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Chapter 5

frailtyEM: An R Package for

Estimating Semiparametric Shared

Frailty Models

Abstract

When analyzing correlated time to event data, shared frailty (random e�ect) models are

particularly attractive. However, the estimation of such models has proved challenging.

In semiparametric models, this is further complicated by the presence of the nonpara-

metric baseline hazard. Although recent years have seen an increased availability of soft-

ware for �tting frailty models, most software packages focus either on a small number

of distributions of the random e�ect, or support only on a few data scenarios. frailtyEM
is an R package that provides maximum likelihood estimation of semiparametric shared

frailty models using the Expectation-Maximization algorithm. The implementation is

consistent across several scenarios, including possibly left truncated clustered failures

and recurrent events in both calendar time and gap time formulation. A large number

of frailty distributions belonging to the Power Variance Function family are supported.

Several methods facilitate access to predicted survival and cumulative hazard curves,

both for an individual and on a population level. An extensive number of summary

measures and statistical tests are also provided.

This chapter has been accepted for publication as T.A. Balan and H. Putter (2018). frailtyEM: an R
package for estimating semiparametric shared frailty models. Journal of Statistical Software
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5.1 Introduction

Time-to-event data are very common in medical applications. Often, these data are char-

acterized by incomplete observations. For example, the phenomenon of right censoring

occurs when the actual event time is not observed, but the only thing that is known is

that the event has not taken place by the end of follow-up. Sometimes, individuals enter

the data set only if they have not experienced the event before a certain time point. This

is known as left truncation, which, if not accounted for correctly, leads to bias. Regres-

sion models for such data have been developed in the �eld of survival analysis. The most

popular is the Cox proportional hazards model (Cox, 1972), which is semiparametric in

nature: the e�ect of the covariates is assumed to be time-constant and fully parametric,

while the time-dependent probability of observing an event arises from the nonpara-

metric baseline hazard. Cox regression has been the standard in survival analysis for

a few reasons. First, it does not require any a priori assumptions about the baseline

hazard. Second, under the proportional hazards assumption, maximum likelihood es-

timation can be carried out e�ciently using Cox’s partial likelihood. Nowadays, such

models may be estimated with most statistical software, such as R (R Core Team, 2016)

Stata (StataCorp, 2017), SAS (Inc., 2003) or SPSS (IBM Corp, 2016).

When individuals belong to clusters, or may experience recurrent events, the obser-

vations are correlated. In this case the Cox model is not appropriate for modeling indi-

vidual risk. A natural extension is represented by random e�ect “shared frailty” models.

Originating from the �eld of demographics (Vaupel, Manton, and Stallard, 1979), these

models traditionally assume that the proportional hazards model holds conditional on

the frailty, a random e�ect that acts multiplicatively on the hazard. The variance of the

frailty is usually indicative of the degree of heterogeneity in the data. This makes the

choice of the random e�ect distribution relevant. However, the simplicity that made the

Cox model so popular does not carry over to such models.

Arguably the most popular way of �tting semiparametric shared frailty models is via

the penalized likelihood method (Therneau, Grambsch, and Pankratz, 2003), available

for the gamma and log-normal frailty distributions. This is the standard in the survival
package (Therneau and Grambsch, 2000; Therneau, 2015a) in R, in the PHREG command

in SAS and the streg procedure in Stata. This method has the advantage that it is

generally fast and the Cox model is contained as a limiting case when the variance of

the frailty is 0. However, this algorithm can not be used for estimating other frailty

distributions or left-truncated data, and the provided standard errors are presented under

the assumption that the estimated parameters of the frailty distribution are �xed. Log-

normal frailty models may also be estimated in R via Laplace approximation in coxme
(Therneau, 2015b), h-likelihood in frailtyHL (Do Ha, Noh, and Lee, 2012) or Monte

Carlo Expectation-Maximization phmm (Donohue and Xu, 2013; Vaida and Xu, 2000;

Donohue, Overholser, et al., 2011). Parametric and spline based shared frailty models are

implemented for the gamma and log-normal distributions in the frailtypack package

(Rondeau, Mazroui, and Gonzalez, 2012; Rondeau and Gonzalez, 2005).

In Hougaard, 2000, the Power Variance Function (PVF) family was proposed for mod-
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eling the frailty distribution. This family of frailty distributions includes the gamma, pos-

itive stable (PS), inverse Gaussian (IG) and compound Poisson distributions with mass at

0. Each choice of the distribution for the frailty implies a di�erent marginal model, with

some emphasizing early dependence of the observations (IG) and others late dependence

(gamma). Of particular interest is the PS distribution: with assumed proportional haz-

ards conditional on the frailty, the PS implies proportional hazards also unconditional

on the frailty. This is unlike the other distributions which imply non-proportional haz-

ards at the marginal level. Therefore, this is the only distribution where the potential

violation of the proportional hazards is not confounded with a frailty e�ect.

The software implementation of the the PVF family of distributions so far been lim-

ited. At this time, two R packages incorporate a larger number of distributions from this

family: the frailtySurv package (Monaco, Gor�ne, and Hsu, 2017; Gor�ne, Zucker, and

Hsu, 2006) implements the above mentioned distributions except the PS via a pseudo

full likelihood approach and the parfm package (Munda, Rotolo, and Legrand, 2012)

estimates fully parametric gamma, IG, PS and log-normal frailty models.

In this chapter we present frailtyEM (Balan and Putter, 2017), an R package which

uses the general Expectation-Maximization (EM) algorithm (Dempster, Laird, and Ru-

bin, 1977) for �tting semiparametric shared frailty models. This implementation comes

to complete the landscape of packages that may be used for such models, with support

for the whole PVF family of distributions for the scenarios of clustered failures, clustered

failures with left truncation and recurrent events data. In the latter case, di�erent time

scales are supported, such as calendar time (time since origin of the recurrent event pro-

cess) and gap time (time since previous recurrent event). Point estimates for regression

coe�cients are provided with con�dence intervals that take into account the estimation

of the frailty distribution parameters, and plotting methods facilitate the visualization of

both conditional and marginal survival or cumulative hazard curves with 95% con�dence

bands, marginal covariate e�ects, and empirical Bayes estimates of the random e�ects.

A comparison with respect to functionality between frailtyEM and other R packages is

provided in Table 51.

The rest of this chapter is structured as follows. In Section 5.2 we present a brief

overview the semiparametric shared frailty model, and the implications of left trunca-

tion. In Section 5.3 we discuss the estimation method and its implementation. In Sec-

tion 5.4 we illustrate the usage of the functions from the frailtyEM package on three

classical data sets available in R.

5.2 Model

5.2.1 Shared frailty models

In frailtyEM, the general framework is of I clusters with Ji individuals within cluster i,
i = 1, … , I . The event history of individual j from cluster i is represented by a counting

process Nij , with Nij (t) representing the number of events observed until time t . The
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“at-risk” process Yij (t) is de�ned as 1 when individual (ij) is under observation and 0

otherwise, and a vector of possibly time dependent covariates is denoted as xij (t).
The clustered failures scenario is represented when the Nij (t) ≤ 1 and Yij (t) = 0

after an event or right censoring. The data in cluster i consists of Ji possibly right cen-

sored survival times. If Nij (t) exceeds 1, the case of recurrent events is obtained. In this

scenario, it is considered that each cluster contains only one individual (Ji ≡ 1, with

the corresponding counting process Ni). Calendar time (also known as Andersen-Gill)

models, when the time scale is “time since origin” and gap time models, where the time

scale is “time since the previous event” are commonly employed (Cook and Lawless,

2007). When subject i is no longer under observation, the last time point is typically

considered right censored.

The intensity of Nij (or hazard, in the clustered failure scenarios) is speci�ed as

�ij (t|Zi) = Yij (t)Zi exp(�⊤xij (t))�0(t) (5.1)

where Zi is an unobserved random e�ect common to all observations from cluster i
(the “shared frailty”), � a vector of unknown regression coe�cients and �0(t) ≥ 0 an

unspeci�ed baseline intensity function. It is assumed that the Zi are iid random variables

with a distribution referred to as Z , and that event times are independent given Zi . A

strati�ed model (5.1) may also be speci�ed by specifying di�erent baseline intensities

for di�erent groups of observations. In this case, if individual (i, j) belongs to strata s,
�0(t) is replaced by �0s(t).

We consider the general case where theZ follows a distribution with positive support

from the in�nitely divisible family, i.e., they are i.i.d. realizations of a random variable

described by the Laplace transform

Z (c; �, 
 ) ≡ E [exp(−Zc)] = exp(−� (c; 
 )) (5.2)

with � > 0 and 
 > 0. This formulation includes several distributions, such as the

gamma, positive stable, inverse Gaussian and compound Poisson distributions. This

so-called power-variance-function (PVF) family of distributions have been extensively

studied in Hougaard, 2000. As detailed in Appendix A1, we assume that an identi�ability

constraint is imposed on the parameters � and 
 and that the distribution of Z is indexed

by a scalar parameter � .

5.2.2 Likelihood

Henceforth, we consider the problem of estimating � , �0 and � via maximum likelihood.

This is achieved by maximizing the marginal likelihood, based on the observed data and

obtained by integrating over the random e�ect. For simplicity, we omit potential strata

in this section. From model (5.1), the marginal likelihood is obtained as the product over
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clusters of expected marginal contributions, i.e.,

L(�, �, �0(⋅)) = ∏
i
E� [∏j ∫

∞

0

{
Yij (t)Z exp(�⊤xij (t)�0(t)

}dNij (t)

× exp(−∑j ∫
∞

0
Yij (t)Z exp(�⊤xij (t))�0(t)dt)]

The �rst part reduces to a product of contributions from the observed event times of

the counting processes from cluster i. Denote the k-th observed time corresponding to

the counting process Nij as tijk and �ijk = 1 if tijk is an event time and 0 otherwise.

Let Λ̃i = ∑j ∫
∞
0 Yij (t) exp(�⊤xij (t))�0(t)dt and ni = ∑j ∫

∞
0 Yij (t)dNij (t) the number of

observed events in cluster i. The marginal likelihood can be written as

L(�, �, �0(⋅)) = ∏
i [∏j

∏
k

{
exp(�⊤xij (tijk ))�0(tijk )

}�ijk
] E� [Z

ni exp(−ZΛ̃i)] . (5.3)

By using (5.2), the last term may be expressed in terms of the ni-th derivative of the

Laplace transform, i.e.

E� [Zni exp(−ZΛ̃i)] = (−1)ni
(ni )
Z (Λ̃i).

In frailtyEM, the Breslow estimator is employed for the baseline hazard, i.e., �0(t) ≡ �0t
for t an event time, and 0 otherwise. This is equivalent with estimating ∫ t0 �0(s)ds as a

step function with “jumps” of size �0t at event times.

5.2.3 Ascertainment and left truncation

The problem of ascertainment with random e�ect time-to-event data is usually di�cult.

If Zi is the distribution of the frailty of cluster i and Ai denotes the event of selecting

the observations in cluster i, the random e�ect distribution of cluster i given the ascer-

tainment is of the form Zi |Ai . The Laplace transform of Zi |Ai follows from Bayes’ rule

as

Zi |Ai (c) =
E [P(Ai |Zi) exp(−cZi)]

E [P(Ai |Zi)]
. (5.4)

Expressing P(Ai |Zi) depends on the type of the study at hand and on the way the data

were collected.

In frailtyEM an option is included to deal with the scenario of left truncation for

clustered failures. Consider that from a cluster of size J̃i , Ji ≤ J̃i individuals are se-

lected and Ai is the event “selecting Ji individuals with left truncation times tL,i =
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{
tL,i1… tL,iJi

}
”. Then Ai can be expressed as

P(Ai |Zi) = P(Ti1 > tL,i1, Ti2 > tL,i2...TJi > tL,iJi |Zi).

A hidden assumption here is that the true cluster size J̃i does not depend on the frailty.

For example, if a high frailty is associated with both a high rate of events and smaller

cluster sizes, then the distribution of J̃i |Z must also be considered (Jensen et al., 2004).

Assume that, given Zi , the left truncation times tL,i are independent. In this case,

P(Ai |Zi) =
Ji
∏
j=1
exp(−Zi ∫

tL,ij

0
exp(�⊤xij (t))�0(t)dt) . (5.5)

A di�culty here is that the values of the covariate vector and of the baseline intensity

must be known prior to the entry time in the study. Therefore, only cases when xi is

time constant are considered.

Denote Λ̃L,i = ∑j ∫
tL,ij
0 exp(�⊤xij )�0(t)dt. The marginal likelihood may be obtained

from (5.3), (5.4) and (5.5) as

L(�, �, �0(⋅)) = ∏
i [∏j

∏
k

{
exp(�⊤xij (tijk ))�0(tijk )

}�ijk
] ×

×
E� [Zni exp (−Z(Λ̃L,i + Λ̃i))]

E� [exp(−ZΛ̃L,i)]
.

It can also be seen that, if the frailty distribution is degenerate and has no variability (i.e.

E� may be removed), then the contribution of Λ̃L,i cancels out. In particular, under left

truncation, the Laplace distribution of Z|Ai is given by

Z|A(c) =
(c + Λ̃L,i)
(Λ̃L,i)

. (5.6)

This distribution is often referred to as the frailty distribution of the survivors (Hougaard,

2000). If Z is from the PVF family, it can be shown that Z|A is also in the PVF family. As

a result, if Z is gamma distributed, then also Z|A is gamma distributed.

Note that, in general, the ascertainment scheme does not have a simple description

and P(Ai |Zi) may or may not be available in closed form. For example, in family stud-

ies, the families may be selected only when a number of individuals live long enough

(Rodríguez-Girondo et al., 2018). In this case, (5.5) does not hold. In the case of registry

data on recurrent events, individuals (clusters) may be selected only if they have at least

one event during a certain time window (Balan, Jonker, et al., 2016). These speci�c cases

are not currently accommodated by frailtyEM.
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5.2.4 Analysis and quantities of interest

Inference

In frailtyEM, inference from the likelihood (5.3) is based on the non-parametric infor-

mation matrix. This is obtained by treating each �0(t) ≡ �0t as a �nite-dimensional

parameter. Even though its dimension grows with the number of event time points in

the data, this has been shown to lead to consistent variance estimators (Andersen, Klein,

et al., 1997).

For assessing whether the frailty model is a better �t than the Cox proportional haz-

ards model, the likelihood ratio test may be used. With the parametrizations described

in Appendix A1, this is a problem of testing on the edge of the parameter space, and

the test statistic under the null hypothesis follows asymptotically a mixture of �2(0) and

�2(1) distribution (Zhi, Grambsch, and Eberly, 2005). This test is provided as standard

output in frailtyEM.

The Commenges-Andersen score test for heterogeneity Commenges and Andersen,

1995 is implemented in frailtyEM. It may be applied to a proportional hazards model

as �tted by the coxph function or automatically calculated when estimating a frailty

model. If the null hypothesis of no unobserved heterogeneity is not rejected, it might be

preferable to employ simpler Cox-type models.

Marginal and conditional quantities

Several quantities are of interest in the context of frailty models. For a group of indi-

viduals with covariate vector xij (t) and frailty Zi , the cumulative intensity (hazard) is

de�ned as

Λij (t|Zi) = Zi ∫
t

0
exp(�⊤xij (t))�0(s)ds. (5.7)

The survival function for such individual is given by Sij (t|Zi) = exp (−Λij (t|Zi)). These

quantities are conditional on the random e�ect Zi .
The population-level, or marginal quantities may be obtained by integrating out the

frailty from the conditional ones. The marginal survival is given by

Sij (t) = E� [exp(−Λij (t|Zi))] = Z (∫
t

0
exp(�⊤xij (t))�0(s)ds) . (5.8)

The marginal cumulative intensity is then given by Λij (t) = − log Sij (t). The “baseline”

intensities or survival refer to an individual with xij (t) ≡ 0.
In the simple case of only one binary covariate, we assume that there are two groups,

the baseline with x = 0 and “treatment” group with x = 1. In this case, the estimated �
may be interpreted as the conditional intensity ratio (hazard ratio) between two individu-

als with the same frailty. Under a frailty model, the observed hazard ratio between these

two groups is typically attenuated in time (Aalen, Borgan, and Gjessing, 2008, ch. 6).
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This marginal intensity ratio is calculated as the ratio of the corresponding marginal

cumulative intensities Λij (t).
Several measures of dependence are implemented in frailtyEM. The �rst is the vari-

ance of the estimated frailty distribution Z , which is useful for the gamma and the PVF

family. The variance of log Z is also useful for the positive stable distribution for which

the variance is in�nite. Other measures of association include Kendall’s � and the median

concordance. A thorough discussion and comparison of these measures can be found in

Hougaard, 2000.

5.2.5 Goodness of �t

Given a large choice of distributions for the frailty, the question comes in selecting the

most suitable one. A comparison of the PVF family of frailty distributions can be found

in Hougaard (2000, ch. 7.8). In frailtyEM, all the frailty distributions depend on a posi-

tive parameter � (see Appendix A1). Given that all the distributions are part of the same

family (with gamma and positive stable being limiting cases in the PVF family), the like-

lihood of di�erent models is comparable across distributions. This argument suggests

that it makes sense, within the PVF family, to select the model with the distribution that

has the highest likelihood.

An explicit assumption of model (5.1) is that the censoring is non-informative on the

frailty. This assumption is usually di�cult to test. In frailtyEM, a correlation score test

is implemented for the gamma distribution, following Balan, Boonk, et al., 2016. This

can also be used, for example, for testing whether a recurrent event event process and a

terminal event are associated.

Martingale residuals have been used to assess goodness of �t in terms on functional

form of the covariates (Therneau, Grambsch, and Fleming, 1990; Lin, Wei, and Ying,

1993). These are provided by the residuals() function. For Cox models, there are sev-

eral methods for assessing the proportional hazards assumption (Therneau and Gramb-

sch, 2000, ch. 6). Graphical methods involve plotting estimated survival or cumulative

intensity curves. The plotting capabilities of frailtyEM are discussed in Section 5.3.4. A

second method is based on Schoenfeld residuals (Grambsch and Therneau, 1994). In R,

this is implemented for Cox models in the cox.zph function from the survival package.

In frailtyEM, this is provided as part of the output and may be used to test whether the

conditional proportional hazards model (5.1) holds. This is detailed in Section 5.3.5.

5.3 Estimation and implementation

5.3.1 Syntax

R> library("frailtyEM")

The main model �tting function in frailtyEM is emfrail:
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R> emfrail(formula, data, distribution, control, ...)

The formula argument contains a Surv object as left hand side and a +cluster()
statement on the right hand side, specifying the column of data that de�nes the di�erent

clusters (this is common to other packages such as frailtypack). This formulation, that

is common to most survival analysis packages, allows for the representation of clustered

failures with left truncation, recurrent events in both calendar time and gap time, time

dependent covariates and discontinuous intervals at risk (Therneau and Grambsch, 2000,

ch. 3.7, ch. 8). Two other statements may be used in the right hand side: +strata() for

de�ning a column with a stratifying variable, and +terminal() for de�ning an event

status column for dependent censoring (e.g. a terminal event in the case of recurrent

events; this triggers the score test for dependent censoring described Section 5.2.5).

The distribution argument determines the frailty distribution. It may be gener-

ated by the emfrail_dist():

R> str(emfrail_dist(dist = "gamma", theta = 2))

List of 4
$ dist : chr "gamma"
$ theta : num 2
$ pvfm : num -0.5
$ left_truncation: logi FALSE
- attr(*, "class")= chr "emfrail_dist"

where dist may be one of "gamma", "stable" or "pvf". For "pvf", the m parameter

determines the precise distribution: for m = −1/2 for the IG, m ∈ (−1, 0) for the so-

called Hougaard distribution and m > 0 a compound Poisson distribution with mass

at 0. The theta parameter determines the starting value of the optimization. The

left_truncation argument, if TRUE, leads to the calculation described in Section 5.2.3.

The control argument may be generated by the emfrail_control() function and

regulates parameters regarding to the estimation.

5.3.2 Pro�le EM algorithm

In frailtyEM, a general full-likelihood estimation procedure is implemented for the

gamma, positive stable and PVF frailty models, using a semi-parametric Breslow esti-

mator for the baseline intensity. The goal is to �nd �, �, �0(⋅) that maximize L(�, �, �0(⋅))
(5.3). This can be achieved in two steps, as

max
�,�,�0

L(�, �, �0) = max
�

{
max
�,�0

L(�, �0|�)
}

where L̂(�) = max�,�0 L(�, �0|�) is the pro�le likelihood of � . The pro�le EM algorithm

refers to using a two-stage maximization procedure: the “inner problem” which involves
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calculating L̂(�) (maximizing L(�, �0|�) for �xed � with the EM algorithm), and the “outer

problem”, maximizing the pro�le likelihood L̂(�) over � .

The inner problem Maximizing the likelihood for �xed � has been proposed for the

gamma frailty in Nielsen et al., 1992 and Klein, 1992, and generalizations are discussed

in Hougaard, 2000. The crucial observation is that the E step involves calculating the

empirical Bayes estimates of the frailties ẑi = E[Zi |data]. This expectation is taken with

respect to the “posterior” distribution of the random e�ect. This is detailed in Appendix

A2. The M step involves estimating a proportional hazards model with the log ẑi as o�set

for each cluster. This is done via the agreg.fit() function in the survival package,

which obtains estimates of � via Cox’s partial likelihood. Subsequently, �0 and Λ̃i (and

Λ̃L,i , in the case of left truncation) are calculated.

The EM algorithm is guaranteed to increase L(�, �0|�) with every iteration and to

converge to a local maximum. Convergence is achieved when the di�erence in L(�, �0|�)
between two consecutive iterations is smaller than ".

The outer problem The “outer” problem involves maximizing L̂(�). For this, a general

purpose Newton-type algorithm is employed (nlm from the stats package).

5.3.3 Standard errors and con�dence intervals

The non-parametric information matrix is not directly obtained by the estimation pro-

cedure described in Section 5.3.2. From the inner problem, the standard error of the

estimates for � and �0(⋅) are calculated with Louis’ formula (Louis, 1982), under the

assumption that � is �xed to the maximum likelihood estimate. The standard errors ob-

tained in this way are included in the output as se and are comparable to the ones from

other semi-parametric frailty models (survival or coxme packages) that assume that �
is �xed. However, this leads to an underestimate of the variability of � and �0(⋅).

In frailtyEM, adjusted standard errors, presented in the column adj se, are cal-

culated by “propagating” the uncertainty from the estimation of � to �, �0(⋅). This is

described in more detail in Appendix A3.

From the outer problem, standard errors for � (more precisely, of log � , since the

maximization takes place on the log-scale for numerical stability) are directly obtained

from the numeric Hessian calculated by nlm. The delta method, as implemented in the

msm package (Jackson, 2011), is employed for calculating the standard errors for � and

the measures of dependence that are detailed in Appendix A1.

Two types of con�dence intervals for � (and for the frailty variance, which, in the

cases where it exists, is 1/�) are provided. The �rst are derived from symmetric con�-

dence intervals on the log-scale. The resulting asymmetric con�dence interval has been

shown to provide good coverage (Balan, Jonker, et al., 2016). The second, more com-

putationally intensive, are referred to as “likelihood-based con�dence intervals”. Under

the null hypothesis, the likelihood ratio test statistic follows a �2(0) + �2(1) distribution.
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The critical value associated with this test statistic is approximately 1.92. Based on L̂(�),
a one-dimensional search is performed to �nd the con�dence interval around the maxi-

mum likelihood estimate �̂ within which log L̂(�) ≥ log L̂(�̂)−1.92. The advantage of this

type of con�dence interval is that it is transformation invariant (with the same coverage

for all derived dependence measures) and it has a 1-1 correspondence with the likelihood

ratio test.

5.3.4 Methods

The emfrail function returns an object of class emfrail that is documented in

?emfrail. Usual methods are associated with this class of objects: print(), coef(),

vcov(), residuals(), model.matrix(), model.frame(), logLik().

The summary() method returns an object of class emfrail_summary(), the printing

of which contains general �t information, covariate estimates and distribution-speci�c

measures of dependence and goodness of �t, discussed in Section 5.2.5. Arguments to

summary() may be used to show con�dence intervals based on either the likelihood

function or the delta method, as described in Section 5.3.3. Other arguments control the

amount of information that is printed and may be used when less output is desirable.

The method for prediction of survival curves and cumulative intensity curves is im-

plemented in predict(). Both conditional and marginal curves de�ned in Section 5.2.4

may be produced. The prediction is made for individuals with covariate values speci-

�ed in a data frame (via the newdata argument) or for a �xed linear predictor (via the

lp argument). For strati�ed models, the strata must also be speci�ed. By default, the

predict function creates predictions for each row of newdata or for each value of lp
separately. With the individual argument, predicted curves may be produced for in-

dividuals with speci�c at-risk patterns (for example, if an individual is not at risk during

a certain time frame), or for individuals with time dependent covariates.

After xij (t) is speci�ed to predict(), Λij (t|Z = 1) is calculated as in (5.7) and from

this the other quantities are derived, including the conditional survival, the marginal

survival (5.8) and the marginal cumulative intensity. Con�dence bands are based on the

asymptotic normality of the estimated �0, and are produced both adjusted and unad-

justed for the uncertainty of � .

5.3.5 Plotting and additional features

Two plot methods are provided based on both graphics package via plot() and the

ggplot2 package, via autoplot(), both with identical syntax. Behind the scenes, they

use calls to predict(). The type argument determines the type of plot:

• type = "hist" for a histogram of the posterior estimates of the frailties;

• type = "pred" for plotting marginal and conditional cumulative hazard or sur-

vival curves;
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• type = "hr" for plotting marginal or conditional estimated hazard ratios be-

tween two groups of individuals. The marginal hazard ratio is determined as the

ratio of the marginal intensities, as described in Section 5.2.4;

• type = "frail" for a scatter plot of the ordered posterior estimates of the frail-

ties (also called a “caterpillar plot”). For the gamma distribution, quantiles of

the posterior distribution are also included. Only available with the autoplot()
method.

The Commenges-Andersen score test for heterogeneity is by default calculated ev-

ery time emfrail is called and is part of the standard output. A separate function

ca_test() is also provided, that may be used independently on Cox models produced

by coxph() from the survival package.

While martingale residuals may be obtained with the residuals() method, the

test for conditional proportional hazards, based on Schoenfeld residuals described in

Section 5.2.5 may be accessed in the $zph �eld of the �t. This is an object of class

cox.zph borrowed from the survival package and equivalent to calling cox.zph on a

Cox model with the estimated log-frailties as o�set. The structure and plot methods are

described in ?cox.zph.

An additional function is provided to calculate the marginal log-likelihood for a vec-

tor of values of � , emfrail_pll(), without actually performing the outer optimization.

This may be useful for visualizing the pro�le log-likelihood or when debugging (e.g., to

see if the maximum likelihood estimate of � lies on the boundary).

5.4 Illustration

The features of the package will now be illustrated with three well-known data sets

available in R: The CGD data set (recurrent events, calendar time), the kidney data set

(recurrent events, gap time) and the rats data set (clustered failures).

5.4.1 CGD

The data are from a placebo controlled trial of gamma interferon in chronic granulo-

tomous disease (CGD) and is available in the survival package. It contains the time

to recurrence of serious infections observed, from randomization until end of study for

each patient (i.e. the time scale is calendar time). For the purpose of illustration, we

will use treat (treatment or placebo) and sex (female or male) as covariates, although

a larger number of variables are recorded in the data set.

R> data("cgd")
R> cgd <- cgd[c("tstart", "tstop", "status", "id", "sex", "treat")]
R> head(cgd)
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tstart tstop status id sex treat
1 0 219 1 1 female rIFN-g
2 219 373 1 1 female rIFN-g
3 373 414 0 1 female rIFN-g
4 0 8 1 2 male placebo
5 8 26 1 2 male placebo
6 26 152 1 2 male placebo

A basic gamma frailty model can be �tted like this:

R> gam <- emfrail(Surv(tstart, tstop, status) ~ sex + treat + cluster(id),
+ data = cgd)
R> summary(gam)

Call:
emfrail(formula = Surv(tstart, tstop, status) ~ sex + treat +

cluster(id), data = cgd)

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

sexfemale -0.227 0.797 0.396 0.396 -0.575 0.57
treatrIFN-g -1.052 0.349 0.310 0.310 -3.389 0.00
Estimated distribution: gamma / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00172
no-frailty Log-likelihood: -331.997
Log-likelihood: -326.619
LRT: 1/2 * pchisq(10.8), p-val 0.00052

Frailty summary:
frailty variance = 0.821 / 95% CI: [0.231, 1.854]
Kendall's tau: 0.291 / 95% CI: [0.104, 0.481]
Median concordance: 0.289 / 95% CI: [0.101, 0.491]
E[log Z]: -0.464 / 95% CI: [-1.164, -0.12]
Var[log Z]: 1.241 / 95% CI: [0.26, 4.341]
theta = 1.218 (0.59) / 95% CI: [0.539, 4.326]
Confidence intervals based on the likelihood function

The �rst two parts of this output, about regression coe�cients and �t summary,

exist regardless of the frailty distributions. The last part, “frailty summary”, provides a

di�erent output according to the distribution.
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Figure 51: Predicted conditional and marginal cumulative hazards for males, one from the treat-

ment arm and one from the placebo arm, as produced by autplot() with type = "pred".

Both the Commenges-Andersen test for heterogeneity and the one-sided likelihood

ratio test deems the random e�ect highly signi�cant. This is also suggested by the con-

�dence interval for the frailty variance, which does not contain 0.

To illustrate the predicted cumulative hazard curves we take two individuals, one

from the treatment arm and one from the placebo arm, both males:

R> library("ggplot2")
R> p1 <- autoplot(gam, type = "pred",
+ newdata = data.frame(sex = "male", treat = "rIFN-g")) +
+ ggtitle("rIFN-g") + ylim(c(0, 2)) + theme_minimal()
R> p2 <- autoplot(gam, type = "pred",
+ newdata = data.frame(sex = "male", treat = "placebo")) +
+ ggtitle("placebo") + ylim(c(0, 2)) + theme_minimal()

The two plots are shown in Figure 51.

The cumulative hazard in this case can be interpreted as the expected number of

events at a certain time. It can be seen that the frailty “drags down” the marginal hazard.

This is a well-known e�ect observed in frailty models, as described in Aalen, Borgan,

and Gjessing (2008, ch. 7). All prediction results could also be obtained directly:

R> dat_pred <- data.frame(sex = c("male", "male"),
+ treat = c("rIFN-g", "placebo"))
R> predict(gam, dat_pred)

For a hypothetical individual that changes treatment from placebo to rIFN-g at time 200,

predictions may also be obtained:
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Figure 52: Predicted conditional and marginal cumulative hazards for a male that switches treat-

ment from placebo to rIFN-g at time 200 as produced by autoplot() with type = "pred"

R> dat_pred_b <- data.frame(sex = c("male", "male"),
+ treat = c("placebo", "rIFN-g"),
+ tstart = c(0, 200), tstop = c(200, Inf))
R> p <- autoplot(gam, type = "pred",
+ newdata = dat_pred_b,
+ individual = TRUE) +
+ ggtitle("change placebo to rIFN-g at time 200") + theme_minimal()

This plot is shown in Figure 52.

A positive stable frailty model can also be �tted by specifying the distribution
argument.

R> stab <- emfrail(Surv(tstart, tstop, status) ~ sex + treat + cluster(id),
+ data = cgd,
+ distribution = emfrail_dist(dist = "stable"))
R> summary(stab)

Call:
emfrail(formula = Surv(tstart, tstop, status) ~ sex + treat +
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cluster(id), data = cgd, distribution = emfrail_dist(dist = "stable"))

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

sexfemale -0.137 0.872 0.407 0.407 -0.337 0.74
treatrIFN-g -1.085 0.338 0.332 0.336 -3.230 0.00
Estimated distribution: stable / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00172
no-frailty Log-likelihood: -331.997
Log-likelihood: -329.39
LRT: 1/2 * pchisq(5.21), p-val 0.0112

Frailty summary:
Kendall's tau: 0.104 / 95% CI: [0.011, 0.236]
Median concordance: 0.102 / 95% CI: [0.011, 0.233]
E[log Z]: 0.067 / 95% CI: [0.006, 0.179]
Var[log Z]: 0.406 / 95% CI: [0.037, 1.176]
Attenuation factor: 0.896 / 95% CI: [0.764, 0.989]
theta = 8.572 (5.41) / 95% CI: [3.232, 90.316]
Confidence intervals based on the likelihood function

The coe�cient estimates are similar to those of the gamma frailty �t. The “Frailty

summary” part is quite di�erent. For the positive stable distribution, the variance is not

de�ned. However, Kendall’s � is easily obtained, and in this case it is smaller than in

the gamma frailty model. Unlike the gamma or PVF distributions, the positive stable

frailty predicts a marginal model with proportional hazards where the marginal hazard

ratios are an attenuated version of the conditional hazard ratios shown in the output.

The calculations are detailed in Appendix A1.

The conditional and marginal hazard ratios from di�erent distributions can also be

visualized easily. We also �tted an IG frailty model on the same data, and plots of the

hazard ratio between two males from di�erent treatment arms created below are shown

in Figure 53.

R> ig <- emfrail(Surv(tstart, tstop, status) ~ sex + treat + cluster(id),
+ data = cgd,
+ distribution = emfrail_dist(dist = "pvf"))
R> newdata <- data.frame(treat = c("placebo", "rIFN-g"),
+ sex = c("male", "male"))
R> pl1 <- autoplot(gam, type = "hr", newdata = newdata) +
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+ ggtitle("gamma") + theme_minimal()
R> pl2 <- autoplot(stab, type = "hr", newdata = newdata) +
+ ggtitle("PS") + theme_minimal()
R> pl3 <- autoplot(ig, type = "hr", newdata = newdata) +
+ ggtitle("IG") + theme_minimal()

While all models shrink the hazard ratio towards 1, it can be seen that this e�ect is

slightly more pronounced for the gamma than for the IG, while the PS exhibits a constant

“average” shrinkage. This type of behaviour from the PS is often seen as a strength of

the model (Hougaard, 2000).

5.4.2 Kidney

The kidney data set is also available in the survival package. The data, presented origi-

nally in McGilchrist and Aisbett, 1991, contains the time to infection for kidney patients

using a portable dialysis equipment. The infection may occur at the insertion of the

catheter and at that point, the catheter must be removed, the infection cleared up, and

the catheter reinserted. Each of the 38 patients has exactly 2 observations, representing

recurrence times from insertion until the next infection (i.e. the time scale is gap time).

There are 3 covariates: sex, age and disease (a factor with 4 levels). A data analysis

based on frailty models is described in Therneau and Grambsch (2000, ch. 9.5.2). For the

purpose of illustration, we do not include the disease variable here.

R> data("kidney")
R> kidney <- kidney[c("time", "status", "id", "age", "sex" )]
R> kidney$sex <- ifelse(kidney$sex == 1, "male", "female")
R> head(kidney)

time status id age sex
1 8 1 1 28 male
2 16 1 1 28 male
3 23 1 2 48 female
4 13 0 2 48 female
5 22 1 3 32 male
6 28 1 3 32 male

R> zph_t = emfrail_control(zph = TRUE)
R> m_gam <- emfrail(Surv(time, status) ~ age + sex + cluster(id),
+ data = kidney, control = zph_t)
R> m_ps <- emfrail(Surv(time, status) ~ age + sex + cluster(id),
+ data = kidney,
+ distribution = emfrail_dist("stable"),
+ control = zph_t)
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Therneau and Grambsch discuss the gamma �t conclude that an outlier case is at

the source of the frailty e�ect. We omit the frailty part of the output; the estimated

frailty variance is 0.397 with a 95% likelihood based con�dence interval of (0.04, 1.03)
and therefore signi�cantly di�erent from 0.

R> summary(m_gam, print_opts = list(frailty = FALSE))

Call:
emfrail(formula = Surv(time, status) ~ age + sex + cluster(id),

data = kidney, control = zph_t)

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

age 0.00544 1.00545 0.01158 0.01170 0.46481 0.64
sexmale 1.55284 4.72487 0.44518 0.49952 3.10868 0.00
Estimated distribution: gamma / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00238
no-frailty Log-likelihood: -184.657
Log-likelihood: -182.053
LRT: 1/2 * pchisq(5.21), p-val 0.0112

However, the LRT is not signi�cant for the positive stable frailty model (which does

not have a de�ned frailty variance, for comparison). Furthermore, the estimated regres-

sion coe�cients are di�erent.

R> summary(m_ps, print_opts = list(frailty = FALSE))

Call:
emfrail(formula = Surv(time, status) ~ age + sex + cluster(id),

data = kidney, distribution = emfrail_dist("stable"), control = zph_t)

Regression coefficients:
coef exp(coef) se(coef) z p

age 0.00218 1.00218 0.00922 0.23649 0.81
sexmale 0.82100 2.27278 0.29873 2.74831 0.01
Estimated distribution: stable / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00238
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no-frailty Log-likelihood: -184.657
Log-likelihood: -184.657
LRT: 1/2 * pchisq(0), p-val>0.5

The test for proportional hazards described in Section 5.2.5 reveals an insight into

how the two models work. The gamma frailty model speci�es conditional proportional

hazards and marginal non-proportional hazards, while the positive stable model speci�es

proportional hazards at both levels.

R> m_gam$zph

rho chisq p
age 0.0368 0.0764 0.782
sexmale -0.2207 2.4923 0.114
GLOBAL NA 2.5445 0.280

R> m_ps$zph

rho chisq p
age 0.0841 0.477 0.489990
sexmale -0.4364 11.392 0.000738
GLOBAL NA 11.480 0.003215

Therefore, the gamma frailty model appears to explain the marginal non-proportionality,

while the positive stable frailty model does not. Such a phenomenon may be observed

if, for example, the PS marginal model is a bad �t for the data. Further research is being

carried out on this topic (Balan and Putter, Forthcoming).

5.4.3 Rats data

These is an example of clustered failure data from Mantel, Bohidar, and Ciminera, 1977

Three rats were chosen from each of 100 litters, one of which was treated with a drug

(rx = 1) and the rest with placebo (rx = 0), and then all followed for tumor incidence.

The data are also available in the survival package.

R> data("rats")
R> head(rats)

litter rx time status sex
1 1 1 101 0 f
2 1 0 49 1 f
3 1 0 104 0 f
4 2 1 91 0 m
5 2 0 104 0 m
6 2 0 102 0 m
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While often used to illustrate frailty models, the gamma frailty �t shows a relatively

large, yet not signi�cant frailty variance

R> summary(emfrail(Surv(time, status) ~ rx + sex + cluster(litter),
+ data = rats))

Call:
emfrail(formula = Surv(time, status) ~ rx + sex + cluster(litter),

data = rats)

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

rx 0.7873 2.1974 0.3135 0.3135 2.5112 0.01
sexm -3.1341 0.0435 0.7385 0.7409 -4.2298 0.00
Estimated distribution: gamma / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.201
no-frailty Log-likelihood: -200.426
Log-likelihood: -199.73
LRT: 1/2 * pchisq(1.39), p-val 0.119

Frailty summary:
frailty variance = 0.445 / 95% CI: [0, 1.678]
Kendall's tau: 0.182 / 95% CI: [0, 0.456]
Median concordance: 0.179 / 95% CI: [0, 0.464]
E[log Z]: -0.239 / 95% CI: [-1.038, 0]
Var[log Z]: 0.559 / 95% CI: [0, 3.678]
theta = 2.245 (2.28) / 95% CI: [0.596, Inf]
Confidence intervals based on the likelihood function

The Surv object takes two arguments here: time of event and status. This implicitly

assumes that each row of the data (in this case, each rat) is under follow-up from time 0

to time. This is very similar to the representation of the recurrent events in gap-time,

where each recurrent event episode is “at risk” from time 0 (time since the previous

event).

We arti�cially simulated left truncation from an exponential distribution with mean

50, which is now an entry time to the study. The rats with a follow-up smaller than the

entry time are removed.

R> set.seed(1)
R> rats$tstart <- rexp(nrow(rats), rate = 1/50)
R> rats_lt <- rats[rats$tstart < rats$time, ]
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The �rst model, m1, is what happens if left truncation is completely ignored. Each

rat is assumed to have been at risk from time 0, which is not the case.

R> m1 <-
+ emfrail(Surv(time, status) ~ rx + cluster(litter),
+ data = rats_lt)

The second model, m2, is what happens when the at-risk indicator is correctly ad-

justed for, with the entry time also present. Refering back to Section5.2.3, this is equiv-

alent to considering P(Z) instead of P(Z |A).

R> m2 <-
+ emfrail(Surv(tstart, time, status) ~ rx + sex + cluster(litter),
+ data = rats_lt)

As may be seen from equation (5.6), this is correct only if there is in fact no left trun-

cation, or if there is no variability in Z (i.e. Z is degenerate at 1). Therefore, this for-

mulation is correct, for example, when the Surv object represents recurrent events in

calendar time, as is the case in Section 5.4.1. This is, for example, what is returned by

the frailty models in the survival package.

The third model, m3, speci�es the correct time at risk but also the fact that the distri-

bution of the frailty must be taken conditional on the entry time. Under this (arti�cial)

left truncation problem, this would be the correct way of analyzing this data.

R> m3 <-
+ emfrail(Surv(tstart, time, status) ~ rx + sex + cluster(litter),
+ data = rats_lt,
+ distribution = emfrail_dist(left_truncation = TRUE))

In this case, the output shows little di�erence between models. This is because the frailty,

even in the complete data set, is not signi�cant. In this case, the frailty distribution is

also not signi�cant in either m2 or m3 and they lead to estimates very close to each other.

In a limited unpublished simulation study, we have seen that applying the correction in

m3 leads to approximately unbiased estimates of the regression coe�cients, unlike m1 or

m2.

5.5 Conclusion

In the current landscape for modeling random e�ects in survival analysis, frailtyEM is

a contribution that focuses on implementing classical methodology in an e�cient way

with a wide variety of frailty distributions. We have shown that the EM based approach

has certain advantages in the context of frailty models. First of all, it is semiparamet-

ric, which means that it is a direct extension of the Cox proportional hazards model. In

this way, classical results from semiparametric frailty models (for example, based on the
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data sets in Section 5.4) can be replicated and further insight may be obtained by �tting

models with di�erent frailty distributions. Until now, the Commenges-Andersen test,

positive stable and PVF family, have not all been implemented in a consistent way in an

R package. Another advantage of the EM algorithm is that, by its nature, it is a full max-

imum likelihood approach, and the estimators have well known desirable asymptotic

properties.

To our knowledge, no other statistical package provides similar capabilities for vi-

sualizing conditional and marginal survival curves, or the marginal e�ect of covariates.

Since this is implemented across a large number of distributions, this might come to the

aid of both applied and theoretical research into shared frailty models. While the ques-

tion of model selection with di�erent random e�ect distributions is still an open one, the

functions included frailtyEM may be useful for further research in this direction.

Evaluating goodness of �t for shared frailty models is still a complicated issue, par-

ticularly in semiparametric models. However, tests based on martingale residuals, such

as that of Commenges and Rondeau, 2000, should be now possible by extrating the nec-

essary quantities from an emfrail �t.

Regarding the left truncation implementation in frailtyEM, it is very similar to that

from the parfm package. However, performing of a larger simulation study to assess

the e�ects of left truncation in clustered failure data with semiparametric frailty models

is now possible. In a limited simulation study we have seen that correctly accounting for

this phenomenon leads to unbiased estimates. The scenario of time dependent covariates

and left truncation is not supported at this time. This is because this would require also

specifying values of these covariates from time 0 to the left truncation time, which would

likely involve some speculation.

Technically, extending the package to other distributions is possible, as long as their

Laplace transform and the corresponding derivatives may be speci�ed in closed form.

An interesting extension would be to choose discrete distributions from the in�nitely

divisible family for the random e�ect, such as the Poisson distribution. The newest

features will be implemented in the development version of the package at https://
github.com/tbalan/frailtyEM.

Appendix A1: Results for the Laplace transforms

We consider distributions from the in�nitely divisible family Ash, 1972, ch 8.5 with the

Laplace transform

Y (c) = exp(−� (c; 
 )).

We now consider how � and 
 can be represented as a function of a positive parameter

� .

https://github.com/tbalan/frailtyEM
https://github.com/tbalan/frailtyEM
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The gamma distribution For Y a gamma distributed random variable,  (c; 
 ) =
log(
 + c) − log(
 ), the derivatives of which are

 (k)(c; 
 ) = (−1)k−1(k − 1)!(
 + c)−k .

For identi�ability, the restriction EY = 1 is imposed; this leads to � = 
 . The distribution

is parametrized with � > 0, � = � = 
 . The variance of Y is varY = �−1. Kendall’s �
is then � = 1

1+2� and the median concordance is � = 4 (21+1/� − 1)
−� − 1. Furthermore,

E log Y =  (�) − log � and var log Y =  ′(�) where  and  ′ are the digamma and

trigamma functions.

The positive stable distribution For Y a positive stable random variable,  (c; 
 ) =
c
 with 
 ∈ (0, 1), the derivatives of which are

 (k)(c; 
 ) =
Γ(k − �)
Γ(1 − 
)

(−1)k−1c
−1.

For identi�ability, the restriction � = 1 is made; EY is unde�ned and varY = ∞. The

distribution is parametrized with � > 0, 
 = �
�+1 .

Kendall’s � is then � = 1 − �
�+1 and the median concordance is � = 22−2

�
�+1 − 1.

Furthermore,

E log Y = −
(

{
�

1 + �

}−1
− 1

)
 (1)

and

var log Y =
(

{
�

1 + �

}−2
− 1

)
 ′(1).

In the case of the PS distribution, the marginal hazard ratio is an attenuated version

of the conditional hazard ratio. If the conditional log-hazard ratio is � , the marginal

hazard ratio is equal to � �
�+1 .

The PVF distributions For Y a PVF distribution with �xed parameter m ∈ ℝ, m > −1
and m ≠ 0,

 (c; 
 ) = sign(m)(1 − 
m(
 + c)−m)
where sign(⋅) denotes the sign. This is the same parametrizaion as in Aalen, Borgan, and

Gjessing, 2008. The derivatives of  are

 (k)(c; 
 ) = sign(m)(−
)m(
 + c)−m−k (−1)k+1
Γ(m + k)
Γ(m)

.

The expectation of this distribution can be calculated as minus the �rst derivative of the

Laplace transform calculated in 0, i.e.,

EY = � ′(0; 
 )(0; �, 
 ) =
�


m.
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The second moment of the distribution can be calculated as the second derivative of the

Laplace transform at 0,

EY 2 = �2 ′2(0) − � ′′(0) =
�2


 2
m2 +

�

 2
m(m + 1).

For identi�ability, we set EY = 1. The distribution is parametrized through a parameter

� > 0 which is determined by 
 = (m + 1)� and � = sign(m)m+1m � . This results in

varY = �−1.
A slightly di�erent parametrization is presented in Hougaard, 2000, dependent on

the parameter �H . The correspondence is obtained by setting �H = (m + 1)� .

The PVF family of distributions includes the gamma as a limiting case when m → 0.
When 
 → 0 the positive stable distribution is obtained. When m = −1 the distribution

is degenerate, and with m = 1 a non-central gamma distribution is obtained. Of special

interest is the case m = −0.5, when the inverse Gaussian distribution is obtained. With

m > 0, the distribution is compound Poisson with mass at 0. In this case, P(Y = 0) =
exp(−m+1m �).

For m < 0, closed forms for Kendall’s � and median concordance are given in

Hougaard (2000, Section 7.5).

Left truncation

To determine the Laplace transform under left truncation, we determine  ̃ from (5.4)

and (5.5).

For the gamma distribution, we have

 ̃ (c; 
 , ΛL) = log(
 + ΛL + c) − log(
 + ΛL)

which implies that the frailty of the survivors is still gamma distributed, but with a

change in the parameter 
 .

For the positive stable we have

 ̃ (c; 
 , ΛL) = (c + ΛL)
 − Λ


L ,

which is not a positive stable distribution any more.

For the PVF distributions, we have

 ̃ (c; 
 , ΛL) = sign(m) (
m(
 + ΛL)−m − (
 + ΛL)m(
 + ΛL + c)−m) ,

which is not PVF any more (however, it stays in the same “in�nitely divisible” family.

Closed forms

The gamma distribution leads to a Laplace transform for which the derivatives can be

calculated in closed form. It can be seen that

(c; �, 
 ) = 
� (
 + c)−� .
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The k-th derivative of this expression is

(k)(c; �, 
 ) = 
� (
 + c)−
−k
Γ(� + k)
Γ(�)

.

This can be exploited also in the case of left truncation, since the gamma frailty is pre-

served, as shown in the previous section.

The inverse gaussian distribution is obtained when the PVF parameter is m = − 12 .

Under the current parametrization, we have � = �/2 and � = � . In this case, the Laplace

transform is

(c; �) = exp
{
� (1 −

√
1 + 2c/�)

}
.

The k-th derivative of this can be written as

(k)(c; �) = (−1)k (
2
�
c + 1)

−k/2 k−1/2 (
√
2� (c + �

2 ))

1/2 (
√
2� (c + �

2 ))

where  is the modi�ed Bessel function of the second kind.

The emfrail() uses the closed form formulas when possible, by default.

Appendix A2: The E step

For the E step � and �0 are �xed, either at their initial values or at the values from the

previous M step. Let ni = ∑j,k �ijk be the number of events in cluster i. The conditional

distribution of Zi given the data is described by the Laplace transform

(c) =
E [Z

ni
i exp(−ZiΛ̃i) exp(−Zic)]
E [Z

ni
i exp(−ZiΛ̃i)]

=
(ni )(c + Λ̃i)
(ni )(Λ̃i)

. (5.9)

The E step reduces to calculating the expectation of this distribution, i.e. the derivative

of (5.9) in 0:

ẑi = −
(ni+1)(Λ̃i)
(ni )(Λ̃i)

. (5.10)

The marginal (log-)likelihood is also calculated at this point to keep track of convergence

of the EM algorithm. It can be seen that (5.3) involves the denominator of (5.9) in addition

to a straight-forward expression of � and �0.
The E step is generally the expensive operation of the EM algorithm. In a few sce-

narios (5.10) may be expressed in a closed form: for the gamma and the inverse gaussian

distributions. In these scenarios, the E step is calculated with the fast_estep() routine.

For all other cases, the E step is calculated via a recursive algorithm with an internal rou-

tine which is described here. For easing the computational burden, this is implemented

in C++ and is interfaced with R via the Rcpp library (Eddelbuettel and François, 2011;

Eddelbuettel, 2013).
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As shown in (5.9), the calculation of the E step for the general case involves taking

derivatives of Laplace transforms of the form

(c) = exp(g(c))

where for simplicity we denote g(c) = −� (c; 
 ). The expression for the k-th derivative

of (c) can be obtained with a classical calculus result, di Bruno’s formula, i.e.,

(n)(c) = ∑
m∈n

n!
m1!m2!...mn!

n
∏
j=1(

g(j)(c)
j! )

mj

(c), (5.11)

where n = {(m1, ..., mn)| ∑n
j=1 j × mj = n}. For example, for n = 3,

3 = {(3, 0, 0), (1, 1, 0), (0, 0, 1)} .

This corresponds to the “partitions of the integer” 3, i.e., all the integers that sum up to

3:

{(1, 1, 1), (1, 2, 0), (3, 0, 0)} .
We implemented a recursive algorithm in C++ which resides in the

emfrail_estep.cpp which loops through these partitions, calculates the corre-

sponding derivatives of  and the coe�cients.

Appendix A3: Standard errors

Considering the vector of parameters � = (�, �0(⋅)), and consider that for a given � ,

�� is the maximizer of the “inner problem” described in Section (5.3.2), i.e. �(�) =
argmax�L(�|�). Further, for a given � , the variance-covariance matrix var(�(�)) is ob-

tained with Louis’ formula (Louis, 1982). The restulting standard errors for � are under-

estimated because they do not factor in the uncertainty in estimating � , as is noted also

in Therneau and Grambsch (2000, sec. 9.5). Below is the sketch of how this is addressed

in frailtyEM, following Hougaard (2000, Appendix B.3).

Let �̂ be the maximum likelihood estimate with variance var(�̂) and standard error

se(�̂), which are given by the maximizer from the “outer problem”. The correct informa-

tion matrix for inference on � is a “perturbed” version of var(�(�̂)), namely

var(�(�̂)) + (
d�
d� )

var(�̂) (
d�
d� )

⊤
.

Here, d�/d� may be approximated as (�+ − �−)/se(�̂) where �+ = �(�̂ + se(�̂)/2) and �− =
�(�̂ − se(�̂)/2). In emfrail, this whole calculation takes place for log � for computational

stability, and to avoid the edge problem when � is close to 0.

Con�dence intervals for the conditional cumulative hazard are obtained from the

part of the variance-covariance matrix corresponding to �0(⋅), and con�dence intervals

for Λ0(t) = ∑s≤t �0(t) are obtained with the usual formula. For con�dence intervals, the

delta method is used to calculate a symmetric con�dence interval for log Λ0(t) for all t ,
which is then exponentiated.


