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Chapter 1

General Introduction
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This thesis addresses a variety of aspects of the early diagnosis of Alzheim-
er’s disease (AD). AD is a complex clinical syndrome characterized by a 
cluster of symptoms and signs comprising difficulties in memory, changes 
in behaviour, disturbance in language and other cognitive functions caus-
ing impairments in activities of daily living. (Ferri et al., 2005; Qiu et al., 
2009; Villemagne et al., 2013). In 2010, 5,4% of the European population 
at the age of 60+ had dementia, which was (at that time) 6.3 million peo-
ple (Wittchen et al., 2011). AD accounts for 75% of all dementia cases, 
implying 4.7 million people in Europe had AD in 2010 and this number is 
further increasing. Brookmeyer et al., predicted an AD incidence of 1 in 85 
persons worldwide in 2050 (Brookmeyer et al., 2007). As a result, AD rep-
resents an important socio-economic and public health concern. Results 
from human studies suggest that females are at higher risk for developing 
AD than men (Andersen et al., 1999; Corder et al., 2004; Grimm et al., 
2012; Janicki and Schupf, 2010; Musicco, 2009)
Due to an incomplete understanding of the pathophysiology of the dis-
ease, an effective therapy is currently not available. Limitations in stud-
ying the early stages of the disease during life, have been partly respon-
sible for lack of knowledge about the pathophysiology of AD. However, 
there are promising strategies, some of which are already effective in 
animal models and some are tested in clinical trials including immuno-
therapy (Lambracht-Washington and Rosenberg, 2015; Landlinger et al., 
2015), inhibition of Aβ production (Howell et al., 2015; Wang et al., 2012) 
or tau aggregation (Harrington et al., 2015; Richter et al., 2014; Wischik 
et al., 2014; Wischik et al., 2015). The ability to detect the disease in an 
early stage would help increasing the knowledge on the pathophysiology 
of AD, would improve the chances for developing effective treatments, 
and would widen the therapeutic window for effective treatment.
However, at the moment AD is difficult to diagnose at an early stage and 
even at advanced stages of the disease a definitive diagnosis of AD still 
requires an autopsy. Therefore, diagnostic methods are needed allowing 
early in vivo detection of AD pathology (Jack, Jr. et al., 2010). 

Pathology
The main pathological hallmarks of AD are atrophy, neurofibrillary de-
generation and extracellular amyloid plaques (figure 1 and 2) (Doens and 
Fernandez, 2014; Dore et al., 2013; Ma et al., 2014; Price et al., 1991; 
Takahashi et al., 2010; Villemagne et al., 2013). All these can also be 
demonstrated in non-demented elderly subjects and therefore, are not 
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specific for AD but their quantity and distribution in relation to the clinical 
symptoms is specific (Thal et al., 2014). It has been demonstrated that 
plaques and tangles lead to synaptic dysfunction, mitochondrial damage, 
inflammation and neuronal death (Doens and Fernandez, 2014; Taka-
hashi et al., 2010). It still remains unknown how these pathological hall-
marks are related to each other. Another frequent finding in AD is cerebral 
amyloid angiopathy (CAA) that can also contribute to the cognitive decline 
(Weller et al., 2009). More recently, changes in iron distribution have been 
noted (Bartzokis, 2011; Crichton et al., 2002; Haacke et al., 2005; Mead-
owcroft et al., 2015a; Meadowcroft et al., 2015b).

Atrophy 
Shrinkage of the brain associated with AD is regarded as a valid marker 
of disease state and progression. Brain atrophy is correlated to neurofi-
brillary tangles (NFT) and neuropsychological deficits. It starts, in the 
majority of AD patients, in the hippocampus and the enthorinal cortex, 
extending to the temporal, parietal and frontal neocortices during the dis-
ease progression (Frisoni et al., 2010). 

Figure 1: Examples of neurofibrillary tangles 
(arrows), neuropil threads (arrowheads) and 
dystrophic neurites (asterix).

Neurofibrillary degeneration
Neurofibrillary tangles (NFT) are 
one of the manifestations of neu-
rofibrillary degeneration, the oth-
er being neuropil threads (NT) 
and dystrophic neurites (DN) (fig-
ure 1). In all these lesions there 
is intracellular accumulation of 
hyper-phosphorylated tau pro-
tein, forming soluble aggregates 
and paired helical filaments (PHF) 
(Kidd, 1963). NFT are neuronal 
cell bodies filled with PHF whereas 
in NT these PHF are present in the 
neuronal processes. DN are NT 
with irregular, dilated and distort-
ed shapes. Normally tau proteins 
are involved in structural and reg-
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ulatory function of the cytoskeleton where they promote the assembly of 
microtubule and their stability (Alonso et al., 2008; Grundke-Iqbal et al., 
1986). However, when tau becomes hyper phosphorylated it exerts the 
exact opposite effect, leading to the dismantling of the same microtubule. 

The resulting loss of neuronal structure impairs axonal transport, lead-
ing to disturbed proper synaptic, neuronal signalling and eventually leads 
to neuronal death (Ballatore et al., 2007). The degree of tau pathology 
correlates very well with dementia but neurofibrillary degeneration is not 
specific for AD: it is also seen in other neurodegenerative diseases, al-
though with a different distribution in the brain. 

Plaques
Plaques represent a wide array of lesions that contain extracellular de-
posits of amyloid β protein (Aβ) of which variable amounts are present as 
amyloid. Histologically, plaques are classified as diffuse,  compact, classi-
cal and neuritic plaques. The type of plaque depends on the density and 
circumscription of Aβ (diffuse vs. compact plaques), the presence of an Aβ 
amyloid core (classical plaque) and the coexistence of dystrophic neurites 
(neuritic plaque) (figure 2) (Duyckaerts et al., 2009). Aβ plaques in an 
extensive amount is typical for AD but there is poor correlation between 
the amount of plaques and the degree of dementia. 
Cerebral Aβ is generally cleaved by α-secretase and either degraded or 
cleared from the brain across the blood-brain barrier. Aβ peptide is gen-
erated by β- and γ-secretase induced cleavage of the amyloid precursor 
protein (APP), a transmembrane protein, forming predominantly Aβ1-40 
or Aβ1-42. According to the amyloid cascade hypothesis, AD is initiated 
by an imbalance in Aβ production and clearance (Hardy, 2009; Hardy and 
Selkoe, 2002). This hypothesis is supported by the finding that APP gene 
mutations around the α, β- and γ-cleavage sites and gene mutations in 
proteins involved in cleavage at the APP γ-site lead to increased Aβ pro-
duction and often early onset AD with an autosomal dominant pattern of 
inheritance. However, these mutations account for only < 5% of all AD 
cases. The other 95% of sporadic AD probably has a more complex mul-
tifactorial etiology (Minati et al., 2009).
Due to its fibrillogenic nature, high local concentrations of Aβ1-42 aggre-
gate into soluble oligomers. These oligomers cluster into larger insoluble 
Aβ fibrils that allow the formation of β-sheet structures, which are char-
acteristic for amyloid. This clustering of oligomers triggers the misfolding 
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Figure 2: Examples of diffuse plaques 
(arrows), classical plaques (arrow-
heads) and compact plaques (asterix).

of other Aβ species, including the more 
soluble Aβ1-40, forming plaques (Duyc-
kaerts et al., 2009). 
The study of Corder et al. suggested 
an acceleration of amyloid deposition in 
women of late middle age associated with 
APOE4 (Corder et al., 2004). In some 
AD mouse models, a similar sex-relat-
ed difference was found, showing more 
Aβ accumulation in female mice (Cal-
lahan et al., 2001; Wang et al., 2003). 

CAA
In the majority of AD cases different amounts of CAA are found in the 
brain (Natte et al., 2001; van Rooden et al., 2009; Weller et al., 2009). 
CAA is caused by the same Aβ deposits as in plaques, mainly Aβ 1-40 
and always forms amyloid which leads to stiffness and a loss of structure 
of the vesselwall. CAA can occur as a sporadic disease with little or no 
parenchymal Aβ deposits and is considered a major cause of cerebral mi-
crobleeds, haemorrhages and cognitive loss. 
 
Inflammation
In AD, microglia may play an important role in disease progression by ac-
tivating different inflammatory cytokines, causing neuronal damage and 
cell death (Doens and Fernandez, 2014; Hardy and Selkoe, 2002; Ketten-
mann et al., 2011). Microglia cluster especially around plaques and CAA.

Iron
Iron was recently identified as one of the pathological changes in the AD 
brain (Bartzokis, 2011; Meadowcroft et al., 2009; van Duijn et al., 2013). 
There are two hypotheses on the role of iron in AD. The first hypothesis 
claims that iron would directly contribute to the development of AD, due 
to its neurotoxic characteristics when not properly regulated (Bartzokis, 
2011). The second is the idea of iron deposits being secondary to the for-
mation of plaques and tangles (Peters et al., 2015); not playing a leading 
role in the development of AD, but following the formation of plaques. 
Iron also has relevance in AD research because it can be detected with 
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high sensitivity by magnetic resonance imaging (MRI) and may serve as 
an in vivo marker for AD.
 
Magnetic resonance imaging (MRI) and spectroscopy (MRS) in AD
The in vivo diagnosis of AD is now based on clinical and neuropsychologi-
cal criteria, with additional techniques such as neuroimaging and cerebro-
spinal fluid biomarkers playing a supportive role, resulting in “probable” 
AD at best. This diagnosis is not always accurate and needs post mortem 
histological confirmation (Fox et al., 1996; Hyman et al., 2012; Jack, Jr. 
et al., 2010). An MR-based hallmark for AD is hippocampal atrophy. This 
measurement, however, is neither conclusive nor specific for AD and con-
sequently of limited use in clinical setting (Nasrallah and Wolk, 2014). 
Furthermore, cerebral atrophy in AD is found in a late stage of the disease 
(Jack, Jr. et al., 2010) and therefore intrinsically a poor candidate for early 
diagnosis. Iron is a potential interesting target for the detection of early 
changes in AD. MRI is particularly sensitive to iron deposition in tissues, 
due to the changes it induces in the magnetic field.
Earlier studies demonstrated that increased iron accumulation in amyloid 
plaques induces a magnetic susceptibility effect. This is visible as hy-
pointens foci on T2*-weighted or susceptibility-weighted (SW) MRI in the 
cerebral cortex of transgenic AD mouse models and in human post-mor-
tem brain slices (Chamberlain et al., 2011; Meadowcroft et al., 2009; van 
Rooden et al., 2009). The high magnetic field strengths needed to obtain 
these results only recently became available for in vivo human use. These 
high field human MRI systems (> 7 Tesla) may offer new possibilities to 
specifically detect the neuropathological hallmarks of AD, with iron as 
main field of focus. Perhaps changes in iron distribution can be detected 
even at an earlier stage than the traditional hippocampal atrophy.

MRS is a non-invasive tool which can be used to measure the concentra-
tion of various brain metabolites in vivo (Marjanska et al., 2005; Oberg 
et al., 2008; Rupsingh et al., 2011). MRS uses MR to study the quantity 
of metabolites by measuring the interaction of a radiofrequency electro-
magnetic field with molecular nuclei inside an external high magnetic field 
(Azevedo et al., 2008). Measuring these metabolic changes in vivo, could 
help identify AD at an early stage since metabolic levels are believed to 
precede structural changes (Jack, Jr. et al., 2010). 
Numerous MRS studies have been performed in transgenic (tg) mouse 
models of AD. Several tg mouse models are available that develop sim-
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ilar, but not identical, pathology as compared to human AD. The results 
of previous MRS studies have shown AD-related abnormalities for several 
metabolites (Braakman et al., 2008; Chen et al., 2009; Choi et al., 2010; 
Dedeoglu et al., 2004; Marjanska et al., 2005; Oberg et al., 2008; von Kien-
lin M. et al., 2005; Westman et al., 2009; Xu et al., 2010). N-acetylaspar-
tate (NAA) in the brain is  predominantly present in neuronal cell bodies. 
Decreased NAA levels, indicating neuronal damage, have been found in 
tg mice in comparison to wild type (wt) mice (Chen et al., 2009; Choi et 
al., 2010; Dedeoglu et al., 2004; Marjanska et al., 2005; Oberg et al., 
2008; von Kienlin M. et al., 2005). Myo inositol (mIns) and taurine play a 
role in osmoregulation and are mainly found in astrocytes of brain tissue. 
These metabolites were found to be higher in tg mice than in wt mice 
(Chen et al., 2009; Choi et al., 2010; Dedeoglu et al., 2004; Marjanska et 
al., 2005; Westman et al., 2009). Glutamate (glu) is an excitatory neuro-
transmitter, involved in learning, memory formation, and cognition, which 
is found to be decreased in mice with AD (Braakman et al., 2008; Choi 
et al., 2010; Dedeoglu et al., 2004; Marjanska et al., 2005; Oberg et al., 
2008; von Kienlin M. et al., 2005). 
Tg mouse models allow monitoring of the pathological and metabolic 
changes from the onset of AD in a longitudinal study, which is an effec-
tive way to investigate the early changes in the AD brain. However, no 
longitudinal study has been performed on AD mouse models using the 
non-invasive technique of MRS. Following mice from birth and investigat-
ing metabolic changes using MRS, the early start of AD might be detected 
making treatment more effective and giving us more insight in the patho-
genesis of this disease. 

 
Scope of this thesis
The overall aim of this thesis was to investigate MRI-based early markers 
of AD. We focused on correlation of radiological findings in AD with histol-
ogy and we used MRS to study metabolic changes in brains of transgenic 
mice with AD. 
Chapter 2 describes the effects of prolonged formalin fixation on MRI sig-
nal of brain tissue. This is important because such long fixed material is 
more readily available than brain tissue which is fixed for less than a year. 
In chapter 3 we compare different histological techniques to visualize iron 
in human brain tissue. Selection of the best techniques is crucial for relia-
ble histological-radiological studies to assess the value of brain iron as an 
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MRI-based biomarker for AD.
Chapter 4 illustrates the relation between AD pathology and iron distribu-
tion in brain tissue of AD patients compared with normal aging subjects 
in different age groups. The difference of iron distribution between AD 
patients and aging was investigated in the frontal cortex.
Chapter 5 demonstrates a disturbed iron accumulation and myelin ar-
chitecture in AD using MRI with histological correlation on ex vivo brain 
tissue.
In Chapter 6 we describe the first systematic longitudinal MRS study to 
investigate the  differences in metabolic changes during development of 
AD in a transgenic mouse model.
Results of this thesis and recommendations for future studies are dis-
cussed in chapter 7. 
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