
Single Subject Classification of Alzheimer's Disease and Behavioral
Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor,
and Resting-State Functional Magnetic Resonance Imaging.
Bouts, M.J.R.J.; Möller, C.; Hafkemeijer, A.; Swieten, J.C. van; Dopper, E.; Flier, W.M. van
der; ... ; Rooij, M. de

Citation
Bouts, M. J. R. J., Möller, C., Hafkemeijer, A., Swieten, J. C. van, Dopper, E., Flier, W. M.
van der, … Rooij, M. de. (2018). Single Subject Classification of Alzheimer's Disease and
Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and
Resting-State Functional Magnetic Resonance Imaging. Journal Of Alzheimer's Disease,
62(4), 1827-1839. doi:10.3233/JAD-170893
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/73457
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/73457


 1 

Single subject classification of Alzheimer’s disease and 

behavioral variant frontotemporal dementia using 

anatomical, diffusion tensor, and resting-state functional 

magnetic resonance imaging 

 

 

Mark J.R.J. Boutsa,b,c*, Christiane Möllera,b,c, Anne Hafkemeijera,b,c, John C. van 

Swietend,e, Elise Doppere,f, Wiesje M. van der Flierf,g, Hugo Vrenkenh,i,  

Alle Meije Winkh, Yolande A.L. Pijnenburgf, Philip Scheltensf, Frederik  

Barkhofh,j, Tijn. M. Schoutena,b,c, Frank de Vosa,b,c, Rogier A. Feisb,c,  

Jeroen van der Grondb, Mark de Rooija,c, Serge A.R.B. Romboutsa,b,c 

 

 

aInstitute of Psychology, Leiden University, Leiden, the Netherlands; 

 bDepartment of Radiology, Leiden University Medical Center, Leiden, the 

Netherlands; 

cLeiden Institute for Brain and Cognition, Leiden University, Leiden, the 

Netherlands;  

dDepartment of Clinical Genetics, Neuroscience Campus Amsterdam, VU University 

Medical Center, Amsterdam, the Netherlands;  

eDepartment of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands; 

fAlzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, 

VU University Medical Center, Amsterdam, the Netherlands;  



 2 

gDepartment of Epidemiology & Biostatistics, Neuroscience Campus Amsterdam, 

VU University Medical Center, Amsterdam, the Netherlands;  

hDepartment of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, 

VU University Medical Center, Amsterdam, the Netherlands,  

iDepartment of Physics & Medical Technology, Neuroscience Campus Amsterdam, 

VU University Medical Center, Amsterdam, the Netherlands.  

jInstitute of Neurology & Healthcare Engineering, University College London, 

London, United Kingdom. 

 

Running title: MRI-based differentiation of bvFTD and AD  

 

*Corresponding author:  

Mark Bouts, PhD 

Leiden University, Institute of Psychology 

PO Box 9555 

2300 RB Leiden, The Netherlands 

Phone: +31 71 5276911   

Email: m.j.r.j.bouts@fsw.leidenuniv.nl 

 

  



 3 

Abstract 
 
Background / Objective: 

Overlapping clinical symptoms often complicate differential diagnosis between 

patients with Alzheimer’s disease (AD) and behavioral variant frontotemporal 

dementia (bvFTD). Magnetic resonance imaging (MRI) reveals disease specific 

structural and functional differences that aid in differentiating AD from bvFTD 

patients. However, the benefit of combining structural and functional connectivity 

measures to – on a subject-basis - differentiate these dementia-types is not yet known.  

Methods: 

Anatomical, diffusion tensor (DTI), and resting-state functional MRI (rs-fMRI) of 30 

patients with early stage AD, 23 with bvFTD, and 35 control subjects were collected 

and used to calculate measures of structural and functional tissue status. All measures 

were used separately or selectively combined as predictors for training an elastic net 

regression classifier. Each classifier’s ability to accurately distinguish dementia-types 

was quantified by calculating the area under the receiver operating characteristic 

curves (AUC). 

Results: 

Highest AUC values for AD and bvFTD discrimination were obtained when mean 

diffusivity, full correlations between rs-fMRI-derived independent components, and 

fractional anisotropy (FA) were combined (0.811). Similarly, combining gray matter 

density (GMD), FA, and rs-fMRI correlations resulted in highest AUC of 0.922 for 

control and bvFTD classifications. This was however not observed for control and 

AD differentiations. Classifications with GMD (0.940) and a GMD and DTI 

combination (0.941) resulted in similar AUC values (P=0.41). 

Conclusion: 
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Combining functional and structural connectivity measures improve dementia-type 

differentiations and may contribute to more accurate and substantiated differential 

diagnosis of AD and bvFTD patients. Imaging protocols for differential diagnosis 

may benefit from also including DTI and rs-fMRI. 

 

Key words: Alzheimer’s disease, behavioral variant frontotemporal dementia, 

machine learning, classification, differential diagnosis, diffusion tensor imaging, 

fMRI 
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Introduction 
 
Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD) 

are the most common causes of young onset dementia [1–3]. Accurate and confident 

differentiation between these disease types is crucial for the proper management, 

prognosis, and potential treatment of patients with dementia [4–6]. Yet, despite 

distinct clinical diagnostic criteria [1,7], heterogeneity and overlap of clinical 

manifestations often complicate differential diagnosis [8].  

 

Complementary to clinically derived correlates, magnetic resonance imaging (MRI) 

has shown to reveal important disease-specific brain changes that may corroborate 

differential diagnosis on an individual basis [9]. Differences in the extent and location 

of gray matter (GM) and white matter (WM) atrophy have been recognized as 

important markers that distinguish each dementia-type [10–14]. Additionally, varying 

levels of diffusion tensor imaging (DTI)-derived measures elucidate regional 

differences in WM integrity impairment that are specific to AD or bvFTD patients 

[15–17]. It even has been suggested that these integrity impairments may precede or 

facilitate cortical degeneration [18]. However, despite these detectable group 

differences, MRI-based single subject classifications remain challenging. Per subject 

analyses are affected more by between subject variations than group-based analyses 

and it is still unclear which MRI measure contributes most to MRI-based dementia-

type classifications [18–20]. Particularly in the earlier disease stages, accurate 

dementia-type classifications based on structural neuroimaging alone may be 

hampered by atrophy and tract specific deficit patterns that overlap or are hardly 

distinguishable [17,21,22].  
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Functional connectivity measures may inform on dementia state [23–25] or dementia 

progression [23–25] even well before clinical or structural differences can be detected 

[25,26]. Differences in functional connectivity strengths as measured with resting-

state functional MRI (rs-fMRI) have been heralded as early and useful markers to 

differentiate AD and bvFTD patients [27,28]. However, the contribution of rs-fMRI 

measures as a (complementary) measure to differentiate dementia-types on an 

individual basis is still largely unclear [27,29,30].  

 

It may be argued that one single MRI-derived measure may not sufficiently capture 

the complex pathophysiological processes that underlie dementia development. 

Multiparametric MRI-based statistical algorithms integrate various MRI measures to 

compute a single, quantitative probabilistic index and have shown to be more accurate 

in differentiating cognitively healthy from demented patients than single MRI 

measure-based algorithms alone [18,19,29,31,32]. We speculate that MRI-based 

classification algorithms that differentiate dementia-types benefit from integrating 

structural and functional connectivity measures. In this study we therefore aimed to 

determine the diagnostic accuracy of MRI-based classification algorithms to, on a 

subject basis, differentiate between AD and bvFTD patients, when combining 

measures derived from anatomical MRI, DTI, and rs-fMRI. 
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Methods 
 

Participants 

This two-center study involved a retrospective analysis of data previously published 

[18,28] and was conducted in accordance with regional research regulations and 

conformed to the Declaration of Helsinki. Local medical ethics committees of both 

centers approved the study and all patients gave written informed consent for their 

clinical and biological data to be used for research purposes. 

For this study, we selected 37 patients with probable AD and 28 patients with bvFTD, 

who visited either the Alzheimer Center of the VU University Medical center (VUmc) 

(AD: n=22, bvFTD: n=19) or the Alzheimer Center of the Erasmus University 

Medical Center Rotterdam (EMC) (AD: n=15, bvFTD: n=9). In addition, we included 

40 cognitively normal controls that were recruited by local newspaper advertisements 

(VUmc: n=22; EMC: n=18).  

Patients underwent a standardized one-day assessment including medical and 

informant-based history, medical history (dementia, psychiatry, cardiovascular) of 

first-degree relatives, physical and neurological examination, blood tests, 

neuropsychological assessment, and brain MRI. Diagnoses were made in a 

multidisciplinary consensus meeting according to the core clinical criteria of the 

National Institute on Aging and the Alzheimer’s Association workgroup for probable 

AD [7] and according to the clinical diagnostic criteria of FTD for bvFTD [1]. To 

minimize center effects, all diagnoses were re-evaluated in a panel that included 

clinicians from both centers. Controls were screened for memory complaints, family 

history of dementia, drugs- or alcohol abuse, major psychiatric disorder, and 

neurological or cerebrovascular diseases. They underwent an assessment that included 
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medical history, physical examination, neuropsychological assessment, and brain 

MRI comparable to the patient work-up.  

For both cohorts inclusion criteria were: (1) age between 40 and 80 years and (2) 

availability of a T1-weighted 3-dimensional MRI (3DT1w) scan, a diffusion tensor 

imaging (DTI) dataset, and a rs-fMRI T2*-weighted scan. Exclusion criteria were: (1) 

large image artifacts (n=7); (2) failure of imaging analyzing software to process MR 

scans (n=10); and (3) gross brain pathology other than atrophy, including severe white 

matter hyperintensities and/or lacunar infarctions in deep gray matter structures.  

 

MRI acquisition and review 

Patients and controls of the VUmc cohort were scanned at the VUmc Amsterdam 

using a 3T MRI scanner (Signa HDxt, GE Healthcare, Milwaukee, WI, USA) with an 

8-channel head coil with foam padding to restrict head motion. Patients and controls 

of the EMC cohort were scanned at the Leiden University Medical Center (LUMC) 

using a 3T MRI scanner (Achieva, Philips Medical Systems, Best, The Netherlands) 

with an 8-channel SENSE head coil. MRI sequence parameter settings are detailed in 

Supplementary Table 1. In brief, the imaging protocol included a whole-brain near-

isotropic 3D T1-weighted (3DT1w) sequence for cortical and subcortical tissue-type 

segmentation, a diffusion tensor imaging (DTI) sequence for assessments of white 

matter integrity, and a resting state functional MRI T2*-weighted MRI for the 

calculation of functional connectivity measures. Participants were instructed to lie still 

with their eyes closed and not to fall asleep during rs-fMRI. Additionally, a 3D fluid 

attenuated inversion recovery, dual-echo T2-weighted, and susceptibility weighted 

imaging datasets were acquired to allow for review of brain pathology other than 

atrophy by an experienced radiologist. 
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MRI preprocessing 

Preprocessing of 3DT1w images involved non-uniformity correction [33] and 

segmentation of parenchymal tissue signal from surrounding tissue [34]. Images were 

then spatially aligned to the MNI152 2x2x2 mm T1 template (Montreal Neurological 

Institute, Canada) using a non-linear registration procedure with a warp resolution of 

10 mm [35].  Voxel-wise densities GM, WM, and cerebrospinal fluid (CSF) were 

determined with the initial steps of the voxel-based morphometry pipeline of the 

Statistical Parametric Mapping toolbox (SPM12; Functional Imaging Laboratory, 

University College London, London, UK)[36] implemented in MATLAB R2015b 

(MathWorks, Natick, MA). Except for manual placement of the image’s origin 

approximately on the anterior commissure and applying the light cleanup option to 

remove any remaining non-brain tissue, default settings were used for tissue-type 

segmentations. Deep gray matter (DGM) structures including the bilateral thalamus, 

caudate nucleus, putamen, globus pallidus, nucleus accumbens, amygdala, and left 

and right hippocampus were separately identified using a dedicated registration and 

segmentation procedure with default settings [37].  

 

For DTI, preprocessing included motion and eddy-current induced distortion 

correction and gradient vector direction correction [38]. The corrected DTIs were 

subsequently used to voxel-wise calculate measures of fractional anisotropy (FA), 

mean diffusivity (MD), axial diffusivity ( ; largest eigenvalue), and radial 

diffusivity ( ; average of the two eigenvalues 2 and 3) using weighted least 

square fitting [39]. The tract-based spatial statistics (TBSS) pipeline was used to 

create a study-specific TBSS-skeleton, by non-linearly aligning all FA maps to the 
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FMRIB58_FA template [40]. The derived skeleton was thresholded at 0.2 to ensure 

values originated from WM tissue (see below).  

 

For rs-fMRI, preprocessing included motion correction [41], brain extraction, spatial 

smoothing using a Gaussian kernel with a full width half maximum of 3 mm, grand 

mean intensity normalization, motion artifact removal, and high-pass temporal 

filtering (cutoff frequency = 0.01Hz).  Motion artifacts were removed from the data 

using the ICA-based automatic removal of motion artifacts (ICA-AROMA (vs0.3-

beta)) procedure [42]. Subsequently, the rs-fMRI volumes were linearly aligned to the 

corresponding 3DT1w [43]. Spatial alignments to the MNI152 template were achieved 

by concatenating the registration parameters of the previous step with the nonlinear 

parameters from the 3DT1w to the MNI152 template. 

 

All registration and segmentation steps were critically reviewed and errors were 

corrected accordingly.  

 

Feature extraction 

Two anatomical atlases were used to parcellate the entire brain. These atlases were 

used to extract, in each subject’s native space, cortical and subcortical GM and WM 

features from the structural 3DT1w-images. The 48 cortical regions of the Harvard–

Oxford (HO) probabilistic anatomical brain atlas were split into left and right 

hemisphere regions, resulting in 96 distinct cortical regions that covered the complete 

cortical GM [44]. For WM regional analysis, we selected 20 WM tract regions from 

the probabilistic Johns-Hopkins-University (JHU) white-matter tractography atlas 

[45]. Voxel probability values less than 25% were excluded. The remaining values 
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were used to weight the WM or GM densities. Weighted GM densities were 

calculated by weighting the GM segmentations by the probability of a voxel being 

part of that specific HO brain atlas-derived region. Weighted WM densities were 

calculated by weighting the WM segmentations by the probability of a voxel being 

part of that specific JHU brain atlas-derived tract. This way we emphasized the 

regions’ likelihood of being GM or WM without introducing bias resulting from 

conservatively selecting brain regions. For DGM regions, the dedicated segmentations 

of DGM, hippocampus, and amygdala were used to calculate the regional volumes 

normalized by intracranial volume to compensate for individual differences in brain 

volume [46]. This resulted in a feature vector of 110 GMD values (96 cortical GMD 

values and 14 DGM volumes), and a feature vector of 20 average WMD values per 

subject. 

 

DTI-based features were calculated by, on a voxel-wise basis, projecting each 

subject’s FA, MD, AxD, or RD values on to the TBSS group skeleton. Analogous to 

the anatomical WMD features, the 20 WM tracts of the probabilistic JHU white-

matter tractography atlas were used to calculate a weighted mean FA, MD, AxD, and 

RD per tract per subject. This resulted in 4*20 feature vectors of mean FA, MD, AxD, 

and RD values per subject.  

 

The functional connectivity features were calculated by combining all processed rs-

fMRI datasets in a temporally concatenated independent component analysis (ICA) 

[47], with dimensionality fixed at 70 components and an ICA threshold of 0.99 [48]. 

This meant that each voxel included in the ICA map was 99 times more likely to be 

part of that component than to be caused by Gaussian background noise. For each 
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subject, we calculated the mean time course for each component, weighted by the 

ICA weight map and GM probability of that component’s region. These mean time 

courses were subsequently used to determine the functional connectivity of a 

component with the 69 other components. Functional connectivity was either 

expressed as full correlations (corr) or as sparse L1-regularized partial correlations 

(pcor) between the components' time courses. Partial correlations were calculated 

using the graphical lasso algorithm [49]. Both functional connectivity measures 

resulted in two feature vectors of each (70*69)/2=2415 (partial) correlations per 

subject. 

 

Differential classification 

These feature vectors were subsequently used to train an elastic net regression 

algorithm with default settings to provide a statistically sound solution for the 

imbalance between a large number of features and a small number of subjects. An 

elastic net regression model estimates a sparse regression model that selects a subset 

of all the features provided as input by imposing feature selection and feature weight 

penalties during regression, effectively selecting only those features relevant for 

classification [50–52]. A cross validation procedure was used to determine the 

optimal set of penalty parameters and generalized classification performance of the 

elastic net classifiers. Cross-validation reduces classification bias by iteratively 

subdividing the data in separate test and training sets. In this study we used two 

nested, 10-fold cross validation loops. The first, outer, loop was used to determine the 

overall classification performance, while the second, inner, loop subdivided the 

training set further to determine the lowest binomial deviance that corresponded with 

the best operational parameters for the penalty terms (including the optimal number of 
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features) without overestimating classification performance [53,54]. This process was 

repeated 10 times to ascertain that each subject was part of the test set exactly once. 

To ensure that estimated feature regression coefficients were conditional on subject 

age and gender and to adjust for scanner effects, age, gender, and center were 

included into the model without any penalty. For AD and bvFTD differentiations, 

models were furthermore made conditional on disease severity by also including 

disease duration (in months). The entire classification procedure was repeated 50 

times to reduce variance resulting from random partitioning in training and test folds, 

and to report the range of observed outcomes under different train and test conditions.  

 

We trained three types of classification models following the above-described 

procedures. One model aimed to differentiate AD from bvFTD patients. To 

contextualize the classification performance values of this model, we also trained two 

additional models. A second model aimed to differentiate control subjects from 

bvFTD patients, and a third model to differentiate control subjects from AD patients 

For each subject, these models produced a predicted value between 0 and 1. The 

higher the predicted value the more likely this subject belongs to the bvFTD- group or 

AD group in case of the control versus AD model.  

 

Classification performance 

Classification performances were quantified using a threshold-independent measure 

based on receiver-operating characteristic (ROC) analyses. After each 10-fold nested 

cross-validation, the predictions were used to calculate ROC curves by continuously 

increasing a threshold between 0 and 1 and for each threshold classifying a subject 

either as control, AD, or bvFTD patient, depending on the model being evaluated. 
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These classifications were then compared with the subject’s actual differential 

diagnosis. The area under this ROC curve (AUC) was calculated as a measure of 

classification performance insensitive to the distribution of each patient group [55]. 

Additionally, we calculated the optimal operating point on each curve to calculate the 

model’s accuracy, sensitivity, and specificity given equal class distribution and equal 

penalty for false positive and false negative predictions. Reported AUC, accuracy, 

sensitivity, and specificity values are averages obtained from repeating the cross-

validation 50 times. 

 

Multiparametric classifications 

To determine whether combining multiple MRI measures improved classification, we 

first assessed classification performance for each single measure separately by 

alternately providing all features of that specific measure (i.e. 110 GMD, 20 WMD, 

20 FA, 20 MD, 20 AxD, 20 RD, 2514 corr, or 2514 pcor features) as input for cross-

validation. Subsequently, we step-wise concatenated measures each time adding all 

features of a new measure to the best performing measure combination (i.e. highest 

AUC) of the previous step till all measures and thus all features were included into the 

model. The model subsequently determined the importance of each feature by 

assigning the proper weight. 

 

All classification analyses and evaluations were implemented in R (R core 2010, 

GLMnet package) [51]. 

 

Statistical analysis 
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Statistical analyses of between-group differences were performed using SPSS (IBM 

SPSS Versions 22.0, IBM, Amonk, NY). Demographic group differences between 

age, MMSE, and disease duration were assessed using analysis of variance 

(ANOVA). Sex and center distributions were assessed with χ2 tests. Permutation 

testing was used to determine whether single or multiparametric models performed 

above-chance level (one-tailed, N=5000). The maximum statistic method was used 

for family-wise error correction [56]. A bootstrap percentile method was used to 

compare ROC curves of single measures (two-tailed, N=5000), and between single 

measures and the best performing multiparametric combination (one-tailed, N=5000) 

[57,58]. False discovery rate correction within each patient-group was used to correct 

for multiple comparisons. P<0.05 was considered statistically different. 

 

Results 

Demographics 

For this study, 88 subjects met the inclusion criteria. Thirty AD subjects were 

diagnosed with probable AD, 23 patients with bvFTD. Thirty-five control subjects 

were included for classification performance evaluation of the classification models 

involving control subjects. MMSE values of control subjects were higher than those 

of patients. MMSE values of AD patients were comparable to those of bvFTD 

patients (Table 1).  

 

Classification performance: AD versus bvFTD 

For AD and bvFTD differentiations, combining multiple MRI measures within a 

multiparametric classification model resulted in higher mean AUC values than those 

with models that were based on single MRI-based measures only (Figure 1; Table 2). 
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The level of AUC values was however conditional on the combination being 

considered. After step-wise adding multiple MRI-derived measures to the best 

performing single MRI measure model (i.e. MD: 0.708 [0.625-0.775] (mean AUC 

[min-max]); Table 2 underlined), highest AUC, sensitivity, and specificity values 

were obtained for a classification model that included MD, full correlations, and FA 

(0.811 [0.755 – 0.862]; Table 2: bold; Table 3: bold). When comparing the single 

measure-based classifications, AUC values of the single measure-based classifications 

were not significantly different. However, AUC values obtained with the 

multiparametric model were significantly higher compared with those obtained with 

single MRI measure-based models (Table 3), except for MD-based classifications 

(P=0.06).  

 

Classification performance: control versus dementia 

MRI measures that resulted in highest classification performance rates for control 

versus dementia classifications (i.e. control versus bvFTD or control versus AD) were 

different from those obtained with AD versus bvFTD classifications. For control and 

bvFTD classifications highest AUC, sensitivity, and specificity values were found for 

a multiparametric model that included measurements of FA, GMD, and full 

correlations (0.922 [0.877-0.954]; Table 4: bold; Supplementary Table 2: bold). AUC 

values of this multiparametric model were significantly higher than those obtained 

with single MRI measure-based models, except for FA- (0.862 [0.810-0.903], P=0.08) 

and GMD-based (0.858 [0.827-0.896], P=0.11) classifications (Table 4). For 

classifications between control subjects and AD patients on the other hand, 

classification performance values of a combination of GMD and DTI measures (0.941 

[0.910-0.966]) were not better than classifications based on GM measurements only 
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(0.940 [0.913-0.962] P=0.41) (Table 5, Supplementary Table 3). While the 

combination outperformed the other single measure-based classifications, GMD-

based classifications were also better than all other single MRI measure classification 

except for RD-based classifications (0.832 [0.784-0.865], P=0.10). 

 

Features selected 

MRI-derived measures outweighed the contribution of gender, age, and center to the 

classification. AD and bvFTD differentiations using gender, age, and center 

distributions only did not outperform random chance (AUC=0.596, P=0.12). AUC 

values of the best performing AD versus bvFTD model (i.e. combination of MD, full 

correlations, and FA) were similar to classifications where age (P=0.89), gender 

(P=0.70), or center (P=0.14) was excluded as a covariate. Identical AUC values were 

also obtained when these covariates were excluded from the best performing control 

versus bvFTD model (i.e. combination of FA, GMD, and full correlations: age 

P=0.10, gender P=0.65, center P=0.50) or control versus AD model (i.e. combination 

of GMD, AxD, FA, RD, MD: age P=0.60, gender P=0.64, center P=0.79).  

 

Nested cross-validation resulted in models that selected a subset of all the MRI 

features provided as input for classification. The best performing AD versus bvFTD 

model selected 5% of all the MD, full correlations, and FA features provided for 

classification. This model focused on differences in uncinate fasciculus, forceps 

minor, cingulum bundle, cortical spinal tracts, and altered functional connectivity 

with the dorsal default mode-network. In contrast, the control versus dementia models 

also included GM regions for classification. The best performing control versus 

bvFTD model selected 3% of all provided features and considered anterior thalamic 
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radiation, cortical spinal tract, inferior longitudinal fasciculus, and hippocampal 

regions as key regions for classification. The best performing control versus AD 

model selected 37% of all the features provided and primarily focused on volume 

differences in DGM structures including the hippocampus, nucleus accumbens, 

pallidum, and thalamus. 

Discussion 
 

This study investigated the diagnostic accuracy of MRI-based classification 

algorithms to - on a subject basis – differentiate between AD and bvFTD patients 

using anatomical MRI, DTI, and rs-fMRI. Our study showed that, classification 

algorithms that combine measures of DTI and rs-fMRI are more effective in 

discriminating AD from bvFTD patients than algorithms that use DTI, GMD, or rs-

fMRI measures separately. Furthermore, when compared with classification models 

that aim to differentiate patients from controls we found that the level of improvement 

was conditional on MRI measure and dementia-type differentiation being considered.  

 

GM- and DTI-derived measures have been heralded as important corroborating 

measures for differentiating AD and bvFTD patients [15,18,19,31]. Classification 

methods that combined these measures invariably showed improvement of 

classification accuracy over models that used these measures separately [15,18,31]. 

We also found that combining measures improves classification accuracy. However, 

we found highest classification rates when DTI and rs-fMRI measures were 

combined. GM-based values contributed - either as a single (for AD) or 

complementary measure (for bvFTD) - to the differentiation of dementia versus 

control subjects, but not to the discrimination of AD and bvFTD patients. Differential 
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diagnosis between dementias may be challenged by overlapping GM atrophy patterns 

particularly in subcortical regions [21,22]. Both best performing dementia versus 

control models considered volume reductions in subcortical regions like the 

hippocampus as decisive regions for classification and may therefore have had little 

contribution in the differentiation between the dementia-types. Distinct 

microstructural changes in WM may be potential markers for bvFTD. Compared with 

AD patients, bvFTD patients show distinct differences in diffusion especially in key 

regions like uncinate fasciculus, genu of the corpus callosum, and cingulum bundle 

[16,17,59]; differences that may even precede cortical degeneration [26]. In line with 

these findings, we found that the best performing bvFTD classification models 

specifically focused on these regions of DTI-derived WM pathology. We also found 

that AD versus bvFTD classifications improved when rs-fMRI measures were added. 

Altered connectivity measurements mainly with the dorsal default mode network 

regions were considered important and in the end increased classification 

performance rates. This corresponds with other work that showed that connectivity 

deviations of the default mode network alongside salience / executive control network 

contrast between AD and bvFTD patients [12,27,28,60]. Nevertheless, the role of rs-

fMRI as a separate measure for disease-type classifications has not yet been 

established. It has found limited application for single subject disease-type 

classifications [27,29,30,32]. In AD versus control classifications its performance 

rates are consistently among the lowest compared with other MRI measures 

[29,30,32] and we also found that rs-fMRI as a single measure was neither effective 

in differentiating dementia types nor between patients and controls subjects. 

 

We first trained classifications models with varying combinations of MRI measures to 
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differentiate AD from bvFTD patients. Subsequently, we trained models that aimed to 

differentiate AD or bvFTD patients from cognitively healthy controls in order to 

assess classification model accuracy under conditions where large MRI-based 

differences are expected [10,14,15,17,18,28]. Combining MRI-derived structural and 

functional measures improves bvFTD classifications. The level of improvement is 

however dependent on the dementia-types and MRI measures being considered. 

Substantial improvement was for instance not observed for AD versus control 

classifications while others did [29,32] or did not show benefit [30] from GM, DTI, 

and rs-fMRI measures. Furthermore, in line with previous work, we observed that 

concatenating all measures did not result in the most accurate classification model and 

as more measures were added the level of improvement became less apparent 

[29,31,61]. The marginal improvements observed for some measures or combinations 

may indicate a negligible contribution to the model. These may result from variability 

due to non-stationarities like correlation across features and samples within our data. 

[62] These measures are most likely of clinically insufficient added relevance, and 

may not justify the additional processing time.  

 

Overall, classification performance values for dementia-type differentiations where 

consistently lower than dementia versus control subject differentiations. Dementia 

type classifications remain challenging. Compared with control versus patient 

comparisons, differences between patients are more subtle and, particularly in the 

earlier stages of the disease, may be hindered by overlapping patterns of GM atrophy 

[21,22,63], WM integrity impairment [17], or comparable patterns of functional 

connectivity loss in specific functional network regions [12,28]. It remains 

questionable whether any of these algorithms can fully capture the complexity of 
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structural and functional dynamics of neurodegenerative processes underlying 

dementia. We speculate that other algorithms that utilize more sophisticated feature 

combination approaches, like sparse group lasso models [61], or hierarchical or 

longitudinal algorithms that aim to differentiate patients from a general population in 

order to subsequently differentiate between dementia-types may further exploit and 

weigh the additional information from multiple measures [64]. Incorporating other or 

additional imaging-derived biomarkers as cerebral blood flow [65], amplitude of low 

frequency fluctuations [32], GM derived connectomics [19], or diffusion tractography 

derived graph-based analytics [61] may further contribute to MRI-based dementia-

type classification estimates without increasing diagnostic complexity. 

 

In our analysis, we took several steps to reduce classification bias and augment 

generalizability of our results. First, while specific functional network connections 

were found to deviate between AD and bvFTD patients [12,27,28,60], we 

hypothesized that restricting our analysis to specific network regions may introduce 

bias and may unnecessary exclude other regions that show deficits at different stages 

of the disease [23,24,52,66]. The number of network regions that need to be 

distinguished to optimally differentiate between dementia-types still needs 

clarification. ICA dimensionality continues to be an actively debated topic and is a 

trade-off between detail in functionally connected regions and feature space 

dimensionality. Second, we employed a repeated nested cross validation approach in 

which two levels of data segregation ensured unbiased operational parameter 

optimization and classification performance estimation [53]. Thirdly, for 

classification, we used regularized regression to establish homogeneous and stable 

dementia type estimates and to accommodate proper selection of relevant features 
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despite high dimensionality and collinearity of our data [52]. Our study was limited 

by the clinical diagnoses used to validate the differentiations. While our 

multidisciplinary, multicenter team carefully diagnosed each patient according to the 

newest criteria for AD [7] or bvFTD [1], uncertainty in the diagnosis remains. 

Overlapping clinical symptoms may complicate dementia-type differentiations [8] 

and postmortem pathological data to confirm the diagnosis were unavailable. 

Furthermore, we included patients with possible and probable FTD diagnosis to 

maximize our patient cohort. This may have increased the complexity of our 

classifications. We included relatively young patients who were diagnosed in a 

relatively early stage of the disease, therefore likely to have less apparent structural or 

functional deficits. Nevertheless, we were able to differentiate bvFTD patients from 

controls with high accuracy. Further validations with larger, multicenter cohorts are 

necessary to contextualize and compare our findings. The trained models depend on 

both random and non-random class differences in the training sample and especially 

in light of our limited population sizes, we cannot reliably differentiate between real 

and random class differences in the trained models [62]. Consequently, we refrained 

from biological interpretation of the model’s parameters, speculating on the exact 

measure order, and cautiously interpreted the features selected for classification. 

 

In conclusion, in this study we investigated whether multiparametric MRI improves 

MRI-based differential diagnosis of dementia-types with overlapping clinical 

symptoms. We found that combining multiple MRI-derived measures of structural 

and functional connectivity improve MRI-based differentiations between bvFTD and 

AD patients. Our results imply that current MRI protocols for differential diagnosis of 

AD or bvFTD may benefit from adding functional and diffusion connectivity 
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measures complementary to the anatomical (GM-based) measurements already being 

acquired. Yet, the MRI measures and dementia-types being differentiated should be 

carefully considered to attain most optimal result. These results furthermore highlight 

the potential of these multiparametric imaging-based classification algorithms to aid 

in and possibly improve diagnosis, particularly in situations where experienced 

neuroradiologists or other supporting diagnostic measures are available to a limited 

extent. Further analysis should reveal how these results generalize to larger cohorts, to 

cases where patients' symptoms are less conspicuous, or involve subjects in a pre-

symptomatic disease stage. Nevertheless, these observations may serve as a first 

guidance towards integrating quantitative imaging-based measures that may 

contribute to more confident per subject differential diagnoses and subsequent 

tailored patient care. 
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Tables 
 
Table 1. Demographics.  

 Control AD bvFTD 

N 35 30 23 

Age 60.8±6.1 66.9±7.8* 63.5±7.6 

Sex (female, n, %) 16 (45.7%) 12 (40.0%) 6 (26.1%) 

MMSE 28.8±1.5 23.4±3.1* 24.5±3.2* 

Disease duration (months) 0.0±0.0 35.2±24.9* 52.9±52.1* 

Center (VUMC, n, %) 21 (60.0%) 20 (66.7%) 16 (69.6%) 

 

*versus control subjects, p<0.01 

Mean ± standard deviation or n (%). AD: Alzheimer’s disease, bvFTD: behavioral 

variant frontotemporal dementia, MMSE: mini-mental state examination. 
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Table 2. Mean AUC values for AD versus bvFTD classifications using single or combination of multiple MRI-derived measures 

 

 MRI Measure 

 Combined with: MD corr FA GMD AxD pcor RD WMD 

- 0.708 0.674 0.623 0.614 0.636 0.561 0.652 0.614 

MD  0.803 0.707 0.637 0.656 0.631 0.665 0.712 

MD + corr   0.811 0.806 0.801 0.800 0.805 0.809 

MD + corr + FA    0.806 0.797 0.805 0.803 0.806 

MD + corr + FA + GMD     0.807 0.802 0.804 0.800 

MD + corr + FA + GMD + AxD      0.810 0.805 0.808 

MD + corr + FA + GMD + AxD + pcor       0.803 0.801 

MD + corr + FA + GMD + AxD + pcor + RD        0.801 

 

 

Multiparametric models result from stepwise adding measures to the best performing classification model of the previous step, starting with the 

best performing single MRI measure (i.e. MD, underlined). Bold: best performing model. Italic: mean AUC significantly above chance level 
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after family-wise error rate correction. GMD: gray matter density, WMD: white matter density, FA: fractional anisotropy, MD: mean diffusivity, 

AxD: axial diffusivity, RD: radial diffusivity, corr: full correlations between ICA components, pcor: L1-regularized partial correlations between 

ICA components, AUC: area under the ROC curve.
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Table 3. Classification performance values of AD versus bvFTD classifications using single or multiple MRI-derived measures. 

Measure AUC Min - Max Sensitivity Specificity Accuracy Cutoff 

GMD 0.614* 0.535 - 0.722 0.642 0.651 0.647 0.448 

WMD 0.614* 0.533 - 0.712 0.657 0.635 0.645 0.451 

FA 0.623* 0.530 - 0.725 0.670 0.635 0.650 0.449 

MD 0.708# 0.625 - 0.775 0.740 0.710 0.723 0.439 

AxD 0.636* 0.554 - 0.713 0.672 0.649 0.659 0.435 

RD 0.652* 0.557 - 0.730 0.710 0.652 0.677 0.434 

corr 0.674#* 0.599 - 0.767 0.656 0.657 0.657 0.455 

pcor 0.561* 0.455 - 0.639 0.597 0.652 0.628 0.448 

MD + corr + FA 0.811## 0.755 - 0.862 0.746 0.801 0.777 0.425 

 

Mean, minimum, and maximum area under the ROC curve (AUC) after 50 times 10-fold cross-validation. Bold: best performing model, 

Underlined: best performing single measure-based model. Mean sensitivity, specificity, and classification accuracy were derived from the 
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optimal operating point on the ROC (cutoff). GMD: gray matter density, WMD: white matter density, FA: fractional anisotropy, MD: mean 

diffusivity, AxD: axial diffusivity, RD: radial diffusivity, corr: full correlations between ICA components, pcor: L1-regularized partial 

correlations between ICA components, AUC: area under the ROC curve. *P<0.05 versus multiparametric model, #P<0.05 versus chance, 

##P<0.001 versus chance.



 40 

Table 4. Classification performance values of control versus bvFTD classifications using single or multiple MRI-derived measures. 

 

Measure AUC Min - Max Sensitivity Specificity Accuracy Cutoff 

GMD 0.858## 0.827 - 0.896 0.806 0.865 0.841 0.400 

WMD 0.584* 0.504 - 0.655 0.601 0.633 0.620 0.399 

FA 0.862## 0.810 - 0.903 0.842 0.845 0.844 0.427 

MD 0.614*# 0.508 - 0.708 0.628 0.621 0.624 0.399 

AxD 0.723*# 0.599 - 0.779 0.676 0.727 0.707 0.396 

RD 0.809*## 0.763 - 0.858 0.793 0.765 0.776 0.383 

corr 0.648* 0.534 - 0.716 0.649 0.658 0.654 0.387 

pcor 0.613* 0.504 - 0.729 0.563 0.708 0.651 0.414 

FA + GMD + corr 0.922 0.877 - 0.954 0.867 0.896 0.884 0.437 
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Mean, minimum, and maximum area under the ROC curve (AUC) after 50 times 10-fold cross validation. Bold: best performing model. 

Underlined: best performing single measure-based model. Mean sensitivity, specificity, and classification accuracy were derived from the 

optimal operating point on the ROC (cutoff). GMD: gray matter density, WMD: white matter density, FA: fractional anisotropy, MD: mean 

diffusivity, AxD: axial diffusivity, RD: radial diffusivity, corr: full correlations between ICA components, pcor: L1-regularized partial 

correlations between ICA components, AUC: area under the ROC curve. Bold: best performing model, *P<0.05 versus multiparametric model, 

#P<0.05 versus chance, ##P<0.001 versus chance. 
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 Table 5. Classification performance values of control versus AD classifications using single or multiple MRI-derived measures. 

Measure AUC Min - Max Sensitivity 

Specificit

y Accuracy Cutoff 

GMD 0.940## 0.913 - 0.962 0.901 0.899 0.900 0.384 

WMD 0.722##§* 0.644 - 0.770 0.691 0.671 0.681 0.406 

FA 0.777§* 0.734 - 0.811 0.745 0.729 0.736 0.435 

MD 0.670#§* 0.601 - 0.734 0.623 0.713 0.671 0.512 

AxD 0.790§* 0.731 - 0.821 0.704 0.787 0.749 0.459 

RD 0.832* 0.784 - 0.865 0.827 0.749 0.785 0.369 

corr 0.708#§* 0.641 - 0.738 0.631 0.792 0.718 0.527 

pcor 0.657§* 0.621 - 0.704 0.630 0.677 0.655 0.481 

GMD + AxD + FA + RD + MD 0.941 0.910 - 0.966 0.898 0.904 0.901 0.402 
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Mean, minimum, and maximum area under the ROC curve (AUC) after 50 repetitions. Bold: best performing model. Underlined: best 

performing single measure-based model. Mean sensitivity, specificity, and classification accuracy were derived from the optimal operating point 

on the ROC (cutoff). GMD: gray matter density, WMD: white matter density, FA: fractional anisotropy, MD: mean diffusivity, AxD: axial 

diffusivity, RD: radial diffusivity, corr: full correlations between ICA components, pcor: L1-regularized partial correlations between ICA 

components, AUC: area under the ROC curve. Bold: best performing model, *P<0.05 versus multiparametric model, §P<0.05 versus GMD, 

#P<0.05 versus chance, ##P<0.001 versus chance. 
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Figure 1. Receiver-operating characteristic curves of classifications between AD and bvFTD patients. 

For each differential diagnosis, measurements of gray matter density (GMD), white matter density 

(WMD), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AxD), radial diffusivity 

(RD), full correlation between rs-fMRI derived independent components (cor), and L1-regularized 

partial correlation between rs-fMRI-derived independent components (pcor) were separately assessed. 

The multiparametric curve resulted from step-wise combining MRI measures, each time adding a 

measure to the combination with the highest AUC values of the previous step. Highest AUC was 

obtained by combining MD, corr, and FA measurements (mean AUC [min-max]) 0.811 [0.755 – 

0.862]). The diagonal line represents random classification performance. 
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Supplementary Material 

Supplementary Table 1. MRI sequence parameter settings 

 Slices TR (ms) TE (ms) Flip Angle (°) Matrix (mm) Voxel size (mm) Duration (min) 

VUmc (Signa HDxt, GE Healthcare)     

3DT1w 180 7.8  3 12 256 x 256 0.98 x 0.98 x 1.00 4.57 

DTI* 45 13000 87.8 90 128 x 128 2.00 x 2.00 x 2.40 7.48 

rs-fMRI 34 1800 35 80 64 x 64 3.30 x 3.30 x 3.30^ 6.04 

LUMC (Achiva, Philips Medical Systems)    

3DT1w 140 9.8 4.6 8 256 x 256 0.88 x 0.88 x 1.20 4.57 

DTI# 70 8250 80 90 128 x 128 2.00 x 2.00 x 2.00 8.48 

rs-fMRI 38 2200 30 80 80 x 80 2.75 x 2.75 x 2.99^ 7.28 

Scan protocol of whole-brain near-isotropic 3DT1-weighted (3DT1w), diffusion tensor imaging (DTI), and resting state functional MRI T2*-

weighted MRI (rs-fMRI) on 3T scanners at the VU University Medical center (VUmc) and the Leiden University Medical Center (LUMC). 

* 30 directions, b=1000, one b0 image, # 60 directions, b=1000, five b0 images, ^10% interslice gap
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Supplementary Table 2. Mean AUC values for control versus bvFTD classifications using single or combination of multiple MRI-derived 

measures.  

 MRI Measure 

 Combined with: FA GMD corr WMD AxD pcor MD RD 

- 0.862 0.858 0.648 0.584 0.723 0.613 0.614 0.809 

FA   0.918 0.855 0.825 0.865 0.873 0.861 0.861 

FA + GMD    0.922 0.919 0.920 0.914 0.920 0.918 

FA + GMD + corr     0.920 0.917 0.917 0.918 0.915 

FA + GMD + corr + WMD      0.921 0.917 0.918 0.918 

FA + GMD + corr + WMD + AxD       0.920 0.913 0.920 

FA + GMD + corr + WMD + AxD + pcor        0.916 0.915 

FA + GMD + corr + WMD + AxD + pcor +MD         0.918 
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Mean AUC values from 50 times 10-fold cross-validations. Multiparametric models result from stepwise adding measures to the best performing 

classification model of the previous step, starting with the best performing single MRI measure (i.e. FA, underlined). Bold: best performing 

model. Italic: mean AUC significantly above chance level after family-wise error rate correction. GMD: gray matter density, WMD: white 

matter density, FA: fractional anisotropy, MD: mean diffusivity, AxD: axial diffusivity, RD: radial diffusivity, corr: full correlations between 

ICA components, pcor: L1-regularized partial correlations between ICA components, AUC: area under the ROC curve.  

 



 48 

Supplementary Table 3. Mean AUC values for control versus AD classifications using single or combination of multiple MRI-derived 

measures.  

 MRI measure 

 Combined with: GMD AxD FA RD MD pcor corr WMD 

- 0.940 0.790 0.777 0.832 0.670 0.657 0.708 0.722 

GMD  0.940 0.936 0.935 0.935 0.940 0.938 0.937 

GMD + AxD   0.938 0.938 0.938 0.938 0.936 0.935 

GMD + AxD + FA    0.938 0.935 0.934 0.937 0.936 

GMD + AxD + FA + RD     0.941 0.940 0.936 0.939 

GMD + AxD + FA + RD + MD      0.939 0.936 0.935 

GMD + AxD + FA + RD + MD + pcor        0.937 0.935 

GMD + AxD + FA + RD + MD + pcor + corr         0.936 
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Mean AUC values from 50 times 10-fold cross-validations. Multiparametric models result from stepwise adding measures to the best performing 

classification model of the previous step, starting with the best performing single MRI measure (i.e. GMD, underlined). Bold: best performing 

model. Italic: mean AUC significantly above chance level after family-wise error rate correction. GMD: gray matter density, WMD: white 

matter density, FA: fractional anisotropy, MD: mean diffusivity, AxD: axial diffusivity, RD: radial diffusivity, corr: full correlations between 

ICA components, pcor: L1-regularized partial correlations between ICA components, AUC: area under the ROC curve. 

 


