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Chapter 4

Ascertainment correction in frailty

models for recurrent events data

Abstract

In retrospective studies involving recurrent events, it is common to select individuals

based on their event history up to the time of selection. In this case, the ascertained sub-

jects might not be representative for the target population, and the analysis should take

the selection mechanism into account. The purpose of this chapter is two-fold. First, to

study what happens when the data analysis is not adjusted for the selection, and second,

to propose a corrected analysis. Under the Andersen-Gill and shared frailty regression

models, we show that the estimators of covariate e�ects, incidence and frailty variance

can be biased if the ascertainment is ignored, and we show that with a simple adjustment

of the likelihood, unbiased and consistent estimators are obtained. The proposed method

is assessed by a simulation study and is illustrated on a data set comprising recurrent

pneumothoraces.

4.1 Introduction

In the study of recurrent events it is of interest to model the rate at which the events

occur in time, along with estimating the e�ects of di�erent factors which may in�uence

This chapter has been published as: T.A. Balan, M.A. Jonker, P.C. Johannesma, H. Putter (2016). Ascer-

tainment correction in frailty models for recurrent events data. Statistics in Medicine 35(23), 4183-4201.
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72 Chapter 4 – Ascertainment

this rate, such as treatments or individual covariates. Usually, it is assumed that the pro-

cess which generates the recurrent events starts at a time 0; this can be, for example, the

diagnosis of a certain disease, a medical intervention, or birth, and that it is ended by

some form of right-censoring. Ultimately, the research aims to extrapolate the conclu-

sions from a sample of individuals to a larger “population at risk”. The sample selection

process is critical for the validity and interpretation of the results.

In a prospective study a random sample is drawn from the target population at time

0, and then followed up for the occurrence of events, whereas in a retrospective study

design, the sample is selected at a time later than 0, with the data up to the time of se-

lection being collected on the ascertained individuals. Prospective studies are desirable

although they may require a long time to be conducted. Their main advantage is that

all aspects of the data collection are under the control of the researcher. Retrospective

studies are usually observational in nature. While cheaper and shorter than prospective

studies, they are associated with less control on the sample selection process. Ideally,

the sampling mechanism should lead to a sample that can be viewed as a random repre-

sentation of the full population of interest at time 0.

When the sampling happens at a time point after 0, the probability for a subject to be

included in the study may depend on the subject’s event history. For example, registries

are often kept only for patients who experienced some recurrent events, not on the whole

population that is at risk to experience these events. Such a sample can not be regarded

as representative for the target population. The necessity to adjust the analysis to take

the selection mechanism into account has been underlined in the context of recurrent

events in Cook and Lawless (2007, ch. 7.3), although most approaches for this problem

are ad-hoc in nature.

In the motivating example of this chapter, only subjects who experienced at least

one occurrence of the event of interest between 1990 and 2014 were registered. Hence,

subjects who only experience events before 1990 or after 2014 are not included in the

study. As a consequence, the individuals who have a higher rate of recurrent events

are over-represented in the sample. If not adjusted for, the ascertainment can bias the

estimation of model parameters in the statistical analysis of such data. Selection bias is

a known problem in epidemiology (Hernán, Hernández-Díaz, and Robins, 2004). Several

paradoxical results in studies involving recurrent events might be explained by a closely

related “index bias” (Dahabreh and Kent, 2011).

The e�ects of the selection scheme are more di�cult to disentangle when random

e�ects are used to model additional heterogeneity or correlation structures present in

the data. The frailty model (Vaupel, Manton, and Stallard, 1979) is commonly used for

recurrent events or clustered failures data (Hougaard, 2000; Cook and Lawless, 2007).

When the selection of individuals depends on the previous history of events, it might

also depends on the value of the random e�ect, further complicating the estimation of

frailty models.

Most of the literature on event-based selection in this context has focused on models

for the waiting times (gaps) between the events. For example, Scheike, Petersen, and
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Martinussen (1999) use an adjusted frailty model to analyze time to pregnancy. In their

case, the selection scheme re�ects itself in truncation of the observed gap times. Their

approach can be used when the selection of individuals is directly related to the length of

the waiting times, rather than a speci�ed calendar time interval. It is worth mentioning

that a closely related problem is that of frailty models for clustered survival data in the

presence of left truncation. Jensen et al. (2004) proposed a corrected likelihood for family

data when observations are collected only on the failure has not occured before some

time. Several papers followed up on this work (Van den Berg and Drepper, 2011; Erik-

son, Martinussen, and Scheike, 2015). Sun and Li (2004) used a frailty model to analyze

clustered survival data, where random e�ects are used to describe a familial structure.

In their work, a family is ascertained when at least two members have experience the

failure before a certain age. They also provide an “ascertainment-adjused” likelihood,

with the focus lying on estimating parameters which describe the latent structure. The

selection scheme in the present motivating example is similar. However, we focus on

quantities which are of more interest in the recurrent event context, such as covariate

e�ects or the intensity of the recurrent event processes.

We show that the selection based on event history may lead to a sample which is

not representative for the initial population at risk, even in very simple ascertainment

scenarios, and that this may lead to biased estimates when not properly accounted for

in the analysis. The novelty of this chapter lies in the fact that we analyze the e�ects of

ignoring the selection process in the context of recurrent events, along with comparing

the adjusted and unadjusted estimators. In Section 4.2, we review the Andersen-Gill and

the shared frailty models, we discuss the general idea of constructing a likelihood for

models which take the selection mechanism into account, and we propose estimation

procedures for both parametric and semiparametric models. The proposed methods are

evaluated through a simulation study in Section 4.3, where we investigate properties

of the estimators of the baseline intensities, regression coe�cients and frailty variances

under several scenarios. Finally, we illustrate the considerations of this chapter on a data

set on recurrent pneumothoraces in Section 4.4, and we lay out our concluding remarks

in Section 4.5.

4.2 Methods

This section is outlined as follows: in 4.2.1 we review the Andersen-Gill and the shared

frailty models, and in 4.2.2 we adapt these models to take the selection mechanism into

account. In 4.2.3 we discuss the estimation of the proposed adjusted models for paramet-

ric speci�cation and we introduce a novel approach for their semiparametric estimation.

4.2.1 Statistical models

The canonical framework for recurrent events is that of counting processes, and partic-

ularly that of Poisson processes (Cook and Lawless, 2007, ch. 2). The history of events
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of an individual i is “counted” by a stochastic process Ni(t) for t ≥ 0, with an intensity

function �i(t).
In the Andersen-Gill (AG) model, Ni is assumed to follow the speci�cations of a non-

homogeneous Poisson process with intensity

�i(t; �, �) = �0(t; �) exp (�′xi(t)) (4.1)

where xi is a vector of possibly time dependent covariates, � is a vector of regression

coe�cients and � is a vector of parameters which characterize the “baseline” intensity

�0. In the shared frailty model, Ni is assumed to follow the speci�cations of a non-

homogeneous Poisson process conditional on the unobserved “frailty” Zi = zi :

�i(t|zi ; �, �) = zi�0(t; �) exp (�′xi(t)) (4.2)

where it is assumed that Zi > 0 and that the Zi ’s are i.i.d. distributed with some density

f� . In both cases we assume that the censoring is independent given the covariates, and

for the shared frailty model we also assume that it is non-informative for the frailty.

Although there is a wide variety of distributions that can be used for Zi , the most

common are the gamma distribution and the log-normal distribution. In the rest of this

chapter, we will consider f� as the gamma density with expectation 1 and variance � ,

f� (z) =
1/�1/�

Γ(1/�)
z1/�−1 exp(−z/�), (4.3)

with � > 0 and for z > 0. This choice is particularly convenient because the marginal

features can be obtained in closed form; see Nielsen et al. (1992) and Murphy (1995a).

The AG model can be seen as a limiting case of the shared frailty model when � → 0;
indeed, it can be seen that in this case all zi ’s are equal to 1 and (4.2) simpli�es to (4.1).

For a subject i, let ni be the number of observed events. We denote the follow-up

time as ti , and the observed recurrent event times as tij with j ∈ 1...ni . Traditionally, the

observed data of a certain individual i is denoted as Oi and it represents the probabilistic

event “ni events at ti1 < ... < tini over the observation time (0, ti)”. In the absence of any

event-dependent sampling, the construction of likelihoods based on counting processes

is detailed in Kalb�eisch and Prentice (2002, ch. 6). In the AG model, from �i de�ned as

in (4.1), P(Oi) can be written as

P(Oi ; �, �) =
ni
∏
j=1

�i(tij ; �, �) exp{−Λi(ti ; �, �)} (4.4)

where Λi(ti ; �, �) is the cumulative intensity, i.e. Λi(ti ; �, �) = ∫ ti0 �i(s; �, �)ds. This leads

to the log-likelihood

�O (�, �) =
n
∑
i=1

ni
∑
j=1
{log �0(tij ; �) + �′xi(tij )} −

n
∑
i=1

∫
ti

0
exp(�′xi(s))�0(s)ds. (4.5)



4.2 Methods 75

In the shared frailty model, a similar expression as (4.4) is obtained conditional on

the frailty Zi = zi , by using the conditional intensity (4.2). The unconditional marginal

probability is obtained by taking the expectation over the random e�ects:

P(Oi ; �, �, �) = EZiP(Oi |Zi ; �, �)

= ∫
∞

0

ni
∏
j=1

�i(tij |zi ; �, �) exp{−Λi(ti |zi ; �, �)}f� (zi)dzi .
(4.6)

If the frailty follows the gamma distribution with density (4.3), this leads to the

log-likelihood

�O (�, �, �) =
n
∑
i=1

ni
∑
j=1

{
log �0(tij ; �) + �′xi(tij )

}
+

+
n
∑
i=1 [

−(1/� + Ni.) log
{
1/� + ∫

ti

0
exp(�′xi(s))�0(s)ds

}
+ gi(�)] , (4.7)

where gi(�) = 1/� log(1/�)+log Γ(1/�+Ni.)−log Γ(1/�) andNi. represents the total number

of events observed for subject i; see Nielsen et al. (1992) for a rigorous and more detailed

derivation of this expression.

4.2.2 Ascertainment adjustment

Ascertainment schemes The speci�cation of Ai depends on the design of the study.

We introduce three examples to provide the intuition behind this concept.

1. (Left truncation) At the time of the selection, data for subject i is available only

if no event occurrences were observed until the age tRi , In this case, Ai is the

probabilistic event “no events occurred between tLi = 0 and tRi”, and P(Ai) =
P(Ni(tRi) = 0).

2. In the case of recurrent events, registry data is available on subjects who expe-

rienced at least one occurrence in the last k years before the sampling time. De-

note the age of individual i at selection as ti . In this case, Ai is the probabilistic

event “at least one event occurred in (tLi , tRi)” where tLi = ti − k and tRi = ti , and

P(Ai) = P(Ni(ti) − Ni(ti − k) > 0).

3. A population is at risk for recurrent events, although only a fraction actually ex-

perience an occurrence during follow-up. After the �rst event, the subjects enter

a database where all subsequent recurrences are collected. If data is collected ret-

rospectively from this database, at a time point where subject i’s age is ti , then Ai
is the probabilistic event “at least one event in (tLi , tRi)” with tLi = 0 and tRi = ti ,
and P(Ai) = P(Ni(ti) > 0).
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As in the motivating example, it is more often the case that, in studies involving recurrent

events, subjects must experience at least one event during a certain time period, which

we refer to as “one-in” ascertainment. This is illustrated by scenarios 2 and 3 above. We

de�ne the ascertainment interval (tLi , tRi) with 0 ≤ tLi < tRi ≤ ti . Left truncation is a

particular selection scenario that, for clarity purposes, we will not develop further, and

focus instead on the “one-in” ascertainment.

The adjusted likelihood For now, denote the parameters of the chosen model (AG

or shared frailty) as �. We de�ne the event Ai as the ascertainment event, the sampling

of subject i from the “population at-risk”. The case of interest is when Ai depends on the

event history of subject i, and implicitly on the intensity of the counting process Ni . In

this case, Ai is a more general event than Oi , since an individual needs to be ascertained

in order for Oi to be observed, therefore Oi ⊂ Ai . This implies that Ai ∩ Oi = Oi and the

likelihood contribution of subject i is given by

P(Oi |Ai ; �) =
P(Oi ∩ Ai ; �)
P(Ai ; �)

=
P(Oi ; �)
P(Ai ; �)

. (4.8)

Heuristically, the meaning of (4.8) is that each contribution is weighted so that subjects

with a low chance of being ascertained (small P(Ai)) receive more weight, as they are

representative for a part of the population of interest which is under-represented in the

ascertained sample.

We de�ne the (ascertainment) adjusted likelihood as the product over the individual

contributions (4.8). The adjusted log-likelihood for n individuals is given by

� (�) =
n
∑
i=1
log P(Oi ; �) −

n
∑
i=1
log P(Ai ; �). (4.9)

We will refer to �O = ∑n
i=1 log P(Oi ; �) as the unadjusted log-likelihood. For the AG

and shared frailty mode, this is given by (4.5) and (4.7). We denote the remaining part,

�A = ∑n
i=1 log P(Ai ; �), as the ascertainment adjustment, so that � (�) = �O (�) − �A(�).

One-in ascertainment: Andersen-Gill We de�ne

ΛAi(�, �) = ∫
tRi

tLi
�i(s; �, �)ds (4.10)

with �i as speci�ed in (4.1). The probability of no events in (tLi , tRi) is P(Ai ; �, �) =
exp (−ΛAi(�, �)). Therefore, when subjects are ascertained only when they experience

at least one event in (tLi , tRi),

P(Ai ; �, �) = 1 − exp (−ΛAi(�, �)) .

This yields the adjusted log-likelihood

� (�, �) = �O (�, �) −
n
∑
i=1
log{1 − exp (−ΛAi(�, �))} (4.11)
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with �O as de�ned in (4.5). As the window of observation, or more preciselyΛAi becomes

smaller, the ascertainment correction becomes larger in magnitude. The score functions

provide insight into the e�ect of the ascertainment adjustment.

Denote S(1)i (s, t) = ∫ ts xi(u) exp(�′xi(u))�0(u)du. The derivatives of (4.11) with re-

spect to the components of � are

U� (�, �) =
n
∑
i=1

ni
∑
j=1

xi(tij ) − ∑
i
S(1)i (0, ti) −

n
∑
i=1

exp (−ΛAi(�, �))
1 − exp (−ΛAi(�, �))

Si(tLi , tRi)

where Si(s, t) = ∫ ts xi(u) exp(�′xi(u))�0(u)du. The last term in this expression arises as

from the ascertainment adjustment, and omitting it would lead to a biased estimate of

� . In principle, similar considerations apply also for �, the parameters which describe

the baseline intensity. For example, if we consider the Breslow estimator for �0, i.e. � is

a vector of elements �k = �0(sk ) where sk is a time point at which an event is observed,

the score vector for � is composed of elements

U�k (�, �) =
Nk
�k

−
n
∑
i=1

Yi(sk ) exp(�′xi(sk ))−

−
n
∑
i=1

YAi (sk ) exp(�
′xi(sk ))

exp (−ΛAi(�, �))
1 − exp (−ΛAi(�, �))

(4.12)

where Yi(t) is an indicator function which is 1 as long as subject i is at risk at t and 0

otherwise, and YAi (t) is an indicator function which is 1 as long as t ∈ (tLi , tRi) . The

second sum term in (4.12) appears due to the ascertainment correction and omitting it

would lead to a biased estimate of �.

One-in ascertainment: shared frailty Here we use the same de�nition for ΛAi as

in (4.10) which can be interpreted as the integrated intensity over the ascertainment

interval with the frailty �xed to 1. Conditional on the frailty, the probability of no events

in (tLi , tRi) is exp (−ziΛAi(�, �)). The unconditional probability is obtained by integrating

over the random e�ect,

EZi {exp (−ZiΛAi(�, �))} = ∫
∞

0
exp (−ziΛAi(�, �)) f� (zi)dzi

=
1/�1/�

(1/� + ΛAi(�, �))1/�
.

Therefore, when subjects are ascertained only when they experience at least one event

in (tLi , tRi),

P(Ai ; �, �, �) = 1 −
1/�1/�

(1/� + ΛAi(�, �))1/�
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yielding the adjusted log-likelihood

� (�, �, �) = �O (�, �, �) −
n
∑
i=1
log

{
1 −

1/�1/�

(1/� + ΛAi(�, �))1/�

}
, (4.13)

with �O as de�ned in (4.7).

Similarly to the Andersen-Gill case, the ascertainment adjustment gives rise to an

extra term involving ΛAi in the score functions for � , and this can be seen to be true also

in the score function for � . The extent of the bias which appears if the ascertainment

adjustment is ignored depends in this case also on � , in addition to � and � . If, again, we

consider the Breslow estimator with �k = �0(sk ) for sk event time points, we obtain

U�k (�, �, �) =
Nk
�k

−
n
∑
i=1

Yi(sk ) exp (�′xi(sk )) ℎ1(�, �, �)−

−
n
∑
i=1

YAi (sk ) exp (�
′xi(sk )ℎ2(�, �, �)) (4.14)

with

ℎ1(�, �, �) =
1/� + Ni.

1/� + Λi(ti ; �, �)

and

ℎ2(�, �, �) =
1/�1/�+1

(1/� + ΛAi)
{
(1/� + ΛAi)1/� − 1/�1/�

}.

4.2.3 Estimation of �0
The “baseline” intensity �0 is seen as parametrized by a vector of parameters �. Our

intention is to cover two cases: fully parametric models (where � is low-dimensional)

and semiparametric models (where � is in�nite-dimensional).

Parametric models Parametric speci�cations of �0, such as exponential or Weibull,

which lead to closed forms of the log-likelihood can be estimated with general purpose

optimization software such as the function optim in R. Such software also provides an

estimate of the Hessian matrix at the maximum likelihood estimate from which standard

errors can be obtained in a straight-forward way. In this chapter we choose a �exible

piecewise constant speci�cation for �0, where we consider the baseline intensity to be

constant on a small number of intervals which partition the follow-up time. The limits

of these intervals are determined so that they contain a roughly equal number of events.

Semiparametricmodels A semiparametric estimator for �0 is, for example, the Bres-

low estimator, which is obtained by solving the score equations corresponding to the

score functions (4.12) for AG and (4.14) for the shared frailty model. Let �0(t) = �t for
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t a known event time and 0 otherwise. The baseline intensity is then parametrized by

� = (�1, ..., �N ) where N is the number of distinct event time points in the data. The

di�culties induced by this speci�cation are that the dimension of � may be large, and

it becomes larger as there are more unique event time points in the data set. There-

fore, direct maximization of the log-likelihood is not usually feasible. We propose a new

two-step iterative algorithm to obtain maximum likelihood estimates for semiparametric

models.

Without any ascertainment adjustment, the high-dimensional � parameter can

be pro�led out directly in the AG model (Johansen, 1983), and indirectly, within an

Expectation-Maximization algorithm, in the shared frailty model (Nielsen et al., 1992).

With ascertainment adjustment, these methods are not available. We propose to alter-

nate between maximizing the log-likelihood with respect to the low-dimensional param-

eters � and � for �xed � and updating the high-dimensional parameter by solving a set of

“pseudo score equations”, which we derive from the score functions (4.12) and (4.14). If

we denote the parameters of the model as �, then the score function for �k takes the form

U�k (�) =
Nk
�k
− ℎ(�) where ℎ depends on whether the AG or the shared frailty model is

used, and whether the likelihood is adjusted for ascertainment. For the adjusted models

this can be seen in (4.12) and (4.14). We de�ne the pseudo-score function as

Ũ�k (�k |�̃) =
Nk
�k

− ℎ (�̃) (4.15)

where � is seen as �xed to �̃. Solving the equation Ũ�k = 0 with respect to �k leads to

�̂k =
Nk
ℎ(�̃)

,

increases the log-likelihood if � is regarded as �xed to �̃. Finally, the algorithm follows

the following steps. First, choose initial values �0, �0 and �0, and �x a small " > 0 as the

desired precision.

1. At the ith iteration, maximize � (�, �|�(i−1)), with � �xed to �(i−1), with a general

optimization software, e.g. optim in R. Obtain the updated �(i) and � (i).

2. Denote �̃ = (�(i), � (i), �(i−1)) and solve the pseudo-score equations (4.15). Obtain

the updated �(i).

3. Repeat steps 1 and 2 until � (�(i), � (i), �(i)) − � (�(i−1), � (i−1), �(i−1)) < "

The advantage of this procedure is that it can estimate any model with a semiparametric

baseline intensity for which an explicit expression of the pseudo-score (4.15) exists.

The initial values �0, �0 and �0 can be obtained from a Cox model ignoring any possible

dependence between observations or ascertainment correction. A similar algorithm was

proposed for frailty models without ascertainment correction (Gor�ne, Zucker, and Hsu,

2006). Simulations which we do not show here indicate that the log-likelihood increases
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with each iteration. Furthermore, for the semiparametric AG and shared frailty models

without ascertainment adjustment, the estimates of the proposed algorithm coincide

with the estimates provided by the available standard software. In the remainder of this

chapter we �x the convergence criterion to correspond to " = 10−6.
Standard error estimates can be obtained from the “non-parametric information ma-

trix”, obtained by taking the second derivatives of the log-likelihood � (�)with respect to

all the parameters, including �. This has been shown to lead to valid standard error es-

timates for the shared frailty model without ascertainment correction (Andersen, Klein,

et al., 1997). As long as the estimates in the ascertainment-adjusted model enjoy similar

asymptotic properties as the ones in the shared frailty model, a similar reasoning may

be applied for this case. Since the semiparametric model can be seen as a limiting case

of a parametric model with a piecewise constant baseline, with the piecewise intervals

becoming smaller, it is to be expected that inverting the non-parametric information

matrix will lead to correct estimates of the standard errors.

4.3 Simulation study

4.3.1 Toy example

We �rst consider a basic example to illustrate the bias which arises by not taking the

ascertainment into account. For this we consider a “full” data set and a “truncated”

version of the same data set where the subjects who have not experienced any event are

removed. This re�ects a simple situation where the selection of subjects is based on a

registry where only individuals with at least one occurrence are present, as described by

case 3 in Section 4.2.2.

First, we simulate subjects under a scenario where 300 individuals have the same

risk, with �i(t) = �i = 1, without covariates or frailty. The cumulative intensity is then

Λi(t) = t for all subjects. In Figure 41 (left) the estimates Λ̂i based on 20 full and truncated

data sets are shown, and with the black line the true value is plotted. The cluster around

this line are estimates based on the AG model on the full data set and the other lines are

the estimates from the truncated data sets. It can be seen that if the subjects which do

not experience any events during follow-up are not part of the data set, the uncorrected

estimates are biased upwards.

Next, we simulate data sets and truncate them as before, this time with a binary

covariate from a Bernoulli(1/2) distribution, as in (4.1). We repeat this procedure 30 times

for a grid of values of � , we estimate �̂ , and we collect the bias �̂ − � . For every value

of � a boxplot of the bias is shown in Figure 41 (center). It can be seen that, for � < 0,
the estimate has a positive bias and for � > 0 the bias is negative. The absolute value of

the bias is larger as � is further away from 0, and for negative values this phenomenon

is more severe.

Finally, we simulate a large data set of 3000 patients from the frailty model (4.2),

with a gamma distributed random e�ect (4.3) with � = 1. We truncate this data set in
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the same way as described before. The individual frailty value is unknown, and it can

be inferred from the conditional distribution of Zi given the data. A particularity of the

gamma shared frailty model is that this “posterior” distribution is also gamma, however

with mean 1/�̂ + Ni. and variance 1/�̂ + Λ̂i(ti), see (Nielsen et al., 1992). From the full

data set, we compute the “posterior” frailty estimates, equal to the expectation of this

conditional distribution:

ẑi =
1/�̂ + Ni.
1/�̂ + Λ̂i(ti)

.

The logarithm of these estimates are shown in a histogram in Figure 41 (right, above).

We show the estimated frailties of the subjects who are part of the truncated data set

in Figure 41 (right, below), clearly indicating that the one-in ascertainment favors the

selection of individuals with a high frailty value. This is because a high frailty value is

associated with a higher rate of recurrent events, leading to an ascertained sample which

is less heterogeneous and not representative of the population at risk.

4.3.2 Set up

The idea of the simulation study is to �rst simulate a random sample of M subjects, from

which the estimates of baseline intensity, regression coe�cients and eventually frailty

variance are obtained. These are regarded as the “correct” estimates. Next, from this

data set we obtain 3 di�erent “ascertained” data sets, by selecting only a subset of the

M subjects. On these “ascertained” data sets, we perform two analyses: one ignoring

the ascertainment correction, in order to assess the extent of the bias induced by event-

dependent selection, and one in which the correct ascertainment correction is used, to

evaluate how the estimates obtained from the adjusted likelihood compare to the “cor-

rect” ones.

By S0 we will refer to the full-data scenario, comprising theM simulated individuals.

The three “ascertained” data sets are obtained from the following scenarios:

• By S1 we refer to the situation where only subjects who experience at least one

event during follow-up are selected in the sample.

• In S2 only the subjects who experience at least one event during an observation

window at the end of the follow-up are kept in the sample.

• In S3 only subjects who experience at least one event in an observation window in

the middle of the follow-up are kept; this pertains to a selection scheme similar to

S2, where the ascertained subjects are also followed until the end of their follow-

up.

In all three cases we assume that the whole follow-up, including the events outside the

ascertainment window, is known for the subjects in the sample.
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The general set-up of the simulations is as follows: we take the baseline intensity

�0(t) ≡ �0 = 2 for each individual. Two covariates are generated independently from a

Bernoulli distribution with P(Xiq = 1) = P(Xiq = 0) = 0.5 for i = 1...M and q = 1, 2. The

regression coe�cients used for the simulation are �1 = 1 and �2 = −0.5. The subjects

are censored at time tC = 1 or by a “drop-out process” determined by an exponential

distribution with mean 2 exp(xi1), whichever comes �rst. For the frailty model (4.2), we

simulate M gamma-distributed random variables according to (4.3) with � = 0.5, and

subsequently with � = 1, and assume that the dropout does not depend on the frailty.

The simulations consist of 1000 replicated data sets, each withM = 500 counting pro-

cesses (individuals) that are simulated from a Poisson process, with the intensities (4.1)

for the no-frailty case and (4.2) for the frailty cases, i.e.

�i(t) = 2 exp(�1xi1 + �2xi2)

for the � = 0 (AG) case and

�i(t|zi) = 2zi exp(�1xi1 + �2xi2)

for the � = 0.5 and � = 1 cases.

For scenario S2 the observation window is chosen as (0.7, 1.0] and for scenario S3 as

(0.3, 0.5). Because the data sets used in S1, S2 and S3 are subsets of the full data set S0,

they contain fewer individuals. The average sizes of the truncated data sets is shown in

Table 41.

Table 41: Data set sizes for S0, S1, S2 and S3 in terms of average number of individuals (M ) and

average number of events per individual (N ./M )

S0 S1 S2 S3

� = 0
M 500 384.15 181.64 173.72

N ./M 2.34 3.05 4.08 4.00

� = 0.5
M 500 342.59 161.28 157.93

N ./M 2.35 3.43 4.87 4.87

� = 1
M 500 308.37 146.07 144.06

N ./M 2.34 3.80 5.56 5.64

For the regression parameters and the frailty variance, the estimates are evaluated

according to systematic bias, root mean-squared error and . The systematic bias is de-

�ned as

1
1000

1000
∑
j=1

(�̂qj − �q)
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for q ∈ 1, 2, where �̂qj is the estimate of �q from the j-th simulation and �q is the true

value of the parameter. The root mean-squared error (RMSE) is de�ned as

1
1000

√
1000
∑
j=1

(�̂qj − �q)2

and the coverage is the percentage of times that the 95% con�dence interval of the es-

timates contains the true value of the parameter. For the regression coe�cients, the

estimated standard error obtained from the maximization software is used to construct

symmetric con�dence intervals. A special case is represented by � , which is restricted

to positive values. Instead, an unrestricted estimate log � is obtained from the maxi-

mization of the likelihood together with a standard error se(l̂og �). A symmetric 95%

con�dence interval for log � can then be constructed on the log-scale as

[l̂og � − 1.96 ∗ se(l̂og �), l̂og � + 1.96 ∗ se(l̂og �)] .

After exponentiating these bounds, a 95% asymmetric con�dence interval is obtained

for �̂ .

Both ascertainment unadjusted and adjusted estimates are obtained from a self-

written algorithm which maximizes the likelihoods (4.11) and (4.13), using a piecewise

constant parametric form for �0. Throughout the simulations, the time axis is split into

8 intervals, which are chosen so that each interval includes roughly the same number of

events. This implies that the intervals themselves may vary from simulation to simula-

tion.

4.3.3 Simulation results

Andersen-Gill The estimates of the baseline intensity �0 from the unadjusted and

adjusted AG model are shown in Figure 42, the estimate from each simulation being

represented by a piece-wise constant function. The 8 intervals are of roughly similar

length across the simulations due to the Poisson speci�cation in Section 4.3.2. It can

be seen that scenario S1 induces an upward bias that seems to be reasonably constant

throughout time. S2 and S3 seem to bias the analysis at all time points, to a similar extent

as S1, however with peaks during the observation window. The adjusted estimates are

unbiased; nevertheless, for the heavier ascertainment scenarios S2 and S3 the estimates

seem to exhibit a noticeably larger variance.

Boxplots of the unadjusted and adjusted estimates of �1 and �2 are shown in Fig-

ure 43. It can be seen that the adjusted estimates are unbiased, although they exhibit a

larger variance. Indeed, the ascertainment-adjusted estimates also have higher estimated

standard errors (not shown here).

The unadjusted estimators are also associated with an underestimated standard error

(not shown here). This re�ects itself in the poor coverage properties of the estimators.

The simulation results of the � = 0 (AG) case are summarized in Table 2. It can be
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Figure 43: Point estimates for regression coe�cients, AG model. The horizontal lines correspond

to the true value of the parameters, �1 = 1.0 and �2 = −0.5.
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observed that, if not corrected for ascertainment, the estimates of �1 are a�ected more

than those for �2. This is due to an imbalance which is caused in the data set: because

x1 also in�uences the risk of censoring as speci�ed in Section 4.3.2, it is less likely that

the subjects experience events during the ascertainment window, simply because they

have less time at risk. The correct model, which adjusts for the ascertainment, provides

unbiased estimates and show a drastic reduction of the RMSE from their unadjusted

counterparts.

Table 42: Simulation results, AG model

Uncorrected Corrected

S0 S1 S2 S3 S1 S2 S3

�1
Bias 0.003 -0.232 -0.273 -0.293 0.010 0.012 0.011

RMSE 0.062 0.238 0.283 0.303 0.085 0.117 0.127

Coverage 0.966 0.036 0.124 0.106 0.950 0.956 0.952

�2
Bias 0.000 0.096 0.119 0.127 0.000 0.002 0.001

RMSE 0.057 0.109 0.136 0.146 0.067 0.089 0.091

Coverage 0.968 0.678 0.690 0.690 0.952 0.956 0.962

Shared frailty We employ two scenarios for the frailty models, one of high hetero-

geneity (� = 1) and one of medium heterogeneity (� = 0.5). For the � = 1 scenario,

the estimates of the baseline intensities are shown in Figure 44. By contrast with Fig-

ure 42, the 8 intervals are more di�erent across simulations. This is due to the fact

that the frailty-induced heterogeneity induces a more uneven spread of the events in

time. Therefore, when determining the piecewise constant intervals as described in Sec-

tion 4.3.2, the outcome can vary more than in the AG case. The larger heterogeneity, as

represented by � = 1, also leads to more bias when the ascertainment is not adjusted for.

However, the adjusted estimates are still unbiased and exhibit a larger variance, simi-

larly with those shown in Figure 42. The baseline intensity estimates with � = 0.5 (not

shown here) show a similar behavior.

The results are summarized in Tables 43 and 44, as well as in Figures 45 and 46. In

terms of the regression coe�cients, the bias is more severe in the higher heterogeneity

scenario, even if only slightly so. As in the case of the AG model, the corrected estimates

are unbiased. The major di�erence lies in terms of the estimate of � . The unadjusted esti-

mates show a large bias towards 0, notably more acute when � = 1. The large bias seems

to lead to a very large variance of the adjusted estimators, as can be seen in Figure 45.

Nevertheless, in the corrected estimators consistently provide major improvements in

terms of RMSE and coverage over their unadjusted counterparts.
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Table 43: Simulation results, shared frailty model, � = 1

Uncorrected Corrected

S0 S1 S2 S3 S1 S2 S3

�1
Bias 0.004 -0.296 -0.302 -0.305 0.001 0.009 0.005

RMSE 0.116 0.311 0.327 0.332 0.148 0.190 0.196

Coverage 0.946 0.143 0.343 0.352 0.946 0.945 0.934

�2
Bias 0.002 0.140 0.147 0.145 0.001 0.001 -0.002

RMSE 0.115 0.172 0.193 0.193 0.139 0.175 0.180

Coverage 0.947 0.660 0.758 0.765 0.948 0.956 0.937

�
Bias -0.007 -0.657 -0.695 -0.716 0.001 0.004 0.011

RMSE 0.108 0.659 0.697 0.718 0.237 0.344 0.404

Coverage 0.963 0.000 0.000 0.000 0.963 0.963 0.946

Table 44: Simulation results, shared frailty model, � = 0.5

Uncorrected Corrected

S0 S1 S2 S3 S1 S2 S3

�1
Bias 0.001 -0.286 -0.297 -0.301 0.000 0.003 0.003

RMSE 0.096 0.298 0.316 0.320 0.127 0.163 0.168

Coverage 0.937 0.069 0.240 0.241 0.935 0.941 0.934

�2
Bias 0.000 0.127 0.136 0.137 -0.003 -0.002 -0.005

RMSE 0.092 0.151 0.171 0.173 0.113 0.145 0.148

Coverage 0.941 0.630 0.717 0.707 0.954 0.954 0.946

�
Bias -0.005 -0.304 -0.327 -0.34 -0.004 -0.007 -0.007

RMSE 0.066 0.306 0.330 0.343 0.109 0.154 0.169

Coverage 0.958 0.000 0.000 0.000 0.958 0.957 0.941
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4.3.4 Incomplete history

In the selection schemes described in Section 4.2, it is essential that, if an individual is

selected for the study, the whole history of events outside the observation window is col-

lected. As will be seen in the motivating example in Section 4.4, this might not always

be the case. To assess the performance of the indicated adjusted models, we consider

the scenario when the data on the history previous to the beginning of the observation

period is (partly) missing. Using the same data sets that were simulated before obtained

under selection schemes 2 and 3, we induce this incomplete character of the data in

the following way. In the “mild incompleteness” scenario, 10% of the individuals are

randomly selected from the ascertained data sets. For them, a “recollection time” is gen-

erated from a uniform distribution between 0 and the left time point of the observation

window (0.7 in S2 and 0.3 in S3). The events before this time point are subsequently

removed from the data set and the adjusted and unadjusted analyses are performed. In

the “heavy incompleteness” scenario, the same is repeated with 50% of the individuals

in the data sets. The results for � = 1 are summarized in Table 45. For � = 0.5, similar

results were observed and are not shown here.

The corrected estimates of the frailty variance � seem to be the most severely af-

fected, particulary in scenario S2. The large bias (0.114 and 0.668), coupled with very

wide con�dence intervals (with coverages of 0.975 and 0.998) indicate that the standard

errors are overestimated. In Figure 47 we plot the ascertainment-adjusted estimated

baseline hazards for this case. By comparison with 44, it can be seen that the ascertain-

ment adjustment does not work as well. The missing event history before time 0.7 leads

to the underestimation of the intensity of the recurrent events process, mostly visible in

the 50% missing case.

The general conclusion is that, when unadjusted for ascertainment, the incomplete-

ness seems to slightly aggravate the problems illustrated in Tables 43 and 44. Neverthe-

less, the bias, RMSE and coverage remain comparable. The ascertainment adjustment

seems to work well also with the incomplete data sets in terms of regression coe�-

cients, at the price of a small increase in bias in and a slight increase in RMSE. In terms

of the estimation of � , we remark that the adjustment induces a positive bias to the esti-

mates. In addition, the overly optimistic results of the coverage, in conjunction with the

increase in RMSE and the bias results, reveals an over estimation of the standard errors.

We conclude that, when the events outside the observation window are not completely

collected, the ascertainment correction is robust in regards to the regression coe�cients,

however the frailty variance parameter should be interpreted with caution.

4.4 Data analysis

Data description The motivating data set comprises observations on primary sponta-

neous pneumothoraces (PSP). Risk factors for developing a PSP are male gender, smok-

ing, and age, with a peak at 25-35 years of age; see Baumann and Noppen (2004) for an

overview on the recurrent characteristics of PSPs.
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Figure 47: Ascertainment-adjusted estimates of baseline intensities, shared frailty model with

� = 1, scenario S2, with 10% incompleteness (left) and 50% incompleteness (right) before the

ascertainment window. the horizontal line at y = 2 corresponds to the true �0 = 2.

More recently, several genetic syndromes have been associated with an increased

risk for (recurrent) episodes of spontaneous pneumothorax, like the Birt-Hogg-Dubé

(BHD) syndrome, see Menko et al. (2009) and Johannesma et al. (2015). BHD is vastly

under-diagnosed and usually patients with PSP do not receive a genetic test for this

event, although (recurrent) PSP in BHD patients are caused by multiple cysts in the

lower parts in the lung. By contrast, the non genetic PSP does not show these cysts at

all on a thoracic CT-scan.

A variety of treatments are available for PSP, which we can divide into 3 categories:

conservative (waiting, drainage, manual aspiration), sticking (pleurectomy, (chemical)

pleurodesis) and cutting (lobectomy, bullectomy). Usually, the patients �rst receive a

non-invasive (conservative) treatment, followed by a more invasive treatment for the

next recurrent episodes.

The selection of the patients occurred as follows; between 2010 and 2014 a ques-

tionnaire was sent to the patients treated after 1990 for (recurrent) PSP. A number of

respondents returned to the hospital and received a folliculin (FLCN ) test to con�rm

BHD and then their PSP and treatment history was recorded. Information on the loca-

tion of the PSP was not available, except for which lung the event took place in. The age

of the patients at each event was recorded, approximated to the year. In total, the data

set comprises 95 patients out of which 65 had PSP episodes only on one of the lungs,

with a total of 220 episodes of PSP.

We de�ne a tie as PSPs occurring in the same year in the same lung. This is observed

in 26 of the 125 lungs with events in the data set. The presence of ties poses a di�culty
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in analyzing the gap times, since 0-length gaps are not meaningful. Even if arti�cially

spread out over a small interval of time, this might lead to a wrong impression on the

length of the true gaps. This poses less of a problem if the intensity of the occurrences

is treated as a non-homogeneous Poisson process, with age as time scale. This is the

course that we follow in this analysis.

The data are shown in a Lexis diagram (Plummer and Carstensen, 2011) in Figure 48.

The ascertainment process can be clearly seen. The general lack of events prior to 1990

casts some doubt on the completeness of the retrospective data collection, however this

aspect is not further considered here. The e�ects of incomplete collection of the event

history prior to the observation window were analyzed by simulation in Section 4.3.4.

Model construction The next step is the construction of a model. Each individual is

represented by two counting processes corresponding to the two lungs, �Li and �Ri . The

intensities of these two processes can be in�uenced either by subject-level factors or by

lung-speci�c history. A priori, there is no reason why one lung should be at a higher

risk than the other. The general idea is that the subject-speci�c factors a�ect both lungs

equally, while the di�erence in treatments between the lungs account for the observed

di�erences between �Li and �Ri .

We choose to model the events on the age time scale for which we take a baseline

intensity common to all lungs from all subjects. The non-parametric estimate of the

baseline intensity will have jumps only at event times, with the �rst event occurs at age

16. However, for the piecewise constant baseline a start of the recurrent events process

must be explicitly de�ned. We choose this as the age of 15, since the risk of PSP before

puberty is practically 0. We include BHD carrier indicator as a time-constant covariate

in the model. At the lung level, we assume that the lungs may be in 4 states: “not under

treatment”, if there was no previous event, or under one of the 3 treatments: conservative,
sticking or cutting. To account for di�erences between individuals, we include a gamma

frailty which is shared for both �Li and �Ri . These may be due to unmeasured covariates,

such as shared environmental or behavioral variables.

In terms of treatments, sticking and cutting should be compared to conservative.
To accommodate this, we assume that the intensity gets multiplied by exp(�cons),
exp(�cons + �stick) or exp(�cons + �cut) according to which treatment the lung is under. In

this case, exp(�cons) is the intensity ratio between one lung which had at least one event

and is under conservative treatment and one lung which had no event and is not under

treatment. This e�ect can also be interpreted as the intensity ratio between a lung which

experienced PSPs and one which has not. On the other hand, exp(�stick) and exp(�cut)
are intensity ratios between a lung which is under sticking or cutting and a lung un-

der conservative treatment. For example, for individual i without BHD and with frailty

zi , which at time t has the left lung under cutting treatment and the right lung on the
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Figure 48: Lexis diagram of the PSP data. In blue the non-BHD patients. Dots represent observed

events. The ascertainment window is marked between vertical lines.
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conservative treatment, the intensities are

�Li (t|zi ; �, �) = zi exp(�cons + �cut)�0(t; �)

�Ri (t|zi ; �, �) = zi exp(�cons)�0(t; �)

A question of interest is whether the treatments perform equally for BHD and non-BHD

patients. Finally, we also include interactions between these terms and BHD status.

Below, we show the results from a parametric baseline with 7 piecewise constant

intervals and a semiparametric model.

Results The results are described in Table 46. The p-values for the regression coef-

�cients are obtained from a Wald test statistic. It can be seen that adjusting for the

ascertainment does not drastically in�uence the point estimates of the regression coe�-

cients, which change at most by one standard error. Also, the estimated standard errors

are larger in the adjusted model, in both the piecewise constant and in the semipara-

metric models. The noticeable e�ect of this is that the main e�ect of the conservative

treatment loses sigini�cance, with the p-value increasing form 0.02 to about 0.3.

Other than that, we remark that statistical signi�cance at the � = 0.05 level was not

observed for any of the variables in the model. Nevertheless, the adjusted model does

give slightly di�erent results. It can be seen that BHD patients are at a higher risk for

PSPs as compared to non-BHD patients. For the non-BHD group, it can be seen that

all treatments elevate the intensity of the event process. Among the 3 treatments, the

sticking seems to perform better. For the BHD group, the cutting treatment seems to

perform better, relative to conservative or sticking. If one of the lungs does not have

any events, the intensity of the treated lung relative to the untreated one is modi�ed

multiplicatively by a factor of exp(0.419 + 0.075) = 1.63. Conversely, for sticking this is

exp(0.419−0.187+0.075−0.166) = 1.15 and for cutting exp(0.419+0.595+0.075−0.934) =
1.16.

In Figure 49, the unadjusted and adjusted baseline intensity estimates are shown, for

both the semiparametric and the piecewise constant models. Similarly with the results

of the simulation study in Section 4.3, the unadjusted baseline is overall larger than the

adjusted estimate.

The p-values are missing in the case of the frailty variance � , because the null hy-

pothesis H0 ∶ � = 0 is at the border of the parameter space and a Wald test would not

be valid in this case. A Likelihood Ratio Test for H0 ∶ � = 0 based on a �2 distribution

with 1 degree of freedom can be constructed by contrasting the estimated frailty model

versus the AG model, which is seen as the limiting case when � → 0, see Therneau and

Grambsch (2000) and Nielsen et al. (1992). The LRT statistics for this hypothesis in the

unadjusted / adjusted models are < 0.01 / 10.64 (piecewise constant) and < 0.01 / 8.57

(semiparametric model), corresponding to p-values of 0.98 / < 0.01 (piecewise constant)

and 0.99 / < 0.01 (semiparametric model). The large di�erences in signi�cance can be

explained by noting that, without correcting for ascertainment, the e�ect of the frailty

is not captured at all, as was seen in the simulation study in Section 4.3. It can however
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Table 46: Data analysis results

Unadjusted Adjusted

Coef. SE p Coef. SE p

Piecewise constant

BHD 0.073 0.19 0.71 0.212 0.35 0.55

Cons 0.866 0.36 0.02 0.500 0.44 0.26

Stick -0.202 0.42 0.69 -0.220 0.51 0.67

Cut 0.525 0.48 0.28 0.567 0.60 0.35

BHD:Cons 0.126 0.44 0.78 -0.001 0.52 1.00

BHD:Stick -0.167 0.52 0.75 -0.087 0.62 0.89

BHD:Cut -0.707 0.67 0.29 -0.958 0.85 0.26

� < 0.001 NA - 1.302 4.18 -

Semiparametric

BHD 0.069 0.19 0.72 0.191 0.22 0.39

Cons 0.871 0.38 0.02 0.419 0.42 0.33

Stick -0.221 0.42 0.61 -0.187 0.46 0.69

Cut 0.491 0.49 0.32 0.595 0.55 0.28

BHD:Cons 0.173 0.46 0.71 0.075 0.49 0.88

BHD:Stick -0.198 0.53 0.71 -0.166 0.58 0.77

BHD:Cut -0.646 0.67 0.34 -0.934 0.77 0.23

� < 0.001 0.07 - 1.73 3.51 -

be seen that the standard errors corresponding to the estimator of � are very large in the

adjusted models, which was also the case in the simulation study in Section 4.3.4. This is

in line with the suspicion that the history before 1990 was incompletely collected. The

same phenomenon of large estimates and very large standard errors was observed in the

same context in Section 4.3.4.

4.5 Discussion

We have shown in this chapter that event-based ascertainment may lead to biased results

when unaccounted for. This bias can be severe and it may lead to very weak coverage

properties, and the true e�ect of various factors might not be captured at all. We can

correct for this bias with the methods proposed in Section 4.2. The merit of the approach

used in this chapter is that unbiased results can be obtained if the event-dependent se-

lection conditions are correctly accounted for in the estimation method. Furthermore,

it was seen in Section 4.3 that the adjusted estimators only exhibit a small increase in

the root mean-squared error as compared to the full-data scenario, as seen in Table 2,

despite a smaller sample size. This suggests that the same results can be obtained from



4.5 Discussion 99

0
2
0

4
0

6
0

8
0

0.00.51.01.52.0
U
n
a
d
ju
s
te
d

a
g
e

L0

s
e
m
i-
p
a
ra
m
e
tr
ic

p
ie
c
e
w
is
e
-c
o
n
s
ta
n
t

0
2
0

4
0

6
0

8
0

0.00.51.01.52.0

A
d
ju
s
te
d

a
g
e

L0

s
e
m
i-
p
a
ra
m
e
tr
ic

p
ie
c
e
w
is
e
-c
o
n
s
ta
n
t

F
i
g

u
r
e

4
9
:

A
d

j
u

s
t
e
d

a
n

d
u

n
a
d

j
u

s
t
e
d

e
s
t
i
m

a
t
e
s

o
f

t
h

e
c
u

m
u

l
a
t
i
v
e

b
a
s
e
l
i
n

e
i
n

t
e
n

s
i
t
y
Λ
0.

T
h

e
g

r
a
y

b
a
n

d
d

e
l
i
m

i
t
s

t
h

e
9
5
%

c
o

n
�

d
e
n

c
e

i
n

t
e
r
v
a
l

f
o

r
t
h

e
s
e
m

i
p

a
r
a
m

e
t
r
i
c

e
s
t
i
m

a
t
e

o
f
Λ
0.

W
i
t
h

d
o

t
t
e
d

l
i
n

e
s
,
t
h

e
p

a
r
a
m

e
t
r
i
c

e
s
t
i
m

a
t
e

w
i
t
h

7
p

i
e
c
e
w

i
s
e

c
o

n
s
t
a
n

t
i
n

t
e
r
v
a
l
s
.



100 Chapter 4 – Ascertainment

the two study designs, prospective study and retrospective study with event-dependent

selection, as long as the ascertainment is correctly modeled. Hence, retrospective studies

on recurrent events might prove to be a viable alternative to the prospective studies.

There are several limitations to the approach used throughout this chapter. First,

we assumed that the whole event history of an individual can be collected at the time

of the selection. This might not be true, especially when the event history has to be

“remembered” by the patients. It can be seen in Figure 48 that very few events seem to

happen before the start of the study (1990). It is possible that the subjects did not recall

earlier events, or that registry data was not available for all the patients. However, the

proposed methods showed promising results, as long as the complete history is collected

for most individuals. The e�ects of incomplete collection of data outside the observation

window are analyzed by simulation in Section 4.3.4.

Second, it is also common in the study of recurrent events that the subjects have to be

alive at the time of the selection. If the rate of the recurrent events is associated with the

terminal event, then joint models for recurrent and terminal events should be adopted;

see, for example, Liu, Wolfe, and Huang (2004). In the data used in Section 4.4, it is

reasonable to assume that death is not an event of interest, since the recurrent events in

this case are not life-threatening. Nevertheless, Cook and Lawless (2007, ch. 7.3) provide

some indication of possible strategies for this type of selection.

Third, as seen in Section 4.3, the adjusted estimators show a larger variance than

their unadjusted counterparts, which is especially visible in the estimates of the frailty

variance. This indicates that the frailty distribution itself is harder to identify than co-

variate e�ects in ascertainment-adjusted models.

Among the advantages of the approach presented in this chapter, is that several ex-

tensions can be obtained to accommodate more complicated models. First, in the frame-

work outlined in Section 4.2, the distributional assumption for the frailty (gamma dis-

tribution) can be relaxed. Likelihoods can be constructed from (4.6) for a larger family

of distributions, however these do not lead to closed form expressions; see Hougaard

(2000).

Second, other similar models which lead to similar likelihood expressions as (4.4)

or (4.6) could be accommodated with this approach. An example is a two-state Markov

model for duration of recurrent episodes, where only subjects who have a �rst recurrence

in an observation window are ascertained; see Cook and Lawless (2007, ch. 6.5).

Finally, we note that the framework introduced in Section 4.2 can be itself extended.

As long as Ai is an event which is more general than Oi , in the sense of equation (4.8), a

similar argumentation can be employed. This can be achieved by extending the de�ni-

tion of what amounts to the event history. Several examples can be found in Cook and

Lawless (2007, ch. 7.3).

The promising results shown by the semiparametric estimation method proposed

in Section 4.2.3 suggest that the properties of the algorithm should be further investi-

gated, and completed by a proof of convergence. The R code used for the simulations in

Section 4.3 is available upon request from the corresponding author. Future work, espe-
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cially in terms of software development, would likely prove to be useful for clinicians.

A focus of future research will be to provide an extension of R’s survival package for

ascertained and truncated data.




