
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/66031 holds various files of this Leiden University 
dissertation. 
 
Author: Balan, T.A. 
Title: Advances in frailty models 
Issue Date: 2018-09-26 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/66031
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 3

Score test for association between

recurrent events and a terminal

event

Abstract

The statistical analysis of recurrent events relies on the assumption of independent cen-

soring. When random e�ects are used, this means, in addition, that the censoring cannot

depend on the random e�ect. Whenever the recurrent event process is terminated by

death, this assumption might not be satis�ed. Joint models for recurrent and terminal

events are often di�cult to �t. Thus, clinicians rarely check whether they are preferred

to separate models. In this chapter, we propose and compare simple, yet e�cient ways

of testing whether the terminal event and the recurrent events are associated or not. The

proposed methods are evaluated in a simulation study and are illustrated through a data

set consisting of repeated observations of skin tumors on T-cell lymphoma patients.

3.1 Introduction

Recurrent event data have become increasingly common in clinical studies, in reliability

theory, and in other �elds (Cook and Lawless, 2007). The shared frailty model (Nielsen

et al., 1992) is a popular method for analyzing this type of data, because it retains a

This chapter has been published as: T.A. Balan, S.E. Boonk, M.H. Vermeer, H. Putter (2016). Score test

for association between recurrent events and a terminal event. Statistics in Medicine 35(18), 3037-3048.
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54 Chapter 3 – Score test for association

similar semiparametric speci�cation with the well known Cox model, it is supported by

asymptotic results (Murphy, 1995a; Parner, 1998) and is available in standard statistical

software (Therneau and Grambsch, 2000). The frailty (Vaupel, Manton, and Stallard,

1979) is a random e�ect which accounts for heterogeneity that can not be explained

by observable covariates. In other words, it describes whether a subject or a cluster of

subjects is at a higher risk (large frailty) than others (small frailty). In the recurrent

events framework, the frailty accounts for the dependence between the observations on

the same individual. Conditional on the frailty, one hopes that the stochastic processes

underlying the individuals are independent. Thus, frailty models allow an elegant and

parsimonious explanation of the mechanism which generates the data.

In a clinical context, recurrent events are often a symptom of a medical condition

which might lead to the end of follow-up in the form of dependent censoring by termi-

nal event, such as death. In particular, a more frail subject might not only be associated

with a higher recurrence rate, but also an increased or decreased risk of experiencing the

terminal event, to a greater or lesser extent. If this is the case, the recurrences and the

terminal event should be jointly modeled, allowing for the frailty to describe both the

unaccounted di�erences in the risk for both recurrences and death. Such a model was

introduced in Liu, Wolfe, and Huang (2004), who adapted a model for clustered failures

with informative censoring (Huang and Wolfe, 2002). For estimation of a semiparamet-

ric joint frailty model, the Expectation-Maximization (EM) algorithm can be used, the

method being very similar to the estimation of the shared frailty model (Nielsen et al.,

1992; Klein, 1992).

There are however disadvantages of the joint model. It is notably easier to con-

sider separate models for the recurrences and death, both in terms of di�culty of �tting

and interpretation; a comparison between the estimation methods of the shared frailty

model (Nielsen et al., 1992) and the joint model (Liu, Wolfe, and Huang, 2004) can at-

test to this. Furthermore, expressions for marginal features of the recurrent events or

terminal event processes are not readily obtained, and the interpretation of features of

interest, such as treatment e�ects, is not as straightforward as for the separate models.

Although software for parametric models for recurrent and terminal events exists (Ron-

deau and Gonzalez, 2005), there is no method to check a priori whether separate models

are similarly appropriate or not. This may lead to situations when clinical practitioners

will ignore the dependence between the two event types.

In this chapter, we aim to develop a simple statistical test for association between

the recurrent events and the terminal events, which does not require the estimation

of a joint model. This provides an answer to a clinically relevant problem and it also

indicates whether the joint modeling of the processes is more suitable. The idea that we

follow is similar to a test for informative censoring (Huang, Wolfe, and Hu, 2004) and

heterogeneity (Commenges and Andersen, 1995) in the context of clustered failures.

The outline of the article is as follows. In Section 3.2, we review a joint model closely

related to that of Liu, Wolfe, and Huang (2004). In Section 3.3, we review possible tests

for association and introduce the robust score test, and in Section 3.4 we discuss the
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e�ciency and validity of our approach in a simulation study. Finally, in Section 3.5 we

illustrate the proposed methods on a data set of successive hospital readmissions.

3.2 Models

LetDi and Ci denote the time of the terminal event and right censoring time respectively,

both of which correspond to the end of followup. Also de�ne Ti = min(Di , Ci), and

Yi(t) = 1 (t ≤ Ti) the “at risk” indicator. While Yi(t) = 1, we observe two counting

processes, ND
i (t) = 1(Di ≤ t) corresponding to the terminal event and N R

i (t) which

is equal to the number of recurrences in (0, t], or equivalently their increments ΔN R
i (t)

and ΔND
i (t), equal to the number of respective events in the small interval (t, t + Δt].

We can consider a p × 1 vector of possibly time-dependent covariates {xi(t) ∶ t ≥ 0}
and denote their path up to time t as x (t)i = {xi(s) ∶ 0 ≤ s ≤ t}. We require the time-

dependent covariates to be external, in the sense of Kalb�eisch and Prentice (2002). The

history up to time t is then

Hi(t) =
{
(N R

i (s), N
D
i (s)) ∶ 0 ≤ s ≤ t ; x (t)i

}
. (3.1)

The intensities ofN R
i andND

i can be associated, meaning that the rate of recurrences

and that of the terminal event can depend on elements of (3.1). It is, for example, plausible

that a high rate of recurrent events is associated with a reduced survival. Often, this can

be an indication of a “hidden” factor, such as a severe disease, which in�uences both

intensities of N R
i and ND

i .

As in the model of Liu, Wolfe, and Huang (2004), we consider a frailty variable Z =
(Z1, ..., Zn)with Zi ’s i.i.d. with a distribution function G(z; �), with mean 1 and variance

� . Conditional on Z = (z1, ..., zn), the intensities of N R
i and ND

i are:

ri (t |zi) = lim
Δt→0

Pr
{
ΔN R

i (t) = 1|zi , Hi(t−)
}

Δt
,

�i (t |zi) = lim
Δt→0

Pr
{
ΔND

i (t) = 1|zi , Hi(t−)
}

Δt
.

Further, we assume that both N R
i and ND

i can not increase after Di . Although a natural

assumption for the terminal event, for the recurrent events death is an instance of poten-

tially informative censoring. In particular, a violation of the assumptions of the classical

shared frailty model (Nielsen et al., 1992) occurs if zi can not be dropped from the expres-

sion of �i . Finally, we follow Liu, Wolfe, and Huang (2004) in choosing a multiplicative

model for the intensities, so that ri and �i can be expressed as

{
ri (t |zi) = zi1 (Di > t) e�

′xRi (t)r0(t)
�i (t |zi) = zi 1 (Di > t) e

�′xDi (t)�0(t)
. (3.2)
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The baseline intensities r0 and �0 are assumed for now to be continuous positive func-

tions. The regression coe�cients � and � have the dimensions of the corresponding

covariates xDi and xRi .

The question of association between N R
i and ND

i is closely related to the parameter

 in (3.2), which describes the direction and magnitude at which the frailty in�uences

the hazard �i . Thus, the interest lies in testing the hypothesis H0 ∶  = 0 against

HA ∶  ≠ 0. UnderH0, the expressions of �i and ri do not share any parameters, and then

both processes can be analyzed separately; in particular, the censoring of the recurrent

event process by the terminal event is non-informative, in the sense of Nielsen et al.

(1992).

Assume that the baseline intensities are fully described by some parameters �r and

�d , i.e. r0(t) ≡ r0(t ; �r ) and �0(t) ≡ �0(t ; �d ). If �r and �d are �nite dimensional, then the

model is parametric; otherwise, the model is semi-parametric, as originally proposed by

Liu, Wolfe, and Huang (2004). Nevertheless, we denote the nuisance parameter vector

by � = {�, �, �, �r , �d )}.

For subject i, we denote the observed data Oi as the event “ni observed recur-

rent events at ti1, ..., tini over [0, ti] and �i = 1(Di < Ci)”. Under the regularity

conditions of Liu, Wolfe, and Huang (2004), the “conditional likelihood” based on

(Hi(∞); i = 1...n; Z) is formed from the conditional probabilities

Pr(Oi |zi) = ∏
j

{
ri(tij |zi)

}
exp

{
− ∫

�

0
Yi(s)ri(s|zi)ds

}
�i(ti |zi)�i×

× exp
{
− ∫

�

0
Yi(s)�i(s|zi)ds

}
.

Similarly, the “marginal likelihood” based on Hi(∞) alone is obtained from the marginal

contributions to the likelihood Pr(Oi) = ∫ ∞0 Pr(Oi |z)dG(z; �). The marginal log-

likelihood is then

� ( , �) = ∑
i [

ni
∑
j=1

{
�′xi(tij ) + log r0(tij )

}
+ �i

{
�′xi(ti) + log �0(ti)

}
+

+ log ∫
∞

0
Ki(z, ti)f� (z)dz] (3.3)

where Ki(z, t)f� (z), is the kernel of the “posterior” distribution Zi |Hi(t) computed with

the data available until time t . We denote the cumulative given zi = 1 as Ri(t) =
∫ t0 Yi(s)e

�′xRi (s)r0(s)ds and Λi(t) = ∫ Yi(s)e�
′xDi (s)�0(s)ds, and then

Ki(z, t) = zN
R
i (t−)+N

D
i (t−) exp

{
−zRi(t) − zΛi(t)

}
. (3.4)

Under  = 0, Ki is the kernel of a Gamma distribution, so a convenient choice forG is the

Gamma distribution as well (Nielsen et al., 1992); also see Duchateau and Janssen (2007).
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If  ≠ 0 the Expectation-Maximization algorithm must be employed to maximize the

log-likelihood, using numerical methods to approximate integrals at every iteration (Liu,

Wolfe, and Huang, 2004). The numerical approximations and the slow convergence of

the EM algorithm result in an overall slow and complicated method.

One way out is to consider a parametric version of the joint model. At the expense of

introducing assumptions about the functional form of r0 and �0, one can obtain a numer-

ically tractable form of the log-likelihood (3.3), which can be maximized with standard

maximum likelihood methods (Rondeau, Mathoulin-Pelissier, et al., 2007). This approach

is implemented in the R package frailtypack (Rondeau and Gonzalez, 2005; Rondeau,

Mazroui, and Gonzalez, 2012), which also o�ers the option to choose �exible parametric

speci�cations for r0 and �0, such as piecewise constant or spline-approximated.

There are however reason not to employ the joint model. First, clinicians prefer

more familiar models such as a frailty model for the recurrent events (available in e.g.

R, SAS, Stata) or a Cox model for the terminal event (also available in SPSS), if there

is no need of doing something more complicated. The parametric assumptions have

their price as well. Splines, for example, require the speci�cation of two “smoothing

parameters”, which may or may not be easy to obtain. We will return to considerations

about computation in section 3.4. Thus, it would be useful to be able to see if there is

evidence against H0 even before the joint model is used. While the Likelihood Ratio

Test (LRT) or the Wald test require the maximization of (3.3), the score test does not.

If the null hypothesis is rejected, the shared frailty model is not appropriate and the

terminal event should be jointly modeled (Liu, Wolfe, and Huang, 2004; Ye, Kalb�eisch,

and Schaubel, 2007).

In the following section, we describe tests forH0 based on (3.3), with a focus on those

that do not require the maximization of (3.3).

3.3 Tests for independence

Our goal is to test H0 ∶  = 0, in the presence of the nuisance parameters �; a complete

speci�cation of the null hypothesis is H0 ∶ ( , �) = (0, �). Abiding by our purpose of

developing a simple test for this hypothesis, we �rst focus on how this can be achieved

while avoiding the direct maximization of (3.3). This can be done by considering the

maximum likelihood estimate �̂0 under  = 0 and measuring the variation of (3.3) around

 = 0. This forms the basis of the score test in section 3.3.1. Other approaches, for which

estimation of the joint model is needed, are detailed in Section 3.3.2.

3.3.1 Score Test

The starting point for this is the score function for  under H0, de�ned as the derivative

with respect to  in (3.3):

U (0, �) =
)
)

� ( , �)
||||=0

.
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If we denote �̂0 the estimate of � under H0, then

{
U (0, �̂0)

}2

Var
{
U (0, �̂0)

} (3.5)

follows asymptotically a �2 distribution with 1 degree of freedom. The variance of the

score is

Var
{
U (0, �̂0)

}
= (I − I�I−1�� I� )

|||=0,�=�̂0
, (3.6)

where the I s are obtained from the Fisher information matrix

I ( , �) = (
I I�
I� I�� ) .

If the model is semi-parametric, the score function and information matrix of � are re-

placed by a score and an information operator (Rabinowitz, 2000; Kosorok, 2008). Al-

though this does not lead to a closed form of (3.6), any “good” estimate of the variance of

the score can be used. The �rst choice is to replace the denominator of (3.5) with I ||=0,
which is the variance of the score if � were known to be equal to �̂0. By this, the variance

will be underestimated, thus leading to a conservative test statistic. We refer to this as

the naive score test (NST).

Further insight can be obtained by calculating U :

U ( , �) = ∑
i

∫ ND
i (ti) log z − Λi(ti |z)z

 log zKi(z)f� (z)dz
∫ Ki(z)f� (z)dz

.

Setting  = 0 and replacing � with �̂0, we obtain

U (0, �̂0) = ∑
i

∫
{
ND
i (ti) − Λ̂i(ti |xi , z)

}
log zK̂i(z)f� (z)dz

∫ Ki(z)f� (z)dz

= ∑
i
M̂D
i ⋅ ̂log zi , (3.7)

where M̂D
i and

̂log zi are the estimates of MD
i = ND

i (ti) − ∫
ti
0 Yi(s)�i(s)ds , the martingale

residual of the terminal event, and of E [logZi |Oi(ti)], where the expectation is taken

with respect to the “posterior” distribution K̂i(z)f� (z) of (3.4), with Ri and Λi replaced by

their estimates under H0.
A similar expression involving a correlation between martingale residuals and as-

pects of the posterior distribution of random e�ects was obtained in Jacqmin-Gadda et

al. (2010) in the context of joint latent classes and survival models.

Both estimates in (3.7) are only asymptotically independent samples; in practice,

there is a dependency between the estimates (Therneau and Grambsch, 2000). In par-

ticular, the martingale residuals M̂D
i are constrained to have mean 0 , therefore (3.7)
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is proportional to the sample covariance of the martingale residuals and expected log-

frailties, which is a measure of linear dependence. In fact, if an ordinary linear regression

model is considered:

M̂D
i = a + b ̂log zi + "i ,

then the departure of (3.7) from 0 is equivalent to the departure of the regression coe�-

cient b from 0. Thus, for testing H0, the regular t statistic can be used:

t = r
√
n − 2
1 − r2

(3.8)

where r = Corr(M̂D
i , ̂log zi) and t follows asymptotically a t distribution with n − 2

degrees of freedom under the null hypothesis under H0. We refer to the test based on

(3.8) as the robust score test (RST).

Heuristically, a justi�cation for the RST can be derived by interpreting the quantities

which appear in (3.7). The martingale residuals M̂D
i can be informally interpreted as an

“observed - expected” quantity for the terminal event. For example, if M̂D
i > 0, then the

rate of the terminal event is larger than expected, taking only the xi into account, and how

much larger is determined by how large M̂D
i is. A large (log-)frailty estimate corresponds

to a subject who is at high risk for recurrences. Hence, the larger the value of (3.7), the

stronger the evidence for the association between recurrent and terminal events is. More

frail subjects are more likely to experience the terminal event earlier if r > 0, or later if

r < 0, so the sign of the RST statistic also indicated the direction of the association.

3.3.2 Alternative tests

The likelihood ratio test (LRT) can be computed by maximizing the likelihood (3.3) via

the expectation-maximization algorithm, as described in Liu, Wolfe, and Huang (2004),

and comparing it to the likelihood under H0. If (3.3) is maximized in (̂ , �), then the LRT

statistic is

D = −2 log
{
l(0, �̂0)
l(̂ , �)

}

and it asymptotically follows a �2 distribution with one degree of freedom under H0.
The e�cient score test (EST) is described by (3.5) and the e�cient information (3.6),

and as previously mentioned it can be computed numerically. As shown in Murphy and

Vaart (2000), the e�cient information can be obtained as minus the second derivative of

the pro�le likelihood

�prof( ) = sup
�
� ( , �). (3.9)

In practice, we can approximate Ĩ
|||=0 = −E(

d2
d �prof( )

|||=0) with the numeric Hessian

of (3.9) in  = 0. This can be obtained from general purpose optimization software, such
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Table 31: Average number of recurrent event in simulated data sets.

�
 0.5 1 1.5

-0.5 2.36 2.44 2.52

-0.25 2.32 2.36 2.41

0 2.27 2.27 2.27

0.25 2.21 2.16 2.12

0.5 2.13 2.05 1.96

as the function optim in R or S-Plus or the package numDeriv in R. We comment in

the Appendix on computational considerations regarding the EST and how it is related

to the NST in this light.

Alternatively, the ̂ can be obtained from maximizing (3.9) with respect to  . The

variance of the estimate Var(̂ ) can be obtained from the numeric Hessian, and then the

Wald test statistic is

W =
̂√

Var(̂ )

and it asymptotically follows a standard normal distribution under H0. The sign of W
also corresponds to the direction of the tested association.

3.4 Simulation

A simulation study has been conducted to assess the validity of the Robust Score Test

(RST) and compare the small sample properties to those of the other tests described in

Section 3.3. The simulations have been carried out in the following setting: data sets

consist of n ∈ 100, 200, 500 subjects; for each subject the data is generated according to

model (3.2), for scenarios pertaining to  ∈ {−0.5, −0.25, 0, 0.25, 0.5}. The frailty is gen-

erated from a Gamma distribution with mean equal to 1 and variance � ∈ {0.5, 1, 1.5}.

One binary covariate is generated from a Binom(n, 1/2) distribution with �xed regres-

sion coe�cients � = � = 1. An exponential baseline hazard is used, with �0(t) = 1/2 and

r0(t) = 2. The follow-up is ended by either the terminal event, or by an administrative

censoring time Ci = 1, whichever occurs �rst. Note that the recurrent event rate and

the terminal event rate are independent only under H0. Every simulation cycle consist

of 1000 replications under the same conditions.

In Table 31 we show an indication on the size of the simulated data sets. It can be

seen that the number of recurrent events decreases with  and with � . The asymmetry

is explained by the fact that when  < 0 the recurrent events have a “protective” e�ect

and subjects with many events exit the data set later. The degree to which there is more

variance in the frailty ampli�es this e�ect.
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Sample size

α
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α

LRT

RST

NST

Figure 31: Estimated � levels with simulated data under H0. Wald and EST (not shown here) are

close to the LRT estimates. Binomial con�dence intervals are also shown, where a “success” is a

p-value smaller than 0.05

We use the abbreviations of the tests as described in Sections 3.3.1 and 3.3.2. Fur-

thermore, we also consider the Wald test from a parametric model where the base-

line intensities are considered piecewise constant with 3 intervals, from the R package

frailtypack; this approach is described in Section 3.2, and we see it as an approxima-

tion to the semiparametric joint model.

Figure 1 compares the type 1 error (false rejections) of the LRT, RST and NST, as a

function of n, under H0, in the case � = 1. Although the estimated � level seems con-

sistently lower for RST than for LRT, bionomial con�dence intervals for the proportion

of rejections have a notable overlap, and both seem to approach the desired 0.05 with

a su�ciently large sample. In this comparison, it can also be seen that the naive score

test (NST) is indeed over-conservative, as it is argued also in Appendix 3.6: even as the

sample size becomes larger, the proportion of rejections is signi�cantly lower then the

nominal � level of 0.05. Finally, we note that the results for � ∈ {0.5, 1.5} (not shown)

are very similar.

To better illustrate the relation between the di�erent tests, we plotted the p-values

obtained in the case  = 0, � = 1, n = 500 in Figure 32. Under the null hypothesis, one
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would expect the p-values of a valid test to be approximately uniformly distributed on

[0, 1]. The Wald test and EST are virtually indistinguishable from the LRT in this case.

The �gure indicates that RST approximates the LRT for small deviations as well. The

parametric Wald (WaldPar) test is also shown in the plot; it can be seen that the p values

can di�er wildly from those of the semi-parametric Wald; this can be seen as a trade

o� for the parametric assumption. For other values of n or � very similar �gures were

obtained.

Finally, we analyze the power of the aforementioned tests against the alternatives

 ∈ {−0.5, −0.25, 0.25, 0.5}, for � ∈ {0.5, 1, 1.5}. The results are summarized in Table

32. Two trends are visible regardless of sample size. First, the power of the tests grows

with the frailty variance, meaning that it is more likely to reject the null hypothesis

of no association in more heterogeneous data sets, if this association exists. Second,

in particular for LRT, Wald and EST, the tests fare slightly better for alternatives with

 < 0, which can be explained by the asymmetric size of the simulated data sets showed

in table 31.

As expected, the tests are more powerful when there is a higher number of individ-

uals in the data set. The RST performs better than Wald for small sample sizes (n = 100),
however there is no clear di�erence for others. Generally, the power of the RST is

slightly lower but reasonably comparable with the other tests. In Figure 33 we com-

pare the power of the tests for � = 1. It can be seen that, except for NST which is

over-conservative, the LRT, Wald, EST and RST are quite similar. It looks like for small

samples there is a slight advantage in power of LRT and EST, while the RST is closer to

the Wald test.

Finally, we note that the computation time is much smaller for the RST, as compared

to the other tests, including the parametric Wald test, WaldPar. Average computation

times from the simulations are shown in Table 33.

3.5 Application

We illustrate our methods using data from a study on Mycosis Fungoides (MF). MF

is the most common type of cutaneous T-cell lymphoma that generally presents with

patches and plagues Doorn, Sche�er, and Willemze (2002). Over time a number of pa-

tients progress to tumor stage disease (stage IIB) and a minority develop extracutaneous

localization of the disease. It is well known that there is considerable variability in the

number of recurrent skin tumors and is believed that an increased number of recurrent

skin tumors is associated with disease progression and survival. In addition, it has been

reported that folliculotropism of neoplastic cells is associated with an adverse prognosis.

In Boonk et al. (2014), 46 patients with stage IIB MF were selected from the cutaneous

lymphoma database of the Dutch Cutaneous Lymphoma Group. During follow-up, data

on recurrences of skin tumor and disease progression and survival were collected. We

consider overall survival as the terminal event. Median follow-up was 88 months. Co-

variates considered in this application are age (median 69, range 39–90), gender (33
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LRT
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Figure 32: Histograms and scatterplots of p-values corresponding to 1000 datasets simulated under

H0 ∶  = 0. Within the scatter plots, a straight line with equation y = x has been added, as well

as a dotted nonparametric smoother. The data sets follow the simulation scenarios of Section 3.5

with n = 500.
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Table 33: Average computation time for di�erent tests. For RST the standard survival package

was used, for WaldPar the frailtypack package, and for EST and LRT or Wald a self-written

algorithm was used, similar to that described in Liu, Wolfe, and Huang (2004).

Computation time (s)

100 200 500

RST 0.04 0.09 0.31

EST 16.18 48.05 138.03

WaldPar 1.04 1.64 2.68

LRT/Wald 44.57 128.25 331.61
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Figure 34: Recurrent event history and survival outcome of 4 patients

males, 13 females), and the presence of folliculotropic MF (26 absent, 20 present). Figure

34 shows examples of the variability in the number of tumors and time intervals between

tumor recurrences. It can be seen that some patients experienced multiple recurrences

at a single follow-up visit; the ties caused by these simultaneous recurrences were ran-

domly broken. 11 patients (23.9%) experienced 0 recurrences, 5 (10.8%) 1 recurrence, 6

(13.0%) 2 recurrences, and 24 (52.1%) more than 2 recurrences. The maximum number

of recurrences was 21. The original publication (Boonk et al., 2014) used the number of

recurrent skin tumors in the �rst year as explanatory variable in a landmark Cox model

at 1 year for overall survival, and showed that the number of recurrent skin tumors was

highly prognostic for subsequent survival.

A gamma frailty model ignoring possible informative censoring due to the terminal

event death, yielded the results shown in Table 34, under “Separate models”. The frailty

variance was estimated to be 1.574. The estimates of the Cox model for the terminal
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Table 34: Estimated regression coe�cients for recurrent events and terminal event, using separate

models and the joint model.

Separate models Joint model

Beta SE p-value Beta SE p-value

Recurrent events

Male gender 0.230 0.687 0.74 0.286 0.476 0.54

Age 0.039 0.020 0.058 0.039 0.018 0.035

Folliculotropic MF 0.019 0.595 0.97 0.039 0.276 0.88

Frailty variance 1.574 < 0.0001 1.358 0.323 < 0.0001
Association parameter ( ) 0.778 0.276 0.004

Terminal event

Male gender 0.616 0.486 0.20 0.747 0.648 0.24

Age 0.048 0.019 0.012 0.067 0.023 0.004

Folliculotropic MF 0.378 0.402 0.35 0.127 0.486 0.79

event, ignoring the recurrent events is also shown under “Separate models”. Figure 35

shows a scatterplot of the posterior log frailties from the gamma frailty models against

the martingale residuals of the Cox model for the terminal event. The correlation was

estimated to be 0.488, and the p-value of the robust score test was 0.0006. The result of

this quick test indicates that a joint model is really needed to reliably model the associa-

tion between the recurrent skin tumors and death. The result of this joint model, using a

self-written EM-algorithm, is shown in Table 34, under the “Joint model”. The regression

coe�cients in the joint model are generally comparable with the ones from the separate

models. The association parameter  was estimated to be positive and highly signi�cant,

indicating an increased death rate for the subjects with a high propensity of recurrent

events, in agreement with the �ndings in Boonk et al. (2014).

3.6 Discussion

We have shown that the estimated correlation between the martingale residual and the

estimated log-frailties can be used as the basis for a test of association between recurrent

events and a terminal event. The advantage of the robust score test is that it is easy to

compute and does not require �tting the joint model. Thus, it can serve as a simple

preliminary check whether models for the recurrent events and for the terminal events

can be �tted separately or whether more complex joint models are needed to obtain

reliable estimates.

We note that heterogeneity with respect to the recurrent events is required not only

for the joint model to be estimated, but also for the implementation of the RST. This can

be assessed via a likelihood ratio test (Nielsen et al., 1992; Therneau and Grambsch, 2000).

In addition, we note that the model described in Section 3.2 leads to the interpretation
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Figure 35: Martingale residuals of terminal event versus the posterior log-frailties estimated from

the recurrent events

of a common hidden factor in�uencing both risks of experiencing recurrent events and

the terminal event. The plausibility of this should be assessed separately, because more

models can describe the type of data encountered in this chapter (Cook and Lawless,

2007, ch. 6.6) and the e�ects of internal time dependent covariates are often di�cult to

separate from that of the frailty (Aalen, Borgan, and Gjessing, 2008, ch. 8.5).

The fact that the martingale residuals and the estimates of the log-frailty are not

samples coming from a bivariate normal distribution should also lead to a cautious in-

terpretation of correlation coe�cients and of the test statistic (3.8). In the simulations of

Section 3.4 we did not notice any increase in the estimated � levels of the RST, but this

might depend on the data set on which the method is employed. Finally, note that there

is no closed form connection between the parameter which describes the association

between recurrent events and terminal event  and the correlation � used to calculate

the RST statistic (3.8).

Although we have not explicitly stated that the frailty should follow a gamma dis-

tribution throughout Section 3.2, we still employed this assumption in Sections 3.4 and

3.5. The RST can accommodate any distribution for the frailty, including, for example,
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a two-point mixture or a compound Poisson distribution, as long as the shared frailty

model for recurrences can be estimated. It can be seen from (3.8) that the choice of the

frailty distribution will a�ect only the estimation of
̂log zi . We expect the RST to have

the largest power if the true frailty distribution is used, however this was not checked

in the simulation study.

The idea of a simple test, here in the form of RST, could be extended to more models

which inherit the issues which would prevent practicians to use a more complicated joint

model. Because a recurrent event data in the presence of a terminal event is a particular

case of a multistate model with competing risks (Cook and Lawless, 2007, ch. 6.6), similar

methods could be found by generalizing RST to multistate models with frailty (Putter and

Houwelingen, 2015).

Appendix: Estimation via pro�le likelihood

In Sections 3.3.2 and 3.4 we used the pro�ling out of the nuisance parameters from the

log-likelihood (3.3), in the sense shown by the de�nition (3.9). First, note that, if (̂ , �̂)
maximizes (3.3), then ̂ maximizes (3.9), and �̂ is the estimate of � obtained by maximiz-

ing � (̂ , �). It is clear that

�prof(0) = � (0, �̂0)

and �prof( ) ≥ � ( , �̂0)with equality only when  = 0. It follows that �prof( )−� ( , �̂0) ≥ 0.
Thus,

d
d

{
�prof( ) − � ( , �̂0)

}||||=0
= 0,

which shows that U (0, �̂0) from (3.7) is equal to the e�cient score function, U (0) =
d
d �prof ( )

|||=0. This justi�es why (3.7) is the correct score function for testing H0. Fur-

ther, because �prof ( ) − � ( , �̂0) is always positive and it has a minimum, it follows that

d2

d 2
{
�prof( ) − � ( , �̂0)

}
≥ 0

for any value of  . This implies that
d2
d 2 �prof ( ) >

d2
d 2 � ( , �̂0) for all values of  , which

is equivalent to

−
d2

d 2
�prof( ) = I ≤ I = −

d2

d 2
� ( , �̂0)

for all  . We conclude that �prof( ) and � ( , �̂0) have the same value and the �rst deriva-

tive in  = 0, but the curvature of � ( , �̂0) is more pronounced. This is the intuition

behind the reason why the likelihood � ( , �̂0) with �xed nuisance parameters can be

used to obtain the correct score, but not the correct information.




