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Chapter 2

Non-proportional hazards and

unobserved heterogeneity in

clustered survival data: When can

we tell the difference?

Abstract

Multivariate survival data are frequently encountered in biomedical applications in the

form of clustered failures (or recurrent events data). A popular way of analyzing such

data is by using shared frailty models, which assume that the proportional hazards as-

sumption holds conditional on an unobserved cluster-speci�c random e�ect. Such mod-

els are often incorporated in more complicated joint models in survival analysis.

If the random e�ect distribution has �nite expectation, then the conditional pro-

portional hazards assumption does not carry over to the marginal models. It has been

shown that, for univariate data, this makes it impossible to distinguish between the

presence of unobserved heterogeneity (e.g. due to missing covariates) and marginal non-

proportional hazards. We show that di�culties also arise when the data consists of small

sized clusters, or individuals experience only a small number of recurrent events.

This chapter is currenlty under review for publication as: T.A. Balan and H. Putter (Forthcoming). Non-

proportional hazards and unobserved heterogeneity in clustered survival data: When can we tell the di�er-

ence?

29
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We carry out a simulation study to assess the behavior of test statistics and esti-

mators for frailty models in such contexts. The gamma, inverse Gaussian and positive

stable shared frailty models are contrasted using a novel software implementation for

estimating semiparametric shared frailty models. Two main questions are addressed in

the contexts of clustered failures and recurrent events: whether covariates with a time-

dependent e�ect may appear as indication of unobserved heterogeneity, and whether the

additional presence of unobserved heterogeneity can be detected in this case. Finally, the

practical implications are illustrated in a real-world data analysis example.

2.1 Introduction

Multivariate survival data often arise in biomedical applications. Event times are cor-

related when individuals are grouped in clusters (e.g. families, patients in hospitals) or

observations are clustered within individuals (e.g. recurrent event episodes). Several

extensions of the Cox proportional hazards model (Cox, 1972) are used in these contexts

(Therneau and Grambsch, 2000, ch. 8–9). A popular class of regression models employs

random e�ects to account for the structure of the data. Shared frailty models commonly

assume that the proportional hazards assumption holds conditional on an unobserved

cluster speci�c random e�ect (Hougaard, 2000, ch. 7).

The frailty model was originally introduced in the context of demographics (Vau-

pel, Manton, and Stallard, 1979). In this case, an individual-speci�c random e�ect (or

“frailty”) is used to account for individual unobserved heterogeneity. Early research

focused on how the frailty may explain di�erent shapes of observed marginal (i.e. pop-

ulation) hazards (Vaupel and Yashin, 1985). The univariate frailty model with covariates

and conditional proportional hazards has been shown to be identi�able if the random ef-

fect distribution has �nite expectation (Elbers and Ridder, 1982). Distributions for which

the moments are not well de�ned, such as the positive stable, are not usually identi�able

with univariate data (Hougaard, 1986b).

In univariate frailty models, the marginal hazards and marginal covariate e�ects may

di�er from the conditional ones (Vaupel and Yashin, 1985; Aalen, 1994). In particu-

lar, under some regularity assumptions Elbers and Ridder, 1982, the marginal hazards

are “dragged down” and the marginal hazard ratios are shrunk towards 1. The same

e�ect is observed in the presence of unobserved heterogeneity due to missing covari-

ates (Hougaard, 2000, ch. 2.4.6). In particular, the marginal covariate e�ects are time-

dependent, and such models are not compatible with a proportional hazards assumption

on the population hazards (Therneau and Grambsch, 2000, ch. 6.6). One implication of

this is that, in practice, the frailty model with conditional proportional hazards and a

Cox regression with a time-dependent covariate e�ect can not usually be distinguished

on the basis of the data alone.

Another implication of the identi�ability result Elbers and Ridder, 1982 is that frailty

models for multivariate survival data are also identi�able under the same conditions.

Shared frailties are used to model common unobserved risk, where observations within
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cluster are independent conditional on the random e�ect and marginally dependent.

Therefore, the estimated spread (e.g. variance) of the frailty distribution measures both

the strength of dependence and between-cluster unobserved heterogeneity.

When the cluster size is small and covariates are present however, the regression pa-

rameters and the dependence structure may be confounded (Hougaard, 2000, ch. 7.2.7),

since the frailty model is identi�able also by considering only one event time from each

cluster. This is a well-known problem in twin studies, where more complicated random

e�ect structures might be more appropriate (Yashin, Iachine, et al., 2001). Nevertheless,

shared frailty models are commonly used in the context of twin studies without con-

sidering the possible impact of time-dependent covariate e�ects (Gharibvand and Liu,

2009; Gerster, Madsen, and Andersen, 2014; Dai et al., 2013). Conversely, in a twin study

on depression (Kendler et al., 2009), the authors found covariate e�ects that decay over

time and �tted a model for non-proportional hazards, which might be a by-product of

unobserved common risk.

In this chapter, we study the degree to which the distinction between non-

proportional covariate e�ects and the presence of unobserved heterogeneity can be made

in practice. In particular, the behaviour of shared frailty models is assessed on data sets

where a time-dependent covariate e�ect is present. The impact of cluster size and sam-

ple size is ascertained by means of a simulation study, in the context of both clustered

failures and recurrent events.

This chapter is structured as follows. In Section 2.2, we discuss the theoretical back-

ground of proportional hazards models and frailty models, in Section 2.3 we present the

results of a simulation study comprising a large number of scenarios, in Section 2.4 we

review real life data analysis scenarios and we present the conclusions of this study and

discussion in Section 2.5.

2.2 Models

2.2.1 Proportional hazards models

In Cox-type proportional hazards models, the hazard of individual j from cluster i is

speci�ed as

�ij (t) = Yij (t)�0(t) exp(x⊤ij�), (2.1)

where Yij (t) is an indicator function which is 1 when individual (i, j) is at risk and 0

otherwise, �0(t) is an unspeci�ed “baseline” hazard, xij is a p × 1 vector of observed

covariates and � is a p × 1 vector of unknown regression coe�cients.

This formulation covers both the clustered failures and recurrent events scenarios

in gap-time (in the latter, (i, j) symbolizes the j-th episode of individual i). For recurrent

events in the Andersen-Gill or calendar time formulation, it is common to take j ≡ 1,
and in this case �i represents the intensity (or “hazard process”) of the recurrent event

process. The case of univariate survival data may be seen as either that of clustered

failures with only one individual per cluster, or that of recurrent events with at most
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one event per individual. For simplicity, x is taken constant in time here, although time-

dependent covariates are easily accommodated (Kalb�eisch and Prentice, 2002). It is

assumed that the censoring is independent, given x and the event history.

When the proportional hazards assumption does not hold, the observed e�ect of the

covariates is time-dependent. In this case, the hazard can be speci�ed as

�ij (t) = Yij (t)�0(t) exp(x⊤ij�(t)). (2.2)

The assumption of proportional hazards can be visualized for a small number of covari-

ates or tested using Schoenfeld residuals (Grambsch and Therneau, 1994).

2.2.2 Frailty models

In frailty models, the hazard is speci�ed conditional on a cluster-speci�c random e�ect

Zi :
�ij (t|Zi) = Yij (t)Zi exp(xTij�)�0(t). (2.3)

Zi is referred to as the “frailty” of cluster i. TheZi ’s are taken as iid random variables with

a distribution with positive support. In addition to the censoring assumptions of model

(2.1), it is also assumed that the censoring does not depend on the frailty Zi (Nielsen

et al., 1992).

Denote the Laplace transform of Z as (c) = E[exp(−cZ)] and its k-th derivative as

(k)(c). A large family of in�nitely divisible distributions is described in Hougaard, 2000,

with the form

(c) = exp(−� (c; 
 )). (2.4)

This so-called Power-Variance-Function (Hougaard, 1986b) family of distributions in-

cludes the gamma, inverse Gaussian, positive stable, and compound Poisson distribu-

tions. The parametrizations of the distributions used in the rest of this chapter are de-

tailed in the Appendix.

The marginal hazard corresponding to (2.3) is given by

�̄ij (t) = E[Zi |Oi(t−)] exp(x⊤ij�)�0(t) (2.5)

where Oi(t−) is the observed event and covariate history of cluster i up to (but not in-

cluding) time t and E[Zi |Oi(t−)] is the “posterior” expectation of Zi given Oi(t−). If Ni(t)
denotes the number of events observed in the cluster i by time t , then this expectation

is equal to

E[Zi |Oi(t−)] = −
(Ni (t)+1)(Λi(t))
(Ni (t))(Λi(t))

(2.6)

where

Λi(t) =
Ji
∑
j=1

∫
t

0
Yij (s) exp(x⊤ij�)�0(s)ds,
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and (p)(c) denotes the pth
derivative of . Consider that xij ≡ xij ∈ {0, 1}. The marginal

survival curve for a group de�ned by a �xed value of x is given by

S̄x (t) = E [exp(−Z ∫
t

0
e�x�0(s)ds)] = (e

�xΛ0(t)) .

The marginal cumulative intensity (or hazard) for a given x is then given by Λ̄x (t) =
− log S̄x (t) and the marginal intensity (hazard) as �̄x (t) = d/dtΛ̄x (t). For a binary covari-

ate x , the conditional hazard ratio e� is then interpreted as the hazard ratio between two

individuals with the same frailty. By contrast, the marginal hazard ratio �̄1(t)/�̄0(t) is the

observed (usually time-dependent) ratio of the hazards of the two groups.

2.2.3 Non-proportional hazards

Non-proportional hazards in univariate data The frailty model (2.3) represents a

model where the proportional hazards assumption holds conditional on the Zi . As a

function of xij , the marginal hazard (2.5) is in general a model of the type (2.2), where

the marginal covariate e�ects are time-dependent. In Figure 21, we show, for di�erent

frailty distributions and degrees of dependence, the marginal hazard ratio between two

groups of individuals that have a conditional hazard ratio of 5. The perceived attenuation

of the hazard ratio re�ects that the two groups become more homogeneous in time, as

individuals with a higher frailty leave the data set sooner. However, from a practical

point of view, the same hazard ratio might be explained by a true reduction in the e�ect

of the covariate at the individual level (e.g. treatment e�ect decreasing in time).

In the case of univariate survival data, if Z has �nite variance, the marginal hazards

are not proportional (Aalen, 1994). The intuition behind the identi�ability result (Elbers

and Ridder, 1982) relies on the fact that this observed departure from proportional haz-

ards is considered to be a product of unobserved heterogeneity. If the frailty distribution

does not have �nite expectation, then the model is not necessarily identi�able. An ex-

ample is the positive stable distribution, which shows marginal proportional hazards, as

seen in Figure 21. Therefore, in the univariate case, a time-dependent covariate e�ect

may give the impression of unobserved heterogeneity.

Non-proportional hazards inmultivariate data In the case of multivariate survival

data, an unobserved cluster e�ect induces positive dependence between these observa-

tions. If no such dependence is observed, then the shared frailty model can not be a

suitable model for the data. The presence of the within cluster correlation structure in-

dicates that the (shared) frailty model does not appear to be confounded with a possible

time-dependent covariate e�ect. In other words, the shared frailty model must also be

compatible with the observed joint distribution of the event times.

However, there are cases when no real dependence structure is observed. An extreme

example would be that of the analysis of lifetimes of fathers and daughters in the pres-

ence of a strong risk factor (Hougaard, 2000). Even if all daughters would be censored
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and no relation between their lifetimes and the father’s lifetimes can be inferred, the

shared frailty model may be estimated. In particular, the model is identi�able, because

of the observed covariate. Therefore, the amount of observed dependence is important

in whether a time dependent marginal hazard ratio may be attributed to a common-risk

frailty e�ect.

The main question posed by this observation is: how much of the dependence struc-

ture must be observed so that a time-dependent covariate e�ect does not appear as ev-

idence in favor of the shared frailty model? This is studied in the following section,

in the context of three scenarios: clustered failures where an observed covariate may

vary within cluster, clustered failures where the observed covariate only varies between

clusters, and recurrent events where the observed covariate varies between individuals.

2.3 Simulation study

2.3.1 General framework

We consider x ∼ Bernoulli(0.5) a binary covariate. First, data are simulated from a model

without unobserved heterogeneity, but with a time-dependent e�ect of x . Speci�cally,

this is a model of the type (2.2). On the simulated data sets, four models are estimated: a

Cox proportional intensity model and frailty models with gamma, inverse Gaussian and

positive stable distributions. The Commenges-Andersen test for heterogeneity (Com-

menges and Andersen, 1995) and, for the frailty models, the likelihood ratio test are

evaluated. Furthermore, all estimates and con�dence intervals are collected. A test for

the proportional hazards assumption (Grambsch and Therneau, 1994) is also evaluated,

to determine the degree of non-proportionality in each simulated data set. Second, this

is repeated by having data simulated also with unobserved heterogeneity in addition to

the time-dependent covariate e�ect.

Three main scenarios are analyzed. The �rst is that of clustered failures, with cluster

sizes 1 (univariate survival), 2, 3, 5 and 10, and x simulated independently for each indi-

vidual. The second is identical to the �rst scenario, with the exception that x is simulated

independently for each cluster. Lastly, recurrent events in calendar time are simulated

(Jahn-Eimermacher et al., 2015), with x simulated independently for each individual. In

the recurrent events case, 1, 2, 3, 5 and 10 events are simulated for each individual.

Two distributions are considered to simulate data with time-varying covariate ef-

fects. The Weibull baseline with shape � and scale 
 , where the covariate e�ect is taken

to have an interaction with log time, leading to

�ij (t|Zi ; �, 
 ) = Zi�
t�−1 exp ((�0 + �1 log t)xij) , (2.7)

which is again a Weibull distribution with shape � + �1xij and scale

Zi�
e�0 (� + �1xij )−1.

Both shape and scale parameters must be positive. In the case of clustered failures, this

is the hazard while in the case of recurrent events this is taken as the intensity of the
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Figure 22: Left: Weibull baseline hazards used in the simulation, where the scale parameter is

chosen so that the cumulative baseline hazard at 50 is 0.8. Right: time dependent hazard ratio

used in the simulation and describe in equation (2.7), i.e. 5 exp(�1 log t).

recurrent events process. The baseline intensity is a decreasing function of time if � < 1,
and decreasing for � > 1. For � = 1, the exponential distribution is obtained, where the

hazard is constant.

The second distribution used in our simulations is the Gompertz distribution, using

an interaction with time instead of log time. However, the Gompertz distribution has an

increasing hazard regardless of the parameter choice. Henceforth, we only report results

on the Weibull distribution.

The shape parameter of the Weibull distribution is taken as � ∈ {0.8, 1, 2}, cor-

responding to a decreasing, constant and increasing intensity. For the clustered fail-

ures scenarios, the scale parameter is chosen so that the cumulative baseline intensity

Λ0(50) = 0.8. The di�erent hazard shapes are shown in Figure 22. The covariate e�ects

are de�ned as in (2.7), with �0 = log(5), and 3 values for �1, denoted as �(0)1 , �(1)1 and

�(2)1 , corresponding to di�erent degrees of time-dependent e�ect. �(2)1 is selected so that

�0 +�
(2)
1 log 50 = 0 ); �(1)1 is taken as the average of 0 and �(2)1 , and �(0)1 = 0 corresponds to

the proportional hazards scenario. The corresponding hazard ratios for � = 0.8 are vi-

sualized in Figure 22. To keep the results comparable across scenarios, for the recurrent

events with j events for an individual, the scale parameter is chosen so thatΛ0(50) = 0.8j.
Therefore, the average number of events can be compared to a cluster with j individuals.

Arti�cial censoring is imposed in each data set so that, on average, the earlier 70%
events are observed. The censoring time is determined by simulation for each scenario
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and combination of parameters. For the recurrent events, all individuals are censored

at the 0.7 quantile of all (uncensored) event times. All calculations are performed in the

R software (R Core Team, 2017), using the packages survival (Therneau, 2015a) and

frailtyEM (Balan and Putter, 2017).

2.3.2 Likelihood Ratio Test

The likelihood ratio test (LRT) is usually used to test the null hypothesis of no frailty. For

the gamma and inverse Gaussian, this is equivalent to testing H0 ∶ Var[Z] = 0 versus

HA ∶ Var[Z] > 0, but similar considerations hold for the positive stable frailty model.

The model under H0 is equivalent to a Cox proportional intensity model assuming inde-

pendent observations. It is common to approximate the distribution of the LRT statistic

under H0 by a mixture distribution (�2(1) + �2(0)) /2 (Zhi, Grambsch, and Eberly, 2005;

Claeskens, Nguti, and Janssen, 2008). This result is provided by the emfrail function

in the frailtyEM R package.

No frailty When no frailty is included in the simulation, the percentage of rejections

of H0 is shown in Figure 23, for the gamma frailty model and Weibull shape parameter

is � = 0.8. Alongside this is the percentage of rejections of the null hypothesis of the

ZPH test for proportionality (Grambsch and Therneau, 1994).

When the data are indeed simulated with proportional hazards (�1 = 0), the per-

centage of rejections for both tests is close to the nominal alpha level of 5% across all

scenarios, regardless of cluster size. When the hazards are not proportional (�1 < 0), the

percentage of rejections grows with total sample size. For larger cluster sizes, the LRT

shows a decreasing number of false positives. In particular, for smaller clusters, there is

a visibly large proportion of rejections, even when the time-dependent covariate e�ect

is moderate. The rate of rejections of the ZPH test does not appear to be strongly in�u-

enced by the cluster size. Whether the covariate varies within the cluster (the “clustered”

case) or only between clusters (“clustered/common” case) does not make a practical dif-

ference. These observations carry over also for the recurrent events. The conclusion is

that, the time-dependent covariate e�ect alone may appear as evidence in favor of the

gamma frailty model, unless the cluster size is moderate to large. The results for the

inverse Gaussian frailty are very similar to those of the gamma frailty and can be found

in the supplementary material.

For the positive stable distribution, the corresponding results are shown in Figure 24.

In the case of clustered events, the LRT shows around 5% rejections regardless of the de-

gree of non-proportionality. However, when the covariate does not vary within cluster

or in the case of recurrent events, where the covariate is constant for each individual,

the large amount of non-proportionality may still be somewhat confounded with unob-

served heterogeneity. This is explained by the fact that, in these cases, there is virtually

no observed within-cluster heterogeneity. Therefore, the di�erences explained by x are

essentially confounded with the di�erences that may be explained by cluster-speci�c
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Figure 23: Percentage of rejections of the likelihood ratio test (LRT) between a gamma frailty

model and a proportional hazard model compared to the test for non-proportional hazards (ZPH),

when the data are simulated without unobserved common risk and an increasing Weibull baseline

hazard with shape � = 0.8. The rows correspond to the total sample size (300, 900, 1500) and the

columns to the three main simulation scenarios: clustered failures, clustered failures where the

observed covariate only varies between clusters, and recurrent events. �1 indicates the strength

of the time-dependent covariate e�ect.
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Figure 24: Percentage of rejections of the likelihood ratio test (LRT) between a positive stable

frailty model and a proportional hazard model compared to the test for non-proportional hazards

(ZPH), when the data are simulated without unobserved common risk and an increasing Weibull

baseline hazard with shape � = 0.8. The rows correspond to the total sample size (300, 900, 1500)
and the columns to the three main simulation scenarios: clustered failures, clustered failures where

the observed covariate only varies between clusters, and recurrent events. �1 indicates the strength

of the time-dependent covariate e�ect.
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unobserved heterogeneity. The conclusion is that the positive stable distribution is not

a�ected by the departures from proportionality as long as there is some within-cluster

variation of the observed covariates.

Frailty When the data are simulated as before, but also with unobserved heterogene-

ity, the percentage of rejections of the LRT is larger, as expected, and the ZPH test rejects

the null hypothesis more than 5% of the time. This is due to the fact that marginal non-

proportionality arises both from the time-dependent covariate e�ect and from the frailty

e�ect.

The results for the gamma frailty model are shown in Figure 25. Even under con-

ditional proportional hazards (�1 = 0), the LRT rejects the null hypothesis more than

5% of the times. In the scenarios where the covariate does not vary between clusters

(including the recurrent events), the power of the ZPH test increases with cluster size.

Therefore, presence of such a time-dependent covariate e�ect in addition to unobserved

heterogeneity increases the power of the LRT.

The results for the positive stable frailty model are shown in Figure 26. In this case,

a visible e�ect is that of the degree of non-proportionality. A stronger time-dependent

e�ect of the covariate leads to a substantially larger proportion of rejections.

Although the data were simulated with unobserved heterogeneity, the di�erence in

the rate of rejections when �1 < 0 as compared to �1 = 0 may be regarded as rejecting
the null hypothesis for the wrong reasons.

In conclusion, time-dependent covariate e�ects may appear as evidence in favor of

frailty models, even if unobserved heterogeneity does not actually exist. If that exists,

then the non-proportionality of the covariate e�ect may lead to overestimating the ev-

idence in favor of the frailty model. The results for other shapes of the baseline hazard

(and for the inverse Gaussian distribution) are shown in the supplementary material.

Similar conclusions apply in those cases as well, although the percentage of rejections is

the largest for the decreasing baseline hazard (shown here). This is explained in part by

the fact that, with a decreasing hazard, events occur earlier on in the follow-up, leading

to earlier censoring. The resulting smaller window of observation makes the observed
time-dependent hazard ratio more compatible with the one predicted by the frailty mod-

els shown in Figure 21.

2.3.3 Commenges-Andersen test

The Commenges-Andersen (CA) test for heterogeneity shows in general the same be-

haviour as the LRT from the gamma frailty or inverse Gaussian frailty models, albeit

with slightly fewer rejections. This is not surprising, since it is a score test, which are

generally less powerful than LRT’s. For example, in Tables 21, 22 and 23 the CA, LRT

and ZPH tests are shown side-by-side for varying cluster sizes for total sample size of

300 and Weibull shape parameter 1.
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Figure 25: Percentage of rejections of the likelihood ratio test (LRT) between a gamma frailty

model and a proportional hazard model compared to the test for non-proportional hazards (ZPH),

when the data are simulated with an unobserved common risk following a lognormal distribution

with expectation 1 and variance 0.25 and an increasing Weibull baseline hazard with shape � = 0.8.
The rows correspond to the total sample size (300, 900, 1500) and the columns to the three main

simulation scenarios: clustered failures, clustered failures where the observed covariate only varies

between clusters, and recurrent events. �1 indicates the strength of the time-dependent covariate

e�ect.
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Figure 26: Percentage of rejections of the likelihood ratio test (LRT) between a positive stable

frailty model and a proportional hazard model compared to the test for non-proportional haz-

ards (ZPH), when the data are simulated with an unobserved common risk following a lognormal

distribution with expectation 1 and variance 0.25 and an increasing Weibull baseline hazard with

shape � = 0.8. The rows correspond to the total sample size (300, 900, 1500) and the columns to the

three main simulation scenarios: clustered failures, clustered failures where the observed covariate

only varies between clusters, and recurrent events. �1 indicates the strength of the time-dependent

covariate e�ect.
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2.3.4 Estimated frailty variance

In the case of the gamma frailty, the estimated frailty variance is often considered an

indication of the strength of the frailty e�ect. For the univariate case, these estimates

were very large under all scenarios of non-proportionality. In the data sets simulated

without frailty, the estimates decrease towards 0 with increasing cluster size and are

not in�uenced by the total sample size across all scenarios, while they are larger with

increased departure from proportional hazards. When data sets were simulated with

frailty, a similar phenomenon is observed, although the estimates approach a value close

to 0.25, which is the variance of the lognormal simulated frailty. This is illustrated, for a

total sample of 900 and for the decreasing and constant hazard shapes in Figure 27.

The coverage of the frailty variance estimates can be analyzed with the likelihood-

based con�dence intervals implemented in the frailtyEM package. There is a 1-1 corre-

spondence between the lower bound of this con�dence interval being 0 and the rejection

of the LRT null hypothesis. As expected, in the univariate case, the coverage is almost

0 under non-proportionality, and it improves with larger cluster size. The degree of de-

parture from proportionality, as in the case of the LRT, plays a large role in determining

whether the con�dence interval of the estimated frailty variance includes 0 or not. For a

total sample of 900 and for the decreasing and constant hazard, this is shown in Figure 28.

2.3.5 Cumulative hazard

As shown in Section 2.2, the observed hazard ratio of the groups de�ned by the values of

x can be determined by integrating out the frailty. In the case of no frailty and �1 = 0, all

methods estimate roughly the same cumulative marginal hazard at the end of follow-up.

If �1 < 0, the models also act similarly: the �tted cumulative hazard for x = 0 is larger

and that for x = 1 is lower, resulting in the shrinkage phenomenon shown in Figure 21.

In the case when a frailty e�ect is also included in the simulation, the gamma and in-

verse Gaussian show similar results. The positive stable distribution is slightly closer to

the marginal Cox model, since both models specify a marginal model where the hazards

are proportional.

2.4 Application

Kidney Cathether Insertions

The kidney catheter data (McGilchrist and Aisbett, 1991) have often been used to illus-

trate the use of frailty models for recurrent events. Recurrent times to infection for 38

patients that use portable dialysis equipment were recorded. A gap time may be cen-

sored when the catheter is removed for a reason other than infection. At most two gap

times are included for each individual. For 23 patients, there were two observed events,

for 12 patients there was one observed event and one censored, while for 3 patients both
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Figure 27: Estimated frailty variance for a gamma frailty model, when the data are simulated with

an unobserved common risk following a lognormal distribution with expectation 1 and variance

� 2 ∈ {0, 0.25} and a total sample size of 300. The rows correspond to the Weibull baseline shape

parameter, increasing for � = 0.8 and constant for � = 1. The columns correspond to the three

main simulation scenarios: clustered failures, clustered failures where the observed covariate only

varies between clusters, and recurrent events. �1 indicates the strength of the time-dependent

covariate e�ect.
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Figure 28: Coverage of the likelihood-based con�dence interval for the gamma frailty variance for

the gamma and inverse Gaussian distributions, when the data are simulated with no unobserved

heterogeneity (true variance is 0) and a total sample size of 300. The rows correspond to the

Weibull baseline shape parameter, increasing for � = 0.8 and constant for � = 1. The columns

correspond to the three main simulation scenarios: clustered failures, clustered failures where the

observed covariate only varies between clusters, and recurrent events. �1 indicates the strength

of the time-dependent covariate e�ect.
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gap times were censored. The observed covariates consist of age, sex and disease type

(4 level categorical variable).

The data set is included in the survival package (Therneau, 2015a) in the R statis-

tical software (R Core Team, 2017). A gamma frailty model without any covariates leads

to an estimated frailty variance of 0.177 with a 95% CI [0, 0.985], which is not signi�cant

(p = 0.259 for the LRT, p = 0.22 for C-A). While the addition of age does not impact the

model �t in an important way, the addition of sex leads to an estimated frailty variance

of 0.388 with a 95% CI [0.04, 1.01], which is signi�cant (p = 0.012 for the LRT, p = 0.002
for the Commenges-Andersen test). The e�ect of sex is also highly signi�cant, with

� = −1.55 (0.49). With the removal of an outlier (a male with very long observed gap

times), the evidence in favor of the frailty model disappears (Therneau and Grambsch,

2000, ch. 9.5), where the authors note that with this subject in the model, it is a toss-up
whether the disease or the frailty term will be credited with “signi�cance”. Nevertheless, it

is remarkable that the frailty variance estimate increases with the addition of a covariate,

which in principle should account for part of the heterogeneity in the data.

A Cox proportional hazards no-frailty model including age and sex as covariates

show a reduced e�ect of sex with � = −0.82 (0.48), not signi�cant. Furthermore, the e�ect

of sex is highly non-proportional (p < 0.01). Plots of the Schoenfeld residuals from

this model and a model with the logarithm of the posterior gamma frailty expectations

included as an o�set are shown in Figure 29. The departure from proportionality is

represented by the departure of the �tted line from a horizontal line. It can be seen that

the gamma frailty model “�xes” this by taking the marginal time-dependent e�ect as

evidence for the e�ect of unobserved heterogeneity.

An ad-hoc way of modeling time-dependent e�ects is by �tting an extended model

where an interaction between sex and time is also included. The interaction is highly

signi�cant with � = −0.016 (0.002) while the main e�ect of sex is of an opposite sign

� = 0.88(0.47). This implies a decreasing e�ect of sex with �(t) = 0.88 − 0.016 t . At the

median catheter survival time, the e�ect of sex is already negative with �(78) = −0.37.
Since the e�ect of the usual frailty distributions leads to an attenuation of the marginal

hazard ratio but not to a change of signs in �(t) (as can be seen for example, in Figure 21),

it is likely that there is a time-dependent e�ect of sex acting at the individual level.

A shared frailty model using a positive stable distribution for the random e�ect does

not show a signi�cant frailty. It was seen in the previous section that this distribution is

less susceptible to rejecting the null hypothesis of no frailty because of time-dependent

covariate e�ects.

Therefore, two competing explanations are plausible. The �rst is that there is unob-

served heterogeneity and a time-constant e�ect of sex that appears time-dependent (as

it does with the marginal model implied by the gamma frailty). The second is that the

apparent unobserved heterogeneity is an artifact induced by a time-dependent e�ect of

sex. Deciding between these two on the basis of these results alone is a di�cult matter.

This is in line with the explanation that non-proportional hazard e�ects and unobserved

heterogeneity are confounded when the cluster size is small, as was shown in Section
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Figure 29: Plot of the Schoenfeld residuals for sex from a Cox marginal model and a gamma frailty

model estimated on the kidney catheter insertions data.

2.3. Finally, we note that if the third variable (disease type) is included in the model, the

evidence in favor of the frailty vanishes.

2.5 Conclusion

In univariate survival data, it is well known that a proportional hazards frailty model and

a non-proportional hazards model (with a certain type of departure from proportionality)

can not be distinguished on the basis of the data alone. We have studied how this problem

extends to correlated survival data, such as clustered failures or recurrent events. The

novelty of this chapter is that the confounding e�ect between marginal covariate e�ects

and cluster e�ects was studied for di�erent cluster sizes, and reasonable rates of false

rejections are obtained only when the cluster size is large (e.g. 10 or more observations).

Furthermore, the shape of the baseline hazard was shown to have a strong e�ect, with

hazards that are large early on in the follow-up more likely to be in�uenced by the time-

dependent e�ect of the covariates.

Although the simulation study in Section 2.3 aimed to cover a large number of sce-

narios, only a particular type of covariate e�ect was considered. In practice, this e�ect

may be very di�erent according to the true mechanism that generates the data. Never-

theless, this consideration should play an essential role in deciding whether the frailty



48 Chapter 2 – Non-proportional hazards

model is plausible or not. We found that the conclusions presented in Section 2.3 extend

to a large number of scenarios, including a similar simulation study carried out with a

Gompertz baseline hazard. However, a scenario worth further investigation is that when

the frailty is present and a covariate has an increasingly protective e�ect. This would

translate, in the terms of equation (2.7), as having �1 > 0 and Var[Z] > 0. This may be

seen as the time-dependent covariate e�ect o�setting the shrinking of the hazard ratio

seen in Figure 21.

The frailty models attempt to recover an individual covariate e�ect. This may not

be possible when the proportional hazards assumption does not hold conditional on the

frailty, particularly when the cluster size is small.

All �tted models aim to accommodate the observable quantities according to di�er-

ent assumptions. The marginal hazards and marginal hazard ratios are somewhat more

interpretable, as they “stick to this world” (Andersen and Keiding, 2012). Identifying the

nature of what leads to the observable e�ects involves an additional number of assump-

tions that should be carefully considered in the problem being analyzed.

Supplementary material

The supplementary material referenced in this chapter is available online, at https:
//github.com/tbalan/small_clusters.

Appendix

Denote 
 as the scale parameter and � as the shape parameter.

The Gamma(�, 
 ) distribution is described by the Laplace transform

Z (c) = (




 + c)

�
.

This is scaled by setting EZ = 1 and variance �−1 by 
 = � = � .

The inverse Gaussian distribution IG(�, 
 ) is described by the Laplace transform

Z (c) = exp [
−�

{

(

 + c

 )

1/2
− 1

}

]
.

This is scaled by setting EZ = 1 and variance �−1 by 
 = �/2 and � = � .

The positive stable distribution PS(�, 
 ) with 
 ∈ [0, 1]is described by the Laplace

transform

Z (c) = exp (−�c
 ) .

This is scaled with 
 = �
�+1 and � = 1. The expectation is in�nite and the variance is

not de�ned. Nevertheless, with � = ∞ (
 = 1) the case of no association is obtained and

https://github.com/tbalan/small_clusters
https://github.com/tbalan/small_clusters
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the distribution only has mass at 1, while smaller values of � indicate higher degrees of

association.

For all the distributions above, the LRT tests the null hypothesis of H0 ∶ � = ∞,

equivalent to no variability in the frailty distribution.

The lognormal distribution LN (�, �2) is usually parametrized on the log scale, i.e.

E log Z = � and Var log Z = �2. In Section 2.3, the frailty was simulated by setting

EZ = 1 and VarZ = �−1, which is LN (−1/2 log(� + 1), log(� + 1)). The Laplace transform

is not available in closed form. However, for Z a LN (�, �2) a common approximation is

Z (c) = (1 + W(e��2c))−1/2 exp(−
W 2(e��2c) + 2W (e��2c)

2�2 ) ,

whereW(x) is the LambertW function (Asmussen, Jensen, and Rojas-Nandayapa, 2016).
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Table 21: Percentage of rejection of the null hypothesis for the Commenges-Andersen, ZPH and

likelihood ratio tests for gamma (GA), inverse Gaussian (IG) and positive stable (PS) frailty models,

for di�erent cluster sizes (n). � 21 is the variance of the lognormal frailty used in the simulation and

�1 represents the strength of the time-dependent part of the covariate e�ect as in equation (2.7).

The results are shown for a total sample size of 300 and Weibull shape parameter � = 1 and the

clustered failures scenario.

Test n = 2 n = 3 n = 5 n = 10

�2 = 0
�1 = 0 CA 0.020 0.046 0.048 0.044

ZPH 0.034 0.032 0.036 0.036

LRT (GA) 0.026 0.030 0.032 0.022

LRT (IG) 0.026 0.028 0.032 0.022

LRT (PS) 0.024 0.026 0.022 0.016

�1 = −0.21 CA 0.050 0.054 0.052 0.056

ZPH 0.327 0.329 0.315 0.293

LRT (GA) 0.078 0.066 0.042 0.044

LRT (IG) 0.080 0.070 0.044 0.048

LRT (PS) 0.024 0.032 0.026 0.024

�1 = −0.41 CA 0.078 0.066 0.062 0.060

ZPH 0.952 0.954 0.948 0.942

LRT (GA) 0.120 0.090 0.062 0.052

LRT (IG) 0.110 0.092 0.062 0.056

LRT (PS) 0.026 0.028 0.028 0.030

�2 = 0.25
�1 = 0 CA 0.415 0.565 0.770 0.910

ZPH 0.110 0.092 0.082 0.100

LRT (GA) 0.503 0.663 0.834 0.928

LRT (IG) 0.511 0.679 0.842 0.932

LRT (PS) 0.251 0.375 0.593 0.838

�1 = −0.21 CA 0.591 0.693 0.836 0.938

ZPH 0.513 0.519 0.489 0.527

LRT (GA) 0.667 0.776 0.880 0.952

LRT (IG) 0.665 0.776 0.890 0.948

LRT (PS) 0.273 0.429 0.669 0.874

�1 = −0.41 CA 0.591 0.703 0.862 0.934

ZPH 0.984 0.976 0.980 0.978

LRT (GA) 0.667 0.776 0.888 0.940

LRT (IG) 0.669 0.782 0.888 0.944

LRT (PS) 0.255 0.451 0.683 0.876
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Table 22: Percentage of rejection of the null hypothesis for the Commenges-Andersen, ZPH and

likelihood ratio tests for gamma (GA), inverse Gaussian (IG) and positive stable (PS) frailty models,

for di�erent cluster sizes (n). � 21 is the variance of the lognormal frailty used in the simulation and

�1 represents the strength of the time-dependent part of the covariate e�ect as in equation (2.7).

The results are shown for a total sample size of 300 and Weibull shape parameter � = 1 and the

clustered failures covariate speci�c covariate scenario.

Test n = 2 n = 3 n = 5 n = 10

�2 = 0
�1 = 0 CA 0.062 0.064 0.042 0.060

ZPH 0.036 0.052 0.032 0.044

LRT (GA) 0.034 0.032 0.026 0.026

LRT (IG) 0.032 0.032 0.028 0.026

LRT (PS) 0.012 0.014 0.024 0.018

�1 = −0.21 CA 0.074 0.044 0.062 0.054

ZPH 0.382 0.328 0.358 0.294

LRT (GA) 0.084 0.048 0.052 0.038

LRT (IG) 0.090 0.044 0.052 0.038

LRT (PS) 0.016 0.018 0.028 0.038

�1 = −0.41 CA 0.100 0.064 0.068 0.050

ZPH 0.960 0.964 0.952 0.942

LRT (GA) 0.122 0.076 0.062 0.044

LRT (IG) 0.118 0.070 0.066 0.046

LRT (PS) 0.046 0.032 0.042 0.048

�2 = 0.25
�1 = 0 CA 0.404 0.526 0.772 0.876

ZPH 0.102 0.124 0.130 0.198

LRT (GA) 0.480 0.596 0.822 0.894

LRT (IG) 0.492 0.604 0.832 0.902

LRT (PS) 0.220 0.324 0.580 0.800

�1 = −0.21 CA 0.570 0.644 0.868 0.894

ZPH 0.576 0.576 0.622 0.668

LRT (GA) 0.640 0.718 0.886 0.912

LRT (IG) 0.642 0.716 0.890 0.920

LRT (PS) 0.286 0.396 0.674 0.818

�1 = −0.41 CA 0.570 0.664 0.848 0.906

ZPH 0.998 0.986 0.990 0.990

LRT (GA) 0.638 0.724 0.884 0.920

LRT (IG) 0.640 0.724 0.890 0.924

LRT (PS) 0.370 0.488 0.712 0.832
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Table 23: Percentage of rejection of the null hypothesis for the Commenges-Andersen, ZPH and

likelihood ratio tests for gamma (GA), inverse Gaussian (IG) and positive stable (PS) frailty models,

for di�erent cluster sizes (n). � 21 is the variance of the lognormal frailty used in the simulation and

�1 represents the strength of the time-dependent part of the covariate e�ect as in equation (2.7).

The results are shown for a total sample size of 300 and Weibull shape parameter � = 1 and the

recurrent events scenario.

Test n = 2 n = 3 n = 5 n = 10

�2 = 0
�1 = 0 CA 0.060 0.034 0.036 0.038

ZPH 0.050 0.038 0.030 0.030

LRT (GA) 0.040 0.022 0.016 0.018

LRT (IG) 0.038 0.026 0.022 0.020

LRT (PS) 0.020 0.016 0.026 0.014

�1 = −0.21 CA 0.122 0.068 0.064 0.074

ZPH 0.301 0.293 0.285 0.173

LRT (GA) 0.155 0.082 0.066 0.070

LRT (IG) 0.145 0.074 0.066 0.064

LRT (PS) 0.026 0.022 0.032 0.028

�1 = −0.41 CA 0.263 0.153 0.127 0.094

ZPH 0.956 0.920 0.924 0.857

LRT (GA) 0.313 0.197 0.151 0.096

LRT (IG) 0.283 0.201 0.159 0.106

LRT (PS) 0.054 0.058 0.062 0.068

�2 = 0.25
�1 = 0 CA 0.309 0.460 0.691 0.837

ZPH 0.118 0.120 0.203 0.209

LRT (GA) 0.341 0.506 0.737 0.859

LRT (IG) 0.359 0.512 0.737 0.867

LRT (PS) 0.145 0.231 0.472 0.739

�1 = −0.21 CA 0.530 0.629 0.835 0.916

ZPH 0.600 0.590 0.663 0.665

LRT (GA) 0.590 0.669 0.855 0.918

LRT (IG) 0.588 0.677 0.867 0.924

LRT (PS) 0.209 0.323 0.580 0.827

�1 = −0.41 CA 0.657 0.719 0.880 0.938

ZPH 0.996 0.984 0.980 0.988

LRT (GA) 0.715 0.767 0.906 0.944

LRT (IG) 0.727 0.779 0.906 0.944

LRT (PS) 0.295 0.452 0.711 0.880


