thrombophilia or hyperhomocysteinemia (9 women), or women using medication in the 

case group (7 women), C4d deposition in women with recurrent miscarriage compared 

to control subjects remained significantly different (respectively p=0.022, p=0.035).

The subgroup analysis on C4d deposition and C4d staining patterns exclusively on non-

apoptotic trophoblast cells also showed significant differences between women with 

recurrent miscarriage and control subjects (Figure 7.3B) (Table 7.3).
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Discussion

Recurrent miscarriage is a devastating complication of pregnancy. In many couples no 

underlying cause can be found.2,4 For many years it has been questioned whether the 

fetus can indeed be considered as an ‘allograft’ and, as a consequence, miscarriage as 

‘rejection’.2,22 The present study shows that C4d deposition at the maternal side of the 

syncytiotrophoblast was significantly increased in women with unexplained consecutive 

recurrent miscarriages compared to women with a sporadic miscarriage and with an 

elective abortion. This confirms and extends earlier observations that antibody-mediated 

rejection of the fetal allograft may be present in pregnancy complications.10,23

Strengths of this study are that C4d deposition was examined in products of conception 

of a well-defined homogenous case group of women with at least three consecutive 

unexplained recurrent miscarriages with the same partner within 20 weeks of gestation 

and compared to control subjects with sporadic miscarriage without complicated 

pregnancy history and women with elective abortion for psychosocial indication. Such a 

clear definition was not used in a previous study by Lee et al.10

As C1q can cause C4d deposition on apoptotic cells,20 a subgroup analysis was performed 

on C4d deposition on non-apoptotic trophoblast cells in order to test for additional 

pathways leading to C4d deposition.

It is suggested that recurrent miscarriage is caused by failure of endometrial selectivity 

of impaired embryos,24 possibly leading to more aneuploidy embryos in women with 

idiopathic recurrent miscarriage.25 In a recent study it was suggested that complement 

activation is a common mechanism of placental and fetal injuries regardless of 

chromosomal integrity.10 Indeed C4d deposition along the trophoblast was found to be 

similar in chromosomally normal and abnormal miscarriages,10 indicating that increased 

complement activation in recurrent miscarriage is not dependent on chromosomal 

aneuploidies and demonstrates a different underlying pathophysiology.

Complement deposition can be either interpreted as a sign of local dysregulation of the 

placental complement system or as excessive complement activation for example caused 

by allo- or auto-antibody deposition.23,26

Auto-antibodies like antiphospholipid antibodies are possible candidates, as we have 

recently demonstrated that C4d is abundantly present in placentas of women with 

autoimmune mediated pregnancy losses caused by systemic lupus erythematosus (SLE) 

and antiphospholipid syndrome.23 Therefore, all women in our recurrent miscarriage 

population were tested for IgG anticardiolipin antibodies and lupus anticoagulant and if 

these were present the women were excluded from the study. 
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On the other hand, allo-antibodies, directed against inherited paternal HLA antigens 

expressed on trophoblast cells, could play a role. Lee et al. showed that in spontaneous 

preterm birth the presence of C4d in fetal cord endothelium was associated with circulating 

maternal anti-HLA I antibodies.27 After a live birth around 30% of healthy women have 

circulating anti-HLA antibodies and these antibodies can still be present at time of 

conception.28,29 The incidence of C4d in products of conception i.e. 27.3% in the combined 

control group with a prior live birth and in 33.3% of women with secondary recurrent 

miscarriage is almost similar to the incidence of HLA antibodies after pregnancy. We 

found, interestingly, the highest incidence of increased C4d staining in women with primary 

recurrent miscarriage (47.1%), where we would expect the lowest circulating maternal HLA 

antibodies. It is still not clear whether HLA antibodies predispose to a higher risk of adverse 

pregnancy outcome.30 Therefore, it remains to be established whether the increased C4d 

deposition especially in women with primary recurrent miscarriage is due to an increased 

incidence of HLA antibodies. From transplantation settings, we know that only a proportion 

of allo-antibodies cause rejection, amongst others depending on their ability to activate 

complement and their avidity for the antigenic target.31 The role of auto- or allo-antibodies 

in the C4d deposition in recurrent miscarriage should be subject for further studies. 

Under physiological conditions the placenta is strongly protected from spontaneous 

complement activation by regulatory mechanism such as Decay Accelerating Factor (DAF), 

Membrane Cofactor Protein (MCP), and CD59.32-34 Therefore, increased complement 

deposition can also be interpreted as a sign of local dysregulation of the complement 

system.23,26 In a recent cohort study up to 19% of women with SLE and antiphospholipid 

syndrome, who developed severe preeclampsia, had mutations in complement regulatory 

genes, leading to inadequate inhibition of complement activation at the maternal-fetal 

interface.35 The excessive C4d deposition in placental tissue of some of our patients is in 

line with the concept, that genetic defects in complement regulation may cause recurrent 

miscarriage. However, in a recent study mutations in the Membrane Cofactor Protein 

(MCP) gene were found not to be associated with recurrent miscarriage.36 

At present there is no evidence based treatment for women with unexplained recurrent 

miscarriage. A proportion of women in the present study were using LMWH, aspirin, or 

a combination of both at time of miscarriage, but we did not find any relation between 

use of anticoagulants and presence of C4d. These results should be interpreted carefully 

as significantly more women with thrombophilia were using medication and therefore it 

seems that the results on medication are confounded. Defects in thrombophilia genes 

could lead to disruption of endothelium or inflammation resulting in activation of the 

complement cascade.37,38 

Chapter_7_Tess_regular.indd   140 29-8-2018   17:40:46



Increased complement C4d deposition in recurrent miscarriage

141

7

Unexplained recurrent miscarriage is probably not due to a single cause. Further unraveling 

possible pathophysiological mechanisms for unexplained recurrent miscarriage in order 

to define patient tailored treatment strategies is essential. Studies by Girardi et al., 

show that heparin is beneficial in case of antiphospholipid antibodies because it inhibits 

complement activation, and not because of its effects on the coagulation cascade.39 If 

complement activation at the maternal-fetal interface indeed plays a role in a subgroup 

of women with recurrent miscarriage mediated by impaired placentation, treatment with 

inhibitors of the complement cascade such as LMWH, statins,40 or biologicals would be 

advocated.41 The presence of C4d in products of conception may potentially serve as a 

diagnostic indicator for a next pregnancy, making this subgroup of women eligible for 

treatment with complement inhibitors in the following pregnancy.
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Abstract

Problem

Seminal plasma (SP) contains immunomodulatory factors, which may contribute to 

the formation of a tolerogenic environment at the embryo implantation site. The 

main focus of this study was to investigate the influence of SP on female T cells in 

the presence and absence of antigen presenting cells (APCs) in an in vitro model. 

Method

Female PBMCs and T cells were incubated with SP from seminal fluid samples 

of known and variable sperm quality. The immediate effect of SP on the mRNA 

expression of CD25, IL-10, IFN-γ, and Foxp3 was measured. Furthermore 

proliferative responses, cytokine production, and CD25 expression was determined. 

Results

Exposure to SP leads to an increased mRNA expression of CD25, IL-10, and Foxp3 

in T cells. Induction of mRNA for IL-10 and CD25 was dependent on the presence 

of APCs. Both PBMCs and T cells exposed to SP, showed a proliferative response 

and produced several cytokines. The observed proliferative effects of SP on T 

cells were independent of sperm quality parameters, cytokines, or soluble HLA 

molecules in SP. Furthermore, presence of SP induced a higher expression of CD25 

on the membrane of CD4+ T cells.

Conclusion

SP has a direct immunomodulatory effect on T cells as reflected in a proliferative 

response and upregulation of Foxp3. The presence of APCs is needed to induce 

IL-10 and CD25 upregulation in T cells exposed to SP. In conclusion, SP has both 

a direct and an indirect effect mediated through APCs on T cells.
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Introduction

During pregnancy the maternal immune system has to tolerate the presence of the semi-

allogeneic fetus. Allorecognition takes place at the site of embryo implantation, where 

trophoblast cells invade and are confronted with maternal PBMCs. 

In mice regulatory T cells (Tregs) usually implicated in maintenance of tolerance to self-

antigens,1 are present in the decidua and responsible for maternal tolerance to fetal allo-

antigens.2,3 Also in human, Tregs are increased in the decidua during pregnancy.4 In women 

with complicated pregnancies, decreased numbers of Tregs were found in the decidua5 

and placenta6 suggesting that these Tregs play a pivotal role in uncomplicated pregnancies. 

Other studies in mice have shown that already during copulation, long before implantation, 

maternal tolerance towards fetal allo-antigens is induced.7,8 In fact allo-antigens are present 

in human SP9,10 and may be responsible for the Treg expansion as was previously shown in 

mice.11 In addition, within two days after insemination, Tregs with an upregulation of Foxp3 

expression can be found in the draining lymph nodes in mice.2 

Dendritic cells (DCs), highly present in the decidua are partly responsible for this antigen 

specific Treg expansion.12 SP contains also a large variety of cytokines, which may modulate 

the maternal immune response.13,14 TGF-β is highly present in human SP and is thought to 

inhibit a type 1 immune response against the semi-allogeneic fetus by initiating a type 2 or 

Treg-dominated immune response associated with partner-specific tolerance.15 In addition, 

TGF-β elicits expression of pro-inflammatory cytokines as IL-6 and GM-CSF in human cervical 

epithelial cells,14 which may also contribute to improved antigen presentation by DCs.12

In humans most of SP is deposited at the cervix,16 where it may affect the function of 

multiple cell types, including immune cells and the endometrium.17 Balandya et al. showed 

that exposure of human PBMCs to SP resulted in an increased intracellular expression of 

markers of Tregs and TGF-β.18

To aim of the present study was to study the immunomodulating effect of SP on human T 

cells. To investigate the direct effect of SP on T cells, T cells were enriched and isolated from 

female PBMCs (fPBMCs) and the effect of SP on mRNA expression of CD25, IL-10, IFN-γ, 
Foxp3 was measured. Furthermore the proliferative response and cytokine production was 

measured. As a T cell response is often the result of the interaction between T cells and 

APCs, the possible role of APCs was studied as well. 
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Subjects and methods

SP samples

In all couples with infertility for at least one year visiting the reproductive medicine 

clinic at the Leiden University Medical Center (LUMC), an exploratory study of fertility is 

performed, which includes determination of sperm quality (volume, concentration, motility, 

morphology, and viscosity). In this study sperm quality was defined as VCM: (volume x 

concentration x motility)x106.19 Low quality was defined as a VCM below 10x106 and high 

quality as a VCM above 100x106. SP samples were collected by masturbation, and sperm 

quality was assessed the same day. All males were HIV-negative and asymptomatic for 

Chlamydia trachomatis and Neisseria gonorrhoeae. In addition, SP samples containing 

leukocytes, as a marker for infection, were excluded from this study. 

Within two hours after determination of the quality, samples were centrifuged at 2,000rpm 

for 10 minutes, the sperm was discarded and only SP was stored at -20º C. For the cultures, 

samples were thawed at room temperature and centrifuged at 14,000rpm for 4 minutes.

Messenger RNA (mRNA) transcript analysis 

Cultures were performed to demonstrate the effect of SP on fPBMCs or T cells (CD3+ 

fraction) either enriched by depletion of non-T cells from fPBMCs according to magnetic 

cell sorting (Pan T Cell isolation Kit II, no. 130-091-156, MACS) or isolated. In short the 

procedure to isolate T cells, APCs were depleted from PBMCs. PBMCs were stained for 

CD14-FITC, CD19-FITC, CD40-FITC, CD56-FITC, CD36-FITC (Beckton Dickinson, New 

Jersey, USA). FACS (FACS-Aria II with FACS-Diva software, Beckton Dickinson) sorted into 

a viable CD45+ population depleted for all FITC stained cells and washed with culture 

medium containing RPMI 1640 with 10% human serum and L-glutamine. In order to 

confirm that this procedure indeed leads to the depletion of APCs fractions were stained 

with CD14-FITC, CD19-PE, CD3-PercCP, CD45-APC (Beckton Dickinson). We added the 

autologous APCs fractions to the isolated T cells.

fPBMCs were selected from a panel of healthy HLA typed volunteers, who, after informed 

consent, donate blood for transplantation and pregnancy related research. SP used in 

these cultures was from unrelated men. 

fPBMCs, enriched T cells, isolated T cells, or isolated T cells with addition of autologous 

APCs (500 μl of 2x106 per ml) were separately cultured with 500 μl of SP (1:100) or with 

culture medium (negative control) in round-bottom 24-well plates (Greiner Bio-one) 

for 1 day, and stored in 50 μl of RNAlater (RNA stabilization Buffer, Qiagen, Venlo, 
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the Netherlands) at -20ºC. RNA extraction was performed using NucleoSpin columns 

(Macherey-Nagel, Düren, Germany). To synthesize cDNA, RNA was combined with 

oligo dT (Invitrogen; 0.25mg) and random nucleotide hexamers (Invitrogen; 0.25mg), 

and incubated at 65°C for 5 min.20 SuperScript III RT (Invitrogen; 200 U), 0.5mM dNTP, 

40U of RNAse OUT rRNAse inhibitor, and 5mM DTT were added on ice. Reactions were 

allowed to proceed at 25°C for 5 min and at 50°C for 1 hour. Reactions were terminated 

at 70°C for 5 min. PCR assays were carried out using iQ™ SYBR® Green Supermix and 

a MyiQ Real-Time PCR detection system (Bio-Rad). The PCR program consisted of 10 

min at 95°C, followed by 40 cycles of 15 sec at 95°C and 1 min at 60°C. Primers pairs 

were selected in the coding sequence of the mRNA transcripts using Primer 3 (v. 0.4.0; 

SourceForge). Primers spanned at least one intron with a size of 800 bp or more. To ensure 

high specificity, primer sets were tested on control cDNA (from Human Reference Total 

RNA; Clontech, Mountain View CA, US) and genomic DNA. The expected size of the 

amplicons was checked on agarose gels. Efficiency of each PCR assay was 90110%. A 

final melting curve analysis during the PCR runs was performed to check assay specificity. 

Levels of mRNA transcripts for CD25, Foxp3, IL-10, IFN-γ were normalized to the 

geometric mean signal of reference genes GAPDH and β-actin. In five different qPCR 

experiments, Cq values of the reference genes in the samples highly correlated with 

each other (r=0.91±0.06). Signals of individual targets were standardized using the ∆∆Cq 

method and the formula 2-(Cq [transcript]-AVG Cq [references]). Sequences for the transcripts investigated 

have been previously described.20,21

Functional analysis

Cultures were set up with 50μl of 1x106 concentration per ml enriched T cells or fPBMCs 

in culture medium added in triplicate wells in round-bottom 96-well plate (Costar) to 50μl 

SP at a final dilution of 1:100. A final dilution of 1:100 induced the highest response in a 

preliminary study (Figure 8.1). Cells were cultured and incubated for 6 days. On day 5, 

supernatant was taken from each well for cytokine analysis and 3H-thymidine was added 

to measure 3H-thymidine incorporation on day 6. The results are expressed as the median 

counts per minute (cpm) for each triplicate culture. The degree of proliferative response 

was measured by the difference in 3H-thymidine incorporation between experiments with 

and without the addition of SP.  
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Cytokine and sHLA analysis

The levels of cytokines released into the culture supernatants and already present in the 

SP were assessed by the Bio-Plex Luminex™ system assay (Bio-Rad, Veenendaal, The 

Netherlands) following the manufacturer’s instructions. The following cytokines IL-1β, IL-2, 

IL-4, IL-6, IL-10, IL-17, TNF-α, IFN-γ, and TGF-β1, TGF-β2, TGF-β3 in latent and active 

form were tested, IDO was analyzed in SP with ELISA method (Uscn Life Science Inc Us). 

Cytokine concentration was expressed as picogram per ml (pg/ml). 

For sHLA class I in SP monoclonal antibody to HLA-class I purified antibody W6/32 

(Department of IHB, LUMC, the Netherlands) and for sHLA-G in SP purified antibody 

Mem-G/9 (20µg,11-292-C100, Exbio Praha a.s., Vestec, Czech Republic) were coupled via 

carboxyl groups on the surface of polystyrene beads (COOH bead, Bio-Rad) according 

procedure of the Bio-Plex Amine Coupling kit (Bio-Rad). Luminex system (Bio-Plex, Bio-

Rad) was used for read outs. The results for sHLA class I and sHLA-G were expressed in 

Median Fluorescence Intensity (MFI).

Flow cytometry

Differentiation of fPBMCs with and without SP was measured every 24 hours for three 

days. The following directly conjugated mouse-anti-human mAb were used for four-color 

immunofluorescence surface staining: CD45-APC, CD14-FITC, CD25-PE, CD3-PerCP, 

CD4-APC (Becton Dickinson) and used in concentrations according to manufactures 

instructions. Flowcytometry was performed on a FACS Calibur using Cellquest-pro 

Figure 8.1  Proliferation of PBMCs with different dilutions of seminal plasma

Proliferation of 10 PBMCs incubated with different dilutions of 3 SP with different quality of sperm (median with 
IQR).
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Software (Becton Dickinson) as described previously.22 To investigate the presence of 

Tregs, MFI of CD4+CD25dim, CD4+CD25bright were calculated within the CD3+CD4  

fraction. 

FACS analysis of all fPBMCs was done using Flowjo-V10 Cytometry Analysis, the 

fluorescence intensity to distinguish between CD25dim and bright was determined on 

each individual sample. 

Data analysis

In total 21 fPBMCs were tested. In 4 cases the experiments were performed with enriched 

and isolated T cells. The purity of the enriched CD3+ fraction by depletion of non-T cells from 

fPBMCs was variable in these 4 samples: 99.4%, 86.4%, 80.1%, 79.5%. The purity of T cell 

fraction isolated with FACS sorting was 96.8%, 97.7%, 97.9%, 99.3%. In order to determine 

the role of APCs, increasing number of APCs were added to these highly purified T cell  

suspension. 

In total 61 different SP samples were tested. The number of fPBMCs and SP samples used 

in the different experiments is indicated in the result part for each experiment. 

To analyse the relationship of quality of sperm and proliferative response of PBMCs, 

relative difference of the proliferative response with and without SP was calculated per 

SP sample (proliferation in cpm with seminal plasma minus proliferation in cpm without 

seminal plasma divided through the proliferation in cpm without seminal plasma) and the 

median value of the relative difference in proliferation of these responders per SP sample 

was compared between SP samples with a low and high sperm quality.

Only the results of SP samples, which were used at least two times on different fPBMCs, 

were analyzed for correlation and association between seminal cytokine and sHLA 

concentration and proliferative response of the cells. The relative difference of the 

proliferative response with and without SP of the different fPBMCs per SP sample was 

calculated as described above and the median relative difference of the proliferative 

response per SP sample was correlated with seminal cytokine and sHLA concentration. 

For the measurements of cytokine expression at day 5 in the cultures in the presence 

of SP specific cytokine concentration of SP alone was subtracted to correct for cytokine 

concentration present in SP. 
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Statistical analysis  

Descriptive statistical analysis was performed using SPSS Statistics 20 (IBM SPSS Software). 

Comparisons between groups were made using the Wilcoxon signed-rank test for paired 

analysis or the Mann-Whitney U test for unpaired analysis. Correlations were calculated 

using Spearman’s rank resulting in a correlation coefficient (ρ) and a p<0.05 was considered 

significant. 

Results

mRNA expression by T cells and fPBMCs after incubation with SP 

Contact with SP induced an increased mRNA expression of Foxp3 in purified T cells. 

fPBMCs incubated with SP showed an increased mRNA expression of IL-10 and CD25 

(both p<0.001), whereas mRNA expression of Foxp3 was slightly increased (Table 8.1). 

As a T cell response often depends on the interaction with APCs, we determined whether 

addition of autologous APCs to the isolated T cells and SP, affected mRNA expression 

of IL-10, CD25, and Foxp3 in these isolated T cells. Addition of increasing numbers of 

autologous APCs led to an increased expression of IL-10 and CD25 (Figure 8.2a,b), 

whereas for mRNA expression of Foxp3 a decreased expression was observed (Figure 

8.2c). Correlation analysis between mRNA expression of IL-10, CD25, and Foxp3 in T 

cells and remaining APCs in the T cell fraction after enrichment (respectively 0.5%, 13.6%, 

19.9%, 20.5%) confirmed these results for IL-10 (Figure 8.2d). mRNA expression of Foxp3 

was negatively correlated with the presence of remaining APCs (Figure 8.2f). 

Proliferative effect of SP on T cells and fPBMCs

SP showed a direct effect on enriched T cells as reflected in a significant increase in 

proliferative response when SP was added (p=0.002) (Figure 8.3a) A median of 4.34 fold 

increase in cpm was observed in the presence of SP (Interquartile range (IQR) 3.98-5.15). 

The degree of the proliferative response was not correlated with the percentage of APCs 

in the CD3 fraction (ρ=0.007, p=0.983).

Exposure to SP resulted also in a significantly increased proliferation of the fPBMCs 

(p<0.001) (Figure 8.3b), with a median of 2.99 fold increase in cpm (IQR 1.79-5.37) in all 

fPBMCs and a median of 1.35 fold increase in cpm (IQR 1.35-2.49) in the fPBMCs which 

were used for T cell enrichment. Exposure of seminal plasma to enriched T cells from 

PBMCs led to a significantly higher increase in cpm compared to whole fPBMCs exposed 

to seminal plasma (p<0.001). 
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The quality of sperm expressed in VCM had no direct relationship with the degree of 

proliferation of PBMCs (ρ=-0.059, p=0.557). SP with a VCM below 10x106 and above 

100x106 induced a similar proliferation of fPBMCs (Figure 8.3c). 

mRNA expression of IL-10 (a), CD25 (b), and Foxp3 (c) in isolated T cells with addition of autologous APCs. 
Correlation between T cells enriched from fPBMCs and the percentages of remaining APCs after enrichment and 
mRNA expression of IL-10 (d), CD25 (e), and Foxp3 (f) at day 1 in the presence of SP. In total four responders were 
used for these experiments incubated with at least two different SP samples.

Figure 8.2  mRNA expression of IL-10, CD25, and Foxp3
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a) Proliferative response of enriched T cells in cpm in the absence and presence of SP. In total four different 
fPBMCs were included for enrichment of T cells and for every responder three different SP samples were used. 
(b) Proliferative response of 19 fPBMCs in cpm in the absence and presence of SP. Every responder was incubated 
with at least three different seminal plasma samples of different sperm quality. We used a total of 72 combinations 
using 45 different SP samples. (c) Of 11 different fPBMCs the relative difference of the proliferative response with 
and without SP was calculated per SP plasma sample (proliferation in cpm with seminal plasma minus proliferation 
in cpm without seminal plasma divided through the proliferation in cpm without seminal plasma) and the median 
value of the relative difference in proliferation of these responders per SP sample was compared between SP 
samples with a low (VCM<10x106) and high sperm quality (VCM>100x106). In total 22 different SP samples were 
used, 11 with a VCM lower than 10x106 and 11 with a VCM higher than 100x106. Of the SP samples which were 
used at least twice on different responders, a total of 9 samples, median proliferative response was calculated. 
Line indicates median.

Figure 8.3  Proliferative response of T cells and fPBMCs in the absence and presence of seminal 
plasma 

Several factors in SP in relation to the proliferative response of fPBMCs

As the presence of cytokines and sHLA may affect the proliferative response of fPBMCs, the 

concentration of different cytokines and sHLA class I and sHLA-G were determined in 11 

SP samples added at least twice to 14 different fPBMCs (in total 50 combinations). Latent 

and active isoforms of TGF-β, IDO, and sHLA class I were present in high concentrations 

in SP. However, no correlation between the concentration of any of these factors and the 

degree of cell proliferation in the cultures was observed (Table 8.2).

SP also affects the cytokine production by T cells and fPBMCs

IL-10 and IFN-γ were found to be significantly increased in the supernatant of enriched T 

cells incubated with SP (Table 8.3). Similarly to the mRNA expression of IL-10, production 

of IL-10 was highly correlated with percentages of APCs in the CD3 fraction (ρ=0.769, 

p=0.003). Several cytokines were induced when SP was added to fPBMCs (Table 8.3). 
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CD25 expression is induced on fPBMCs by exposure to SP

Expression of CD25 on fPBMCs that were exposed to semen was investigated for three 

subsequent days. Exposure to SP led to a significantly higher expression of CD25 on 

CD4+ T cells (p=0.006) (Figure 8.4).

Table 8.2  Relationship between several cytokines, sHLA class I, and sHLA-G in seminal plasma and 
proliferative response in fPBMCs

Concentration in semen (pg/ml)

Correlation of the median 
relative difference and 
cytokine concentration*

Min Median Max (ρ, p)

TGF-β1l 42601.7 554980.5 12031743.6 0.118, 0.729

TGF-β2l 6378.2 9130.5 27208.0 0.200, 0.555

TGF-β3l 13528.0 54506.0 334687.3 0.073, 0.832

TGF-β1a 62.7 1118.7.9 3423.1 0.027, 0.937

TGF-β2a 55.1 238.1 1408.6 -0.036, 0.915

TGF-β3a 8.1 587.6 1880.1 0.255, 0.450

IDO 56985.9 122161.0 313255.8 0.200, 0.555

IL-10 22.8 33.2 49.0 -0.132, 0.699

TNF-α 3.5 18.9 64.5 0.318, 0.340

IFN-y 263.0 292.1 425.8 0.236, 0.484

IL-2 6.5 8.8 13.9 0.082, 0.811

IL-6 10.1 22.0 605.1 0.055, 0.873

sHLA class I 1134 2322.5 4524 0.155, 0.650

sHLA-G 50 83.5 196 0.269, 0.424

TGF-β1 latent form (TGF-β1), TGF-β1 active form (TGF-β1a). *Per responder (fPBMCs) the relative 
difference in proliferation (proliferation in cpm with seminal plasma minus proliferation in cpm 
without seminal plasma divided through the proliferation in cpm without seminal plasma) was 
calculated and the median value of the relative difference in proliferation of these responders 
per seminal plasma sample (median relative difference) was correlated with the concentration of 
several factors in seminal plasma. ρ; correlation coefficient, p; p-value
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Four different fPBMCs were stimulated with semen for three subsequent days, at least three SP samples for 
every responder were used, resulting in 14 different combinations. Expression of CD25 (MFI) within CD3+CD4+ 
population were given in the absence and presence of SP (median (IQR)). *p<0.05. At day 1 p=0.595, at day 2 
p=0.006, at day 3 p=0.056.

Figure 8.4  CD25 expression of fPBMCs stimulated with seminal plasma

Discussion

It has been postulated that SP is important for the immune response at the implantation 

site to assure embryo implantation and placentation. However, the exact influence of SP 

on maternal immune cells is still unclear. We investigated the direct effect and the indirect 

APC-mediated effect of SP on T cells. The present data shows that SP contains active 

immunoregulatory factors that influence T cells. Some of these effects were due to a 

direct effect of SP on T cells, others require the presence of APCs. Upregulation of IL-10 

and CD25 in T cells seems to be an APCs-mediated effect as mRNA expression of both 

IL-10 and CD25 were highly increased when autologous APCs were added to isolated 

T cells and SP. The induction of an increased IL-10 and CD25 mRNA expression and 

production of IL-10 in the presence of APCs in combination with the increased CD4+CD25 

expression suggests that SP is important in driving differentiation of T lymphocytes to a 

more regulatory phenotype. The early expansion of a more regulatory phenotype is in 

line with the necessity for a quick induction of tolerance to protect the fetus in the initial 

stages of contact and are consistent with the observation that a T regulatory response is 

already operational when the fetus is encountered.8

Optimal proliferation was seen when SP was added in a final dilution of 1:100. This dilution 

seems to mimic the relevant amount of SP that enters the uterus after sperm loss from 

the vagina following coitus (flowback) and dilution by reproductive tract secretions. SP 

is deposited at the cervix16 and in vitro observations in human suggest that the effects 

of SP extend to the endometrium.17 After flowback, less than 1% of the sperm cells 
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retain in the female.23 The few sperm cells entering the cervix and uterus remain for days 

following deposition.24 In vivo observations show that seminal components are carried 

together with sperm into the higher tract.25 Furthermore, vascular connections between 

cervix and endometrium further facilitate vagina-to-uterus transport of progesterone and 

other mediators.26 As SP is transported after ejaculation through the female reproductive 

tract, seminal components could possible come in direct contact with local leukocytes as 

T cells and epithelial cells in the cervix and endometrium.

Our study shows that SP has a direct effect on T cells as reflected by a proliferative 

response, mRNA expression of Foxp3, and cytokine production of IFN-γ. It seems that 

APCs are needed to induce a more regulatory response in T cells in the presence of SP 

as both mRNA expression of CD25 and IL-10 in isolated T cells were highly increased 

when APCs were added to the culture with SP. In addition, a positive correlation was 

found between the percentages of remaining APCs in the enriched T cell fraction and 

IL-10 mRNA expression and production in the presence of SP. Furthermore, fPBMCs 

exposed to SP showed highly increased IL-10 expression and IL-10 cytokine levels in 

supernatants, confirming that APCs are needed to induce IL-10 in T cells under influence 

of SP. Besides upregulation of IL-10 also the increased CD25 expression on the CD4+ T cell 

population suggests triggering of a CD4+CD25+ Tregs subset, which is supposed to be 

necessary for the acceptance of the allogeneic fetus2,13,27 and the maintenance of a normal  

pregnancy.5,6 

In contrast, Foxp3, one of the key proteins responsible for Tregs function,28 was highly 

increased in isolated T cells and not as high in fPBMCs in the presence of SP. In addition, 

a negative correlation was found between the number of APCs and mRNA expression 

of Foxp3 in the T cell fraction. In the assays with fPBMCs, including APCs, extreme high 

levels of IL-1β were measured in the presence of SP. IL-1β is a pro-inflammatory cytokine 

facilitating immune responses, not leading to Foxp3+ Treg activation, which corresponds 

with data by Sharkey et al. who showed that numbers of Foxp3+ Tregs in the human 

cervix remained the same after sexual intercourse.29 Furthermore, SP was also found to 

induce mRNA expression of IL-1β in human endometrial epithelial cells.17 The expression 

of IL-1β is suppressed in patients with recurrent miscarriages,30 indicative for an important 

role of IL-1β in regulation of endometrial function and implantation. 

Although paternal antigens present in SP in the form of sHLA class I molecules and 

sHLA-G10,31 could be involved in the induction of a specific T cell response, no association 

between the concentration of sHLA class I and sHLA-G present in SP and the proliferative 

response was observed in the present study. Non-specific mitogens in SP may be 

responsible for the proliferative immune response as was described for porcine SP.32 
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Of course, our in-vitro model cannot totally capture the rich interplay of multiple cell types 

found in the endometrium and cervix. Exposure of women to SP after copulation elicits 

expression of pro-inflammatory cytokines, chemokines, recruitment of macrophages, and 

dendritic cells (DCs) in the cervical epithelia.29 In vivo studies in mice show that SP causes 

upregulation of granulocyte-macrophage-colony-stimulating factor, IL-6, and TNF-α in 

uterine epithelial cells, which induces infiltration of uterine tissue by macrophages, DCs, 

and granulocytes.33,34 

The data is consistent with previous studies in mice showing that seminal vesicle-derived 

components of the ejaculate have an important role in the immune regulation of the 

proliferative response of maternal T cells.11,33,35 Indeed in men, it seems likely that prostate 

as well as seminal vesicle is important source of seminal plasma factors. Corresponding 

with previous data, SP samples in our study contained high levels of active and latent 

isoforms of TGF-β.17 In addition, we found that IDO is present in high concentration in SP. 

IDO can mediate a suppressive effect directly on effector T cells and activate Tregs.36 Both 

TGF-β and IDO are likely key factors in the immunomodulation at implantation. However, 

in our study no direct correlation between the amount of TGF-β and IDO in SP and the 

proliferative response by fPBMCs was observed. Further research should emphasize on 

the cytokine network and its role in immunomodulation, rather than focusing exclusively 

on the role of single cytokines. 

In summary, our data show that SP has both a direct and indirect immunological effect 

on T cells, where APCs seem to be essential for the induction of IL-10 in T cells. However, 

the relevance of these findings for the occurrence of normal and aberrant pregnancy 

remains to be established.
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Abstract

Problem

A possible way of inducing tolerance towards paternal HLA antigens of the fetus in 

pregnancy would be exposure of these antigens via seminal fluid to oral mucosa. 

We hypothesized that women with recurrent miscarriage have had less oral sex 

compared to women with uneventful pregnancy. 

Method

In a matched case control study, 97 women with at least three unexplained 

consecutive miscarriages prior to the 20th week of gestation with the same partner 

were included. Cases were younger than 36 years at time of the third miscarriage. 

The control group included 137 matched women with an uneventful pregnancy. 

The association between oral sex and recurrent miscarriage was assessed with 

conditional logistic regression, odds ratios (ORs) were estimated. Missing data 

were imputed using Imputation by Chained Equations. 

Results

In the matched analysis, 41 out of 72 women with recurrent miscarriage had 

have oral sex, whereas 70 out of 96 matched controls answered positive to this 

question (56.9% vs. 72.9%, OR 0.50 95% CI 0.25-0.97, p=0.04). After imputation 

of missing exposure data (51.7%), the association became weaker (OR 0.67, 95% 

CI 0.36-1.24, p=0.21).

Conclusion

In conclusion, this study suggests a possible protective role of oral sex in the 

occurrence of recurrent miscarriage. This should however be confirmed in an 

independent study.
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Introduction

About 1% of all couples trying to conceive, are confronted with recurrent miscarriage, which is 

often defined as three or more consecutive pregnancies prior to the 20th week of gestation.1 

Possible etiologic factors include uterine anomalies, endocrine disorders, maternal inherited 

and acquired thrombophilia, and parental chromosomal abnormalities.2,3 However, in only 25-

50% of the couples an underlying cause for recurrent miscarriage can actually be identified.2,4 

A disturbance of maternal immunologic tolerance to the semi-allogeneic fetus has been 

proposed as one of the possible mechanisms.4,5 Most research into the immunology of 

recurrent miscarriage focused on the maternal immune system, leaving paternal factors 

aside. However, males seems to be capable to affect the female immune system prior to 

conception.6 Studies in mice have shown that during copulation, thus before implantation, 

fetus specific maternal tolerance toward paternal antigens is induced.7 

A well-known route to induce immune tolerance is via oral exposure, possibly because the 

gut has the most adequate absorption in the absence of an inflammatory environment.8,9 

In transplantation models of rats, oral administration of MHC molecules diminishes the 

occurrence of allograft rejection.10 Based on this knowledge, Koelman et al hypothesized 

that a potent way of inducing tolerance towards paternal HLA antigens of the fetus in 

pregnancy would be exposure of these antigens to oral mucosa.11 To support this theory, they 

showed that both oral sex and swallowing sperm reduced the incidence of preeclampsia.11 

Another study showed that the pattern of oral sex practice was similar in 66 women with 

two miscarriages and a control population (N=110), but more women in the control group 

swallowed sperm than was expected.12 Here we describe the outcome of a matched case 

control study to assess the effect of oral sex on the occurrence of recurrent miscarriage in 

a well-characterized population. 

Material and methods

Case group

From 433 women who visited the recurrent miscarriage clinic of the department of 

Obstetrics and Reproductive Medicine at the Leiden University Medical Center (LUMC), 

a tertiary referral center in the Netherlands, between 2000 and 2014, 273 women were 

eligible and invited to participate in this study.

Eligible cases were women who had three or more consecutive miscarriages prior to the 

20th week of gestation with the same partner, and who were younger than 36 years at 
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time of their third consecutive miscarriage. Women with known causes for miscarriage 

such as uterine anomalies, parental chromosomal abnormalities, and anti-phospholipid 

syndrome were not eligible. The clinical work-up and definition for known causes is 

previously described.13 Women with hereditary thrombophilia were not excluded because 

the evidence that hereditary thrombophilia is associated with recurrent miscarriage is 

only weak.3,14 Both women with primary recurrent miscarriage (no history of live birth) 

and secondary recurrent miscarriage (history of live birth) were eligible.

From the 273 eligible women, 100 eligible women were included (Figure 9.1). Baseline 

characteristics from the 100 included women and 173 eligible, but not included women 

of which most women were non-responders, is depicted in Supplementary Table I.

Figure 9.1  Flowchart of subjects

Eligible women with 
recurrent miscarriage n=273

Non‐responders
n=103 

Declined to participate due to emotional reasons
n=65 

Cases n=105

Cases n=100
Matched to control 

subjects
n=312 

Excluded from analysis due to incorrect matching (maternal age)
• 3 cases
• 3 controls

Cases analyzed 
n=97

Control subjects analyzed
n=137

Non‐responders n=103
Declined to participate n=69

Excluded from analysis 
• Incomplete questionnaire n=5
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Control group

As it is postulated that the primary pathogenesis of various pregnancy complications 

is the same within individuals,15 controls were women with no miscarriage and only 

uncomplicated pregnancy(ies), i.e. no history of pregnancy complications such as 

pregnancy-induced hypertension, preeclampsia, Hemolysis Elevated Liver enzymes and 

Low Platelets (HELLP) syndrome (all defined according to the criteria of the International 

Society for the study of Hypertension in Pregnancy (ISHHP)), preterm birth (24-37 weeks), 

fetal growth restriction (birth weight below the 2.3th percentile for gestational age and 

sex),16 and perinatal death (fetal loss after 20 weeks of gestation till 7 days after birth).

In the Netherlands it is common practice that community midwives are taking care of 

low-risk women (with no medical or obstetrical history) during pregnancy and child birth. 

The zip code of each woman with recurrent miscarriage was used to contact the nearest 

midwifery practice to control for the impact of socio-economic status (SES) and urbanity 

in the current analyses. Women with the same zip code, the same age (difference in birth 

date maximally 1 year), and of which the time of first delivery was close to the time of 

the third miscarriage of the matched exposed woman (maximum 6 months before or 

6 months after) were asked to participate. We contacted at least 3 controls per case. 

Enrolment took place between 2012 and 2014 (Figure 9.1).

Ethical approval

The protocol was approved by the Ethics committee of the LUMC (P12-099) and all 

participants gave informed consent. The study was registered with the Dutch trial registry 

NTR3402 and is part of the REMI (REcurrent MIscarriages) studies, which investigate 

causes and consequences of recurrent miscarriages.

Dutch reference group

In order to make the study more robust we obtained another control group, i.e., Dutch 

reference group in which participants were asked to fill in a digital questionnaire about 

relationships and sexual behavior,17 for specific details about selection of participants: 

Wijsen and de Haas.18 In total 14,892 persons, including men and women, were 

approached of which 4170 (28%) filled in the questionnaire completely. For our reference 

group we selected, from a total of 2075 women, 1259 women in the fertile age (between 

16 and 50 years) with a heterosexual relationship. 
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Variables and definitions

All cases and controls were asked to participate by filling in a digital questionnaire or on 

paper in case women had no access to internet between 2012 and 2014. The questionnaire 

was made using ProMISe, an internet based, application for the design, maintenance, 

and use of data management projects. Data were entered and stored in a good clinical 

practice approved database (ProMISe Database, https://www.msbi.nl/promise/).

The questionnaire contained questions about personal characteristics, general disease 

history, intoxications (smoking, alcohol, drugs), use of medication at different time points, 

outcome and complications of all pregnancies, neonatal characteristics, family disease 

history, partner’s characteristics, and questions about their recent sexual behaviour. 

Information about medical history, use of medication, intoxications, and pregnancy 

outcome was cross-checked in obstetrical records to overcome recall bias. The data of 

the obstetrical records were used in case of discrepancies between the questionnaire 

and obstetrical records. For the questions about recent sexual behaviour additional 

informed consent was requested. The sexual behaviour part entailed questions about 

recent (frequency of) oral sex, swallowing the ejaculate, length of the relationship, and 

monthly sexual frequency. To investigate whether vaginal exposure of sperm was different 

between cases and controls, recent contraception methods including use of condom were 

asked for. (Supplementary data, Appendix 1).

Maternal age was defined as age at third consecutive miscarriage for cases or age at first 

pregnancy for controls. Socioeconomic status was categorized into high, middle or low 

by using mean household income levels of a neighborhood, which was determined with 

the first four digits of the zip code, using data from the Netherlands Institute for Social 

Research.19 Education was defined as whether or not university level (college and university 

education together). Ethnicity was based on country of birth of the woman and divided in 

4 groups according to the rules of the Central Bureau of Statistics of the Netherlands.20

Sample size considerations 

Sample size calculation was performed assuming that 40-50% of the cases and 60-80% of 

the controls would have oral sex,11,21 leading to the following more precise assumptions 

adapted for the matched design:

Combination 1: (18%): Cases and controls both don’t have oral sex

Combination 2: (15%): Cases have oral sex, controls don’t have

Combination 3: (35%): Cases don’t have oral sex, controls have

Combination 4 (32%): Cases and controls both have oral sex 
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This implies an odds-ratio on the event of 0.43 for oral sex vs. no oral sex. A sample size 

of 186 women (93 exposed, 93 non-exposed) was expected to provide sufficient power 

(two-sided alpha .05. power 80%), taking a 10% drop-out in consideration. We planned 

1:1 case:control ratio, that is, one woman who had recurrent miscarriage matched to one 

control. On forehand we expected a lot of non-responders and therefore we contacted 

at least 3 controls per case. PASS 2008, Power Analysis and Sample Size Software (Hintze 

J., NCSS Kaysville USA) was used for the sample size calculation.

Statistical analysis

The association between oral sex and recurrent miscarriage was studied with conditional 

logistic regression using a stratified Cox regression and odds ratios (ORs) were estimated. 

Statistics were performed using SPSS (Version 24.0, Inc., Chicago, IL, USA). A p-value 

<0.05 was considered statistically significant. 

Of the 97 cases and 137 controls, 51.7% did not complete all the questions about sexual 

behaviour, including questions about oral sex. We compared the cases and controls who 

did complete questionnaires to cases and controls who did not using chi-square tests or 

Fisher’s exact tests or Mann Whitney U tests, whichever were appropriate. We repeated 

the analyses with missing exposure data imputed using Imputation by Chained Equations. 

In the imputation models the case/controls status oral sex, swallowing the ejaculate, 

relationship duration at time of index pregnancy, sexual frequency, and condom use as 

contraception, and the variables used for matching cases and controls (SES, urbanity, 

maternal age at time of index pregnancy) were included. In addition, variables that were 

significantly different between cases who completed all questions on sexual behaviour 

and cases who did not complete these questions were also included in the imputation 

model. Ten imputed datasets were created. 

Results

Baseline characteristics

In total, 97 women with recurrent miscarriage were included and 137 matched controls 

(Figure 9.1). Table 9.1 shows the baseline characteristics of the study population. 

In the case group, 63 women (64.9%) had primary recurrent miscarriage and 34 (35.1%) 

secondary recurrent miscarriage. A total of 65 women had 4 or more consecutive 

miscarriages (67.0%), and 39 women (40.2%) had 5 or more miscarriages. A total of 6 
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(6.2%) cases had hereditary thrombophilia, i.e., factor V Leiden (n=4), prothrombin gene 

mutation (n=3), or antithrombin deficiency (n=1). None had protein C or S deficiencies. 

Out of 97 cases, 70 had at least one live birth after the consecutive miscarriages (72.2%).

Sexual behaviour

Of the 97 cases, 46 cases (47.4%) and of the 137 controls, 75 controls (55.9%) did not 

complete all the questions about sexual behaviour. In Table 9.2 characteristics are shown 

of women with completed and women with not-completed questionnaire. Cases who 

Table 9.1  Baseline characteristics

Cases with recurrent 
miscarriage
(N=97)

Controls without 
miscarriage
(N=137)

Maternal age at index pregnancy 
(years;median[IQR])

30.0 (27.0-32.0) 30.0 (27.0-32.0)

Maternal age at time of questionnaire 
(years;median[IQR])

35.0 (32.0-38.0) 36.0 (33.0-39.0)

BMI (median[IQR])a 23.3 (21.5-26.6) 23.1 (21.0-25.8)

Smoking at time of questionnaire 14 (14.6) 18 (13.2)

Use of alcohol at time of questionnaire 51 (52.6) 87 (64.4)

Ethnic origin
Native/Caucasian
Turkish/Moroccan
Antillean/Surinamese
Other non-Caucasian immigrants

86 (88.7)
3 (3.1)
2 (2.1)
6 (6.2)

130 (94.9)
2 (1.5)
1 (0.7)
4 (2.9)

University level education  47 (48.5) 82 (59.9)

Urbanity 
Few
Strong to moderate
Very strong

14 (14.4)
53 (54.6)
30 (30.9)

15 (10.9)
78 (56.9)
44 (32.1)

SES
Lowest 25% (<25%)
Median 50% (25-75%)
Highest 25% (>75%)

10 (10.3)
51 (52.6)
36 (37.1)

19 (13.9)
64 (46.7)
54 (39.4)

Gravidity (median[IQR]) 6 (5-8) 2 (1-2)

Parity (median[IQR]) 1 (1-2) 2 (1-2)

Data are n (%) unless otherwise indicated, BMI; Body mass index, SES; Socioeconomic status, IQR; 
interquartile range.
a1.7% missing values (1 of 97 cases and 3 of 137 controls).
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did not complete the questions about sexual behaviour were significantly more often 

smokers (p=0.02). No other statistical differences were observed. Due to incomplete 

questionnaires on sexual behaviour matched analysis on oral sex was performed with 72 

cases matched with 96 controls.

In the matched analysis, 41 out of 72 women with recurrent miscarriage reported to have 

oral sex, compared to 70 out of 96 matched controls (56.9% vs. 72.9%, OR 0.50 95% 

CI 0.25-0.97, p=0.04) (Table 9.3). From the 41 women with recurrent miscarriage who 

indicated to have oral sex, 39 women filled in the question on swallowing the sperm and 

9 indicated to swallow sperm (23.1%). In controls 68/70 matched controls who indicated 

to have oral sex filled in this question and 10 controls (14.7%) swallowed sperm. No 

significant differences were observed in the incidence of oral sex in women with primary 

recurrent miscarriage and secondary recurrent miscarriage (63.3% vs. 46.4%, p=0.15).

Table 9.3 also shows results after missing values being imputed. The association became 

weaker with a crude OR of 0.67 (95% CI 0.36-1.24, p=0.21). 

Out of the 1259 women selected as Dutch reference group, 1206 women filled in the 

question on oral sex, of which 1076 stated to have oral sex (89.2%). Clearly more than 

44 out of 77 women with recurrent miscarriage who filled in this question (57.1%) (OR 

0.16, 95% CI 0.09-0.26, p<0.001).

Discussion

This matched case control study suggests that women with recurrent miscarriage 

had less oral sex compared to women with uneventful pregnancy. This is in line with 

the hypothesis that the gut has the most adequate absorption in the absence of an 

inflammatory environment,8,9 and seminal fluid contains soluble HLA antigens which can 

already induce maternal immune tolerance towards inherited paternal antigens of the 

fetus before implantation. 

The strength of this study is that a large homogenous well-characterized case group of 

women with at least three consecutive unexplained recurrent miscarriages less than 20 

weeks of gestation with the same partner was included. Furthermore, we compared our 

data in women with recurrent miscarriage to a representative group of Dutch women 

in the fertile age. In this reference group 89.2% of the women stated to have oral sex, 

this percentage is comparable to research on heterosexual behaviour in the USA, that 

showed that 83.5% of the women between age 35 years and 44 years ever had oral sex.22 

In addition, in a recent study on oral and vaginal exposure to the father’s seminal fluid in 
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preeclampsia, 78.6% of controls subjects had oral sex.21 In contrast, in our study this was 

only 56.9% of the women with recurrent miscarriage, suggesting indeed that having less 

oral sex might be associated with pregnancy complications such as recurrent miscarriage.

Although it is suggested that particularly the vaginal route of exposure to paternal 

antigens is critical to successful pregnancy,21 earlier findings suggest that oral exposure 

to paternal antigens reduced the incidence of preeclampsia,11 which is in line with our 

findings in recurrent miscarriage. Seminal fluid contains all types of immunoregulatory 

factors such as cytokines, hormones and soluble HLA (sHLA) antigens23 including sHLA-G. 

sHLA-G appears to have an important role in creating tolerance during pregnancy,24-26 and 

sHLA-G in seminal fluid may affect the maternal immune system before implantation of the 

embryo.27 The gut has the most adequate absorption in the absence of an inflammatory 

environment,8,9 and therefore having oral sex before implantation of the semi-allogeneic 

fetus could be a potent way of inducing immune tolerance to the paternal HLA antigens. 

Previous epidemiological studies indeed suggest that vaginal exposure and the length 

of sexual relationship are relevant to induce maternal immune tolerance to paternal 

antigens and decrease the occurrence of pregnancy complications. In these studies a short 

sexual relationships, limited seminal exposure, and barrier methods as contraception are 

associated with an increased risk of preeclampsia.28-31 Furthermore, exposure to seminal 

fluid, either by application of vaginal capsules or by natural intercourse prior to embryo 

transfer in IVF procedures improves implantation success.32,33 Most likely a combination 

of oral and vaginal exposure is needed to induce maternal immune tolerance to paternal 

antigens and an inadequate immunomodulation as early as during mating might be 

responsible for the development of a variety of pregnancy complications. However, the 

exact mechanism remains unclear and should be subject for further studies.

We were confronted with incomplete data from questionnaires, especially missing data 

on sexual behaviour, which was our exposure of interest. We tried to overcome this 

problem by imputation, a standard statistical approach to deal with missing data.34 

However, valid imputation assumes missing at random, meaning that other variables 

with complete information are completely accountable for the missing data. However 

this missingness at random is an untestable assumption, but may be valid in our study 

as comparing responders to non-responders showed no significant difference, except 

for smoking. However, missingness at random could still be dependent on variables not 

included in this study. The observed negative association between oral sex and recurrent 

miscarriage became smaller after imputation of the missing data, and the confidence 

interval included the null effect. When performing an unmatched analysis between cases 

and controls using only complete matched pairs, results were similar to the matched 
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analysis, when performing an unmatched analysis using all cases and controls, results 

were similar to the results of the imputed analysis (data not shown). This shows that our 

results should be interpreted with caution. Potential information bias should also be taken 

into account, as misclassification may have occurred due to the use of questionnaires and 

self-reported data, which is impossible to overcome. Importantly, seminal fluid exposure 

is not commonly recognized as a potential factor that could influence the occurrence 

of recurrent miscarriage, this will likely not have influenced the way women filled in the 

questionnaire. For this reason, information bias is not likely explanation for the observed 

association. 

Our study is limited by the fact that the questions about sexual behaviour and 

contraception did not concern the period before the index pregnancy. This might explain 

the discrepancy in frequency of sexual intercourse between our study and others showing 

that limited seminal exposure or the use of barrier methods before conception play a role 

in the occurrence of pregnancy complications such as preeclampsia.28,29,31 In our study 

the frequency of sexual intercourse was similar for women with recurrent miscarriage 

and controls. It is unknown how sexual behaviour changes during the years in individuals 

and therefore the questions about sexual behaviour might not reflect sexual behaviour 

before the index pregnancy especially in the women with recurrent miscarriage. By 

questioning sexual behaviour after the occurrence of recurrent miscarriage, the question 

remains whether having recurrent miscarriage affects sexual behaviour or sexual behaviour 

influence the occurrence of recurrent miscarriage. 

Another possible limitation is that couples with recurrent miscarriage who did not 

participate in this study had overall significantly fewer children and fewer live births after 

they had recurrent miscarriages. However, this suggests that the observed effects are 

rather an underestimation due to the fact that the group with worse outcome amongst 

the recurrent miscarriage cases did not participate. 

Despite the limitations of this study and the issues addressed, orally exposure to seminal 

fluid seems to induce maternal tolerance to paternal antigens and therefore influence 

pregnancy outcome in a positive way. Our results suggest an association between less 

oral sex and the occurrence of recurrent miscarriage; this however needs confirmation 

given the limitations of the present study.
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Supplementary data

Table I  Characteristics of included and excluded cases

Included cases
(N=100)

Excluded cases
(N=173) P-value

Gravidity (median[IQR]) 6 (5-8) 5 (4-6) <0.001

Parity (median[IQR]) 1.5 (1-2) 1 (0-1) <0.001

Miscarriages (median[IQR]) 4 (3-6) 3 (3-4) <0.001

Consecutive miscarriages 4 (3-5) 3 (3-4) <0.001

Primary recurrent miscarriage
Secondary recurrent miscarriage

69 (69%)
31 (31%)

100 (57.8%)
73 (42.2%)

0.066

Live birth after miscarriages 75 (75%) 23 (13.3%) <0.001
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Appendix 1  Questionnaire on sexual behaviour

We hypothesize that contact with seminal fluid (both vaginally and orally) could influence 

the immune system of the mother. Too few or too many contact to seminal fluid could 

possible play a role in accepting the unborn child. Therefore, this questionnaire contains 

questions about sexual behaviour. We totally understand if these questions are too private 

for you, if so, please indicate whether you want to skip these questions.

1.  I skip the questions on sexual behaviour.

2.  I fill in the questions on sexual behaviour.

Question 1

Do you have oral sex with your partner? Yes or No or Unknown

Question 2

If yes, how many times a month?

Question 3

If yes, do you swallow the sperm? Yes or No or Unknown

Question 4

How long is your relationship in years?

Question 5

How often do you have sexual intercourse a month?

Question 6

Do you use contraceptives? No, condoms, IUD, contraceptive pill, implanon, injectable 

contraceptive, sterilization, interrupted intercourse, inapplicable, unknown.
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1.  Summary

In normal pregnancy the fetus, although a semi-allograft, is tolerated by the maternal 

immune system. During implantation, both the innate and the adaptive immune system 

are activated and several immunological mechanisms are playing a role in the acceptance 

of the semi-allogeneic fetus. It has been suggested that an inadequate maternal allo-

immune response to the paternal antigens of the fetus is responsible for a proportion of 

the unexplained recurrent miscarriage.

Previous studies on the association of unexplained recurrent miscarriage with specific 

maternal HLA alleles and HLA sharing between couples have led to inconsistent results,1-4 

due to various definitions of recurrent miscarriage and control groups, analysis of different 

HLA alleles and loci, and application of different HLA typing methods. In chapter 2 we 

provide a complete and up-to-date overview on the possible role of the HLA system in 

recurrent miscarriage, including only studies with strict eligibility criteria and molecular 

HLA typing methods. Although associations between specific HLA alleles and HLA sharing 

with recurrent miscarriage were found, no consistent conclusions can be drawn since the 

observed odd ratios were relatively small and the risk of selection and information bias 

in the selected studies was high.

A diminished allorecognition of fetal trophoblast by the maternal immune system, is 

accomplished by the fact that trophoblast only expresses the non-classical oligomorphic 

HLA-G and E-molecules and HLA-C, the only classical HLA I antigen.5-7 As a consequence, 

maternal immune cells are only in contact with these HLA alleles at the implantation 

site. For this reason the studies described of this thesis were mainly focussed on 

different aspects of these specific HLA alleles. In chapter 3 we compared the genetic 

polymorphisms of HLA-G in women with recurrent miscarriage with those of women with 

uneventful pregnancy. As the expression of soluble and membrane-bound forms of HLA-G 

depends on the combination of several polymorphisms at the 3’UTR,8 we included these 

polymorphisms in our study. We found no association between single polymorphism 

and recurrent miscarriage. However, the HLA-G UTR-4 haplotype was less frequently 

observed in women with recurrent miscarriage, suggesting an immunoregulatory role of 

this haplotype facilitating an uncomplicated continuation of pregnancy.

As HLA-C is the only classical HLA antigen expressed on the trophoblast, we questioned 

in chapter 4, whether a maternal allo-immune response to paternal HLA-C plays a role in 

unexplained recurrent miscarriage. We observed an increased frequency of HLA-C*07, one 

of the most immunogenic HLA-C alleles, in partners of women with recurrent miscarriage. 

As a consequence, more mismatches for HLA-C*07 between mother and father were 
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observed compared to couples with uneventful pregnancy. The incidence of anti-HLA 

antibodies was also increased in women with recurrent miscarriage compared to women 

with uneventful pregnancy. As the clinical relevance of these antibodies in pregnancy is 

not clear, we reviewed in chapter 5 the effect of anti-paternal antibodies on pregnancy 

complications including recurrent miscarriage. The selected studies showed a high level of 

statistical and clinical heterogeneity due to using different screening techniques, varying time 

points of screening, and use of incorrect control groups. In addition, detailed analyses of the 

characteristics and specificity of these antibodies were missing in most studies. Information 

on specificity, capacity to fix complement, titer, and the HLA epitopes recognized is essential, 

because from transplantation settings we know that a proportion of allo-antibodies cause 

rejection, for example depending on their ability to activate complement.9 Surprisingly, 

the role of HLA-C specific antibodies in recurrent miscarriage has not been studied yet, 

while HLA-C is the only polymorphic classical HLA I antigen expressed on trophoblast. In 

chapter 6, we hypothesized that antibodies against HLA-C may play a role in the occurrence 

of unexplained consecutive recurrent miscarriage. The presence, specificity of anti-HLA 

antibodies, and their complement fixing ability was determined in women with recurrent 

miscarriage and compared to women with uneventful pregnancy in the first trimester of 

the next pregnancy. Significantly more often anti-HLA antibodies specific for HLA-C were 

found in women with recurrent miscarriage, suggesting that these antibodies may play a 

role in a subpopulation of women with recurrent miscarriage. As not all of these anti-HLA-C 

antibodies were complement fixing, it remains to be established which effector mechanism 

is involved in the etiology, complement fixation, antibody-dependent cellular cytotoxicity 

or both. In chapter 7, we observed a higher incidence of C4d deposition in products of 

conception in women with unexplained recurrent miscarriage compared to women with 

a sporadic miscarriage and women with an elective abortion. The combined results from 

chapter 4, chapter 6 and chapter 7 suggest that in a portion of women with unexplained 

recurrent miscarriage antibody-mediated rejection of the fetal allograft may play a role.

Studies in mice have shown that already during copulation, long before implantation, 

maternal tolerance towards fetal allo-antigens is induced.10,11 In addition, human 

seminal plasma contains different types of immunoregulatory factors such as cytokines, 

chemokines,12 and sHLA,13,14 which may modulate the maternal immune response.15,16 We 

showed in chapter 8 that human seminal plasma contains all kinds of immunoregulatory 

factors including high concentrations of TGF-β, IDO, and sHLA class I. Furthermore, we 

observed that seminal plasma has an immunomodulatory effect on T cells as reflected in 

an increased proliferative response and upregulation of Foxp3. The presence of APCs is 

needed to induce IL-10 and CD25 upregulation in T cells exposed to seminal plasma. In 

accordance to Koelman et al.,14 we hypothesized that a potent way of inducing tolerance 
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towards paternal HLA antigens of the fetus in pregnancy would be exposure of these 

antigens to oral mucosa. In chapter 9 we tested the hypothesis, whether women with 

recurrent miscarriage have less oral sex compared to matched control subjects with 

uneventful pregnancy. In this matched case control study practicing oral sex was negatively 

associated with the occurrence of recurrent miscarriage. However, many issues have to 

be overcome before a final conclusion can be drawn.

2.  Clinical implications and future perspectives

In couples with unexplained recurrent miscarriage inadequate immune reactions may 

play a role in the etiology. In this thesis we focussed mainly on reasons why insufficient 

tolerance towards paternal and fetal antigens may occur and parameters possibly related 

to occurrence of antibody-mediated rejection of the fetus with paternal HLA-C as the 

proposed target. 	

2.1  Background

Most studies published on recurrent miscarriage lack consistency, mainly due to the various 

definitions of recurrent miscarriage and control groups. The majority of women classified 

as women with recurrent miscarriage may even have suffered of these miscarriages due to 

chance rather than on basis of an underlying pathology. Furthermore, recurrent miscarriage 

is a highly heterogeneous condition with different possible underlying etiological factors. 

In order to identify only women with unexplained recurrent miscarriage, a high number 

of previous miscarriages, maternal age at the time of the diagnosis, karyotype of the 

conception, and a complete diagnostic work-up to rule out explained recurrent miscarriage 

should be taken into account.17,18 In most studies no distinction is made between primary 

recurrent miscarriage and secondary recurrent miscarriage although it is postulated that 

primary recurrent miscarriage and secondary recurrent miscarriage could be two distinct 

entities with different underlying pathology.19 Often ethnicity is not taken into account 

while, differences in HLA allele frequencies between women with recurrent miscarriage and 

control subjects could be purely dependent on genetic differences between populations. 

To overcome these issues, we tried to obtain a homogenous group of women with 

unexplained recurrent miscarriage, made distinction between primary and secondary 

recurrent miscarriage, and took ethnicity into account in all our studies. As it is postulated 

that the primary pathogenesis of various pregnancy complications and recurrent miscarriage 

is shared,20,21 we only included in our studies control subjects with uncomplicated pregnancy 

and no recurrent miscarriage in medical history.
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2.2  Possible reasons for a poor immune regulation

2.2.1  The influence of HLA alleles not expressed on trophoblast

As mentioned, classical HLA class I and II, with the exception of HLA-C, are not expressed 

on embryonic and trophoblast tissues and therefore unlikely to play a key role in the 

immune mechanism that leads to maternal-fetal tolerance. Nevertheless, a lot of research 

has been focussed on the role of HLA alleles of the mother related with recurrent 

miscarriage. Despite the high level of heterogeneity between the studies included in 

the meta-analysis in chapter 2, the presence of maternal HLA-DRB1*4 was associated 

with recurrent miscarriage.22 The question remains whether these genes are self-related 

with recurrent miscarriage or linked with susceptibility genes that influence reproductive 

outcome. For example HLA DRB1*4 might play a role in an autoimmune response in the 

mother, which may also lead to pregnancy complications.23-25 

2.2.2  The role of (s)HLA-G

The presence of sHLA-G in maternal circulation appears to have an important role 

in creating tolerance during pregnancy.26-28 HLA-G polymorphisms in the 3’UTR may 

affect HLA-G mRNA stability,29 which is associated with lower levels or even absence of 

sHLA-G in plasma.30-32 In line with these data, in chapter 3 we showed that in women with 

recurrent miscarriage HLA-G UTR-4 haplotype was less frequently present, suggesting 

an immunoregulatory role of this haplotype leading to an uncomplicated continuation 

of pregnancy. The question remains whether these maternal HLA-G polymorphisms 

found in recurrent miscarriage only influence sHLA-G levels in maternal circulation – and 

therefore pregnancy outcome – or that they also reflect fetal levels of sHLA-G and HLA-G 

levels on trophoblast due to shared genetic factors. Dahl et al.33 found that sHLA-G is 

not freely transferred over the placental barrier, although sHLA-G levels are correlated in 

maternal and umbilical cord blood during uncomplicated pregnancy. These results may 

indicate that sharing genes is important for production of sHLA-G in mother and child. 

The 3’UTR HLA-G haplotype is most significantly associated with recurrent miscarriage 

(chapter 3), rather than single polymorphisms in the 3’UTR region of HLA-G as was 

previously believed.4 In addition, in heterozygous 14DelC/14InsG mothers (14 bp ins/del 

and +3142C/G polymorphism) increasing numbers of 14InsG haplotypes in mother-child 

genotype combinations were associated with higher levels of sHLA-G at term.34 The exact 

factors determining sHLA-G levels in pregnancy and the exact role of different isoforms of 

sHLA-G in pregnancy are difficult to establish also because sHLA-G in pregnant women 

is of mixed origin consisting of both fetal sHLA-G molecules from cytophoblast cells and 

maternal derived sHLA-G molecules.   
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Furthermore of interest, is the role of seminal sHLA-G as an immunomodulatory factor 

in the female reproductive tract before, and at the time of conception. A recent study 

indicates that the level of sHLA-G in seminal plasma may even be associated with the 

chance of pregnancy in couples.35 A pilot study in male partners in women with recurrent 

miscarriage showed that concentration of sHLA-G in seminal plasma is associated with 

HLA-G genotypes (data not shown in this thesis). Further studies are needed to verify these 

preliminary findings and to test whether these levels are lower in couples with recurrent 

miscarriage compared to couples with uneventful pregnancy. As was previously mentioned, 

studies in mice have shown that already during copulation, long before implantation, 

maternal tolerance towards fetal allo-antigens is induced.10,11 A well-known route to induce 

immune tolerance is via oral exposure, possible because the gut has the most adequate 

absorption in the absence of an inflammatory environment.36,37 Although, in accordance 

to a previous study,14 our data in chapter 9 suggest that practicing oral sex is associated 

with a lower occurrence of recurrent miscarriage, Saftlas et al. suggest that particularly the 

vaginal route of exposure to paternal antigens is critical to successful pregnancy.38 Indeed, 

short sexual relationships, limited vaginal seminal exposure, or usage of barrier methods 

for contraception are associated with an increased risk of preeclampsia39-42 and exposure 

to seminal fluid, either by application of vaginal capsules or by natural intercourse prior to 

embryo transfer improves implantation success.43,44 Therefore, the induction of maternal 

immune tolerance to paternal antigens is believed to be essential for the acceptance of 

the semi-allogeneic fetus. An inadequate immunomodulation as early as during mating 

might be responsible for the development of a variety of pregnancy complications.	

2.2.3  The role of various signalling molecules in seminal plasma

Besides allo-antigens in the form of sHLA, and in particular sHLA-G, seminal plasma 

contains various signalling molecules including IL-8, TGF-β, and IFN-γ45 and several 

inhibitors of complement and the prostaglandin PGE2. Exposure to seminal fluid induces 

lymphocyte proliferation (chapter 8)46, NK cell activity, and modified cytokine release 

from APCs,12 resulting in tolerance towards paternal allo-antigens. In human, it seems 

that seminal plasma increases T cell proliferation, triggering a CD4+CD25+ Tregs subset 

(chapter 8),46 which is supposed to be necessary for the acceptance of the allogeneic 

fetus15,47,48 and the maintenance of a normal pregnancy.49,50 Taken together, above 

described studies suggest that exposure of the maternal immune system to seminal fluid, 

decrease the occurrence of a variety of pregnancy complications. Further research should 

focus on the exact role of seminal plasma in pregnancy and complicated pregnancy. It 

remains to be established whether variations in level of immunomodulatory factors and 

interactions between these factors in seminal plasma influences pregnancy outcome 
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and, if so, whether both orally and vaginally exogenous administration of these factors 

deceases the risk on pregnancy complications. 

2.3  HLA-C as a possible target for immune reactivity

Part of our research was focussed on HLA-C, the only classical HLA allele present on the 

trophoblast and therefore likely to be directly involved in the detrimental maternal immune 

response to the fetus. Indeed, in two separate case groups of women with recurrent 

miscarriage in chapter 4 and chapter 6 we found that HLA-C antibodies were significantly 

increased compared with women with uneventful pregnancy.51 These antibodies were 

mostly child-specific and directed against the most immunogenic HLA-C alleles.52 

Although other studies showed that antibodies are rarely demonstrable before 28 weeks 

gestation53 and spontaneous miscarriage is almost never causing formation of antibodies,53 

in our studies the incidence of anti-HLA-I and anti-HLA-C antibodies in nulliparous was 

similar to that of multiparous women with recurrent miscarriage, and significantly higher 

than nulliparous control subjects. The increased incidence of anti-HLA antibodies in 

nulliparous cases could not be explained by previous miscarriages or curettages.51 These 

antibodies present in nulliparous women could be formed during the index pregnancy 

– and causing direct harm – or the presence of these antibodies can be considered as 

a marker for a broader immune response, as was previously shown in HLA identical 

family transplantations.54 The presence of anti-HLA antibodies was a risk factor for worse 

outcome, although anti-HLA antibodies themselves could not have caused any harm.54 

Anti-phospholipid antibodies, which are highly associated with recurrent miscarriage,55 

are potential candidates for this broader antibody response. However, the presence of 

these antibodies could not explain the high incidence of anti-HLA antibodies in women 

with unexplained recurrent miscarriage in our studies.

The production of allo-antibodies is also related to the degree of HLA-DR compatibility. 

Lashley et al. showed that a higher percentage of women with oocyte donation pregnancies 

produce HLA class I antibodies in case of HLA-DR incompatibility, independent of the 

number of HLA class I mismatches.56 In addition, a higher incidence of donor specific 

antibodies in patients transplanted with an HLA-DR incompatible graft compared to HLA-

DR compatible transplants was seen.57 This is in contrast with previous meta-analyses, 

which showed a significantly higher incidence of HLA-DR compatibility instead of 

incompatibility in women with recurrent miscarriage (chapter 2).3,22 Furthermore, we could 

not observe more HLA-DR incompatibility of couples in recurrent miscarriage compared 

with control subjects (chapter 4) (Table 10.1, data not earlier shown). 
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The increased presence of anti-HLA antibodies in combination with the increased presence 

of C4d in products of conception in women with unexplained recurrent miscarriage 

observed in chapter 7 actually emphasizes that antibody-mediated rejection may play a 

role in unexplained recurrent miscarriage.58 However, C4d deposition can be interpreted as 

a sign of local dysregulation of the placental complement system, as excessive complement 

activation caused by antibody deposition,59,60 or interpreted as a non-specific reaction, 

triggered by damaged tissue and apoptotic cells.61 A subgroup analysis in our study on 

C4d deposition on non-apoptotic trophoblast cells in order to test for additional pathways 

leading to C4d deposition showed similar differences between women with recurrent 

miscarriage and control subjects suggesting that apoptosis is not the main pathway of 

the excessive complement deposition seen in unexplained recurrent miscarriage. Not 

all allo-antibodies cause rejection and their ability to activate complement might play 

a determinative role.9 In our studies most anti-HLA-C antibodies were non-C1q fixing 

antibodies. From transplantation settings we know that assessment of complement-

fixing capability with C1q method is more closely correlated with worse outcome after 

transplantation, as antibody-mediated rejection and graft failure, than antibodies that 

are only detected by the traditional IgG method.62 It remains to be established which 

effector mechanism is involved in the etiology, complement fixation, antibody-dependent 

cellular cytotoxicity or both. 

The clinical relevance of these (child-specific) anti-HLA-C antibodies and C4d in products of 

conception could not be answered in our studies because in all our case groups medication 

was used as part of a randomized control trial, i.e. enoxaparin, aspirin, or a combination 

of these two, which could have influenced pregnancy outcome.63 

Although it is tempting to assume that antibody-mediated rejection plays a role in 

unexplained recurrent miscarriage, we need prospective cohort studies, focussing on 

the presence of anti-HLA antibodies in the first trimester, investigating whether these 

antibodies are child-specific and complement fixing, and relate this to C4d presence and 

finally pregnancy outcome. Only then, we will able to answer above mentioned issues 

and to confirm and extend earlier observations. 

Table 10.1  HLA-DR incompatibility in couples with recurrent miscarriage

Mismatch Couples
Cases
N=97

Controls group 2 
N=425 P-value

DR-locus 0 
1 
2

10      10.3%
42      43.3%
45      46.4%

34       8.0%
183     43.1%
208     48.9%

ns
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2.4  Primary and secondary recurrent miscarriage, two distinct entities?

Previous research postulated that primary recurrent miscarriage and secondary recurrent 

miscarriage could have different underlying pathologies.19 In all our research we performed 

subgroup analyses between primary recurrent miscarriage and secondary recurrent 

miscarriage. Interestingly, in chapter 3 the frequency of UTR-2 was significantly higher 

in women with secondary recurrent miscarriage compared to women with uneventful 

pregnancy. The UTR-2 haplotype, is one of the UTR haplotypes, found to be associated 

with lower expression of sHLA-G.32 Hypothetically, women with secondary recurrent 

miscarriage and an UTR-2 haplotype could have less immunomodulatory capacity during 

implantation and therefore possibly an increased risk of miscarriage due to increased 

immunity to fetal antigens in the next pregnancy by for example the presence of anti-HLA 

antibodies or H-Y antibodies from a previous live birth.51,64 The increased frequency of 

HLA-C*07, one of the most immunogenic HLA-C alleles, of the last living child born before 

the occurrence of recurrent miscarriage in women with secondary recurrent miscarriage 

(chapter 4) could support the idea of increased immunity. However, as expected with 

higher occurrence of HLA-C*07 in the previous child and the fact that the presence of anti-

HLA antibodies increases after 28 weeks of pregnancy and antibodies can still be present 

at time of a new conception,53,65 no significant differences were observed in paternal-

specific anti-HLA class I, anti-HLA-C, or anti-HLA-C*07/17 antibodies between women 

with primary recurrent miscarriage and women with secondary recurrent miscarriage. 

Whether primary recurrent miscarriage and secondary recurrent miscarriage are two 

distinct entities, should be subject for further studies.

2.5  Increased endometrium receptivity

Nowadays, new ideas are rising about increased endometrium receptivity in recurrent 

miscarriage. Normal endometrium does not allow low-quality embryos to implant,66 

but the endometrium of women with recurrent miscarriage may be less selective for 

the embryo quality,67-69 possibly leading to more aneuploidy embryos in women with 

idiopathic recurrent miscarriage.70 These embryos may be allowed to implant and as 

the embryo fails to develop further, a miscarriage will follow. As a result, women with 

recurrent miscarriage should have more karyotypically abnormal miscarriage. However 

to our knowledge most studies show no difference in the distribution of cytogenetically 

abnormal miscarriages in couples with recurrent miscarriage compared with controls.71,72 

Studies showing differences included mostly patients with two miscarriages, and observed 

that the incidence of chromosomal anomalies may decrease as the number of miscarriages 

increases.73 Regardless of the chromosome pattern, C4d deposition along the trophoblast 
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was found to be similar in chromosomally normal and abnormal miscarriages,74 indicating 

that increased complement activation in recurrent miscarriage is not dependent on 

chromosomal aneuploidies and demonstrates a different underlying pathophysiology. 

In future studies products of conception of women with recurrent miscarriage should 

always be tested with karyotyping, even though contamination often occurs and collecting 

and typing of miscarriage material is difficult, to differentiate between underlying 

immunological pathology and endometrium receptivity problems.

2.6  Treatment options

Despite the conflicting findings and various limitations in studying immunological aspects 

of recurrent miscarriage several immunotherapeutic strategies have been introduced. 

There is an ongoing interest in corticosteroid drugs to treat women with recurrent 

miscarriage. It has been proposed that corticosteroids could improve the intrauterine 

environment by reducing NK cell count, normalisation of the cytokine expression profile 

in the endometrium, and by suppression of endometrial inflammation.75-77 However, there 

is clear evidence that controlled inflammation and activation of the immune response is 

essential for embryo implantation.78 So administration of corticosteroids may be harmful 

as it potentially elevates the risk of altered fetal growth and developmental programming, 

congenital anomalies and preterm birth.78 Fortunately, treatment is not licensed for use 

in reproductive medicine. 

Furthermore, in a systematic review by Wong et al. no significant beneficial effect of 

immunotherapy (as paternal leukocyte immunization, or intravenous immunoglobulin 

(IVIG)) over placebo was observed in improving live birth rate in women with recurrent 

miscarriage.79 In recent years the use of IVIG – a fractioned blood product which modulates 

the maternal immune system in recurrent miscarriage – has grown. Two different effects 

of IVIG has been described. Firstly, downregulation of systematic NK cells, abrogation of 

NK cell activity at the implantation site, and improvement of regulatory T cells. Secondly, 

the level of anti-HLA antibodies and auto-antibodies may be reduced by the antibodies in 

IVIG. Still, the use of IVIG is only approved by the Food and Drugs Administration (FDA) 

for autoimmune thrombocytopenia. 

In women with unexplained recurrent miscarriage administration of exogenous progester-

one to improve implantation is widely used. However, a recent RCT showed no evidence 

that first-trimester progesterone therapy improves outcomes in women with a history of 

recurrent miscarriage.80
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As hypercoagulability might result in recurrent miscarriage, the use of anticoagulants as 

LMWH and aspirin, which both have anti-clotting properties, may increase live birth in 

women with recurrent miscarriage. In addition, the use of heparin could potentially reduce 

complement activation in women with recurrent miscarriage. Treatment with heparin is 

beneficial, and protects mice from pregnancy complications in case of anti-phospholipid 

antibodies through inhibition of complement activation.63 Prophylactic use of heparin 

and low-dose aspirin may reduce pregnancy loss by 50% in women with recurrent 

miscarriage having anti-phospholipid antibodies.81 At present there is no evidence of 

a beneficial effect of anticoagulants – LWMH or aspirin or a combination of both – in 

women with unexplained recurrent miscarriage.82 However, the effect of anticoagulants 

in a homogenous group of women with unexplained recurrent miscarriage has not been 

studied yet. It is of interest, whether anti-HLA antibodies are capable of precipitating 

the coagulation pathway by the same mechanism as anti-phospholipid antibodies. And if 

so, whether coagulants can increase live birth rate after recurrent miscarriage in women 

having anti-HLA antibodies. As complement activation at the maternal-fetal interface 

indeed plays a role in a subgroup of women with recurrent miscarriage, treatment with 

inhibitors of the complement cascade could potentially have effect on live birth rate, 

such as LMWH, statins,83 or biological,84 such as anti-TNF (infliximab).85 The presence of 

anti-HLA antibodies and/or C4d in products of conception may potentially serve as a 

diagnostic indicator for a next pregnancy, making this subgroup of women eligible for 

treatment with complement inhibitors or anticoagulants.

3.  Conclusion

For many years research on recurrent miscarriage was mainly focussed on finding the 

underlying pathophysiological pathway in the woman. In this thesis, we showed that the 

interaction with the partner, and fetal antigens inherited from the partner, may play an 

important role in unexplained recurrent miscarriage. Future research on possible causes 

for unexplained recurrent miscarriage should therefore focus more on couples and their 

immunological interactions. 

Furthermore, as also illustrated in this thesis, it is of great importance to use an adequate 

definition of recurrent miscarriage and control subjects in order to make it possible to 

compare the results of the different studies.

Regardless of the cause, the long-term prognosis of couples with recurrent miscarriage 

is good; in all our studies we observed a live birth rate around 70% after recurrent 

miscarriage comparable with previous observations.86,87 However, one should realise that 
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multiple pregnancy losses can have a significant psychological toll on affected couples, and 

therefore efforts need to be made to improve treatment and decrease the time needed 

to achieve a successful pregnancy. In this thesis we identified several possible parameters 

related to the immunological pathways leading to recurrent miscarriage. The challenges 

for future studies is unravelling these possible immunological pathways even further, in 

order to identify diagnostic markers that can serve as a tool for patient tailored therapy.
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Het gunstige verloop van een zwangerschap is vanuit immunologisch perspectief gezien 

heel interessant. De foetus, die zowel maternale genen als paternale genen heeft en 

dus gedeeltelijk lichaamsvreemd is voor de moeder, wordt in een ongecompliceerde 

zwangerschap door het immuunsysteem van de moeder geaccepteerd. Dit terwijl een 

getransplanteerde donornier met dezelfde genetische verschillen zou worden afgestoten. 

Bij het onderscheid tussen lichaamseigen en lichaamsvreemd spelen de Humaan 

Leukocyten Antigenen (HLA) een belangrijke rol. HLA-antigenen zijn moleculen die op 

het membraam van alle cellen voorkomen en waarvan er heel veel varianten zijn. Dit 

wordt ook wel polymorfisme genoemd. Tijdens de innesteling van de foetale cellen in 

de baarmoeder wordt het maternale immuunsysteem geactiveerd, maar het maternale 

immuunsysteem moet ook worden onderdrukt zodat de foetale cellen zich kunnen 

innestelen en niet afgestoten worden. Verschillende immunologische mechanismes spelen 

een rol bij het ontstaan van maternale tolerantie ten opzichte van haar ongeboren kind. 

De gedachte is dat een inadequate maternale immuunreactie verantwoordelijk is voor 

een gedeelte van de tot nu toe nog onverklaarde herhaalde miskramen.1,2  

Men spreekt van herhaalde miskramen indien tenminste 3 opeenvolgende miskramen 

zijn opgetreden. In 1 tot 2% van de stellen met kinderwens is dit het geval.3 Tot nu toe 

bekende oorzaken van herhaalde miskramen zijn uterus anomalieën, endocriene factoren, 

cytogenetische factoren, erfelijke trombofiliefactoren en antifosfolipiden syndroom.4,5 Bij 

50-75% van deze stellen wordt geen oorzaak gevonden en blijven de herhaalde miskramen 

onverklaard.6 Bij stellen met onverklaarde herhaalde miskramen zijn in de afgelopen 

jaren verschillende behandelingen uitgeprobeerd zoals immunotherapie, progesteron, 

HCG, aspirine, laag moleculair gewicht heparine en lage dosering insuline. Al deze 

behandelingen geven echter geen verbetering wat betreft zwangerschapsuitkomst.7-10 

Zonder behandeling is de kans op een levend geboren kind bij stellen met onverklaarde 

herhaalde miskramen ongeveer 75%, al laten recente studies wisselende percentages 

zien tussen 57-95%.7,11-14 Ondanks dat de kans op een levend geboren kind hoog is, is de 

emotionele belasting en onzekerheid bij stellen met onverklaarde herhaalde miskramen 

groot. Een gedeelte van deze stellen zal ook nooit een levend geboren kind krijgen. 

Het doel van dit proefschrift is om bij stellen met onverklaarde herhaalde miskramen de 

mogelijk onderliggende immunologische mechanismes te identificeren, waarbij we met 

name geïnteresseerd zijn in de interactie tussen het maternale immuunsysteem en de 

lichaamsvreemde vaderlijke HLA-antigenen. Door deze mechanismes beter te begrijpen 

hopen we in de toekomst effectieve en patiëntgerichte behandelingen te kunnen geven 

bij stellen met onverklaarde herhaalde miskramen. 
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In hoofdstuk 2 geven we een systematisch overzicht van de mogelijke rol die het HLA 

systeem speelt bij herhaalde miskramen. Eerdere studies tonen associaties aan tussen 

onverklaarde herhaalde miskramen en specifieke maternale HLA-allelen en tussen 

onverklaarde herhaalde miskramen en het delen van dezelfde HLA-allelen tussen stellen. 

Deze studies geven geen eenduidige resultaten onder andere door het gebruik van 

verschillende definities voor geïncludeerde cases en controles, analyses van verschillende 

HLA allelen, en het gebruik van verschillende technieken om HLA te typeren. In ons 

review includeerden we alleen studies die strikte inclusiecriteria gebruikten en waarbij 

de HLA-antigenen bepaald waren met moleculaire typering technieken. Ondanks deze 

strikte inclusiecriteria, is nog steeds sprake van grote selectie en informatie bias in de 

geselecteerde studies en zijn de gevonden associaties klein, zodat we geen definitieve 

conclusies kunnen trekken.

Op het foetale trofoblast komen maar een deel van de HLA-antigenen tot expressie zodat 

een verminderde allo-immuunreactie van het maternale immuunsysteem optreedt. Alleen 

het niet-klassieke oligomorfe HLA-G en HLA-E en maar een enkel klassiek HLA-gen, 

namelijk HLA-C, komen op het foetale trofoblast tot expressie. Aangezien het maternale 

immuunsysteem tijdens innesteling alleen in contact komt met deze antigenen, zijn wij in 

dit proefschrift geïnteresseerd in verschillende aspecten van deze antigenen bij stellen 

met herhaalde miskramen. 

In hoofdstuk 3 beschrijven we genetische polymorfismen van HLA-G in vrouwen met 

herhaalde miskramen en vrouwen met een ongecompliceerde zwangerschap. We waren 

met name geïnteresseerd in een combinatie van verschillende polymorfismen omdat juist 

die combinatie zorgt voor de expressie van oplosbaar (sHLA) en membraangebonden 

vormen van HLA-G. We zagen inderdaad dat een combinatie van polymorfismen, leidend 

tot het HLA-G UTR-4 haplotype, significant minder vaak werd gevonden bij vrouwen 

met herhaalde miskramen. Dit suggereert dat HLA-G UTR-4 haplotype een belangrijke 

immunoregulatoire rol speelt bij een ongecompliceerde doorgaande zwangerschap. 

Omdat HLA-C het enige klassieke HLA-gen is dat op de trofoblast tot expressie wordt 

gebracht, hebben we in hoofdstuk 4 gekeken of een maternale allo-immuunreactie tegen 

het HLA-C allel van de vader een rol speelt in onverklaarde herhaalde miskramen. We 

zagen een verhoogde frequentie van HLA-C *07, een van de meest immunogene HLA-C 

allelen, bij partners van vrouwen met herhaalde miskramen. Als gevolg hiervan werden 

meer mismatches gevonden voor HLA-C *07 tussen moeder en vader in vergelijking met 

paren met een ongecompliceerde zwangerschap. De incidentie van HLA antilichamen 

was ook verhoogd bij vrouwen met herhaalde miskramen in vergelijking met vrouwen 

met een ongecompliceerde zwangerschap. 
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Omdat de klinische relevantie van deze antilichamen tijdens de zwangerschap niet duidelijk 

is, hebben we in hoofdstuk 5 het effect van antilichamen op zwangerschapscomplicaties, 

waaronder herhaalde miskramen, onderzocht. De geselecteerde studies tonen een 

hoog niveau van statistische en klinische heterogeniteit als gevolg van het gebruik van 

verschillende screeningtechnieken, variërende tijdstippen van screening en gebruik 

van onjuiste controlegroepen. Bovendien ontbrak in de meeste geïncludeerde studies 

gedetailleerde analyse van de karakteristieken en specificiteit van deze antilichamen. 

Zoals we van onderzoek bij transplantatie weten zal maar een deel van de antilichamen 

afstoting veroorzaken, daarom is informatie over specificiteit, de potentie om complement 

te fixeren, titer van de antilichamen, en welke HLA-epitopen antilichamen herkennen 

essentieel. De rol van specifieke HLA-C antilichamen was nog niet onderzocht bij vrouwen 

met herhaalde miskramen, terwijl HLA-C toch het enige polymorfe klassieke HLA-antigen 

is dat op trofoblast tot expressie wordt gebracht. Daarom hebben we in hoofdstuk 

6 gekeken naar de rol van specifieke HLA-C antilichamen bij vrouwen met herhaalde 

miskramen. De aanwezigheid, de specificiteit van HLA-antilichamen en de mogelijkheid 

om complement te binden werd bepaald in het eerste trimester van de volgende 

zwangerschap bij vrouwen met herhaalde miskramen en vergeleken met vrouwen met 

een ongecompliceerde zwangerschap. HLA-C antilichamen werden significant vaker 

gevonden bij vrouwen met herhaalde miskramen, wat suggereert dat deze antilichamen 

een rol kunnen spelen in een deel van de vrouwen met herhaalde miskramen. Omdat niet 

al deze HLA-C antilichamen complement konden binden, moet nog vastgesteld worden 

welk mechanisme precies betrokken is bij de etiologie, het binden van complement of 

antilichaam afhankelijke cellulaire cytotoxiciteit. 

In hoofdstuk 7 zagen we vaker C4d depositie in miskraamweefsel bij vrouwen met herhaalde 

miskramen in vergelijking met vrouwen met een sporadische miskraam en vrouwen met 

een electieve abortus. C4d is een biomarker voor klassieke complementactivatie, die in de 

regel plaats vindt door binding van antilichamen. C4d hecht aan cellen en weefsel en werkt 

daardoor als een marker van recente door antilichaam aangebrachte weefselbeschadiging. 

Concluderend wijzen de gecombineerde resultaten van hoofdstuk 4, hoofdstuk 6 en 

hoofdstuk 7 erop dat bij een deel van de vrouwen met onverklaarde herhaalde miskramen, 

antilichaam-gemedieerde afstoting van het foetale allo-transplantaat een rol kan spelen.

Eerdere studies in muizen laten zien dat ten tijde van de geslachtsgemeenschap, 

al lang voordat de implantatie plaatsvindt, maternale tolerantie tegen foetale allo-

antigenen optreedt.15,16 Humaan semen bevat ook verschillende factoren zoals cytokinen, 

chemokinen,17 en sHLA,18,19 die de maternale immuunreactie kunnen moduleren.20,21 We 

laten in hoofdstuk 8 zien dat humaan semen inderdaad allerlei immuun regulerende 
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factoren bevat, waaronder hoge concentraties TGF-β, IDO en sHLA klasse I. Tevens heeft 

humaan semen een immuun modulerend effect op T-cellen. Contact met semen leidde 

tot een verhoogde proliferatieve respons van T-cellen en de expressie van Foxp3, een 

marker voor regulerende T-cellen. Verder zagen we dat antigeen presenterende cellen 

nodig zijn om IL-10- en CD25 expressie te induceren op T-cellen na blootstelling aan 

humaan semen. 

Zoals Koelman en anderen19 eerder beschreven, is contact met HLA-antigenen in semen 

via de orale mucosa een manier om tolerantie voor de vaderlijke HLA-antigenen van de 

foetus tijdens de zwangerschap te creëren. In hoofdstuk 9 hebben we daarom gekeken 

of vrouwen met onverklaarde herhaalde miskramen minder vaak orale seks hebben in 

vergelijking met gematchte vrouwen met een ongecompliceerde zwangerschap. In deze 

gematchte case-controle studie is het hebben van minder orale seks geassocieerd met het 

optreden van herhaalde miskramen. Gezien de methodologische en statische problemen 

in dit hoofdstuk, kan echter nog geen definitieve conclusie getrokken worden.

Concluderend laten we in dit proefschrift zien dat verschillende immunologische interacties 

tussen de vrouw en de partner, en de foetale antigenen afkomstig van de partner, een 

rol kunnen spelen in onverklaarde herhaalde miskramen. De uitdaging voor de toekomst 

is om deze immunologische interacties nader te onderzoeken om diagnostische markers 

te identificeren die kunnen dienen als hulpmiddel in de keuze van therapie, toegespitst 

op de individuele patiënt.
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