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Chapter 1

Introduction: A tutorial in frailty

modeling

1.1 Introduction

Cox’s proportional hazards model (Cox, 1972) is one of the most popular regression

models for time to event outcomes. The hazard function, which may be used to describe

the distribution of event times, is de�ned as the instantaneous probability of an event,

given that the individual has not experienced the event previously. The proportional

hazards assumption speci�es that the ratio of the hazards between any two individuals

is constant in time, and the shape of the hazard is given by a non-parametric “baseline

hazard”. If a model is perfectly speci�ed, so that all possible relevant covariates are

accounted for, then the baseline hazard re�ects the randomness of the event time, given

the value of covariates.

In practice however, it is rarely possible to account for all relevant covariates. Then

the explanatory variables account for observed heterogeneity, and the unaccounted part

is termed unobserved heterogeneity. If this is the case, then the estimated hazard for

a speci�c set of covariates does not have an individual interpretation (Woodbury and

Manton, 1977). Rather, it represents an average hazard function, where the average is

taken at each time point over the individuals still alive at that time point. The e�ects

of unobserved heterogeneity on life times were collectively referred to as frailty in de-

mographic research (Vaupel, Manton, and Stallard, 1979). The frailty is an unobserved

This chapter is part of the manuscript under preparation: T.A. Balan, H. Putter. A tutorial in frailty
models: theory and practice
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individual random e�ect that acts multiplicatively on the hazard. The estimated spread

of this random e�ect (e.g. variance) is an indication of the amount of unobserved het-

erogeneity. The frailty model quickly gained popularity in econometrics (Heckman and

Singer, 1984), demographics (Vaupel and Yashin, 1985) and biostatistics (Aalen, 1988).

The Cox model, developed originally for univariate survival data, has been extended

to a more general framework based on counting processes (Andersen and Gill, 1982).

The resulting “extended Cox model” easily accommodates more complex data, such as

correlated event times (clustered failures) or multiple events per individual (recurrent
events). Frailty models based on the extended Cox model are referred to as shared frailty

models (Nielsen et al., 1992; Andersen, Borgan, et al., 1993), as opposed to univariate
frailty models in the simpler univariate survival data scenario.

For clustered failures, the estimated frailty variance describes unobserved hetero-

geneity between clusters. Within a cluster, the event times are assumed to be indepen-

dent, given the frailty. Therefore, shared frailty models are often used to model the

e�ect of unobserved risk factors that are speci�c to the clusters. For recurrent events,

the estimated frailty variance describes unobserved heterogeneity between individuals,

as in the univariate frailty case. Conditional on the frailty, the event history of an indi-

vidual is typically modeled as a Poisson or renewal process. In all cases, frailty models

involve the conditional speci�cation of the hazard or intensity of the event process, as if

the frailty would be observed. Consequently, the estimated covariate e�ects retain the

interpretation of an individual e�ect.

Most theoretical results in frailty models have focused on the gamma frailty model.

In particular, maximum likelihood estimators have been shown to be well behaved (Mur-

phy, 1994; Murphy, 1995b). However, numerous other frailty distributions have been

proposed in the literature (Hougaard, 1986a; Hougaard, 2000; Paddy Farrington, Un-

kel, and Anaya-Izquierdo, 2012). The real frailty distribution is almost impossible to be

known in advance. It is therefore of interest to compare the characteristics of di�erent

frailty models in terms of the resulting population hazards (for univariate survival data)

or within cluster correlation patterns (for clustered survival data).

The aim of this chapter is to provide an overview of theory and practice in the �eld

of frailty models, while o�ering insight into the problems that are addressed by such

models. In Section 1.2, we study the e�ects of unobserved heterogeneity in survival

data, univariate frailty models and di�erent frailty distributions. In Section 1.3, we ana-

lyze the e�ect of unobserved heterogeneity in clustered survival data and introduce the

shared frailty model. We study di�erent correlation structures and we discuss frailty

models for recurrent events data. In Section 1.4, we discuss estimation and inference

procedures for frailty models, we compare available software packages and we examine

the representation of event history data in the R statistical software. In Section 1.5 we

overview di�erent extensions to the frailty models. Finally, in Section 1.6, we conclude

with an outline of the rest of this thesis.
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Figure 11: Changes in the mean and variance of a covariate x over time among survivors in a

proportional hazards model.

1.2 Univariate frailty models

1.2.1 Heterogeneity in the Cox model

Heterogeneity over time

The Cox model speci�es that the hazard as

�(t | x) = �0(t) exp(�⊤x), (1.1)

where � is a p × 1 vector of regression coe�cients, x, is a p × 1 vector of covariates and

ℎ0(t) is an unspeci�ed baseline hazard function. The hazard functions of two individuals

with covariate vectors x∗ and x̃ are equal only when �⊤x∗ = �⊤x̃. The exponent exp(�j ) is

the hazard ratio between an individual with xj = 1 and an individual with xj = 0. Time

dependent covariates are easily accommodated in (1.1) and are discussed discussed in

Section 1.4. Henceforth, we assume that x is time-constant.

The risk set at time t is composed of individuals that have not yet experienced the

event of interest or have not yet been removed for other reasons, such as censoring. The

distribution of the covariates among the individuals in the risk set changes in time. We

illustrate this by considering the model (1.1) and only one covariate following a standard

normal distribution x ∼ N (0, 1) and � > 0, so that individuals with larger values of x have

a higher hazard. At time t = 0, the mean and variance of x are 0 and 1, respectively. As

time passes, the risk set progressively comprises individuals with lower values of x . For

this reason, the average value and the sample variance of x among the individuals at risk

decreases over time.

This is illustrated by simulating a single sample of size n = 100, and a covariate

x ∼ N (0, 1), with � = 1, �0(t) ≡ 0.1 and uniform censoring on (20, 50). In this simulated
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sample, at time 0, x had mean 0.007 and standard deviation 1.068. The estimated � was

0.943, with a standard error of 0.127. The mean and standard deviation of x among the

individuals in the risk set are shown in Figure 11, as a function of time. The message is

that, in time, the population of “survivors” (those still at risk) is more homogeneous and

of a lower risk than the original risk set at time 0.

Heterogeneity due to missing covariates

The proportional hazards assumption in the Cox model (1.1) speci�es that the ratio

�(t | x∗) divided by �(t | x̃) equals exp(�⊤(x∗ − x̃)), which does not depend on time. When

this assumption is violated, the covariate e�ect � is time dependent. The true model is

therefore

�(t | x) = �0(t) exp(�(t)x)

with �(t) not constant.

Assume that the model (1.1) is correct and p ≥ 2. Then, if important covariates are

omitted from the model, the proportional hazards assumption does not usually hold for

the remaining covariates. This is illustrated by simulating a single large data set with

sample size n = 10, 000. Two independent covariates x1 and x2 are considered, both ∼
N (0, 1), with �1 = �2 = 1, �0 ≡ 1 and uniform censoring on (20, 50). The following output

is shown from Cox models �tted with the standard survival package in R (Therneau

and Grambsch, 2000). When both covariates are included into the model, the results are

close to the simulation scenario, with both estimated regression coe�cients close to 1:

## Call:
## c12 <- coxph(formula = Surv(time, status) ~ x1 + x2, data = d)
##
## coef exp(coef) se(coef) z p
## x1 1.0016 2.7225 0.0138 72.7 <2e-16
## x2 1.0240 2.7843 0.0140 73.2 <2e-16
##
## Likelihood ratio test=9014 on 2 df, p=0
## n= 10000, number of events= 8240

No evidence of violation of the proportional hazards assumption is found, when a test

based on Schoenfeld residuals is used (Grambsch and Therneau, 1994):

## Call: cox.zph(c12, transform = "identity")
## rho chisq p
## x1 0.00101 0.0081 0.928
## x2 -0.00357 0.1050 0.746
## GLOBAL NA 0.1510 0.927

However, if x2 is omitted, the resulting estimate of the e�ect of x1 is visibly smaller

than 1:
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Figure 12: Plot of scaled Schoenfeld residuals based �(t) induced by omitting a covariate from a

proportional hazards model.

## Call:
## c1 <- coxph(formula = Surv(time, status) ~ x1, data = d)
##
## coef exp(coef) se(coef) z p
## x1 0.7028 2.0195 0.0124 56.6 <2e-16
##
## Likelihood ratio test=3271 on 1 df, p=0
## n= 10000, number of events= 8240

Moreover, there is clear evidence against the proportional hazards assumption.

## Call: cox.zph(c1, transform = "identitiy")
## rho chisq p
## x1 -0.0852 55.3 1.06e-13

This is also illustrated by the plot of scaled Schoenfeld residuals of �(t) in �gure 12. It

appears that the e�ect of x starts as close to the true value 1, and then decreases in time.

The result given by the Cox model only with x1 is an “average” e�ect in this case.

The explanation for the phenomenon illustrated in the simulated example is that the

individual hazard is determined by the combined e�ect of x1 and x2. On average, the

“high risk” individuals (high x1, high x2) are the �rst to have the event, followed by the

“moderate risk” ones (high x1 and low x2, or low x1 and high x2), and eventually the “low

risk” ones (low x1 and low x2). In particular, the individuals that survive up to a certain
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time are more likely to have lower values of x2. If x2 is omitted from the model, this

decrease in risk among the survivors must be accounted for only by x1, thus reducing

the perceived e�ect of the included covariate.

Conditional and marginal hazards

More generally, suppose that the proportional hazards model (1.1) holds for a covariate

vector x = (x
incl

, xomit) with covariate e�ects � = (�
incl

, �omit), so that the true model is

�(t | x) = �0(t) exp(�⊤incl
x

incl
+ �⊤

omit
xomit). (1.2)

Imagine that a Cox model is �tted only including x
incl

. This will result in an estimated

e�ect that is biased towards 0 and, usually, a violation of the proportional hazards as-

sumption. In reality, it is possible that some relevant covariates are not measured (here

represented by xomit). In this case, these omitted covariates are said to induce unob-
served heterogeneity. The di�erences between individuals that are explained by x

incl
are

referred to as observed heterogeneity.

The �(t | x), as de�ned in model (1.2), is referred to as the conditional hazard, with

�
incl

summarizing the conditional e�ect of x
incl

. When unobserved heterogeneity is

present, the resulting �(t | x
incl
) is referred to as the marginal hazard (although it is

marginal with respect to xomit but still conditional on x
incl

). The estimated e�ect from

the marginal model does not have an individual interpretation. Namely, �(t|x
incl
) repre-

sents a weighted average of the individual hazards corresponding to those individuals

in the risk set at time t , where the weighing is determined by the distribution of xomit in

this risk set.

Since the e�ect of xomit cannot be directly observed, one can de�ne the random

variable Z = exp(�⊤
omit

xomit). Z is referred to as a “frailty” term that acts multiplicatively

on the hazard.

1.2.2 The frailty model

In the univariate frailty model, the hazard of an individual with frailty Z is speci�ed as

�(t | Z ) = Z�(t). (1.3)

For identi�ability, Z is assumed to be scaled so that EZ = 1. The second term in (1.3),

�(t) ≡ �(t | Z = 1), is the conditional hazard for an individual with Z = 1. We refer to

�(t) simply as the conditional hazard. The conditional cumulative hazard is de�ned as

Λ(t) = ∫ t0 �(s)ds. The conditional survival function for an individual with frailty Z is

then given by

S(t | Z ) = exp(−ZΛ(t)).

The marginal survival curve associated with Λ(t) is obtained by taking the expecta-

tion of S(t|Z ) with respect to Z ,

S(t) = E[exp(−ZΛ(t))]. (1.4)
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Unlike S(t), S has a population averaged interpretation. If there are no covariates, S
may be seen as a weighted average of individual survival curves, where the weighing

depends on the distribution of Z . The hazard may be derived from the survival function

as �(t) = d/dt[− log S(t)]. Therefore, the marginal hazard may be calculated as

�(t) =
E [Z exp(−ZΛ(t))]
E [exp(−ZΛ(t)]

�(t)

= E[Z |T ≥ t]�(t).

A population averaged interpretation may also be given here: �(t) may be seen as a

weighted average of individual hazards of individuals alive at time t , where the weighing

depends on the distribution of Z among the individuals alive at time t .
The conditional and marginal hazards are equal only if E[Z |T ≥ t] = 1 for all t . In

other words, if all frailties Z are equal to 1. Otherwise, the frailty distribution among

the survivors at time t behaves in a similar fashion with the distribution of an observed

covariate among survivors, as shown in Section 1.2.1.

If observed covariates are also present, then it is usually assumed that

the proportional hazards assumption holds conditional on the frailty, with

�(t|Z ) = Z exp(�⊤x)�0(t). Then, the population averaged interpretations of S and

ℎ hold conditional on x. In other words, for a hypothetical population of individuals

with given covariate values x. This is the same as the interpretation that is given to the

marginal hazard in Section 1.2.1.

Regardless of whether the di�erences between individuals come from observed co-

variates x or from the frailty, individuals with higher hazards die earlier. Therefore, the

population of survivors is more homogeneous and at a lower risk for events than the

general population at time 0. The advantage of frailty models is that this is explicitly

modeled. Before we further study the relation between marginal and conditional haz-

ards in Section 1.2.4, we �rst discuss di�erent frailty distributions in Section 1.2.3.

1.2.3 Frailty distributions

The Laplace transform

The distribution of a random variable Z > 0 can also be uniquely speci�ed by its Laplace

transform,

(c) = E [exp(−Zc)] .

It is immediate that (0) = 1. The expectation of Z may be obtained as minus the deriva-

tive of  calculated in 0, EZ = −′(0). Furthermore, ′′(0) = EZ 2 and higher order mo-

ments of Z can be obtained by taking further derivatives of . Denote the kth derivative

of  as (k). The squared coe�cient of variation, de�ned as CV2 = var[Z]/(E[Z])2, may

be expressed as

CV2[Z] =
′′(0)
(′(0))2

− 1.
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In terms of the Laplace transform, the marginal survival function from (1.4) may be

written as

S(t) = (Λ(t)),
and the marginal hazard as

�(t) =
d
dt
[− log S(t)] = −

′(Λ(t))
(Λ(t))

�(t).

The Laplace transform of the frailty distribution of survivors can be obtained from Bayes’

theorem:

Z|T≥t (c) = E [exp(−Z c)|T ≥ t]

=
E[exp(−Z(c + Λ(t)))]
E[exp(−ZΛ(t))]

=
(c + Λ(t))
(Λ(t))

.

(1.5)

The expectation, variance and squared coe�cinet of variation of Z|T ≥ t follow as

E[Z |T ≥ t] = −
′(Λ(t))
(Λ(t))

,

var[Z |T ≥ t] =
′′(Λ(t))
(Λ(t))

− (
′(Λ(t))
(Λ(t)) )

2

CV2[Z |T ≥ t] =
′′(Λ(t))(Λ(t))
(′(Λ(t)))2

− 1.

In�nitely divisible distributions

The in�nitely divisible distributions are a family of distributions with tractable Laplace

transform, speci�ed as (c) = exp(−� (c; 
 )) with � > 0 and 
 > 0. The expectation and

variance can be expressed as

E[Z |T ≥ t] = � ′(Λ(t); 
 ),

var[Z |T ≥ t] = −� ′′(Λ(t); 
 ),

CV2[Z |T ≥ t] = −
 ′′(Λ(t); 
 )
�( ′(Λ(t)))2

.

(1.6)

The gamma distribution is a prominent member of the in�nitely divisible family. The

density of the gamma distribution with parameters � > 0 and � > 0 is given by f (t; �, �) =
��
Γ(�) t

�−1e−�t , where Γ(�) = ∫ ∞0 s�−1e−sds is the gamma function. Its Laplace transform is

given by

(c) = (
�

� + c)

�
,
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which, in terms of (1.6), can be expressed as � = �, � = 
 , and  (c; 
 ) = log(
 +c)−log(
 ).
By convention, the expectation of the frailty is �xed to 1, so the restriction � = � is

applied. In this parmaetrization, Z follows a gamma(�, �) distribution, with E[Z] = 1
and var[Z] = �−1 = � . The expectation and variance of the frailty distribution of the

survivors is given through (1.6), resulting in

E [Z |T ≥ t] =
�

� + Λ(t)
,

var [Z |T ≥ t] =
�

(� + Λ(t))2
.

Both functions reach their maximum at t = 0, with expectation 1 and variance �−1, and

decrease over time. For the gamma frailty, it is immediate that �(t) ≤ �(t). In other words,

the marginal hazard is always smaller than the hazard of an individual with frailty 1.

A more general family of in�nitely divisible distributions is the power variance
function (PVF) family, with the Laplace transform  described by

(c; �, 
 , m) = exp(−� sign(m)
{
1 − (




 + c)

m}

)

where sign(m) is the sign of m, and m > −1 and m ≠ 0. It was proposed in a series

of papers (Hougaard, 1984; Hougaard, 1986a; Hougaard, 1986b) and is studied in detail

in Hougaard (2000). To obtain E[Z] = 1 and var[Z] = �−1, one can set � = �sign(m)(m +
1)/m and 
 = �(m + 1). Particular cases of include:

• The gamma frailty, obtained as a limiting case when m → 0 with m < 0;

• The inverse Gaussian distribution, when m = −1/2;

• The so-called Hougaard distributions, when m < 0;

• The compound Poisson distribution, whenm > 0, which has probability mass at 0.
This is consistent with a scenario where a part of the population is not susceptible

for the event of interest;

• The positive stable distribution, obtained as a limiting case when 
 → 0. This

distribution cannot be scaled to have E[Z] = 1, so usually the � = 1 restruction is

imposed. Its expectation is in�nite and the variance is not de�ned. However, the

resulting Laplace transform takes the simple form (c) = exp(−�c
 ), with � > 0
and 
 ∈ (0, 1).

The log-normal distribution has often been used for frailty models, although it it

not part of the PVF family. It is in�nitely divisible, but the corresponding expression of �
cannot be expressed in closed form. Consequently, its Laplace transform and expressions

for the distribution of survivors are not easily obtained. Its popularity stems from the
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Figure 13: Frailty distribution of survivors, gamma frailty, �(t) = t2/20.

normal random e�ects in linear models. The log-normal frailty is usually parametrized

with the E[log Z] = 0 and var[log Z] = �2, corresponding to a normally distributed ran-

dom e�ect on the scale of the covariates. If matched by mean and variance, it is virtually

indistinguishable from the inverse Gaussian distribution. Other families of distributions,

such as the Addams and Kummer families of distributions were also introduced in the

context of frailty models (Aalen, Borgan, and Gjessing, 2008; Paddy Farrington, Unkel,

and Anaya-Izquierdo, 2012).

1.2.4 Frailty e�ects

The di�erent frailty distributions discussed in Section 1.2.3 represent di�erent ways of

expressing unobserved heterogeneity. Di�erent frailty distributions lead to di�erent se-

lection e�ects . Moreover, they impact the marginal e�ect of the observed covariates in

di�erent ways, generalizing the phenomenon illustrated in Section 1.2.1. An advantage

of the PVF family of distributions and their closed form Laplace transforms is that it fa-

cilitates the study of these phenomenons (Aalen, 1988; Aalen, 1994; Vaupel and Yashin,

1985). An overview may be found in Aalen, Borgan, and Gjessing (2008, ch. 6).

The selection e�ect In Section 1.2.3, it was shown that, for the gamma frailty model,

the expectation and variance of the frailty distribution of the survivors decreases in

time. In Figure 13, we show the expectation and the variance of E[Z |T ≥ t], when

the conditional hazard is given by �(t) = t2/20, for variances 0.2, 0.5, 1 and 2.

It follows that the marginal hazard appears as a “dragged down” version of the condi-

tional hazard, similar to Figure 11. This selection e�ect is stronger if the frailty variance

is larger. In particular, the marginal hazard may appear to grow, reach a peak and then
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decrease beyond a time point, even if the conditional hazard is increasing. As in Sec-

tion 1.2.1, the explanation is that individuals with a higher hazard die earlier, on average,

than individuals with a lower hazard. In particular, this is true for all frailty distributions

discussed in Section 1.2.3. For example, for the compound Poisson distribution, when

individuals with frailty 0 never experience the event of interest, the marginal hazard will

eventually decrease towards 0 after some time point. The point made in Section 1.2.1 is

essential here as well: in the presence of unobserved heterogeneity, the marginal hazard

has a population averaged rather than an individual interpretation.

The marginal hazard ratio In Section 1.2.1, we illustrated that, when important co-

variates are omitted in a Cox model, the marginal e�ect of the remaining covariates is

time dependent. The same phenomenon happens with the marginal covariate e�ect in

the case of frailty models. Suppose that only one observed covariate is present, x ∈ {0, 1},

and that the frailty model (1.3) is true. Then, e� is the hazard ratio between two individ-

uals with the same frailty, one with x = 1, the other with x = 0. The marginal hazards

for the two groups de�ned by x are given by

�0(t) = E[Z |T ≥ t, x = 0] �0(t),

�1(t) = E[Z |T ≥ t, x = 1] e��0(t).

The marginal e�ect of x can be quanti�ed by the ratio of these two marginal hazards.

This results in

e�(t) =
�1(t)
�0(t)

=
E[Z |T ≥ t, x = 1]
E[Z |T ≥ t, x = 0]

e� .

In general, �(t) is not constant in time. If Z is a gamma frailty with variance �−1, for

example, this is

e�(t) =
� + Λ0(t)
� + e�Λ0(t)

e� .

If � < 0, e�(t) is an increasing function with a minimum of e� and asymptotic maximum

of 1. Conversely, if � > 0, then e�(t) is a decreasing function with a maximum of e� and

asymptotic minimum of 1. The conclusion is that, at the population level, the covariate

e�ect appears to vanish over time. Therefore, the gamma frailty shows a similar behavior

with the unobserved covariates scenario that was studied by simulation in Section 1.2.1.

Similar considerations apply for other frailty distributions. For example, for the in-

verse Gaussian distribution, the marginal hazard ratio is

e�(t) = (
� + 2Λ(t)

� + 2Λ0(t)e� )

1/2
.

A peculiar case is that of the positive stable distribution, for which

e�(t) = e
 � ,
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compound Poisson (m=1) positive stable

gamma inverse Gaussian

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

1

2

3

1

2

3

time

ha
za

rd
 r

at
io

CV2(1)
0

0.1

0.5

1

Figure 14: Marginal hazard ratio between two groups of individuals: a high risk one with

�1(t) = 3�0(t) and a low risk one with �0(t) = t2/20. For comparability, the distribution are matched

by the squared coe�cient of variation of the distribution of survivors at time t = 1, with

CV 2(1) = var[Z |T ≥ 1]/E[Z |T ≥ 1]2.

which does not depend on time, so we have �(t) ≡ � = 
 � . Since 0 < 
 < 1, � is an

“attenuated” version of � .

The e�ect of di�erent frailty distributions on the hazard ratio is illustrated in Fig-

ure 14. For the gamma and inverse Gaussian, the marginal hazard ratio approaches 1

with time. For the positive stable distribution, the attenuated marginal e�ect is observed.

For the compound Poisson distribution, a “crossover” is present, where the marginal

hazard ratio actually crosses 1. This is the e�ect of having non-susceptible individuals,

represented by the mass at 0 of the distribution. This happens because, in the risk set

at large time points, the proportion of non susceptible individuals is higher in the high

risk group than in the low risk group.
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Implications The shrinking of the hazard ratio in the presence of unobserved het-

erogeneity has important implications. One is that this might explain moderate familial

risks found in clinical studies (Aalen, Valberg, et al., 2014). Moreover, it has an impact

for the interpretation of estimated regression coe�cients. In the context of a random-

ized clinical trial with two treatment arms, unobserved heterogeneity induces a loss of

balance between the groups. While this may cause an e�ect as illustrated in Figure 14,

it also implies that the estimated marginal hazard ratio does not have a causal interpre-

tation anymore (Aalen, Cook, and Røysland, 2015).

Another phenomenon of interest is the “interruption of treatment”, where x may

change value at some point, describing the situation where individuals are moved from

the treatment to the control group once the treatment does not appear to have any more

e�ect (Aalen, 1994). If the treatment is bene�cial, then individuals surviving in the con-

trol group will on average have a lower frailty than those in the treatment group. As

an artifact, it might seem advantageous to remove individuals from the treatment group

after some time, because the control group seems at a lower risk (comprising mostly

low-frailty individuals).

1.2.5 Identi�ability

In the frailty model, the marginal hazard equals �(t) = �(t)E[Z | T > t]. If there are no

covariates, then only �(t) is observed. Without strong parametric assumptions on �(t), is

impossible to decide whether frailty is present or not. In other words, the frailty model

is not identi�able in this case. The presence of covariates, together with the assumption

of proportional hazards conditional on the frailty, make the frailty model identi�able,

as long as the frailty distribution has �nite expectation. This is due to the marginal

non-proportional e�ect of the observed covariates, as exempli�ed in Figure 14. This

identi�ability result has been studied in Elbers and Ridder (1982)

Without further assumptions, observing a time dependent covariate e�ect of the

type shown in Figure 14 is equally compatible with two explanations. One is that the

proportional hazards assumption holds in the conditional model, and this e�ect appears

distorted at the marginal level as a result of unobserved heterogeneity. The second is

that there is no unobserved heterogeneity, and the observed covariate simply has a time

dependent e�ect. In the �rst case, the frailty model is the natural choice. In the second

case, the modeling strategy would rather include a strati�ed analysis or an extended Cox

model with interactions of covariates with time (Therneau and Grambsch, 2000, ch. 6.5).

In this context, the result of Elbers and Ridder (1982), while theoretically interesting,

is of little practical use. Only a �rm - and probably naïve - belief in the conditional pro-

portional hazards assumption can substantiate a claim towards the presence of frailty. In

principle, this situation changes in the case of clustered survival data, because positive

correlation between the event times is induced by the frailty. This is discussed in Sec-

tion 1.3. The more information on the correlation structure, the easier it is to distinguish

the frailty from non proportional hazards. However, when the cluster size is small, the

identi�ability result, identifying the appropriate model remains a di�cult problem.
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The positive stable distribution does not have �nite expectation, and therefore it does

not fall under the Elbers and Ridder (1982) result. As shown in Figure 14, it preserves

the proportional hazards assumption at the marginal level. It is not identi�able with

univariate survival data, even with covariates. In some sense, this may be seen as an

advantage, since it illustrates that the identi�ability of univariate frailty models is based

on a strong assumption about the mechanism that generated the data. The positive stable

distribution does prove useful in the context of clustered failures or recurrent events in

Section 1.3.

1.3 Shared frailty models

1.3.1 Missing covariates in paired data

Consider the situation of paired life times, where covariate values are the same for

individuals from the same pair. Assume that individuals from a given pair have the

same distribution of the event time, denoted as T , with the hazard function �(t | x) =
�0(t) exp(�x). Further, assume that x is a realization of a random variable X with den-

sity fX (x). We denote f (t | x) and S(t | x) as the density and survival function of T , given

X = x . The marginal survival function of T (where the covariate x is integrated over) is

given by S(t) = ∫ S(t | x)fX (x)dx .

Consider one pair, with life times T1 and T2. The marginal survival function of either

T1 or T2 is given by S. However, if T1 = t1 is observed, the marginal survival function of

T2 will change. Heuristically, if a large life time t1 is observed, then it is likely that the

pair has a low hazard, which in turn makes it more likely that the value of x in that pair

is low if � > 0 (or high if � < 0). Since x is shared by both individuals, a low hazard for

T1 means that the hazard for T2 is also low, and that in turn makes it more likely that

the corresponding life time t2 is large as well.

All this leads to positive marginal correlation of the two life times. More speci�cally,

it is straightforward to show that the marginal survival function of T2, given T1 = t1, is

given by

S(t2 | T1 = t1) = ∫ f (t1 | x)S(t2 | x)dx,

with f (t1 | x) = f (t1 | x)fX (x)/(∫ f (t1 | x)fX (x)dx). Figure 15 shows S(t2 | T1 = t1) for t1 =
0.1 and t1 = 2, for the case where the conditional distribution of T1 and T2, given x = 0,
is exponential with mean 1, and � = 1, and X has a normal distribution with mean 0 and

standard deviation � .

It can be seen that for t1 = 2, the conditional survival curves are higher than the

marginal survival curve, while for t1 = 0.1 this is the other way around. For higher stan-

dard deviation of the distribution of X , the conditional survival curves are more distinct

from the marginal survival function. That means that for higher standard deviation of

X , the in�uence of knowing the value of T1 is higher, and the correlation between T1
and T2 is higher. In fact, one can derive an explicit expression of the correlation between
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Figure 15: Conditional survival function of T2, given t1 = 0.1 and given t1 = 2; the conditional

distribution of T1 and T2 given X = x is exponential with rate �e�x and � = 1, and X has a normal

distribution with mean 0 and standard deviation � 2, with di�erent values of � .

T1 and T2, when the baseline distribution of T1 is exponential with rate ℎ. It is given by

cor(T1, T2) =
e2�

2�2 − e�
2�2

2e2�2�2 − e�2�2
.

A plot of the correlation as a function of �2, for � = 1, is shown in Figure 16.

If the correlation of life times cannot be explained by observed covariates (for ex-

ample, because x is omitted), then there are two practical approaches. One is marginal

modeling, which is in the spirit of general estimating equation (GEE) models. For the

Cox model, this involves adjusting the standard errors of the observed covariates (Lin

and Wei, 1989). The second is to model the conditional hazard by introducing a “shared”

frailty Z , that would take the place of exp(�x) in the previous example. The resulting

“shared” frailty model is detailed in Section 1.3.2. The advantage of this approach is that

di�erences between clusters can be quanti�ed, and that the covariate e�ects have an

individual interpretation, as in the case of univariate frailty models.

1.3.2 Clustered failures

The shared frailty model

Assume that there are N clusters and ni individuals are part of cluster i. The hazard of

the jth individual from cluster i is speci�ed as

�ij (t|Zi) = Zi exp(�⊤xij )�0(t). (1.7)
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Figure 16: Correlation between T1 and T2 as a function of � 2; the conditional distribution of T1
and T2 given X = x is exponential with rate �e�x and � = 1, and X has a normal distribution with

mean 0 and variance � 2.

The individuals in cluster i share the frailty Zi , and conditional on Zi their lifetimes are

assumed to be independent. While in the univariate case individuals are thought to be

a random sample from a larger population of individuals, in the clustered failures case

the clusters are thought to be a random sample from a population of clusters.

In the univariate case, the marginal hazard was derived given the individual survival

until time t . In the clustered failure case, the marginal hazard is derived given all infor-

mation about the cluster until time t , including observed events and censorings. This is

studied in the following section.

Frailty distributions and clustered failures

Suppose that there are two individuals in a cluster. The conditional cumulative hazard

for individuals j = 1, 2 is given by

Λj (t) = ∫
t

0
Yj (s) exp(�⊤xj )�0(s)ds,

where Yj (s) = 1 when individual j is at risk at time s and 0 otherwise. Conditional on Z ,

the conditional joint survival function of T1, T2 is de�ned as

S(t1, t2|Z ) = P(T1 > t1, T2 > t2|Z )

= exp(−Z(Λ1(t1) + Λ2(t2))).



1.3 Shared frailty models 17

The marginal joint survival is obtained by taking the expectation with respect to Z ,

which results in

S(t1, t2) = (Λ1(t1) + Λ2(t2)). (1.8)

The Laplace transform ofZ , given that individual 1 and 2 are alive at t1 and t2, is obtained,

with the same arguments as in (1.5), as

Z|T1>t1,T2>t2 (c) =
(c + Λ1(t1) + Λ2(t2))
(Λ1(t1) + Λ2(t2))

.

The only di�erence from the univariate case is thatΛ(t) is now replaced byΛ1(t1)+Λ2(t2).
Assume now that the event time of the �rst individual T1 is observed at t1. Recall

that the density of T is given by f (t) = �(t)S(t). It is then obtained that

lim
dt↓0

P(t1 ≤ T1 < t1 + dt, T2 > t2|Z )
dt

= Z�1(t1) exp(−Z(Λ1(t1) + Λ2(t2)))

=
)
)t1

S(t1, t2|Z ).

The Laplace transform of Z|T1 = t1, T2 > t2, de�ned as

Z | T1=t1,T2>t2 (c) = E[exp(−cZ) | T1 = t1, T2 > t2]

can be calculated from Bayes’ theorem:

Z | T1=t1,T2>t2 (c) =
E[Z�1(t1) exp(−Z(c + Λ1(t1) + Λ2(t2)))]
E[Z�1(t1) exp(−Z(Λ1(t1) + Λ2(t2)))]

=
′(c + Λ1(t1) + Λ2(t2))
′(Λ1(t1) + Λ2(t2))

.

More generally, for a cluster of arbitrary size, denote the event history of all its indi-

viduals up to some horizon � as � . Assume that this comprises N(�) observed events,

and let

Λ∙(� ) = ∑
j
Λj (� ). (1.9)

Denote (k) as the k-th derivative of the Laplace transform. The Laplace transform of

Z|� is given by

Z|� (c) =
(N (� ))(c + Λ∙(� ))
(N (� ))(Λ∙(� ))

. (1.10)

The expectation of this distribution follows as

E[Z |� ] = −
(N (� )+1)(Λ∙(� ))
(N (� ))(Λ∙(� ))

. (1.11)
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Therefore, for an individual with covariate vector x from a cluster where the event his-

tory of the cluster is given by t , the marginal hazard is

�(t) = E[Z |t−] exp(�⊤x)�0(t). (1.12)

For the gamma frailty, it is obtained that

E[Z |t−] =
� + N (t−)
� + Λ∙(t−)

,

var[Z |t−] =
� + N (t−)
(� + Λ∙(t−))2

.

Similar expressions may be derived in a similar fashion for other PVF frailty distribu-

tions.

Dependence and the cross-ratio

The estimated frailty variance o�ers an indication of unobserved heterogeneity between

clusters, but it o�ers little information on the resulting marginal correlation of the event

times. Even for paired data, the formulas for the bivariate survival function in (1.8) are

di�cult to interpret.

One measure of bivariate dependence is Kendall’s coe�cient of concordance

(Kendall’s tau). Denote two pairs of individuals as {(11), (12)} and {(21), (22)}, where

(ij) refers to individual j of cluster (pair) i. Kendall’s tau is de�ned as

�K = E[sign(T11 − T21)(T12 − T22)],

where sign is the sign function. This is proportional to the probability that the order of

events are concordant between the two clusters clusters. The median concordance is a

similar measure that only involves one pair,

� = E[sign(T1 − median(T1))(T2 − median(T2))].

This is proportional to the probability that the events within the same cluster are con-

cordant, i.e. they occur both before the median survival time or after. In frailty models,

both �K and � are positive quantities, since the speci�cation (1.12) only allows for posi-

tive dependence. Under independence, both measures would be 0. However, the reverse

statement is not usually true.

A more natural way of exploring the within-cluster dependence structure is via the

cross-ratio (Oakes, 1989), which compares how the marginal hazard would behave if an

event would happen as opposed to an event not happening. Unlike �K and �, this is a

local measure of dependence. To illustrate this, we consider one cluster with individuals

1 and 2. Conditional on the frailty, their event times T1 and T2 are independent. Denote

the marginal hazard of individual 2 if individual 1 is alive at t1 as

�2(t|T1 > t1) =
′(Λ1(t1) + Λ2(t))
(Λ1(t1) + Λ2(t))

�2(t),
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and the marginal hazard of individual 2 if individual 1 had an event at time t1 as

�2(t|T1 = t1) =
′′(Λ1(t1) + Λ2(t))
′(Λ1(t1) + Λ2(t))

�2(t).

These two are marginal hazards under di�erent hypothetical event histories of the other

individual in the cluster. They are equal only if there is no dependence between the two

individuals. The cross-ratio can be expressed as

CR(t) =
�2(t|T1 = t1)
�2(t|T1 > t1)

=
′′(Λ1(t1) + Λ2(t))
′(Λ1(t1) + Λ2(t)) (

′(Λ1(t1) + Λ2(t))
(Λ1(t1) + Λ2(t)) )

−1
.

Intuitively, if there is positive dependence between the two event times, CR(t) ≥ 1.
Hougaard (2000) suggested that a more interpretable comparison would be to replace

the denominator by �2(t|T1 > t), to compare the hazard given that “individual 1 died at

time t1” with “individual 1 is alive now”. For t > t1, the adjusted cross ratio is de�ned as

CRa(t) =
�2(t|T1 = t1)
�2(t|T1 > t)

=
′′(Λ1(t1) + Λ2(t))
′(Λ1(t1) + Λ2(t)) (

′(Λ1(t) + Λ2(t))
(Λ1(t) + Λ2(t)) )

−1
.

For t ≤ t1, this quantity does not have a direct interpretation.

In Figure 17, we illustrate the unadjusted and adjusted cross-ratio functions for the

gamma, inverse Gaussian and positive stable distributions. For comparison purposes, the

distributions are matched by Kendall’s tau rather than variance. Both unadjusted and

adjusted cross-ratio functions show that the marginal hazard of individual 2 is larger if

individual 1 has an event. For the unadjusted, the cross-ratio for the gamma frailty is

constant, showing that the event of individual 1 a�ects the hazard in a “proportional”

manner. The shape of CR(t) for the inverse Gaussian and positive stable frailties show

that there is a strong immediate dependence that vanished in time.

The adjusted cross-ratio paints a slightly di�erent picture. For the gamma, it implies

that, if the partner dies, the hazard for the survivor would appear increasingly larger as

compared to the scenario where the partner would still be alive. For the positive stable

distribution, the surviving individual is at a perceived high risk right after the partner

died, but the di�erences quickly decreases. This can be interpreted as a large correlation

between the life times on the short term. As before, the inverse Gaussian is somewhere

in the middle.

CR(t)may be interpreted as an “instantaneous odds ratio” (Anderson et al., 1992), and

for bivariate survival data it may be used for selecting the frailty distribution (Duchateau
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and Janssen, 2007, ch. 4). One disadvantage is that CR depends on the conditional cu-

mulative hazard; a scaled cross-ratio that overcomes this has been proposed by Paddy

Farrington, Unkel, and Anaya-Izquierdo (2012).

The gamma frailty is said to induce “late dependence” (a high probability of events

occurring close by at later time points), the positive stable frailty induces “early depen-

dence” (a high probability of event occurring close by early in the follow-up) and the

inverse Gaussian is somewhere in the middle. The timing of the dependence can be

studied by analyzing the marginal joint distribution of T1 and T2 (Hougaard, 2000). A

disadvantage of this approach is that the marginal distributions of T1 and T2 must be

known separately, which is usually not possible.

1.3.3 Frailty model for recurrent events

Recurrent events are most commonly de�ned in the framework of counting processes.

Each individual is described by a process N(t) with the property that N(t) “counts” the

number of events experienced by the individual until time t .
The two common frameworks for modeling N are the Poisson process and the re-

newal process (Cook and Lawless, 2007). If unobserved individual heterogeneity is

present, then there are two approaches that may be used in practice. One is the marginal

approach, where the unobserved heterogeneity is treated as a nuisance (Cook and Law-

less, 1997). In that case, the focus of analysis is the rate of N , which is de�ned as the

probability of observing an increase in N in the small interval (t, t + dt).
The second approach is to model the intensity of N . While the hazard is de�ned as

the instantaneous probability of an event given that the individual is alive, the intensity

is de�ned as the instantaneous probability of an event given the whole previous event
history of the individual. Let Z be the frailty of the individual. The intensity of N can be

speci�ed as

�(t|Z ) = Y (t)Z exp(�⊤x)�0(t), (1.13)

where Y (t) is an indicator function that is 1 if the individual is under observation at

time t and 0 otherwise. Similarly to the univariate frailty, the variance of Z describes

between-individual unobserved heterogeneity.

The marginal intensity is obtained by replacing Z by E[Z |t−], with t− now rep-

resenting the event history of the individual until just before time t . As in the case of

univariate frailty in Section 1.2.4, the e�ect of the covariates in the marginal intensity

is usually time dependent. Similar to the clustered failures scenario, E[Z |t−] includes

information on previous event times.

The intensity in (1.13), with t referring to “time since origin of the recurrent event

process”, is referred to as the calendar time or Andersen-Gill formulation. Conditional

on Z , N is assumed to be a Poisson process, meaning that its intensity conditional on Z
does not depend on the history t−. Alternatively, in the gap-time scale, t refers to “time

since the previous event”. The intensity may then be expressed as �(t|Z ) = �(t − B(t)|Z ),
where B(t) is the time of the event before time t . From a practical point of view, the gap
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time scale has a very similar representation to (1.7), where �ij (t|Z ) interpreted as the

hazard of the j-th event. Conditional on Z , N is then a renewal process. The resulting

marginal intensities are said to de�ne a modulated Poisson or renewal processes.

In the case of recurrent events, the frailty mainly expresses that, if two individuals

with identical covariates were observed over the same period of time, the expected num-

ber of events is larger for the one with the higher frailty. The number of events carries

the most information on the frailty (Hougaard, 2000, ch. 9). Therefore, the measures of

dependence discussed in Section 1.3.2 are of little interest in this context.

Modeling recurrent events is a complex task and several types of models may be

accommodated with counting processes (Therneau and Grambsch, 2000, ch. 8.5). Fur-

thermore, time dependent covariates representing, for example, the number of previous

events, may also be added in the model (Aalen, Borgan, and Gjessing, 2008, ch. 8), thus

severely complicating the time dependence mechanisms. A comprehensive reference on

recurrent event modeling may be found in Cook and Lawless (2007).

1.4 Frailty models in practice

1.4.1 Estimation and inference

Depending on the nature of �0, the models may be classi�ed as semiparametric or para-

metric. In semiparametric models, no assumptions are made on the baseline hazard �0
and the maximum likelihood estimate of �0 has mass only at the event times, as is the

case for the Breslow estimator (Breslow, 1972). In parametric models, �0 is determined

by a small number of parameters, such as the exponential, Weibull or Gompertz models,

or �exible parametric approaches employing spline-based estimators.

Likelihood and EM-based approaches

The likelihood construction for counting processes is detailed in most survival analysis

textbooks (Aalen, Borgan, and Gjessing, 2008; Kalb�eisch and Prentice, 2002). To cover

all the scenarios described in this chapter, assume that i denotes the cluster, (i, j) the

j-th individual within the cluster i and tijk denotes the k-th event or censoring observed

on individual (i, j). We de�ne the event indicator �ijk as 1 if tijk is an event time and

0 otherwise. Suppose that the conditional hazard of subject (i, j), conditional on the

frailty Zi is given by �ij (t|Zi) = Zi�ij (t) with �ij (t) = �0(t) exp(�⊤xij ). Denote the at risk

indicator of subject j in cluster i by Yij (t) and let Λi∙ = ∑j ∫
∞
0 Yij (t)�ij (t)dt be the sum

of conditional cumulative hazards of cluster i, as de�ned in equation (1.9).

Assuming that the frailties Zi are observed, the conditional likelihood contribution of

cluster i is given by

Li(�, �0|Zi) = ∏
jk

(�ij (tijk |Zi))
�ijk × exp (−ZiΛi∙) .
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and the likelihood for all the individuals is a product of all Lis. The clustered failure data

is represented by having only one time point per individual (k ≡ 1), while the recurrent

events case is represented by having only one individual per cluster (j ≡ 1). An implicit

assumption here is that censoring is independent. In terms of counting processes, the

at-risk process Y (t) is assumed to be independent of N(t), given the covariates and event

history up to time t .
In the �rst part of this expression, Zi appears to the power Ni , the total number of

events from the cluster i. The marginal likelihood contribution of cluster i is obtained as

taking the expectation over Zi :

Li(�, ℎ0, �) = ∏
j,k
�ij (tijk )�ijk E [Z

Ni∙
i exp (−ZiΛi∙)] . (1.14)

For valid inference based on L(�, ℎ0, �), the censoring or at-risk process must also not

involve the frailty, for reasons outlined in Nielsen et al. (1992). This assumption is similar

to that of regular Cox models, where dependent censoring arises, for example, if the

censoring process depends on unobserved covariates.

The “posterior” distribution of Zi , Zi |� , has the density kernel

fZi (z|� ) ∝ zNi∙ exp(−zΛi∙)fZi (z).

This is available in closed form only for the gamma frailty. A consequence of this is that

the expectation in (1.14) is typically di�cult to calculate for other frailty distributions.

The expectation of this distribution is also known as the empirical Bayes frailty estimate.

It can be calculated via the Laplace transform, as discussed in Section 1.3.2. This may

involve having to take many derivatives of the Laplace transform, ifNi∙ is large. Another

di�culty arises in semiparametric models, where the dimension of �0 is usually equal to

the total distinct event time points from the data. This prevents a direct maximization

of the likelihood.

The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977)

has been proposed for semiparametric gamma frailty models (Nielsen et al., 1992; Klein,

1992), and can be easily extended to the PVF family of distributions (Hougaard, 2000,

ch. 8). This involves iterating between two steps:

1. The “E” step, which involves calculating the expected log-likelihood,

E�(�, �0, �) = ∑
i
E [log Li(�, �0|Z )] .

In practice, this involves calculating E[Zi |� ] and E[log Zi |� ].

2. The “M” step, where �, ℎ0 and � are updated, by maximizing E�(�, �0, �).

The advantage of this approach is that the M step may be calculated via Cox’s par-

tial likelihood (Cox, 1975), e�ectively eliminating the problem of the high-dimensional
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�0. However, the E step still requires numerical integration for distributions except the

gamma.

Of the two posterior expectations that are calculated in the E step, E[Zi |� ] may

be expressed as a ratio of derivatives of the Laplace transform. The calculation of

E[log Zi |� ] can be avoided via a “pro�le EM” algorithm, which involves performing the

EM algorithm described here for �xed values of � , resulting in a two-stage maximiza-

tion. Alternatively, the Monte Carlo EM algorithm may be employed, which involves a

stochastic approximation of the E step (Vaida and Xu, 2000).

Alternative approaches

The penalized likelihood method (Ripatti and Palmgren, 2000; Therneau, Grambsch, and

Pankratz, 2003) is a very popular way of estimating gamma and log-normal semipara-

metric frailty models. The basic idea behind it is that, for �xed � , the log Zi ’s may be

treated as regular parameters (on the same scale with the regression coe�cients �). Af-

terwards, a penalization of a speci�c form is imposed upon them. Depending on the

penalization, the results are equivalent to those of a gamma or a log-normal distribu-

tional assumption. This approach is typically the fastest for semiparametric models. A

downside is that it is not immediately possible to extend the estimation to other frailty

distributions.

Other approaches include a pseudo-likelihood method (Gor�ne, Zucker, and Hsu,

2006), which leads to consistent estimators and may be employed for a larger number of

frailty distributions, and the ℎ-likelihood method (Ha, Lee, and Song, 2001; Ha, Jeong,

and Lee, 2017). This approach relies on maximizing the joint likelihood of the observed

and unobserved data. It has been developed for the gamma and log-normal distributions.

Inference

For parametric models, the variance-covariance matrix is typically obtained directly, as

the inverse of the numeric Hessian matrix. This is usually provided by directly by an

optimization software.

For models estimated with the EM algorithm, Louis’ formula may be used (Louis,

1982) to obtain standard errors of the estimates. It has been shown that the ℎ0 may

be regarded, for practical purposes, as an ordinary �nite dimensional parameter and the

information matrix may be constructed from the matrix of second derivatives (Andersen,

Klein, et al., 1997).

For the pro�le EM algorithm, the variance covariance matrix for (�, ℎ0) is obtained

under the assumption of �xed � . Similarly to the penalized likelihood methods, the vari-

ance covariance matrix for � , based on the partial likelihood, is also obtained under �xed

� . The complete variance-covariance matrix for �, ℎ0 or for � should then be adjusted

for the variability of � (Hougaard (2000), ch B3; Putter and Van Houwelingen (2015)),

although this is often ignored in practice.
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Inference regarding the frailty variance is more challenging. The limiting case, when

the variance is 0, is a proportional hazards model without frailty. A likelihood ratio test

based on a mixture of �2 distributions can be employed to test the di�erence between

these two models (Self and Liang, 1987; Claeskens, Nguti, and Janssen, 2008). Another

issue is that, since the variance must be positive, symmetric con�dence intervals are not

very meaningful. An alternative is to calculate likelihood based con�dence intervals, as

is illustrated in Therneau and Grambsch (2000, ch. 9).

1.4.2 Software

Support for frailty models exists in major statistical packages such as R (R Core Team,

2017), SAS (Inc., 2003) and Stata (StataCorp, 2017). The PHREG command in SAS im-

plements the penalized likelihood method for the gamma and log-normal frailty mod-

els. The streg procedure in Stata implements parametric gamma and inverse Gaussian

frailty models. In what follows we will focus on packages for R.

Semiparametric gamma and log-normal frailty models may be estimated via the pe-

nalized likelihood method in the survival package (Therneau and Grambsch, 2000; Th-

erneau, 2015a). Semiparametric frailty models with the in�nitely divisible class of frailty

distributions discussed in Section 1.2.3 may be estimated via the pro�le EM algorithm

with the frailtyEM package. Log-normal frailty models (including correlated frailties,

discussed in Section 1.5) may be estimated with the coxme package (Therneau, 2015b).

Similar models may be �tted with the Monte Carlo EM algorithm with the phmm R

package (Donohue and Xu, 2013). Log-normal and gamma frailty models can also be

estimated via ℎ−likelihood with the frailtyHL package (Do Ha, Noh, and Lee, 2012).

The pseudo-likelihood approach is implemented in the frailtySurv package (Monaco,

Gor�ne, and Hsu, 2017), supporting some of the in�nitely divisible distributions from

the PVF family.

Parametric and �exible parametric frailty models for the gamma and log-normal dis-

tributions are supported by the frailtypack package (Rondeau and Gonzalez, 2005; Ron-

deau, Mazroui, and Gonzalez, 2012) (including correlated random e�ects, nested random

e�ects and numerous other scenarios). Parametric frailty models with support for some

of the PVF family distributions are implemented in the parfm package (Munda, Rotolo,

and Legrand, 2012).

1.4.3 Data representation

In R (R Core Team, 2017), the canonical resources for survival analysis are found in the

survival package (Therneau, 2015a). Event histories corresponding to survival times or

to recurrent events have a very similar representation, as is described in detail in Th-

erneau and Grambsch (2000).

An event history is represented by a collection of observations, which are vectors

(tL, tR , � , x) where (tL, tR) are two time points that de�ne an “at-risk” interval, � is equal
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to 1 if the interval ended with an event and 0 otherwise, and x is a vector of covari-

ate values that are constant on this interval. In R, the tuple (tL, tR , �) is referred to as

(tstart, tstop, status). Univariate survival times and clustered failures are usually

represented by having tL = 0 and a simpli�ed (tstop, status) notation. Furthermore,

this notation may also be used to express:

• Recurrent events in calendar time (or “Andersen-Gill” representation). In this case,

for an individual, tR are event times and tL is usually 0 or the time of the previous

event. Usually, the last observation is censored with the last tR being the end of

follow-up.

• Recurrent events in gap time. In this case, tL = 0 and tR are observed gap times.

The last observation may be censored, indicating an incomplete gap time at the

end of follow-up.

• Left truncated survival times, where tL is the time point after which the individual

enters the study.

• Time dependent covariates. In this case, if the value x changes at time t̃ ∈ (tL, tR),
this results in two observations corresponding to time intervals (tL, t̃ ) and (t̃ , tR),
with the �rst one being arti�cially censored.

In the presence of frailty, an observation is interpreted as a contribution to the con-

ditional likelihood of the form

L(�, �0 | Z ; tL, tR , � , x) =
{
Z�0(tR)e�

⊤x
}�

⋅ exp (−Z(Λ0(tR) − Λ0(tL))e
�⊤x

) .

For a collection of observations sharing the same frailty Z , the software maximizes

EZ [ ∏
intervals

L(�, �0 | Z ; tL, tR , � , x)] ,

which is the contribution of one cluster to the marginal likelihood (1.14). This is ap-

propriate in the case of recurrent events and time dependent covariates, or for clustered

survival times without left truncation.

For left truncated survival times however, this is generally incorrect. In the univari-

ate case, the frailty distribution of a left truncated individual is Z|T ≥ tL, referred to as

the distribution of survivors in Section 1.2.4.

In the case of clustered survival times, the event of observing the whole cluster must

be taken into account (Erikson, Martinussen, and Scheike, 2015; Van den Berg and Drep-

per, 2011; Jensen et al., 2004). If the individuals from the same cluster have truncation

times tL,1, tL,2, … tL,J that are independent given Z , then the frailty distribution of the

cluster is Z|T1 > tL,1, … TJ > tL,J .
More complicated selection schemes arise when the left truncation times are not

independent, even conditional on the frailty (Rodríguez-Girondo et al., 2018). In the
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case of recurrent events, such selection schemes may arise when individuals are included

into the study only if they experience a certain number of events (Balan, Jonker, et al.,

2016). Such scenarios usually require ad-hoc estimation procedures and are not generally

supported by the main software packages.

In R, one of the reasons why the same notation is used to denote both recurrent

events and left truncation is because they lead to the same likelihood in frailty-less mod-

els. In the case of frailty models, the treatment depends on the package used. For exam-

ple, the survival package calculates the correct likelihood for the recurrent events case,

parfm calculates the correct likelihood for the left truncation case. In frailtypack and

frailtyEM, both scenarios are supported.

1.5 Extensions

In the models discussed in Sections 1.2 and 1.3, the frailty plays the role of a random

intercept. In certain scenarios, particularly in studies on bivariate outcomes, correlated

random e�ects have been proposed (Yashin, Vaupel, and Iachine, 1995; Yashin, Iachine,

et al., 2001; Wienke, 2010). These address the limitation that shared frailty models may

only be employed for positively correlated event times.

Furthermore, the random e�ect Z has been so far assumed to be time constant. This

is consistent with the interpretation that Z accounts for individual speci�c or cluster spe-

ci�c characteristics that are �xed from the time origin, and have an e�ect that is constant

in time. However, the unobserved heterogeneity might be time dependent, thus better

explained by an unobserved random processes that unfolds in time. Several approaches

based on this idea have been proposed. The frailty may be modeled with di�usion pro-

cesses (Yashin and Manton, 1997; Aalen and Gjessing, 2004) or Levy processes (Gjessing,

Aalen, and Hjort, 2003). More recently, an approach on birth-death Poisson processes has

been proposed (Putter and Van Houwelingen, 2015). Simpler, piecewise constant, frailty

models have also been considered (Paik, Tsai, and Ottman, 1994; Wintrebert et al., 2004).

A limited implementation combining the birth-death processes and the piecewise con-

stant frailty is implemented in the R package dynfrail (Balan, 2017). Related approaches

include the constructions of auto-regressive frailty processes based on log-normal frail-

ties (Yau and McGilchrist, 1998; Munda, Legrand, et al., 2016) or gamma frailties (Fiocco,

Putter, and Van Houwelingen, 2008).

For the models presented in Sections 1.2 and 1.3 are intended for the analysis of

one stochastic event process, it has been assumed that the censoring does not depend

on the frailty. This assumption may be tested (Balan, Boonk, et al., 2016), or the event

and censoring processes can be jointly modeled. An example is when the observation

recurrent event process may be stopped by death (Liu, Wolfe, and Huang, 2004) or when

the frailty is also associated with the censoring (Huang and Wolfe, 2002).

Moreover, we assumed that the time dependent covariate vector x is somewhat “ex-

ternal” to the event process, in the sense of (Kalb�eisch and Prentice, 2002). If x contains

internal time dependent covariates, such as repeated individual measurements, the pro-
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cesses should be jointly analyzed (Rizopoulos, 2012, ch. 2). In this case, the frailty is

shared by the model for the time dependent covariate (or biomarker) and the model for

the event process. Software for estimating joint models is also available in R (Rizopoulos,

2016).

1.6 Outline of the thesis

Frailty models account for unobserved individual or cluster characteristics. In the case of

gap-time recurrent events and clustered failure times, they relax the usual independence

of event times assumption to a conditional independence assumption. In the case of

recurrent events in calendar time, the assumption of a Poisson process is relaxed.

In Chapter 2, the topic of identi�ability of shared frailty models is analyzed by means

of a simulation study. It has been shown that the univariate frailty model is identi�able,

as long as the frailty has �nite expectation and covariates are present (Elbers and Ridder,

1982). This result implies that, for univariate survival data, it is very di�cult to distin-

guish between the e�ect of unobserved heterogeneity can and a possible time dependent

e�ect of the covariates. We analyze how this problem extends to shared frailty models.

In Chapter 3, we study the situation where a recurrent event process may be as-

sociated with a terminal event, such as death, due to unobserved factors. Because the

recurrent event cannot be observed any more after death, this is an example where the

observation of the process is not independent of the process itself. We propose a score

test for association between the recurrent event process and the terminal event. This

test provides evidence against the usual assumption of independent observation.

In Chapter 4, we analyze the phenomenon of ascertainment of patients in obser-

vational studies on recurrent events data. More speci�cally, we study the case when

individuals are included in the study only if at least one event is observed in a spe-

ci�c ascertainment time frame. We propose a solution for accounting for this selection

scheme.

In Chapter 5, we discuss maximum likelihood estimation for frailty models and

present the implementation from the frailtyEM package (Balan and Putter, 2017) in

R (R Core Team, 2017). The package, which supports semiparametric estimation of

frailty models with distributions from the PVF family, employs a pro�le expectation-

maximization algorithm. Advantages and disadvantages of such approach are discussed,

together with a practical demonstration of the software.


