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Chapter 1

Introduction: A tutorial in frailty

modeling

1.1 Introduction

Cox’s proportional hazards model (Cox, 1972) is one of the most popular regression

models for time to event outcomes. The hazard function, which may be used to describe

the distribution of event times, is de�ned as the instantaneous probability of an event,

given that the individual has not experienced the event previously. The proportional

hazards assumption speci�es that the ratio of the hazards between any two individuals

is constant in time, and the shape of the hazard is given by a non-parametric “baseline

hazard”. If a model is perfectly speci�ed, so that all possible relevant covariates are

accounted for, then the baseline hazard re�ects the randomness of the event time, given

the value of covariates.

In practice however, it is rarely possible to account for all relevant covariates. Then

the explanatory variables account for observed heterogeneity, and the unaccounted part

is termed unobserved heterogeneity. If this is the case, then the estimated hazard for

a speci�c set of covariates does not have an individual interpretation (Woodbury and

Manton, 1977). Rather, it represents an average hazard function, where the average is

taken at each time point over the individuals still alive at that time point. The e�ects

of unobserved heterogeneity on life times were collectively referred to as frailty in de-

mographic research (Vaupel, Manton, and Stallard, 1979). The frailty is an unobserved

This chapter is part of the manuscript under preparation: T.A. Balan, H. Putter. A tutorial in frailty
models: theory and practice
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individual random e�ect that acts multiplicatively on the hazard. The estimated spread

of this random e�ect (e.g. variance) is an indication of the amount of unobserved het-

erogeneity. The frailty model quickly gained popularity in econometrics (Heckman and

Singer, 1984), demographics (Vaupel and Yashin, 1985) and biostatistics (Aalen, 1988).

The Cox model, developed originally for univariate survival data, has been extended

to a more general framework based on counting processes (Andersen and Gill, 1982).

The resulting “extended Cox model” easily accommodates more complex data, such as

correlated event times (clustered failures) or multiple events per individual (recurrent
events). Frailty models based on the extended Cox model are referred to as shared frailty

models (Nielsen et al., 1992; Andersen, Borgan, et al., 1993), as opposed to univariate
frailty models in the simpler univariate survival data scenario.

For clustered failures, the estimated frailty variance describes unobserved hetero-

geneity between clusters. Within a cluster, the event times are assumed to be indepen-

dent, given the frailty. Therefore, shared frailty models are often used to model the

e�ect of unobserved risk factors that are speci�c to the clusters. For recurrent events,

the estimated frailty variance describes unobserved heterogeneity between individuals,

as in the univariate frailty case. Conditional on the frailty, the event history of an indi-

vidual is typically modeled as a Poisson or renewal process. In all cases, frailty models

involve the conditional speci�cation of the hazard or intensity of the event process, as if

the frailty would be observed. Consequently, the estimated covariate e�ects retain the

interpretation of an individual e�ect.

Most theoretical results in frailty models have focused on the gamma frailty model.

In particular, maximum likelihood estimators have been shown to be well behaved (Mur-

phy, 1994; Murphy, 1995b). However, numerous other frailty distributions have been

proposed in the literature (Hougaard, 1986a; Hougaard, 2000; Paddy Farrington, Un-

kel, and Anaya-Izquierdo, 2012). The real frailty distribution is almost impossible to be

known in advance. It is therefore of interest to compare the characteristics of di�erent

frailty models in terms of the resulting population hazards (for univariate survival data)

or within cluster correlation patterns (for clustered survival data).

The aim of this chapter is to provide an overview of theory and practice in the �eld

of frailty models, while o�ering insight into the problems that are addressed by such

models. In Section 1.2, we study the e�ects of unobserved heterogeneity in survival

data, univariate frailty models and di�erent frailty distributions. In Section 1.3, we ana-

lyze the e�ect of unobserved heterogeneity in clustered survival data and introduce the

shared frailty model. We study di�erent correlation structures and we discuss frailty

models for recurrent events data. In Section 1.4, we discuss estimation and inference

procedures for frailty models, we compare available software packages and we examine

the representation of event history data in the R statistical software. In Section 1.5 we

overview di�erent extensions to the frailty models. Finally, in Section 1.6, we conclude

with an outline of the rest of this thesis.
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Figure 11: Changes in the mean and variance of a covariate x over time among survivors in a

proportional hazards model.

1.2 Univariate frailty models

1.2.1 Heterogeneity in the Cox model

Heterogeneity over time

The Cox model speci�es that the hazard as

�(t | x) = �0(t) exp(�⊤x), (1.1)

where � is a p × 1 vector of regression coe�cients, x, is a p × 1 vector of covariates and

ℎ0(t) is an unspeci�ed baseline hazard function. The hazard functions of two individuals

with covariate vectors x∗ and x̃ are equal only when �⊤x∗ = �⊤x̃. The exponent exp(�j ) is

the hazard ratio between an individual with xj = 1 and an individual with xj = 0. Time

dependent covariates are easily accommodated in (1.1) and are discussed discussed in

Section 1.4. Henceforth, we assume that x is time-constant.

The risk set at time t is composed of individuals that have not yet experienced the

event of interest or have not yet been removed for other reasons, such as censoring. The

distribution of the covariates among the individuals in the risk set changes in time. We

illustrate this by considering the model (1.1) and only one covariate following a standard

normal distribution x ∼ N (0, 1) and � > 0, so that individuals with larger values of x have

a higher hazard. At time t = 0, the mean and variance of x are 0 and 1, respectively. As

time passes, the risk set progressively comprises individuals with lower values of x . For

this reason, the average value and the sample variance of x among the individuals at risk

decreases over time.

This is illustrated by simulating a single sample of size n = 100, and a covariate

x ∼ N (0, 1), with � = 1, �0(t) ≡ 0.1 and uniform censoring on (20, 50). In this simulated
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sample, at time 0, x had mean 0.007 and standard deviation 1.068. The estimated � was

0.943, with a standard error of 0.127. The mean and standard deviation of x among the

individuals in the risk set are shown in Figure 11, as a function of time. The message is

that, in time, the population of “survivors” (those still at risk) is more homogeneous and

of a lower risk than the original risk set at time 0.

Heterogeneity due to missing covariates

The proportional hazards assumption in the Cox model (1.1) speci�es that the ratio

�(t | x∗) divided by �(t | x̃) equals exp(�⊤(x∗ − x̃)), which does not depend on time. When

this assumption is violated, the covariate e�ect � is time dependent. The true model is

therefore

�(t | x) = �0(t) exp(�(t)x)

with �(t) not constant.

Assume that the model (1.1) is correct and p ≥ 2. Then, if important covariates are

omitted from the model, the proportional hazards assumption does not usually hold for

the remaining covariates. This is illustrated by simulating a single large data set with

sample size n = 10, 000. Two independent covariates x1 and x2 are considered, both ∼
N (0, 1), with �1 = �2 = 1, �0 ≡ 1 and uniform censoring on (20, 50). The following output

is shown from Cox models �tted with the standard survival package in R (Therneau

and Grambsch, 2000). When both covariates are included into the model, the results are

close to the simulation scenario, with both estimated regression coe�cients close to 1:

## Call:
## c12 <- coxph(formula = Surv(time, status) ~ x1 + x2, data = d)
##
## coef exp(coef) se(coef) z p
## x1 1.0016 2.7225 0.0138 72.7 <2e-16
## x2 1.0240 2.7843 0.0140 73.2 <2e-16
##
## Likelihood ratio test=9014 on 2 df, p=0
## n= 10000, number of events= 8240

No evidence of violation of the proportional hazards assumption is found, when a test

based on Schoenfeld residuals is used (Grambsch and Therneau, 1994):

## Call: cox.zph(c12, transform = "identity")
## rho chisq p
## x1 0.00101 0.0081 0.928
## x2 -0.00357 0.1050 0.746
## GLOBAL NA 0.1510 0.927

However, if x2 is omitted, the resulting estimate of the e�ect of x1 is visibly smaller

than 1:
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Figure 12: Plot of scaled Schoenfeld residuals based �(t) induced by omitting a covariate from a

proportional hazards model.

## Call:
## c1 <- coxph(formula = Surv(time, status) ~ x1, data = d)
##
## coef exp(coef) se(coef) z p
## x1 0.7028 2.0195 0.0124 56.6 <2e-16
##
## Likelihood ratio test=3271 on 1 df, p=0
## n= 10000, number of events= 8240

Moreover, there is clear evidence against the proportional hazards assumption.

## Call: cox.zph(c1, transform = "identitiy")
## rho chisq p
## x1 -0.0852 55.3 1.06e-13

This is also illustrated by the plot of scaled Schoenfeld residuals of �(t) in �gure 12. It

appears that the e�ect of x starts as close to the true value 1, and then decreases in time.

The result given by the Cox model only with x1 is an “average” e�ect in this case.

The explanation for the phenomenon illustrated in the simulated example is that the

individual hazard is determined by the combined e�ect of x1 and x2. On average, the

“high risk” individuals (high x1, high x2) are the �rst to have the event, followed by the

“moderate risk” ones (high x1 and low x2, or low x1 and high x2), and eventually the “low

risk” ones (low x1 and low x2). In particular, the individuals that survive up to a certain
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time are more likely to have lower values of x2. If x2 is omitted from the model, this

decrease in risk among the survivors must be accounted for only by x1, thus reducing

the perceived e�ect of the included covariate.

Conditional and marginal hazards

More generally, suppose that the proportional hazards model (1.1) holds for a covariate

vector x = (x
incl

, xomit) with covariate e�ects � = (�
incl

, �omit), so that the true model is

�(t | x) = �0(t) exp(�⊤incl
x

incl
+ �⊤

omit
xomit). (1.2)

Imagine that a Cox model is �tted only including x
incl

. This will result in an estimated

e�ect that is biased towards 0 and, usually, a violation of the proportional hazards as-

sumption. In reality, it is possible that some relevant covariates are not measured (here

represented by xomit). In this case, these omitted covariates are said to induce unob-
served heterogeneity. The di�erences between individuals that are explained by x

incl
are

referred to as observed heterogeneity.

The �(t | x), as de�ned in model (1.2), is referred to as the conditional hazard, with

�
incl

summarizing the conditional e�ect of x
incl

. When unobserved heterogeneity is

present, the resulting �(t | x
incl
) is referred to as the marginal hazard (although it is

marginal with respect to xomit but still conditional on x
incl

). The estimated e�ect from

the marginal model does not have an individual interpretation. Namely, �(t|x
incl
) repre-

sents a weighted average of the individual hazards corresponding to those individuals

in the risk set at time t , where the weighing is determined by the distribution of xomit in

this risk set.

Since the e�ect of xomit cannot be directly observed, one can de�ne the random

variable Z = exp(�⊤
omit

xomit). Z is referred to as a “frailty” term that acts multiplicatively

on the hazard.

1.2.2 The frailty model

In the univariate frailty model, the hazard of an individual with frailty Z is speci�ed as

�(t | Z ) = Z�(t). (1.3)

For identi�ability, Z is assumed to be scaled so that EZ = 1. The second term in (1.3),

�(t) ≡ �(t | Z = 1), is the conditional hazard for an individual with Z = 1. We refer to

�(t) simply as the conditional hazard. The conditional cumulative hazard is de�ned as

Λ(t) = ∫ t0 �(s)ds. The conditional survival function for an individual with frailty Z is

then given by

S(t | Z ) = exp(−ZΛ(t)).

The marginal survival curve associated with Λ(t) is obtained by taking the expecta-

tion of S(t|Z ) with respect to Z ,

S(t) = E[exp(−ZΛ(t))]. (1.4)
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Unlike S(t), S has a population averaged interpretation. If there are no covariates, S
may be seen as a weighted average of individual survival curves, where the weighing

depends on the distribution of Z . The hazard may be derived from the survival function

as �(t) = d/dt[− log S(t)]. Therefore, the marginal hazard may be calculated as

�(t) =
E [Z exp(−ZΛ(t))]
E [exp(−ZΛ(t)]

�(t)

= E[Z |T ≥ t]�(t).

A population averaged interpretation may also be given here: �(t) may be seen as a

weighted average of individual hazards of individuals alive at time t , where the weighing

depends on the distribution of Z among the individuals alive at time t .
The conditional and marginal hazards are equal only if E[Z |T ≥ t] = 1 for all t . In

other words, if all frailties Z are equal to 1. Otherwise, the frailty distribution among

the survivors at time t behaves in a similar fashion with the distribution of an observed

covariate among survivors, as shown in Section 1.2.1.

If observed covariates are also present, then it is usually assumed that

the proportional hazards assumption holds conditional on the frailty, with

�(t|Z ) = Z exp(�⊤x)�0(t). Then, the population averaged interpretations of S and

ℎ hold conditional on x. In other words, for a hypothetical population of individuals

with given covariate values x. This is the same as the interpretation that is given to the

marginal hazard in Section 1.2.1.

Regardless of whether the di�erences between individuals come from observed co-

variates x or from the frailty, individuals with higher hazards die earlier. Therefore, the

population of survivors is more homogeneous and at a lower risk for events than the

general population at time 0. The advantage of frailty models is that this is explicitly

modeled. Before we further study the relation between marginal and conditional haz-

ards in Section 1.2.4, we �rst discuss di�erent frailty distributions in Section 1.2.3.

1.2.3 Frailty distributions

The Laplace transform

The distribution of a random variable Z > 0 can also be uniquely speci�ed by its Laplace

transform,

(c) = E [exp(−Zc)] .

It is immediate that (0) = 1. The expectation of Z may be obtained as minus the deriva-

tive of  calculated in 0, EZ = −′(0). Furthermore, ′′(0) = EZ 2 and higher order mo-

ments of Z can be obtained by taking further derivatives of . Denote the kth derivative

of  as (k). The squared coe�cient of variation, de�ned as CV2 = var[Z]/(E[Z])2, may

be expressed as

CV2[Z] =
′′(0)
(′(0))2

− 1.
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In terms of the Laplace transform, the marginal survival function from (1.4) may be

written as

S(t) = (Λ(t)),
and the marginal hazard as

�(t) =
d
dt
[− log S(t)] = −

′(Λ(t))
(Λ(t))

�(t).

The Laplace transform of the frailty distribution of survivors can be obtained from Bayes’

theorem:

Z|T≥t (c) = E [exp(−Z c)|T ≥ t]

=
E[exp(−Z(c + Λ(t)))]
E[exp(−ZΛ(t))]

=
(c + Λ(t))
(Λ(t))

.

(1.5)

The expectation, variance and squared coe�cinet of variation of Z|T ≥ t follow as

E[Z |T ≥ t] = −
′(Λ(t))
(Λ(t))

,

var[Z |T ≥ t] =
′′(Λ(t))
(Λ(t))

− (
′(Λ(t))
(Λ(t)) )

2

CV2[Z |T ≥ t] =
′′(Λ(t))(Λ(t))
(′(Λ(t)))2

− 1.

In�nitely divisible distributions

The in�nitely divisible distributions are a family of distributions with tractable Laplace

transform, speci�ed as (c) = exp(−� (c; 
 )) with � > 0 and 
 > 0. The expectation and

variance can be expressed as

E[Z |T ≥ t] = � ′(Λ(t); 
 ),

var[Z |T ≥ t] = −� ′′(Λ(t); 
 ),

CV2[Z |T ≥ t] = −
 ′′(Λ(t); 
 )
�( ′(Λ(t)))2

.

(1.6)

The gamma distribution is a prominent member of the in�nitely divisible family. The

density of the gamma distribution with parameters � > 0 and � > 0 is given by f (t; �, �) =
��
Γ(�) t

�−1e−�t , where Γ(�) = ∫ ∞0 s�−1e−sds is the gamma function. Its Laplace transform is

given by

(c) = (
�

� + c)

�
,
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which, in terms of (1.6), can be expressed as � = �, � = 
 , and  (c; 
 ) = log(
 +c)−log(
 ).
By convention, the expectation of the frailty is �xed to 1, so the restriction � = � is

applied. In this parmaetrization, Z follows a gamma(�, �) distribution, with E[Z] = 1
and var[Z] = �−1 = � . The expectation and variance of the frailty distribution of the

survivors is given through (1.6), resulting in

E [Z |T ≥ t] =
�

� + Λ(t)
,

var [Z |T ≥ t] =
�

(� + Λ(t))2
.

Both functions reach their maximum at t = 0, with expectation 1 and variance �−1, and

decrease over time. For the gamma frailty, it is immediate that �(t) ≤ �(t). In other words,

the marginal hazard is always smaller than the hazard of an individual with frailty 1.

A more general family of in�nitely divisible distributions is the power variance
function (PVF) family, with the Laplace transform  described by

(c; �, 
 , m) = exp(−� sign(m)
{
1 − (




 + c)

m}

)

where sign(m) is the sign of m, and m > −1 and m ≠ 0. It was proposed in a series

of papers (Hougaard, 1984; Hougaard, 1986a; Hougaard, 1986b) and is studied in detail

in Hougaard (2000). To obtain E[Z] = 1 and var[Z] = �−1, one can set � = �sign(m)(m +
1)/m and 
 = �(m + 1). Particular cases of include:

• The gamma frailty, obtained as a limiting case when m → 0 with m < 0;

• The inverse Gaussian distribution, when m = −1/2;

• The so-called Hougaard distributions, when m < 0;

• The compound Poisson distribution, whenm > 0, which has probability mass at 0.
This is consistent with a scenario where a part of the population is not susceptible

for the event of interest;

• The positive stable distribution, obtained as a limiting case when 
 → 0. This

distribution cannot be scaled to have E[Z] = 1, so usually the � = 1 restruction is

imposed. Its expectation is in�nite and the variance is not de�ned. However, the

resulting Laplace transform takes the simple form (c) = exp(−�c
 ), with � > 0
and 
 ∈ (0, 1).

The log-normal distribution has often been used for frailty models, although it it

not part of the PVF family. It is in�nitely divisible, but the corresponding expression of �
cannot be expressed in closed form. Consequently, its Laplace transform and expressions

for the distribution of survivors are not easily obtained. Its popularity stems from the
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Figure 13: Frailty distribution of survivors, gamma frailty, �(t) = t2/20.

normal random e�ects in linear models. The log-normal frailty is usually parametrized

with the E[log Z] = 0 and var[log Z] = �2, corresponding to a normally distributed ran-

dom e�ect on the scale of the covariates. If matched by mean and variance, it is virtually

indistinguishable from the inverse Gaussian distribution. Other families of distributions,

such as the Addams and Kummer families of distributions were also introduced in the

context of frailty models (Aalen, Borgan, and Gjessing, 2008; Paddy Farrington, Unkel,

and Anaya-Izquierdo, 2012).

1.2.4 Frailty e�ects

The di�erent frailty distributions discussed in Section 1.2.3 represent di�erent ways of

expressing unobserved heterogeneity. Di�erent frailty distributions lead to di�erent se-

lection e�ects . Moreover, they impact the marginal e�ect of the observed covariates in

di�erent ways, generalizing the phenomenon illustrated in Section 1.2.1. An advantage

of the PVF family of distributions and their closed form Laplace transforms is that it fa-

cilitates the study of these phenomenons (Aalen, 1988; Aalen, 1994; Vaupel and Yashin,

1985). An overview may be found in Aalen, Borgan, and Gjessing (2008, ch. 6).

The selection e�ect In Section 1.2.3, it was shown that, for the gamma frailty model,

the expectation and variance of the frailty distribution of the survivors decreases in

time. In Figure 13, we show the expectation and the variance of E[Z |T ≥ t], when

the conditional hazard is given by �(t) = t2/20, for variances 0.2, 0.5, 1 and 2.

It follows that the marginal hazard appears as a “dragged down” version of the condi-

tional hazard, similar to Figure 11. This selection e�ect is stronger if the frailty variance

is larger. In particular, the marginal hazard may appear to grow, reach a peak and then
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decrease beyond a time point, even if the conditional hazard is increasing. As in Sec-

tion 1.2.1, the explanation is that individuals with a higher hazard die earlier, on average,

than individuals with a lower hazard. In particular, this is true for all frailty distributions

discussed in Section 1.2.3. For example, for the compound Poisson distribution, when

individuals with frailty 0 never experience the event of interest, the marginal hazard will

eventually decrease towards 0 after some time point. The point made in Section 1.2.1 is

essential here as well: in the presence of unobserved heterogeneity, the marginal hazard

has a population averaged rather than an individual interpretation.

The marginal hazard ratio In Section 1.2.1, we illustrated that, when important co-

variates are omitted in a Cox model, the marginal e�ect of the remaining covariates is

time dependent. The same phenomenon happens with the marginal covariate e�ect in

the case of frailty models. Suppose that only one observed covariate is present, x ∈ {0, 1},

and that the frailty model (1.3) is true. Then, e� is the hazard ratio between two individ-

uals with the same frailty, one with x = 1, the other with x = 0. The marginal hazards

for the two groups de�ned by x are given by

�0(t) = E[Z |T ≥ t, x = 0] �0(t),

�1(t) = E[Z |T ≥ t, x = 1] e��0(t).

The marginal e�ect of x can be quanti�ed by the ratio of these two marginal hazards.

This results in

e�(t) =
�1(t)
�0(t)

=
E[Z |T ≥ t, x = 1]
E[Z |T ≥ t, x = 0]

e� .

In general, �(t) is not constant in time. If Z is a gamma frailty with variance �−1, for

example, this is

e�(t) =
� + Λ0(t)
� + e�Λ0(t)

e� .

If � < 0, e�(t) is an increasing function with a minimum of e� and asymptotic maximum

of 1. Conversely, if � > 0, then e�(t) is a decreasing function with a maximum of e� and

asymptotic minimum of 1. The conclusion is that, at the population level, the covariate

e�ect appears to vanish over time. Therefore, the gamma frailty shows a similar behavior

with the unobserved covariates scenario that was studied by simulation in Section 1.2.1.

Similar considerations apply for other frailty distributions. For example, for the in-

verse Gaussian distribution, the marginal hazard ratio is

e�(t) = (
� + 2Λ(t)

� + 2Λ0(t)e� )

1/2
.

A peculiar case is that of the positive stable distribution, for which

e�(t) = e
 � ,
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Figure 14: Marginal hazard ratio between two groups of individuals: a high risk one with

�1(t) = 3�0(t) and a low risk one with �0(t) = t2/20. For comparability, the distribution are matched

by the squared coe�cient of variation of the distribution of survivors at time t = 1, with

CV 2(1) = var[Z |T ≥ 1]/E[Z |T ≥ 1]2.

which does not depend on time, so we have �(t) ≡ � = 
 � . Since 0 < 
 < 1, � is an

“attenuated” version of � .

The e�ect of di�erent frailty distributions on the hazard ratio is illustrated in Fig-

ure 14. For the gamma and inverse Gaussian, the marginal hazard ratio approaches 1

with time. For the positive stable distribution, the attenuated marginal e�ect is observed.

For the compound Poisson distribution, a “crossover” is present, where the marginal

hazard ratio actually crosses 1. This is the e�ect of having non-susceptible individuals,

represented by the mass at 0 of the distribution. This happens because, in the risk set

at large time points, the proportion of non susceptible individuals is higher in the high

risk group than in the low risk group.



1.2 Univariate frailty models 13

Implications The shrinking of the hazard ratio in the presence of unobserved het-

erogeneity has important implications. One is that this might explain moderate familial

risks found in clinical studies (Aalen, Valberg, et al., 2014). Moreover, it has an impact

for the interpretation of estimated regression coe�cients. In the context of a random-

ized clinical trial with two treatment arms, unobserved heterogeneity induces a loss of

balance between the groups. While this may cause an e�ect as illustrated in Figure 14,

it also implies that the estimated marginal hazard ratio does not have a causal interpre-

tation anymore (Aalen, Cook, and Røysland, 2015).

Another phenomenon of interest is the “interruption of treatment”, where x may

change value at some point, describing the situation where individuals are moved from

the treatment to the control group once the treatment does not appear to have any more

e�ect (Aalen, 1994). If the treatment is bene�cial, then individuals surviving in the con-

trol group will on average have a lower frailty than those in the treatment group. As

an artifact, it might seem advantageous to remove individuals from the treatment group

after some time, because the control group seems at a lower risk (comprising mostly

low-frailty individuals).

1.2.5 Identi�ability

In the frailty model, the marginal hazard equals �(t) = �(t)E[Z | T > t]. If there are no

covariates, then only �(t) is observed. Without strong parametric assumptions on �(t), is

impossible to decide whether frailty is present or not. In other words, the frailty model

is not identi�able in this case. The presence of covariates, together with the assumption

of proportional hazards conditional on the frailty, make the frailty model identi�able,

as long as the frailty distribution has �nite expectation. This is due to the marginal

non-proportional e�ect of the observed covariates, as exempli�ed in Figure 14. This

identi�ability result has been studied in Elbers and Ridder (1982)

Without further assumptions, observing a time dependent covariate e�ect of the

type shown in Figure 14 is equally compatible with two explanations. One is that the

proportional hazards assumption holds in the conditional model, and this e�ect appears

distorted at the marginal level as a result of unobserved heterogeneity. The second is

that there is no unobserved heterogeneity, and the observed covariate simply has a time

dependent e�ect. In the �rst case, the frailty model is the natural choice. In the second

case, the modeling strategy would rather include a strati�ed analysis or an extended Cox

model with interactions of covariates with time (Therneau and Grambsch, 2000, ch. 6.5).

In this context, the result of Elbers and Ridder (1982), while theoretically interesting,

is of little practical use. Only a �rm - and probably naïve - belief in the conditional pro-

portional hazards assumption can substantiate a claim towards the presence of frailty. In

principle, this situation changes in the case of clustered survival data, because positive

correlation between the event times is induced by the frailty. This is discussed in Sec-

tion 1.3. The more information on the correlation structure, the easier it is to distinguish

the frailty from non proportional hazards. However, when the cluster size is small, the

identi�ability result, identifying the appropriate model remains a di�cult problem.



14 Chapter 1 – Introduction: A tutorial in frailty modeling

The positive stable distribution does not have �nite expectation, and therefore it does

not fall under the Elbers and Ridder (1982) result. As shown in Figure 14, it preserves

the proportional hazards assumption at the marginal level. It is not identi�able with

univariate survival data, even with covariates. In some sense, this may be seen as an

advantage, since it illustrates that the identi�ability of univariate frailty models is based

on a strong assumption about the mechanism that generated the data. The positive stable

distribution does prove useful in the context of clustered failures or recurrent events in

Section 1.3.

1.3 Shared frailty models

1.3.1 Missing covariates in paired data

Consider the situation of paired life times, where covariate values are the same for

individuals from the same pair. Assume that individuals from a given pair have the

same distribution of the event time, denoted as T , with the hazard function �(t | x) =
�0(t) exp(�x). Further, assume that x is a realization of a random variable X with den-

sity fX (x). We denote f (t | x) and S(t | x) as the density and survival function of T , given

X = x . The marginal survival function of T (where the covariate x is integrated over) is

given by S(t) = ∫ S(t | x)fX (x)dx .

Consider one pair, with life times T1 and T2. The marginal survival function of either

T1 or T2 is given by S. However, if T1 = t1 is observed, the marginal survival function of

T2 will change. Heuristically, if a large life time t1 is observed, then it is likely that the

pair has a low hazard, which in turn makes it more likely that the value of x in that pair

is low if � > 0 (or high if � < 0). Since x is shared by both individuals, a low hazard for

T1 means that the hazard for T2 is also low, and that in turn makes it more likely that

the corresponding life time t2 is large as well.

All this leads to positive marginal correlation of the two life times. More speci�cally,

it is straightforward to show that the marginal survival function of T2, given T1 = t1, is

given by

S(t2 | T1 = t1) = ∫ f (t1 | x)S(t2 | x)dx,

with f (t1 | x) = f (t1 | x)fX (x)/(∫ f (t1 | x)fX (x)dx). Figure 15 shows S(t2 | T1 = t1) for t1 =
0.1 and t1 = 2, for the case where the conditional distribution of T1 and T2, given x = 0,
is exponential with mean 1, and � = 1, and X has a normal distribution with mean 0 and

standard deviation � .

It can be seen that for t1 = 2, the conditional survival curves are higher than the

marginal survival curve, while for t1 = 0.1 this is the other way around. For higher stan-

dard deviation of the distribution of X , the conditional survival curves are more distinct

from the marginal survival function. That means that for higher standard deviation of

X , the in�uence of knowing the value of T1 is higher, and the correlation between T1
and T2 is higher. In fact, one can derive an explicit expression of the correlation between
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Figure 15: Conditional survival function of T2, given t1 = 0.1 and given t1 = 2; the conditional

distribution of T1 and T2 given X = x is exponential with rate �e�x and � = 1, and X has a normal

distribution with mean 0 and standard deviation � 2, with di�erent values of � .

T1 and T2, when the baseline distribution of T1 is exponential with rate ℎ. It is given by

cor(T1, T2) =
e2�

2�2 − e�
2�2

2e2�2�2 − e�2�2
.

A plot of the correlation as a function of �2, for � = 1, is shown in Figure 16.

If the correlation of life times cannot be explained by observed covariates (for ex-

ample, because x is omitted), then there are two practical approaches. One is marginal

modeling, which is in the spirit of general estimating equation (GEE) models. For the

Cox model, this involves adjusting the standard errors of the observed covariates (Lin

and Wei, 1989). The second is to model the conditional hazard by introducing a “shared”

frailty Z , that would take the place of exp(�x) in the previous example. The resulting

“shared” frailty model is detailed in Section 1.3.2. The advantage of this approach is that

di�erences between clusters can be quanti�ed, and that the covariate e�ects have an

individual interpretation, as in the case of univariate frailty models.

1.3.2 Clustered failures

The shared frailty model

Assume that there are N clusters and ni individuals are part of cluster i. The hazard of

the jth individual from cluster i is speci�ed as

�ij (t|Zi) = Zi exp(�⊤xij )�0(t). (1.7)



16 Chapter 1 – Introduction: A tutorial in frailty modeling

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

Variance of X

C
or

re
la

tio
n 

of
 T

1 
an

d 
T

2

Figure 16: Correlation between T1 and T2 as a function of � 2; the conditional distribution of T1
and T2 given X = x is exponential with rate �e�x and � = 1, and X has a normal distribution with

mean 0 and variance � 2.

The individuals in cluster i share the frailty Zi , and conditional on Zi their lifetimes are

assumed to be independent. While in the univariate case individuals are thought to be

a random sample from a larger population of individuals, in the clustered failures case

the clusters are thought to be a random sample from a population of clusters.

In the univariate case, the marginal hazard was derived given the individual survival

until time t . In the clustered failure case, the marginal hazard is derived given all infor-

mation about the cluster until time t , including observed events and censorings. This is

studied in the following section.

Frailty distributions and clustered failures

Suppose that there are two individuals in a cluster. The conditional cumulative hazard

for individuals j = 1, 2 is given by

Λj (t) = ∫
t

0
Yj (s) exp(�⊤xj )�0(s)ds,

where Yj (s) = 1 when individual j is at risk at time s and 0 otherwise. Conditional on Z ,

the conditional joint survival function of T1, T2 is de�ned as

S(t1, t2|Z ) = P(T1 > t1, T2 > t2|Z )

= exp(−Z(Λ1(t1) + Λ2(t2))).
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The marginal joint survival is obtained by taking the expectation with respect to Z ,

which results in

S(t1, t2) = (Λ1(t1) + Λ2(t2)). (1.8)

The Laplace transform ofZ , given that individual 1 and 2 are alive at t1 and t2, is obtained,

with the same arguments as in (1.5), as

Z|T1>t1,T2>t2 (c) =
(c + Λ1(t1) + Λ2(t2))
(Λ1(t1) + Λ2(t2))

.

The only di�erence from the univariate case is thatΛ(t) is now replaced byΛ1(t1)+Λ2(t2).
Assume now that the event time of the �rst individual T1 is observed at t1. Recall

that the density of T is given by f (t) = �(t)S(t). It is then obtained that

lim
dt↓0

P(t1 ≤ T1 < t1 + dt, T2 > t2|Z )
dt

= Z�1(t1) exp(−Z(Λ1(t1) + Λ2(t2)))

=
)
)t1

S(t1, t2|Z ).

The Laplace transform of Z|T1 = t1, T2 > t2, de�ned as

Z | T1=t1,T2>t2 (c) = E[exp(−cZ) | T1 = t1, T2 > t2]

can be calculated from Bayes’ theorem:

Z | T1=t1,T2>t2 (c) =
E[Z�1(t1) exp(−Z(c + Λ1(t1) + Λ2(t2)))]
E[Z�1(t1) exp(−Z(Λ1(t1) + Λ2(t2)))]

=
′(c + Λ1(t1) + Λ2(t2))
′(Λ1(t1) + Λ2(t2))

.

More generally, for a cluster of arbitrary size, denote the event history of all its indi-

viduals up to some horizon � as � . Assume that this comprises N(�) observed events,

and let

Λ∙(� ) = ∑
j
Λj (� ). (1.9)

Denote (k) as the k-th derivative of the Laplace transform. The Laplace transform of

Z|� is given by

Z|� (c) =
(N (� ))(c + Λ∙(� ))
(N (� ))(Λ∙(� ))

. (1.10)

The expectation of this distribution follows as

E[Z |� ] = −
(N (� )+1)(Λ∙(� ))
(N (� ))(Λ∙(� ))

. (1.11)
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Therefore, for an individual with covariate vector x from a cluster where the event his-

tory of the cluster is given by t , the marginal hazard is

�(t) = E[Z |t−] exp(�⊤x)�0(t). (1.12)

For the gamma frailty, it is obtained that

E[Z |t−] =
� + N (t−)
� + Λ∙(t−)

,

var[Z |t−] =
� + N (t−)
(� + Λ∙(t−))2

.

Similar expressions may be derived in a similar fashion for other PVF frailty distribu-

tions.

Dependence and the cross-ratio

The estimated frailty variance o�ers an indication of unobserved heterogeneity between

clusters, but it o�ers little information on the resulting marginal correlation of the event

times. Even for paired data, the formulas for the bivariate survival function in (1.8) are

di�cult to interpret.

One measure of bivariate dependence is Kendall’s coe�cient of concordance

(Kendall’s tau). Denote two pairs of individuals as {(11), (12)} and {(21), (22)}, where

(ij) refers to individual j of cluster (pair) i. Kendall’s tau is de�ned as

�K = E[sign(T11 − T21)(T12 − T22)],

where sign is the sign function. This is proportional to the probability that the order of

events are concordant between the two clusters clusters. The median concordance is a

similar measure that only involves one pair,

� = E[sign(T1 − median(T1))(T2 − median(T2))].

This is proportional to the probability that the events within the same cluster are con-

cordant, i.e. they occur both before the median survival time or after. In frailty models,

both �K and � are positive quantities, since the speci�cation (1.12) only allows for posi-

tive dependence. Under independence, both measures would be 0. However, the reverse

statement is not usually true.

A more natural way of exploring the within-cluster dependence structure is via the

cross-ratio (Oakes, 1989), which compares how the marginal hazard would behave if an

event would happen as opposed to an event not happening. Unlike �K and �, this is a

local measure of dependence. To illustrate this, we consider one cluster with individuals

1 and 2. Conditional on the frailty, their event times T1 and T2 are independent. Denote

the marginal hazard of individual 2 if individual 1 is alive at t1 as

�2(t|T1 > t1) =
′(Λ1(t1) + Λ2(t))
(Λ1(t1) + Λ2(t))

�2(t),
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and the marginal hazard of individual 2 if individual 1 had an event at time t1 as

�2(t|T1 = t1) =
′′(Λ1(t1) + Λ2(t))
′(Λ1(t1) + Λ2(t))

�2(t).

These two are marginal hazards under di�erent hypothetical event histories of the other

individual in the cluster. They are equal only if there is no dependence between the two

individuals. The cross-ratio can be expressed as

CR(t) =
�2(t|T1 = t1)
�2(t|T1 > t1)

=
′′(Λ1(t1) + Λ2(t))
′(Λ1(t1) + Λ2(t)) (

′(Λ1(t1) + Λ2(t))
(Λ1(t1) + Λ2(t)) )

−1
.

Intuitively, if there is positive dependence between the two event times, CR(t) ≥ 1.
Hougaard (2000) suggested that a more interpretable comparison would be to replace

the denominator by �2(t|T1 > t), to compare the hazard given that “individual 1 died at

time t1” with “individual 1 is alive now”. For t > t1, the adjusted cross ratio is de�ned as

CRa(t) =
�2(t|T1 = t1)
�2(t|T1 > t)

=
′′(Λ1(t1) + Λ2(t))
′(Λ1(t1) + Λ2(t)) (

′(Λ1(t) + Λ2(t))
(Λ1(t) + Λ2(t)) )

−1
.

For t ≤ t1, this quantity does not have a direct interpretation.

In Figure 17, we illustrate the unadjusted and adjusted cross-ratio functions for the

gamma, inverse Gaussian and positive stable distributions. For comparison purposes, the

distributions are matched by Kendall’s tau rather than variance. Both unadjusted and

adjusted cross-ratio functions show that the marginal hazard of individual 2 is larger if

individual 1 has an event. For the unadjusted, the cross-ratio for the gamma frailty is

constant, showing that the event of individual 1 a�ects the hazard in a “proportional”

manner. The shape of CR(t) for the inverse Gaussian and positive stable frailties show

that there is a strong immediate dependence that vanished in time.

The adjusted cross-ratio paints a slightly di�erent picture. For the gamma, it implies

that, if the partner dies, the hazard for the survivor would appear increasingly larger as

compared to the scenario where the partner would still be alive. For the positive stable

distribution, the surviving individual is at a perceived high risk right after the partner

died, but the di�erences quickly decreases. This can be interpreted as a large correlation

between the life times on the short term. As before, the inverse Gaussian is somewhere

in the middle.

CR(t)may be interpreted as an “instantaneous odds ratio” (Anderson et al., 1992), and

for bivariate survival data it may be used for selecting the frailty distribution (Duchateau
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and Janssen, 2007, ch. 4). One disadvantage is that CR depends on the conditional cu-

mulative hazard; a scaled cross-ratio that overcomes this has been proposed by Paddy

Farrington, Unkel, and Anaya-Izquierdo (2012).

The gamma frailty is said to induce “late dependence” (a high probability of events

occurring close by at later time points), the positive stable frailty induces “early depen-

dence” (a high probability of event occurring close by early in the follow-up) and the

inverse Gaussian is somewhere in the middle. The timing of the dependence can be

studied by analyzing the marginal joint distribution of T1 and T2 (Hougaard, 2000). A

disadvantage of this approach is that the marginal distributions of T1 and T2 must be

known separately, which is usually not possible.

1.3.3 Frailty model for recurrent events

Recurrent events are most commonly de�ned in the framework of counting processes.

Each individual is described by a process N(t) with the property that N(t) “counts” the

number of events experienced by the individual until time t .
The two common frameworks for modeling N are the Poisson process and the re-

newal process (Cook and Lawless, 2007). If unobserved individual heterogeneity is

present, then there are two approaches that may be used in practice. One is the marginal

approach, where the unobserved heterogeneity is treated as a nuisance (Cook and Law-

less, 1997). In that case, the focus of analysis is the rate of N , which is de�ned as the

probability of observing an increase in N in the small interval (t, t + dt).
The second approach is to model the intensity of N . While the hazard is de�ned as

the instantaneous probability of an event given that the individual is alive, the intensity

is de�ned as the instantaneous probability of an event given the whole previous event
history of the individual. Let Z be the frailty of the individual. The intensity of N can be

speci�ed as

�(t|Z ) = Y (t)Z exp(�⊤x)�0(t), (1.13)

where Y (t) is an indicator function that is 1 if the individual is under observation at

time t and 0 otherwise. Similarly to the univariate frailty, the variance of Z describes

between-individual unobserved heterogeneity.

The marginal intensity is obtained by replacing Z by E[Z |t−], with t− now rep-

resenting the event history of the individual until just before time t . As in the case of

univariate frailty in Section 1.2.4, the e�ect of the covariates in the marginal intensity

is usually time dependent. Similar to the clustered failures scenario, E[Z |t−] includes

information on previous event times.

The intensity in (1.13), with t referring to “time since origin of the recurrent event

process”, is referred to as the calendar time or Andersen-Gill formulation. Conditional

on Z , N is assumed to be a Poisson process, meaning that its intensity conditional on Z
does not depend on the history t−. Alternatively, in the gap-time scale, t refers to “time

since the previous event”. The intensity may then be expressed as �(t|Z ) = �(t − B(t)|Z ),
where B(t) is the time of the event before time t . From a practical point of view, the gap
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time scale has a very similar representation to (1.7), where �ij (t|Z ) interpreted as the

hazard of the j-th event. Conditional on Z , N is then a renewal process. The resulting

marginal intensities are said to de�ne a modulated Poisson or renewal processes.

In the case of recurrent events, the frailty mainly expresses that, if two individuals

with identical covariates were observed over the same period of time, the expected num-

ber of events is larger for the one with the higher frailty. The number of events carries

the most information on the frailty (Hougaard, 2000, ch. 9). Therefore, the measures of

dependence discussed in Section 1.3.2 are of little interest in this context.

Modeling recurrent events is a complex task and several types of models may be

accommodated with counting processes (Therneau and Grambsch, 2000, ch. 8.5). Fur-

thermore, time dependent covariates representing, for example, the number of previous

events, may also be added in the model (Aalen, Borgan, and Gjessing, 2008, ch. 8), thus

severely complicating the time dependence mechanisms. A comprehensive reference on

recurrent event modeling may be found in Cook and Lawless (2007).

1.4 Frailty models in practice

1.4.1 Estimation and inference

Depending on the nature of �0, the models may be classi�ed as semiparametric or para-

metric. In semiparametric models, no assumptions are made on the baseline hazard �0
and the maximum likelihood estimate of �0 has mass only at the event times, as is the

case for the Breslow estimator (Breslow, 1972). In parametric models, �0 is determined

by a small number of parameters, such as the exponential, Weibull or Gompertz models,

or �exible parametric approaches employing spline-based estimators.

Likelihood and EM-based approaches

The likelihood construction for counting processes is detailed in most survival analysis

textbooks (Aalen, Borgan, and Gjessing, 2008; Kalb�eisch and Prentice, 2002). To cover

all the scenarios described in this chapter, assume that i denotes the cluster, (i, j) the

j-th individual within the cluster i and tijk denotes the k-th event or censoring observed

on individual (i, j). We de�ne the event indicator �ijk as 1 if tijk is an event time and

0 otherwise. Suppose that the conditional hazard of subject (i, j), conditional on the

frailty Zi is given by �ij (t|Zi) = Zi�ij (t) with �ij (t) = �0(t) exp(�⊤xij ). Denote the at risk

indicator of subject j in cluster i by Yij (t) and let Λi∙ = ∑j ∫
∞
0 Yij (t)�ij (t)dt be the sum

of conditional cumulative hazards of cluster i, as de�ned in equation (1.9).

Assuming that the frailties Zi are observed, the conditional likelihood contribution of

cluster i is given by

Li(�, �0|Zi) = ∏
jk

(�ij (tijk |Zi))
�ijk × exp (−ZiΛi∙) .
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and the likelihood for all the individuals is a product of all Lis. The clustered failure data

is represented by having only one time point per individual (k ≡ 1), while the recurrent

events case is represented by having only one individual per cluster (j ≡ 1). An implicit

assumption here is that censoring is independent. In terms of counting processes, the

at-risk process Y (t) is assumed to be independent of N(t), given the covariates and event

history up to time t .
In the �rst part of this expression, Zi appears to the power Ni , the total number of

events from the cluster i. The marginal likelihood contribution of cluster i is obtained as

taking the expectation over Zi :

Li(�, ℎ0, �) = ∏
j,k
�ij (tijk )�ijk E [Z

Ni∙
i exp (−ZiΛi∙)] . (1.14)

For valid inference based on L(�, ℎ0, �), the censoring or at-risk process must also not

involve the frailty, for reasons outlined in Nielsen et al. (1992). This assumption is similar

to that of regular Cox models, where dependent censoring arises, for example, if the

censoring process depends on unobserved covariates.

The “posterior” distribution of Zi , Zi |� , has the density kernel

fZi (z|� ) ∝ zNi∙ exp(−zΛi∙)fZi (z).

This is available in closed form only for the gamma frailty. A consequence of this is that

the expectation in (1.14) is typically di�cult to calculate for other frailty distributions.

The expectation of this distribution is also known as the empirical Bayes frailty estimate.

It can be calculated via the Laplace transform, as discussed in Section 1.3.2. This may

involve having to take many derivatives of the Laplace transform, ifNi∙ is large. Another

di�culty arises in semiparametric models, where the dimension of �0 is usually equal to

the total distinct event time points from the data. This prevents a direct maximization

of the likelihood.

The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977)

has been proposed for semiparametric gamma frailty models (Nielsen et al., 1992; Klein,

1992), and can be easily extended to the PVF family of distributions (Hougaard, 2000,

ch. 8). This involves iterating between two steps:

1. The “E” step, which involves calculating the expected log-likelihood,

E�(�, �0, �) = ∑
i
E [log Li(�, �0|Z )] .

In practice, this involves calculating E[Zi |� ] and E[log Zi |� ].

2. The “M” step, where �, ℎ0 and � are updated, by maximizing E�(�, �0, �).

The advantage of this approach is that the M step may be calculated via Cox’s par-

tial likelihood (Cox, 1975), e�ectively eliminating the problem of the high-dimensional
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�0. However, the E step still requires numerical integration for distributions except the

gamma.

Of the two posterior expectations that are calculated in the E step, E[Zi |� ] may

be expressed as a ratio of derivatives of the Laplace transform. The calculation of

E[log Zi |� ] can be avoided via a “pro�le EM” algorithm, which involves performing the

EM algorithm described here for �xed values of � , resulting in a two-stage maximiza-

tion. Alternatively, the Monte Carlo EM algorithm may be employed, which involves a

stochastic approximation of the E step (Vaida and Xu, 2000).

Alternative approaches

The penalized likelihood method (Ripatti and Palmgren, 2000; Therneau, Grambsch, and

Pankratz, 2003) is a very popular way of estimating gamma and log-normal semipara-

metric frailty models. The basic idea behind it is that, for �xed � , the log Zi ’s may be

treated as regular parameters (on the same scale with the regression coe�cients �). Af-

terwards, a penalization of a speci�c form is imposed upon them. Depending on the

penalization, the results are equivalent to those of a gamma or a log-normal distribu-

tional assumption. This approach is typically the fastest for semiparametric models. A

downside is that it is not immediately possible to extend the estimation to other frailty

distributions.

Other approaches include a pseudo-likelihood method (Gor�ne, Zucker, and Hsu,

2006), which leads to consistent estimators and may be employed for a larger number of

frailty distributions, and the ℎ-likelihood method (Ha, Lee, and Song, 2001; Ha, Jeong,

and Lee, 2017). This approach relies on maximizing the joint likelihood of the observed

and unobserved data. It has been developed for the gamma and log-normal distributions.

Inference

For parametric models, the variance-covariance matrix is typically obtained directly, as

the inverse of the numeric Hessian matrix. This is usually provided by directly by an

optimization software.

For models estimated with the EM algorithm, Louis’ formula may be used (Louis,

1982) to obtain standard errors of the estimates. It has been shown that the ℎ0 may

be regarded, for practical purposes, as an ordinary �nite dimensional parameter and the

information matrix may be constructed from the matrix of second derivatives (Andersen,

Klein, et al., 1997).

For the pro�le EM algorithm, the variance covariance matrix for (�, ℎ0) is obtained

under the assumption of �xed � . Similarly to the penalized likelihood methods, the vari-

ance covariance matrix for � , based on the partial likelihood, is also obtained under �xed

� . The complete variance-covariance matrix for �, ℎ0 or for � should then be adjusted

for the variability of � (Hougaard (2000), ch B3; Putter and Van Houwelingen (2015)),

although this is often ignored in practice.



1.4 Frailty models in practice 25

Inference regarding the frailty variance is more challenging. The limiting case, when

the variance is 0, is a proportional hazards model without frailty. A likelihood ratio test

based on a mixture of �2 distributions can be employed to test the di�erence between

these two models (Self and Liang, 1987; Claeskens, Nguti, and Janssen, 2008). Another

issue is that, since the variance must be positive, symmetric con�dence intervals are not

very meaningful. An alternative is to calculate likelihood based con�dence intervals, as

is illustrated in Therneau and Grambsch (2000, ch. 9).

1.4.2 Software

Support for frailty models exists in major statistical packages such as R (R Core Team,

2017), SAS (Inc., 2003) and Stata (StataCorp, 2017). The PHREG command in SAS im-

plements the penalized likelihood method for the gamma and log-normal frailty mod-

els. The streg procedure in Stata implements parametric gamma and inverse Gaussian

frailty models. In what follows we will focus on packages for R.

Semiparametric gamma and log-normal frailty models may be estimated via the pe-

nalized likelihood method in the survival package (Therneau and Grambsch, 2000; Th-

erneau, 2015a). Semiparametric frailty models with the in�nitely divisible class of frailty

distributions discussed in Section 1.2.3 may be estimated via the pro�le EM algorithm

with the frailtyEM package. Log-normal frailty models (including correlated frailties,

discussed in Section 1.5) may be estimated with the coxme package (Therneau, 2015b).

Similar models may be �tted with the Monte Carlo EM algorithm with the phmm R

package (Donohue and Xu, 2013). Log-normal and gamma frailty models can also be

estimated via ℎ−likelihood with the frailtyHL package (Do Ha, Noh, and Lee, 2012).

The pseudo-likelihood approach is implemented in the frailtySurv package (Monaco,

Gor�ne, and Hsu, 2017), supporting some of the in�nitely divisible distributions from

the PVF family.

Parametric and �exible parametric frailty models for the gamma and log-normal dis-

tributions are supported by the frailtypack package (Rondeau and Gonzalez, 2005; Ron-

deau, Mazroui, and Gonzalez, 2012) (including correlated random e�ects, nested random

e�ects and numerous other scenarios). Parametric frailty models with support for some

of the PVF family distributions are implemented in the parfm package (Munda, Rotolo,

and Legrand, 2012).

1.4.3 Data representation

In R (R Core Team, 2017), the canonical resources for survival analysis are found in the

survival package (Therneau, 2015a). Event histories corresponding to survival times or

to recurrent events have a very similar representation, as is described in detail in Th-

erneau and Grambsch (2000).

An event history is represented by a collection of observations, which are vectors

(tL, tR , � , x) where (tL, tR) are two time points that de�ne an “at-risk” interval, � is equal
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to 1 if the interval ended with an event and 0 otherwise, and x is a vector of covari-

ate values that are constant on this interval. In R, the tuple (tL, tR , �) is referred to as

(tstart, tstop, status). Univariate survival times and clustered failures are usually

represented by having tL = 0 and a simpli�ed (tstop, status) notation. Furthermore,

this notation may also be used to express:

• Recurrent events in calendar time (or “Andersen-Gill” representation). In this case,

for an individual, tR are event times and tL is usually 0 or the time of the previous

event. Usually, the last observation is censored with the last tR being the end of

follow-up.

• Recurrent events in gap time. In this case, tL = 0 and tR are observed gap times.

The last observation may be censored, indicating an incomplete gap time at the

end of follow-up.

• Left truncated survival times, where tL is the time point after which the individual

enters the study.

• Time dependent covariates. In this case, if the value x changes at time t̃ ∈ (tL, tR),
this results in two observations corresponding to time intervals (tL, t̃ ) and (t̃ , tR),
with the �rst one being arti�cially censored.

In the presence of frailty, an observation is interpreted as a contribution to the con-

ditional likelihood of the form

L(�, �0 | Z ; tL, tR , � , x) =
{
Z�0(tR)e�

⊤x
}�

⋅ exp (−Z(Λ0(tR) − Λ0(tL))e
�⊤x

) .

For a collection of observations sharing the same frailty Z , the software maximizes

EZ [ ∏
intervals

L(�, �0 | Z ; tL, tR , � , x)] ,

which is the contribution of one cluster to the marginal likelihood (1.14). This is ap-

propriate in the case of recurrent events and time dependent covariates, or for clustered

survival times without left truncation.

For left truncated survival times however, this is generally incorrect. In the univari-

ate case, the frailty distribution of a left truncated individual is Z|T ≥ tL, referred to as

the distribution of survivors in Section 1.2.4.

In the case of clustered survival times, the event of observing the whole cluster must

be taken into account (Erikson, Martinussen, and Scheike, 2015; Van den Berg and Drep-

per, 2011; Jensen et al., 2004). If the individuals from the same cluster have truncation

times tL,1, tL,2, … tL,J that are independent given Z , then the frailty distribution of the

cluster is Z|T1 > tL,1, … TJ > tL,J .
More complicated selection schemes arise when the left truncation times are not

independent, even conditional on the frailty (Rodríguez-Girondo et al., 2018). In the
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case of recurrent events, such selection schemes may arise when individuals are included

into the study only if they experience a certain number of events (Balan, Jonker, et al.,

2016). Such scenarios usually require ad-hoc estimation procedures and are not generally

supported by the main software packages.

In R, one of the reasons why the same notation is used to denote both recurrent

events and left truncation is because they lead to the same likelihood in frailty-less mod-

els. In the case of frailty models, the treatment depends on the package used. For exam-

ple, the survival package calculates the correct likelihood for the recurrent events case,

parfm calculates the correct likelihood for the left truncation case. In frailtypack and

frailtyEM, both scenarios are supported.

1.5 Extensions

In the models discussed in Sections 1.2 and 1.3, the frailty plays the role of a random

intercept. In certain scenarios, particularly in studies on bivariate outcomes, correlated

random e�ects have been proposed (Yashin, Vaupel, and Iachine, 1995; Yashin, Iachine,

et al., 2001; Wienke, 2010). These address the limitation that shared frailty models may

only be employed for positively correlated event times.

Furthermore, the random e�ect Z has been so far assumed to be time constant. This

is consistent with the interpretation that Z accounts for individual speci�c or cluster spe-

ci�c characteristics that are �xed from the time origin, and have an e�ect that is constant

in time. However, the unobserved heterogeneity might be time dependent, thus better

explained by an unobserved random processes that unfolds in time. Several approaches

based on this idea have been proposed. The frailty may be modeled with di�usion pro-

cesses (Yashin and Manton, 1997; Aalen and Gjessing, 2004) or Levy processes (Gjessing,

Aalen, and Hjort, 2003). More recently, an approach on birth-death Poisson processes has

been proposed (Putter and Van Houwelingen, 2015). Simpler, piecewise constant, frailty

models have also been considered (Paik, Tsai, and Ottman, 1994; Wintrebert et al., 2004).

A limited implementation combining the birth-death processes and the piecewise con-

stant frailty is implemented in the R package dynfrail (Balan, 2017). Related approaches

include the constructions of auto-regressive frailty processes based on log-normal frail-

ties (Yau and McGilchrist, 1998; Munda, Legrand, et al., 2016) or gamma frailties (Fiocco,

Putter, and Van Houwelingen, 2008).

For the models presented in Sections 1.2 and 1.3 are intended for the analysis of

one stochastic event process, it has been assumed that the censoring does not depend

on the frailty. This assumption may be tested (Balan, Boonk, et al., 2016), or the event

and censoring processes can be jointly modeled. An example is when the observation

recurrent event process may be stopped by death (Liu, Wolfe, and Huang, 2004) or when

the frailty is also associated with the censoring (Huang and Wolfe, 2002).

Moreover, we assumed that the time dependent covariate vector x is somewhat “ex-

ternal” to the event process, in the sense of (Kalb�eisch and Prentice, 2002). If x contains

internal time dependent covariates, such as repeated individual measurements, the pro-
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cesses should be jointly analyzed (Rizopoulos, 2012, ch. 2). In this case, the frailty is

shared by the model for the time dependent covariate (or biomarker) and the model for

the event process. Software for estimating joint models is also available in R (Rizopoulos,

2016).

1.6 Outline of the thesis

Frailty models account for unobserved individual or cluster characteristics. In the case of

gap-time recurrent events and clustered failure times, they relax the usual independence

of event times assumption to a conditional independence assumption. In the case of

recurrent events in calendar time, the assumption of a Poisson process is relaxed.

In Chapter 2, the topic of identi�ability of shared frailty models is analyzed by means

of a simulation study. It has been shown that the univariate frailty model is identi�able,

as long as the frailty has �nite expectation and covariates are present (Elbers and Ridder,

1982). This result implies that, for univariate survival data, it is very di�cult to distin-

guish between the e�ect of unobserved heterogeneity can and a possible time dependent

e�ect of the covariates. We analyze how this problem extends to shared frailty models.

In Chapter 3, we study the situation where a recurrent event process may be as-

sociated with a terminal event, such as death, due to unobserved factors. Because the

recurrent event cannot be observed any more after death, this is an example where the

observation of the process is not independent of the process itself. We propose a score

test for association between the recurrent event process and the terminal event. This

test provides evidence against the usual assumption of independent observation.

In Chapter 4, we analyze the phenomenon of ascertainment of patients in obser-

vational studies on recurrent events data. More speci�cally, we study the case when

individuals are included in the study only if at least one event is observed in a spe-

ci�c ascertainment time frame. We propose a solution for accounting for this selection

scheme.

In Chapter 5, we discuss maximum likelihood estimation for frailty models and

present the implementation from the frailtyEM package (Balan and Putter, 2017) in

R (R Core Team, 2017). The package, which supports semiparametric estimation of

frailty models with distributions from the PVF family, employs a pro�le expectation-

maximization algorithm. Advantages and disadvantages of such approach are discussed,

together with a practical demonstration of the software.



Chapter 2

Non-proportional hazards and

unobserved heterogeneity in

clustered survival data: When can

we tell the difference?

Abstract

Multivariate survival data are frequently encountered in biomedical applications in the

form of clustered failures (or recurrent events data). A popular way of analyzing such

data is by using shared frailty models, which assume that the proportional hazards as-

sumption holds conditional on an unobserved cluster-speci�c random e�ect. Such mod-

els are often incorporated in more complicated joint models in survival analysis.

If the random e�ect distribution has �nite expectation, then the conditional pro-

portional hazards assumption does not carry over to the marginal models. It has been

shown that, for univariate data, this makes it impossible to distinguish between the

presence of unobserved heterogeneity (e.g. due to missing covariates) and marginal non-

proportional hazards. We show that di�culties also arise when the data consists of small

sized clusters, or individuals experience only a small number of recurrent events.

This chapter is currenlty under review for publication as: T.A. Balan and H. Putter (Forthcoming). Non-

proportional hazards and unobserved heterogeneity in clustered survival data: When can we tell the di�er-

ence?
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We carry out a simulation study to assess the behavior of test statistics and esti-

mators for frailty models in such contexts. The gamma, inverse Gaussian and positive

stable shared frailty models are contrasted using a novel software implementation for

estimating semiparametric shared frailty models. Two main questions are addressed in

the contexts of clustered failures and recurrent events: whether covariates with a time-

dependent e�ect may appear as indication of unobserved heterogeneity, and whether the

additional presence of unobserved heterogeneity can be detected in this case. Finally, the

practical implications are illustrated in a real-world data analysis example.

2.1 Introduction

Multivariate survival data often arise in biomedical applications. Event times are cor-

related when individuals are grouped in clusters (e.g. families, patients in hospitals) or

observations are clustered within individuals (e.g. recurrent event episodes). Several

extensions of the Cox proportional hazards model (Cox, 1972) are used in these contexts

(Therneau and Grambsch, 2000, ch. 8–9). A popular class of regression models employs

random e�ects to account for the structure of the data. Shared frailty models commonly

assume that the proportional hazards assumption holds conditional on an unobserved

cluster speci�c random e�ect (Hougaard, 2000, ch. 7).

The frailty model was originally introduced in the context of demographics (Vau-

pel, Manton, and Stallard, 1979). In this case, an individual-speci�c random e�ect (or

“frailty”) is used to account for individual unobserved heterogeneity. Early research

focused on how the frailty may explain di�erent shapes of observed marginal (i.e. pop-

ulation) hazards (Vaupel and Yashin, 1985). The univariate frailty model with covariates

and conditional proportional hazards has been shown to be identi�able if the random ef-

fect distribution has �nite expectation (Elbers and Ridder, 1982). Distributions for which

the moments are not well de�ned, such as the positive stable, are not usually identi�able

with univariate data (Hougaard, 1986b).

In univariate frailty models, the marginal hazards and marginal covariate e�ects may

di�er from the conditional ones (Vaupel and Yashin, 1985; Aalen, 1994). In particu-

lar, under some regularity assumptions Elbers and Ridder, 1982, the marginal hazards

are “dragged down” and the marginal hazard ratios are shrunk towards 1. The same

e�ect is observed in the presence of unobserved heterogeneity due to missing covari-

ates (Hougaard, 2000, ch. 2.4.6). In particular, the marginal covariate e�ects are time-

dependent, and such models are not compatible with a proportional hazards assumption

on the population hazards (Therneau and Grambsch, 2000, ch. 6.6). One implication of

this is that, in practice, the frailty model with conditional proportional hazards and a

Cox regression with a time-dependent covariate e�ect can not usually be distinguished

on the basis of the data alone.

Another implication of the identi�ability result Elbers and Ridder, 1982 is that frailty

models for multivariate survival data are also identi�able under the same conditions.

Shared frailties are used to model common unobserved risk, where observations within
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cluster are independent conditional on the random e�ect and marginally dependent.

Therefore, the estimated spread (e.g. variance) of the frailty distribution measures both

the strength of dependence and between-cluster unobserved heterogeneity.

When the cluster size is small and covariates are present however, the regression pa-

rameters and the dependence structure may be confounded (Hougaard, 2000, ch. 7.2.7),

since the frailty model is identi�able also by considering only one event time from each

cluster. This is a well-known problem in twin studies, where more complicated random

e�ect structures might be more appropriate (Yashin, Iachine, et al., 2001). Nevertheless,

shared frailty models are commonly used in the context of twin studies without con-

sidering the possible impact of time-dependent covariate e�ects (Gharibvand and Liu,

2009; Gerster, Madsen, and Andersen, 2014; Dai et al., 2013). Conversely, in a twin study

on depression (Kendler et al., 2009), the authors found covariate e�ects that decay over

time and �tted a model for non-proportional hazards, which might be a by-product of

unobserved common risk.

In this chapter, we study the degree to which the distinction between non-

proportional covariate e�ects and the presence of unobserved heterogeneity can be made

in practice. In particular, the behaviour of shared frailty models is assessed on data sets

where a time-dependent covariate e�ect is present. The impact of cluster size and sam-

ple size is ascertained by means of a simulation study, in the context of both clustered

failures and recurrent events.

This chapter is structured as follows. In Section 2.2, we discuss the theoretical back-

ground of proportional hazards models and frailty models, in Section 2.3 we present the

results of a simulation study comprising a large number of scenarios, in Section 2.4 we

review real life data analysis scenarios and we present the conclusions of this study and

discussion in Section 2.5.

2.2 Models

2.2.1 Proportional hazards models

In Cox-type proportional hazards models, the hazard of individual j from cluster i is

speci�ed as

�ij (t) = Yij (t)�0(t) exp(x⊤ij�), (2.1)

where Yij (t) is an indicator function which is 1 when individual (i, j) is at risk and 0

otherwise, �0(t) is an unspeci�ed “baseline” hazard, xij is a p × 1 vector of observed

covariates and � is a p × 1 vector of unknown regression coe�cients.

This formulation covers both the clustered failures and recurrent events scenarios

in gap-time (in the latter, (i, j) symbolizes the j-th episode of individual i). For recurrent

events in the Andersen-Gill or calendar time formulation, it is common to take j ≡ 1,
and in this case �i represents the intensity (or “hazard process”) of the recurrent event

process. The case of univariate survival data may be seen as either that of clustered

failures with only one individual per cluster, or that of recurrent events with at most
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one event per individual. For simplicity, x is taken constant in time here, although time-

dependent covariates are easily accommodated (Kalb�eisch and Prentice, 2002). It is

assumed that the censoring is independent, given x and the event history.

When the proportional hazards assumption does not hold, the observed e�ect of the

covariates is time-dependent. In this case, the hazard can be speci�ed as

�ij (t) = Yij (t)�0(t) exp(x⊤ij�(t)). (2.2)

The assumption of proportional hazards can be visualized for a small number of covari-

ates or tested using Schoenfeld residuals (Grambsch and Therneau, 1994).

2.2.2 Frailty models

In frailty models, the hazard is speci�ed conditional on a cluster-speci�c random e�ect

Zi :
�ij (t|Zi) = Yij (t)Zi exp(xTij�)�0(t). (2.3)

Zi is referred to as the “frailty” of cluster i. TheZi ’s are taken as iid random variables with

a distribution with positive support. In addition to the censoring assumptions of model

(2.1), it is also assumed that the censoring does not depend on the frailty Zi (Nielsen

et al., 1992).

Denote the Laplace transform of Z as (c) = E[exp(−cZ)] and its k-th derivative as

(k)(c). A large family of in�nitely divisible distributions is described in Hougaard, 2000,

with the form

(c) = exp(−� (c; 
 )). (2.4)

This so-called Power-Variance-Function (Hougaard, 1986b) family of distributions in-

cludes the gamma, inverse Gaussian, positive stable, and compound Poisson distribu-

tions. The parametrizations of the distributions used in the rest of this chapter are de-

tailed in the Appendix.

The marginal hazard corresponding to (2.3) is given by

�̄ij (t) = E[Zi |Oi(t−)] exp(x⊤ij�)�0(t) (2.5)

where Oi(t−) is the observed event and covariate history of cluster i up to (but not in-

cluding) time t and E[Zi |Oi(t−)] is the “posterior” expectation of Zi given Oi(t−). If Ni(t)
denotes the number of events observed in the cluster i by time t , then this expectation

is equal to

E[Zi |Oi(t−)] = −
(Ni (t)+1)(Λi(t))
(Ni (t))(Λi(t))

(2.6)

where

Λi(t) =
Ji
∑
j=1

∫
t

0
Yij (s) exp(x⊤ij�)�0(s)ds,
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and (p)(c) denotes the pth
derivative of . Consider that xij ≡ xij ∈ {0, 1}. The marginal

survival curve for a group de�ned by a �xed value of x is given by

S̄x (t) = E [exp(−Z ∫
t

0
e�x�0(s)ds)] = (e

�xΛ0(t)) .

The marginal cumulative intensity (or hazard) for a given x is then given by Λ̄x (t) =
− log S̄x (t) and the marginal intensity (hazard) as �̄x (t) = d/dtΛ̄x (t). For a binary covari-

ate x , the conditional hazard ratio e� is then interpreted as the hazard ratio between two

individuals with the same frailty. By contrast, the marginal hazard ratio �̄1(t)/�̄0(t) is the

observed (usually time-dependent) ratio of the hazards of the two groups.

2.2.3 Non-proportional hazards

Non-proportional hazards in univariate data The frailty model (2.3) represents a

model where the proportional hazards assumption holds conditional on the Zi . As a

function of xij , the marginal hazard (2.5) is in general a model of the type (2.2), where

the marginal covariate e�ects are time-dependent. In Figure 21, we show, for di�erent

frailty distributions and degrees of dependence, the marginal hazard ratio between two

groups of individuals that have a conditional hazard ratio of 5. The perceived attenuation

of the hazard ratio re�ects that the two groups become more homogeneous in time, as

individuals with a higher frailty leave the data set sooner. However, from a practical

point of view, the same hazard ratio might be explained by a true reduction in the e�ect

of the covariate at the individual level (e.g. treatment e�ect decreasing in time).

In the case of univariate survival data, if Z has �nite variance, the marginal hazards

are not proportional (Aalen, 1994). The intuition behind the identi�ability result (Elbers

and Ridder, 1982) relies on the fact that this observed departure from proportional haz-

ards is considered to be a product of unobserved heterogeneity. If the frailty distribution

does not have �nite expectation, then the model is not necessarily identi�able. An ex-

ample is the positive stable distribution, which shows marginal proportional hazards, as

seen in Figure 21. Therefore, in the univariate case, a time-dependent covariate e�ect

may give the impression of unobserved heterogeneity.

Non-proportional hazards inmultivariate data In the case of multivariate survival

data, an unobserved cluster e�ect induces positive dependence between these observa-

tions. If no such dependence is observed, then the shared frailty model can not be a

suitable model for the data. The presence of the within cluster correlation structure in-

dicates that the (shared) frailty model does not appear to be confounded with a possible

time-dependent covariate e�ect. In other words, the shared frailty model must also be

compatible with the observed joint distribution of the event times.

However, there are cases when no real dependence structure is observed. An extreme

example would be that of the analysis of lifetimes of fathers and daughters in the pres-

ence of a strong risk factor (Hougaard, 2000). Even if all daughters would be censored
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and no relation between their lifetimes and the father’s lifetimes can be inferred, the

shared frailty model may be estimated. In particular, the model is identi�able, because

of the observed covariate. Therefore, the amount of observed dependence is important

in whether a time dependent marginal hazard ratio may be attributed to a common-risk

frailty e�ect.

The main question posed by this observation is: how much of the dependence struc-

ture must be observed so that a time-dependent covariate e�ect does not appear as ev-

idence in favor of the shared frailty model? This is studied in the following section,

in the context of three scenarios: clustered failures where an observed covariate may

vary within cluster, clustered failures where the observed covariate only varies between

clusters, and recurrent events where the observed covariate varies between individuals.

2.3 Simulation study

2.3.1 General framework

We consider x ∼ Bernoulli(0.5) a binary covariate. First, data are simulated from a model

without unobserved heterogeneity, but with a time-dependent e�ect of x . Speci�cally,

this is a model of the type (2.2). On the simulated data sets, four models are estimated: a

Cox proportional intensity model and frailty models with gamma, inverse Gaussian and

positive stable distributions. The Commenges-Andersen test for heterogeneity (Com-

menges and Andersen, 1995) and, for the frailty models, the likelihood ratio test are

evaluated. Furthermore, all estimates and con�dence intervals are collected. A test for

the proportional hazards assumption (Grambsch and Therneau, 1994) is also evaluated,

to determine the degree of non-proportionality in each simulated data set. Second, this

is repeated by having data simulated also with unobserved heterogeneity in addition to

the time-dependent covariate e�ect.

Three main scenarios are analyzed. The �rst is that of clustered failures, with cluster

sizes 1 (univariate survival), 2, 3, 5 and 10, and x simulated independently for each indi-

vidual. The second is identical to the �rst scenario, with the exception that x is simulated

independently for each cluster. Lastly, recurrent events in calendar time are simulated

(Jahn-Eimermacher et al., 2015), with x simulated independently for each individual. In

the recurrent events case, 1, 2, 3, 5 and 10 events are simulated for each individual.

Two distributions are considered to simulate data with time-varying covariate ef-

fects. The Weibull baseline with shape � and scale 
 , where the covariate e�ect is taken

to have an interaction with log time, leading to

�ij (t|Zi ; �, 
 ) = Zi�
t�−1 exp ((�0 + �1 log t)xij) , (2.7)

which is again a Weibull distribution with shape � + �1xij and scale

Zi�
e�0 (� + �1xij )−1.

Both shape and scale parameters must be positive. In the case of clustered failures, this

is the hazard while in the case of recurrent events this is taken as the intensity of the
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Figure 22: Left: Weibull baseline hazards used in the simulation, where the scale parameter is

chosen so that the cumulative baseline hazard at 50 is 0.8. Right: time dependent hazard ratio

used in the simulation and describe in equation (2.7), i.e. 5 exp(�1 log t).

recurrent events process. The baseline intensity is a decreasing function of time if � < 1,
and decreasing for � > 1. For � = 1, the exponential distribution is obtained, where the

hazard is constant.

The second distribution used in our simulations is the Gompertz distribution, using

an interaction with time instead of log time. However, the Gompertz distribution has an

increasing hazard regardless of the parameter choice. Henceforth, we only report results

on the Weibull distribution.

The shape parameter of the Weibull distribution is taken as � ∈ {0.8, 1, 2}, cor-

responding to a decreasing, constant and increasing intensity. For the clustered fail-

ures scenarios, the scale parameter is chosen so that the cumulative baseline intensity

Λ0(50) = 0.8. The di�erent hazard shapes are shown in Figure 22. The covariate e�ects

are de�ned as in (2.7), with �0 = log(5), and 3 values for �1, denoted as �(0)1 , �(1)1 and

�(2)1 , corresponding to di�erent degrees of time-dependent e�ect. �(2)1 is selected so that

�0 +�
(2)
1 log 50 = 0 ); �(1)1 is taken as the average of 0 and �(2)1 , and �(0)1 = 0 corresponds to

the proportional hazards scenario. The corresponding hazard ratios for � = 0.8 are vi-

sualized in Figure 22. To keep the results comparable across scenarios, for the recurrent

events with j events for an individual, the scale parameter is chosen so thatΛ0(50) = 0.8j.
Therefore, the average number of events can be compared to a cluster with j individuals.

Arti�cial censoring is imposed in each data set so that, on average, the earlier 70%
events are observed. The censoring time is determined by simulation for each scenario
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and combination of parameters. For the recurrent events, all individuals are censored

at the 0.7 quantile of all (uncensored) event times. All calculations are performed in the

R software (R Core Team, 2017), using the packages survival (Therneau, 2015a) and

frailtyEM (Balan and Putter, 2017).

2.3.2 Likelihood Ratio Test

The likelihood ratio test (LRT) is usually used to test the null hypothesis of no frailty. For

the gamma and inverse Gaussian, this is equivalent to testing H0 ∶ Var[Z] = 0 versus

HA ∶ Var[Z] > 0, but similar considerations hold for the positive stable frailty model.

The model under H0 is equivalent to a Cox proportional intensity model assuming inde-

pendent observations. It is common to approximate the distribution of the LRT statistic

under H0 by a mixture distribution (�2(1) + �2(0)) /2 (Zhi, Grambsch, and Eberly, 2005;

Claeskens, Nguti, and Janssen, 2008). This result is provided by the emfrail function

in the frailtyEM R package.

No frailty When no frailty is included in the simulation, the percentage of rejections

of H0 is shown in Figure 23, for the gamma frailty model and Weibull shape parameter

is � = 0.8. Alongside this is the percentage of rejections of the null hypothesis of the

ZPH test for proportionality (Grambsch and Therneau, 1994).

When the data are indeed simulated with proportional hazards (�1 = 0), the per-

centage of rejections for both tests is close to the nominal alpha level of 5% across all

scenarios, regardless of cluster size. When the hazards are not proportional (�1 < 0), the

percentage of rejections grows with total sample size. For larger cluster sizes, the LRT

shows a decreasing number of false positives. In particular, for smaller clusters, there is

a visibly large proportion of rejections, even when the time-dependent covariate e�ect

is moderate. The rate of rejections of the ZPH test does not appear to be strongly in�u-

enced by the cluster size. Whether the covariate varies within the cluster (the “clustered”

case) or only between clusters (“clustered/common” case) does not make a practical dif-

ference. These observations carry over also for the recurrent events. The conclusion is

that, the time-dependent covariate e�ect alone may appear as evidence in favor of the

gamma frailty model, unless the cluster size is moderate to large. The results for the

inverse Gaussian frailty are very similar to those of the gamma frailty and can be found

in the supplementary material.

For the positive stable distribution, the corresponding results are shown in Figure 24.

In the case of clustered events, the LRT shows around 5% rejections regardless of the de-

gree of non-proportionality. However, when the covariate does not vary within cluster

or in the case of recurrent events, where the covariate is constant for each individual,

the large amount of non-proportionality may still be somewhat confounded with unob-

served heterogeneity. This is explained by the fact that, in these cases, there is virtually

no observed within-cluster heterogeneity. Therefore, the di�erences explained by x are

essentially confounded with the di�erences that may be explained by cluster-speci�c
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Figure 23: Percentage of rejections of the likelihood ratio test (LRT) between a gamma frailty

model and a proportional hazard model compared to the test for non-proportional hazards (ZPH),

when the data are simulated without unobserved common risk and an increasing Weibull baseline

hazard with shape � = 0.8. The rows correspond to the total sample size (300, 900, 1500) and the

columns to the three main simulation scenarios: clustered failures, clustered failures where the

observed covariate only varies between clusters, and recurrent events. �1 indicates the strength

of the time-dependent covariate e�ect.
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Figure 24: Percentage of rejections of the likelihood ratio test (LRT) between a positive stable

frailty model and a proportional hazard model compared to the test for non-proportional hazards

(ZPH), when the data are simulated without unobserved common risk and an increasing Weibull

baseline hazard with shape � = 0.8. The rows correspond to the total sample size (300, 900, 1500)
and the columns to the three main simulation scenarios: clustered failures, clustered failures where

the observed covariate only varies between clusters, and recurrent events. �1 indicates the strength

of the time-dependent covariate e�ect.
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unobserved heterogeneity. The conclusion is that the positive stable distribution is not

a�ected by the departures from proportionality as long as there is some within-cluster

variation of the observed covariates.

Frailty When the data are simulated as before, but also with unobserved heterogene-

ity, the percentage of rejections of the LRT is larger, as expected, and the ZPH test rejects

the null hypothesis more than 5% of the time. This is due to the fact that marginal non-

proportionality arises both from the time-dependent covariate e�ect and from the frailty

e�ect.

The results for the gamma frailty model are shown in Figure 25. Even under con-

ditional proportional hazards (�1 = 0), the LRT rejects the null hypothesis more than

5% of the times. In the scenarios where the covariate does not vary between clusters

(including the recurrent events), the power of the ZPH test increases with cluster size.

Therefore, presence of such a time-dependent covariate e�ect in addition to unobserved

heterogeneity increases the power of the LRT.

The results for the positive stable frailty model are shown in Figure 26. In this case,

a visible e�ect is that of the degree of non-proportionality. A stronger time-dependent

e�ect of the covariate leads to a substantially larger proportion of rejections.

Although the data were simulated with unobserved heterogeneity, the di�erence in

the rate of rejections when �1 < 0 as compared to �1 = 0 may be regarded as rejecting
the null hypothesis for the wrong reasons.

In conclusion, time-dependent covariate e�ects may appear as evidence in favor of

frailty models, even if unobserved heterogeneity does not actually exist. If that exists,

then the non-proportionality of the covariate e�ect may lead to overestimating the ev-

idence in favor of the frailty model. The results for other shapes of the baseline hazard

(and for the inverse Gaussian distribution) are shown in the supplementary material.

Similar conclusions apply in those cases as well, although the percentage of rejections is

the largest for the decreasing baseline hazard (shown here). This is explained in part by

the fact that, with a decreasing hazard, events occur earlier on in the follow-up, leading

to earlier censoring. The resulting smaller window of observation makes the observed
time-dependent hazard ratio more compatible with the one predicted by the frailty mod-

els shown in Figure 21.

2.3.3 Commenges-Andersen test

The Commenges-Andersen (CA) test for heterogeneity shows in general the same be-

haviour as the LRT from the gamma frailty or inverse Gaussian frailty models, albeit

with slightly fewer rejections. This is not surprising, since it is a score test, which are

generally less powerful than LRT’s. For example, in Tables 21, 22 and 23 the CA, LRT

and ZPH tests are shown side-by-side for varying cluster sizes for total sample size of

300 and Weibull shape parameter 1.
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Figure 25: Percentage of rejections of the likelihood ratio test (LRT) between a gamma frailty

model and a proportional hazard model compared to the test for non-proportional hazards (ZPH),

when the data are simulated with an unobserved common risk following a lognormal distribution

with expectation 1 and variance 0.25 and an increasing Weibull baseline hazard with shape � = 0.8.
The rows correspond to the total sample size (300, 900, 1500) and the columns to the three main

simulation scenarios: clustered failures, clustered failures where the observed covariate only varies

between clusters, and recurrent events. �1 indicates the strength of the time-dependent covariate

e�ect.
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Figure 26: Percentage of rejections of the likelihood ratio test (LRT) between a positive stable

frailty model and a proportional hazard model compared to the test for non-proportional haz-

ards (ZPH), when the data are simulated with an unobserved common risk following a lognormal

distribution with expectation 1 and variance 0.25 and an increasing Weibull baseline hazard with

shape � = 0.8. The rows correspond to the total sample size (300, 900, 1500) and the columns to the

three main simulation scenarios: clustered failures, clustered failures where the observed covariate

only varies between clusters, and recurrent events. �1 indicates the strength of the time-dependent

covariate e�ect.
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2.3.4 Estimated frailty variance

In the case of the gamma frailty, the estimated frailty variance is often considered an

indication of the strength of the frailty e�ect. For the univariate case, these estimates

were very large under all scenarios of non-proportionality. In the data sets simulated

without frailty, the estimates decrease towards 0 with increasing cluster size and are

not in�uenced by the total sample size across all scenarios, while they are larger with

increased departure from proportional hazards. When data sets were simulated with

frailty, a similar phenomenon is observed, although the estimates approach a value close

to 0.25, which is the variance of the lognormal simulated frailty. This is illustrated, for a

total sample of 900 and for the decreasing and constant hazard shapes in Figure 27.

The coverage of the frailty variance estimates can be analyzed with the likelihood-

based con�dence intervals implemented in the frailtyEM package. There is a 1-1 corre-

spondence between the lower bound of this con�dence interval being 0 and the rejection

of the LRT null hypothesis. As expected, in the univariate case, the coverage is almost

0 under non-proportionality, and it improves with larger cluster size. The degree of de-

parture from proportionality, as in the case of the LRT, plays a large role in determining

whether the con�dence interval of the estimated frailty variance includes 0 or not. For a

total sample of 900 and for the decreasing and constant hazard, this is shown in Figure 28.

2.3.5 Cumulative hazard

As shown in Section 2.2, the observed hazard ratio of the groups de�ned by the values of

x can be determined by integrating out the frailty. In the case of no frailty and �1 = 0, all

methods estimate roughly the same cumulative marginal hazard at the end of follow-up.

If �1 < 0, the models also act similarly: the �tted cumulative hazard for x = 0 is larger

and that for x = 1 is lower, resulting in the shrinkage phenomenon shown in Figure 21.

In the case when a frailty e�ect is also included in the simulation, the gamma and in-

verse Gaussian show similar results. The positive stable distribution is slightly closer to

the marginal Cox model, since both models specify a marginal model where the hazards

are proportional.

2.4 Application

Kidney Cathether Insertions

The kidney catheter data (McGilchrist and Aisbett, 1991) have often been used to illus-

trate the use of frailty models for recurrent events. Recurrent times to infection for 38

patients that use portable dialysis equipment were recorded. A gap time may be cen-

sored when the catheter is removed for a reason other than infection. At most two gap

times are included for each individual. For 23 patients, there were two observed events,

for 12 patients there was one observed event and one censored, while for 3 patients both
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Figure 27: Estimated frailty variance for a gamma frailty model, when the data are simulated with

an unobserved common risk following a lognormal distribution with expectation 1 and variance

� 2 ∈ {0, 0.25} and a total sample size of 300. The rows correspond to the Weibull baseline shape

parameter, increasing for � = 0.8 and constant for � = 1. The columns correspond to the three

main simulation scenarios: clustered failures, clustered failures where the observed covariate only

varies between clusters, and recurrent events. �1 indicates the strength of the time-dependent

covariate e�ect.
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Figure 28: Coverage of the likelihood-based con�dence interval for the gamma frailty variance for

the gamma and inverse Gaussian distributions, when the data are simulated with no unobserved

heterogeneity (true variance is 0) and a total sample size of 300. The rows correspond to the

Weibull baseline shape parameter, increasing for � = 0.8 and constant for � = 1. The columns

correspond to the three main simulation scenarios: clustered failures, clustered failures where the

observed covariate only varies between clusters, and recurrent events. �1 indicates the strength

of the time-dependent covariate e�ect.
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gap times were censored. The observed covariates consist of age, sex and disease type

(4 level categorical variable).

The data set is included in the survival package (Therneau, 2015a) in the R statis-

tical software (R Core Team, 2017). A gamma frailty model without any covariates leads

to an estimated frailty variance of 0.177 with a 95% CI [0, 0.985], which is not signi�cant

(p = 0.259 for the LRT, p = 0.22 for C-A). While the addition of age does not impact the

model �t in an important way, the addition of sex leads to an estimated frailty variance

of 0.388 with a 95% CI [0.04, 1.01], which is signi�cant (p = 0.012 for the LRT, p = 0.002
for the Commenges-Andersen test). The e�ect of sex is also highly signi�cant, with

� = −1.55 (0.49). With the removal of an outlier (a male with very long observed gap

times), the evidence in favor of the frailty model disappears (Therneau and Grambsch,

2000, ch. 9.5), where the authors note that with this subject in the model, it is a toss-up
whether the disease or the frailty term will be credited with “signi�cance”. Nevertheless, it

is remarkable that the frailty variance estimate increases with the addition of a covariate,

which in principle should account for part of the heterogeneity in the data.

A Cox proportional hazards no-frailty model including age and sex as covariates

show a reduced e�ect of sex with � = −0.82 (0.48), not signi�cant. Furthermore, the e�ect

of sex is highly non-proportional (p < 0.01). Plots of the Schoenfeld residuals from

this model and a model with the logarithm of the posterior gamma frailty expectations

included as an o�set are shown in Figure 29. The departure from proportionality is

represented by the departure of the �tted line from a horizontal line. It can be seen that

the gamma frailty model “�xes” this by taking the marginal time-dependent e�ect as

evidence for the e�ect of unobserved heterogeneity.

An ad-hoc way of modeling time-dependent e�ects is by �tting an extended model

where an interaction between sex and time is also included. The interaction is highly

signi�cant with � = −0.016 (0.002) while the main e�ect of sex is of an opposite sign

� = 0.88(0.47). This implies a decreasing e�ect of sex with �(t) = 0.88 − 0.016 t . At the

median catheter survival time, the e�ect of sex is already negative with �(78) = −0.37.
Since the e�ect of the usual frailty distributions leads to an attenuation of the marginal

hazard ratio but not to a change of signs in �(t) (as can be seen for example, in Figure 21),

it is likely that there is a time-dependent e�ect of sex acting at the individual level.

A shared frailty model using a positive stable distribution for the random e�ect does

not show a signi�cant frailty. It was seen in the previous section that this distribution is

less susceptible to rejecting the null hypothesis of no frailty because of time-dependent

covariate e�ects.

Therefore, two competing explanations are plausible. The �rst is that there is unob-

served heterogeneity and a time-constant e�ect of sex that appears time-dependent (as

it does with the marginal model implied by the gamma frailty). The second is that the

apparent unobserved heterogeneity is an artifact induced by a time-dependent e�ect of

sex. Deciding between these two on the basis of these results alone is a di�cult matter.

This is in line with the explanation that non-proportional hazard e�ects and unobserved

heterogeneity are confounded when the cluster size is small, as was shown in Section
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Figure 29: Plot of the Schoenfeld residuals for sex from a Cox marginal model and a gamma frailty

model estimated on the kidney catheter insertions data.

2.3. Finally, we note that if the third variable (disease type) is included in the model, the

evidence in favor of the frailty vanishes.

2.5 Conclusion

In univariate survival data, it is well known that a proportional hazards frailty model and

a non-proportional hazards model (with a certain type of departure from proportionality)

can not be distinguished on the basis of the data alone. We have studied how this problem

extends to correlated survival data, such as clustered failures or recurrent events. The

novelty of this chapter is that the confounding e�ect between marginal covariate e�ects

and cluster e�ects was studied for di�erent cluster sizes, and reasonable rates of false

rejections are obtained only when the cluster size is large (e.g. 10 or more observations).

Furthermore, the shape of the baseline hazard was shown to have a strong e�ect, with

hazards that are large early on in the follow-up more likely to be in�uenced by the time-

dependent e�ect of the covariates.

Although the simulation study in Section 2.3 aimed to cover a large number of sce-

narios, only a particular type of covariate e�ect was considered. In practice, this e�ect

may be very di�erent according to the true mechanism that generates the data. Never-

theless, this consideration should play an essential role in deciding whether the frailty
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model is plausible or not. We found that the conclusions presented in Section 2.3 extend

to a large number of scenarios, including a similar simulation study carried out with a

Gompertz baseline hazard. However, a scenario worth further investigation is that when

the frailty is present and a covariate has an increasingly protective e�ect. This would

translate, in the terms of equation (2.7), as having �1 > 0 and Var[Z] > 0. This may be

seen as the time-dependent covariate e�ect o�setting the shrinking of the hazard ratio

seen in Figure 21.

The frailty models attempt to recover an individual covariate e�ect. This may not

be possible when the proportional hazards assumption does not hold conditional on the

frailty, particularly when the cluster size is small.

All �tted models aim to accommodate the observable quantities according to di�er-

ent assumptions. The marginal hazards and marginal hazard ratios are somewhat more

interpretable, as they “stick to this world” (Andersen and Keiding, 2012). Identifying the

nature of what leads to the observable e�ects involves an additional number of assump-

tions that should be carefully considered in the problem being analyzed.

Supplementary material

The supplementary material referenced in this chapter is available online, at https:
//github.com/tbalan/small_clusters.

Appendix

Denote 
 as the scale parameter and � as the shape parameter.

The Gamma(�, 
 ) distribution is described by the Laplace transform

Z (c) = (




 + c)

�
.

This is scaled by setting EZ = 1 and variance �−1 by 
 = � = � .

The inverse Gaussian distribution IG(�, 
 ) is described by the Laplace transform

Z (c) = exp [
−�

{

(

 + c

 )

1/2
− 1

}

]
.

This is scaled by setting EZ = 1 and variance �−1 by 
 = �/2 and � = � .

The positive stable distribution PS(�, 
 ) with 
 ∈ [0, 1]is described by the Laplace

transform

Z (c) = exp (−�c
 ) .

This is scaled with 
 = �
�+1 and � = 1. The expectation is in�nite and the variance is

not de�ned. Nevertheless, with � = ∞ (
 = 1) the case of no association is obtained and

https://github.com/tbalan/small_clusters
https://github.com/tbalan/small_clusters
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the distribution only has mass at 1, while smaller values of � indicate higher degrees of

association.

For all the distributions above, the LRT tests the null hypothesis of H0 ∶ � = ∞,

equivalent to no variability in the frailty distribution.

The lognormal distribution LN (�, �2) is usually parametrized on the log scale, i.e.

E log Z = � and Var log Z = �2. In Section 2.3, the frailty was simulated by setting

EZ = 1 and VarZ = �−1, which is LN (−1/2 log(� + 1), log(� + 1)). The Laplace transform

is not available in closed form. However, for Z a LN (�, �2) a common approximation is

Z (c) = (1 + W(e��2c))−1/2 exp(−
W 2(e��2c) + 2W (e��2c)

2�2 ) ,

whereW(x) is the LambertW function (Asmussen, Jensen, and Rojas-Nandayapa, 2016).
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Table 21: Percentage of rejection of the null hypothesis for the Commenges-Andersen, ZPH and

likelihood ratio tests for gamma (GA), inverse Gaussian (IG) and positive stable (PS) frailty models,

for di�erent cluster sizes (n). � 21 is the variance of the lognormal frailty used in the simulation and

�1 represents the strength of the time-dependent part of the covariate e�ect as in equation (2.7).

The results are shown for a total sample size of 300 and Weibull shape parameter � = 1 and the

clustered failures scenario.

Test n = 2 n = 3 n = 5 n = 10

�2 = 0
�1 = 0 CA 0.020 0.046 0.048 0.044

ZPH 0.034 0.032 0.036 0.036

LRT (GA) 0.026 0.030 0.032 0.022

LRT (IG) 0.026 0.028 0.032 0.022

LRT (PS) 0.024 0.026 0.022 0.016

�1 = −0.21 CA 0.050 0.054 0.052 0.056

ZPH 0.327 0.329 0.315 0.293

LRT (GA) 0.078 0.066 0.042 0.044

LRT (IG) 0.080 0.070 0.044 0.048

LRT (PS) 0.024 0.032 0.026 0.024

�1 = −0.41 CA 0.078 0.066 0.062 0.060

ZPH 0.952 0.954 0.948 0.942

LRT (GA) 0.120 0.090 0.062 0.052

LRT (IG) 0.110 0.092 0.062 0.056

LRT (PS) 0.026 0.028 0.028 0.030

�2 = 0.25
�1 = 0 CA 0.415 0.565 0.770 0.910

ZPH 0.110 0.092 0.082 0.100

LRT (GA) 0.503 0.663 0.834 0.928

LRT (IG) 0.511 0.679 0.842 0.932

LRT (PS) 0.251 0.375 0.593 0.838

�1 = −0.21 CA 0.591 0.693 0.836 0.938

ZPH 0.513 0.519 0.489 0.527

LRT (GA) 0.667 0.776 0.880 0.952

LRT (IG) 0.665 0.776 0.890 0.948

LRT (PS) 0.273 0.429 0.669 0.874

�1 = −0.41 CA 0.591 0.703 0.862 0.934

ZPH 0.984 0.976 0.980 0.978

LRT (GA) 0.667 0.776 0.888 0.940

LRT (IG) 0.669 0.782 0.888 0.944

LRT (PS) 0.255 0.451 0.683 0.876
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Table 22: Percentage of rejection of the null hypothesis for the Commenges-Andersen, ZPH and

likelihood ratio tests for gamma (GA), inverse Gaussian (IG) and positive stable (PS) frailty models,

for di�erent cluster sizes (n). � 21 is the variance of the lognormal frailty used in the simulation and

�1 represents the strength of the time-dependent part of the covariate e�ect as in equation (2.7).

The results are shown for a total sample size of 300 and Weibull shape parameter � = 1 and the

clustered failures covariate speci�c covariate scenario.

Test n = 2 n = 3 n = 5 n = 10

�2 = 0
�1 = 0 CA 0.062 0.064 0.042 0.060

ZPH 0.036 0.052 0.032 0.044

LRT (GA) 0.034 0.032 0.026 0.026

LRT (IG) 0.032 0.032 0.028 0.026

LRT (PS) 0.012 0.014 0.024 0.018

�1 = −0.21 CA 0.074 0.044 0.062 0.054

ZPH 0.382 0.328 0.358 0.294

LRT (GA) 0.084 0.048 0.052 0.038

LRT (IG) 0.090 0.044 0.052 0.038

LRT (PS) 0.016 0.018 0.028 0.038

�1 = −0.41 CA 0.100 0.064 0.068 0.050

ZPH 0.960 0.964 0.952 0.942

LRT (GA) 0.122 0.076 0.062 0.044

LRT (IG) 0.118 0.070 0.066 0.046

LRT (PS) 0.046 0.032 0.042 0.048

�2 = 0.25
�1 = 0 CA 0.404 0.526 0.772 0.876

ZPH 0.102 0.124 0.130 0.198

LRT (GA) 0.480 0.596 0.822 0.894

LRT (IG) 0.492 0.604 0.832 0.902

LRT (PS) 0.220 0.324 0.580 0.800

�1 = −0.21 CA 0.570 0.644 0.868 0.894

ZPH 0.576 0.576 0.622 0.668

LRT (GA) 0.640 0.718 0.886 0.912

LRT (IG) 0.642 0.716 0.890 0.920

LRT (PS) 0.286 0.396 0.674 0.818

�1 = −0.41 CA 0.570 0.664 0.848 0.906

ZPH 0.998 0.986 0.990 0.990

LRT (GA) 0.638 0.724 0.884 0.920

LRT (IG) 0.640 0.724 0.890 0.924

LRT (PS) 0.370 0.488 0.712 0.832
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Table 23: Percentage of rejection of the null hypothesis for the Commenges-Andersen, ZPH and

likelihood ratio tests for gamma (GA), inverse Gaussian (IG) and positive stable (PS) frailty models,

for di�erent cluster sizes (n). � 21 is the variance of the lognormal frailty used in the simulation and

�1 represents the strength of the time-dependent part of the covariate e�ect as in equation (2.7).

The results are shown for a total sample size of 300 and Weibull shape parameter � = 1 and the

recurrent events scenario.

Test n = 2 n = 3 n = 5 n = 10

�2 = 0
�1 = 0 CA 0.060 0.034 0.036 0.038

ZPH 0.050 0.038 0.030 0.030

LRT (GA) 0.040 0.022 0.016 0.018

LRT (IG) 0.038 0.026 0.022 0.020

LRT (PS) 0.020 0.016 0.026 0.014

�1 = −0.21 CA 0.122 0.068 0.064 0.074

ZPH 0.301 0.293 0.285 0.173

LRT (GA) 0.155 0.082 0.066 0.070

LRT (IG) 0.145 0.074 0.066 0.064

LRT (PS) 0.026 0.022 0.032 0.028

�1 = −0.41 CA 0.263 0.153 0.127 0.094

ZPH 0.956 0.920 0.924 0.857

LRT (GA) 0.313 0.197 0.151 0.096

LRT (IG) 0.283 0.201 0.159 0.106

LRT (PS) 0.054 0.058 0.062 0.068

�2 = 0.25
�1 = 0 CA 0.309 0.460 0.691 0.837

ZPH 0.118 0.120 0.203 0.209

LRT (GA) 0.341 0.506 0.737 0.859

LRT (IG) 0.359 0.512 0.737 0.867

LRT (PS) 0.145 0.231 0.472 0.739

�1 = −0.21 CA 0.530 0.629 0.835 0.916

ZPH 0.600 0.590 0.663 0.665

LRT (GA) 0.590 0.669 0.855 0.918

LRT (IG) 0.588 0.677 0.867 0.924

LRT (PS) 0.209 0.323 0.580 0.827

�1 = −0.41 CA 0.657 0.719 0.880 0.938

ZPH 0.996 0.984 0.980 0.988

LRT (GA) 0.715 0.767 0.906 0.944

LRT (IG) 0.727 0.779 0.906 0.944

LRT (PS) 0.295 0.452 0.711 0.880



Chapter 3

Score test for association between

recurrent events and a terminal

event

Abstract

The statistical analysis of recurrent events relies on the assumption of independent cen-

soring. When random e�ects are used, this means, in addition, that the censoring cannot

depend on the random e�ect. Whenever the recurrent event process is terminated by

death, this assumption might not be satis�ed. Joint models for recurrent and terminal

events are often di�cult to �t. Thus, clinicians rarely check whether they are preferred

to separate models. In this chapter, we propose and compare simple, yet e�cient ways

of testing whether the terminal event and the recurrent events are associated or not. The

proposed methods are evaluated in a simulation study and are illustrated through a data

set consisting of repeated observations of skin tumors on T-cell lymphoma patients.

3.1 Introduction

Recurrent event data have become increasingly common in clinical studies, in reliability

theory, and in other �elds (Cook and Lawless, 2007). The shared frailty model (Nielsen

et al., 1992) is a popular method for analyzing this type of data, because it retains a

This chapter has been published as: T.A. Balan, S.E. Boonk, M.H. Vermeer, H. Putter (2016). Score test

for association between recurrent events and a terminal event. Statistics in Medicine 35(18), 3037-3048.
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similar semiparametric speci�cation with the well known Cox model, it is supported by

asymptotic results (Murphy, 1995a; Parner, 1998) and is available in standard statistical

software (Therneau and Grambsch, 2000). The frailty (Vaupel, Manton, and Stallard,

1979) is a random e�ect which accounts for heterogeneity that can not be explained

by observable covariates. In other words, it describes whether a subject or a cluster of

subjects is at a higher risk (large frailty) than others (small frailty). In the recurrent

events framework, the frailty accounts for the dependence between the observations on

the same individual. Conditional on the frailty, one hopes that the stochastic processes

underlying the individuals are independent. Thus, frailty models allow an elegant and

parsimonious explanation of the mechanism which generates the data.

In a clinical context, recurrent events are often a symptom of a medical condition

which might lead to the end of follow-up in the form of dependent censoring by termi-

nal event, such as death. In particular, a more frail subject might not only be associated

with a higher recurrence rate, but also an increased or decreased risk of experiencing the

terminal event, to a greater or lesser extent. If this is the case, the recurrences and the

terminal event should be jointly modeled, allowing for the frailty to describe both the

unaccounted di�erences in the risk for both recurrences and death. Such a model was

introduced in Liu, Wolfe, and Huang (2004), who adapted a model for clustered failures

with informative censoring (Huang and Wolfe, 2002). For estimation of a semiparamet-

ric joint frailty model, the Expectation-Maximization (EM) algorithm can be used, the

method being very similar to the estimation of the shared frailty model (Nielsen et al.,

1992; Klein, 1992).

There are however disadvantages of the joint model. It is notably easier to con-

sider separate models for the recurrences and death, both in terms of di�culty of �tting

and interpretation; a comparison between the estimation methods of the shared frailty

model (Nielsen et al., 1992) and the joint model (Liu, Wolfe, and Huang, 2004) can at-

test to this. Furthermore, expressions for marginal features of the recurrent events or

terminal event processes are not readily obtained, and the interpretation of features of

interest, such as treatment e�ects, is not as straightforward as for the separate models.

Although software for parametric models for recurrent and terminal events exists (Ron-

deau and Gonzalez, 2005), there is no method to check a priori whether separate models

are similarly appropriate or not. This may lead to situations when clinical practitioners

will ignore the dependence between the two event types.

In this chapter, we aim to develop a simple statistical test for association between

the recurrent events and the terminal events, which does not require the estimation

of a joint model. This provides an answer to a clinically relevant problem and it also

indicates whether the joint modeling of the processes is more suitable. The idea that we

follow is similar to a test for informative censoring (Huang, Wolfe, and Hu, 2004) and

heterogeneity (Commenges and Andersen, 1995) in the context of clustered failures.

The outline of the article is as follows. In Section 3.2, we review a joint model closely

related to that of Liu, Wolfe, and Huang (2004). In Section 3.3, we review possible tests

for association and introduce the robust score test, and in Section 3.4 we discuss the
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e�ciency and validity of our approach in a simulation study. Finally, in Section 3.5 we

illustrate the proposed methods on a data set of successive hospital readmissions.

3.2 Models

LetDi and Ci denote the time of the terminal event and right censoring time respectively,

both of which correspond to the end of followup. Also de�ne Ti = min(Di , Ci), and

Yi(t) = 1 (t ≤ Ti) the “at risk” indicator. While Yi(t) = 1, we observe two counting

processes, ND
i (t) = 1(Di ≤ t) corresponding to the terminal event and N R

i (t) which

is equal to the number of recurrences in (0, t], or equivalently their increments ΔN R
i (t)

and ΔND
i (t), equal to the number of respective events in the small interval (t, t + Δt].

We can consider a p × 1 vector of possibly time-dependent covariates {xi(t) ∶ t ≥ 0}
and denote their path up to time t as x (t)i = {xi(s) ∶ 0 ≤ s ≤ t}. We require the time-

dependent covariates to be external, in the sense of Kalb�eisch and Prentice (2002). The

history up to time t is then

Hi(t) =
{
(N R

i (s), N
D
i (s)) ∶ 0 ≤ s ≤ t; x (t)i

}
. (3.1)

The intensities ofN R
i andND

i can be associated, meaning that the rate of recurrences

and that of the terminal event can depend on elements of (3.1). It is, for example, plausible

that a high rate of recurrent events is associated with a reduced survival. Often, this can

be an indication of a “hidden” factor, such as a severe disease, which in�uences both

intensities of N R
i and ND

i .

As in the model of Liu, Wolfe, and Huang (2004), we consider a frailty variable Z =
(Z1, ..., Zn)with Zi ’s i.i.d. with a distribution function G(z; �), with mean 1 and variance

� . Conditional on Z = (z1, ..., zn), the intensities of N R
i and ND

i are:

ri (t|zi) = lim
Δt→0

Pr
{
ΔN R

i (t) = 1|zi , Hi(t−)
}

Δt
,

�i (t|zi) = lim
Δt→0

Pr
{
ΔND

i (t) = 1|zi , Hi(t−)
}

Δt
.

Further, we assume that both N R
i and ND

i can not increase after Di . Although a natural

assumption for the terminal event, for the recurrent events death is an instance of poten-

tially informative censoring. In particular, a violation of the assumptions of the classical

shared frailty model (Nielsen et al., 1992) occurs if zi can not be dropped from the expres-

sion of �i . Finally, we follow Liu, Wolfe, and Huang (2004) in choosing a multiplicative

model for the intensities, so that ri and �i can be expressed as

{
ri (t|zi) = zi1 (Di > t) e�

′xRi (t)r0(t)
�i (t|zi) = z
i 1 (Di > t) e

�′xDi (t)�0(t)
. (3.2)
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The baseline intensities r0 and �0 are assumed for now to be continuous positive func-

tions. The regression coe�cients � and � have the dimensions of the corresponding

covariates xDi and xRi .

The question of association between N R
i and ND

i is closely related to the parameter


 in (3.2), which describes the direction and magnitude at which the frailty in�uences

the hazard �i . Thus, the interest lies in testing the hypothesis H0 ∶ 
 = 0 against

HA ∶ 
 ≠ 0. UnderH0, the expressions of �i and ri do not share any parameters, and then

both processes can be analyzed separately; in particular, the censoring of the recurrent

event process by the terminal event is non-informative, in the sense of Nielsen et al.

(1992).

Assume that the baseline intensities are fully described by some parameters �r and

�d , i.e. r0(t) ≡ r0(t; �r ) and �0(t) ≡ �0(t; �d ). If �r and �d are �nite dimensional, then the

model is parametric; otherwise, the model is semi-parametric, as originally proposed by

Liu, Wolfe, and Huang (2004). Nevertheless, we denote the nuisance parameter vector

by � = {�, �, �, �r , �d )}.

For subject i, we denote the observed data Oi as the event “ni observed recur-

rent events at ti1, ..., tini over [0, ti] and �i = 1(Di < Ci)”. Under the regularity

conditions of Liu, Wolfe, and Huang (2004), the “conditional likelihood” based on

(Hi(∞); i = 1...n; Z) is formed from the conditional probabilities

Pr(Oi |zi) = ∏
j

{
ri(tij |zi)

}
exp

{
− ∫

�

0
Yi(s)ri(s|zi)ds

}
�i(ti |zi)�i×

× exp
{
− ∫

�

0
Yi(s)�i(s|zi)ds

}
.

Similarly, the “marginal likelihood” based on Hi(∞) alone is obtained from the marginal

contributions to the likelihood Pr(Oi) = ∫ ∞0 Pr(Oi |z)dG(z; �). The marginal log-

likelihood is then

� (
 , �) = ∑
i [

ni
∑
j=1

{
�′xi(tij ) + log r0(tij )

}
+ �i

{
�′xi(ti) + log �0(ti)

}
+

+ log ∫
∞

0
Ki(z, ti)f� (z)dz] (3.3)

where Ki(z, t)f� (z), is the kernel of the “posterior” distribution Zi |Hi(t) computed with

the data available until time t . We denote the cumulative given zi = 1 as Ri(t) =
∫ t0 Yi(s)e

�′xRi (s)r0(s)ds and Λi(t) = ∫ Yi(s)e�
′xDi (s)�0(s)ds, and then

Ki(z, t) = zN
R
i (t−)+
N

D
i (t−) exp

{
−zRi(t) − z
Λi(t)

}
. (3.4)

Under 
 = 0, Ki is the kernel of a Gamma distribution, so a convenient choice forG is the

Gamma distribution as well (Nielsen et al., 1992); also see Duchateau and Janssen (2007).
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If 
 ≠ 0 the Expectation-Maximization algorithm must be employed to maximize the

log-likelihood, using numerical methods to approximate integrals at every iteration (Liu,

Wolfe, and Huang, 2004). The numerical approximations and the slow convergence of

the EM algorithm result in an overall slow and complicated method.

One way out is to consider a parametric version of the joint model. At the expense of

introducing assumptions about the functional form of r0 and �0, one can obtain a numer-

ically tractable form of the log-likelihood (3.3), which can be maximized with standard

maximum likelihood methods (Rondeau, Mathoulin-Pelissier, et al., 2007). This approach

is implemented in the R package frailtypack (Rondeau and Gonzalez, 2005; Rondeau,

Mazroui, and Gonzalez, 2012), which also o�ers the option to choose �exible parametric

speci�cations for r0 and �0, such as piecewise constant or spline-approximated.

There are however reason not to employ the joint model. First, clinicians prefer

more familiar models such as a frailty model for the recurrent events (available in e.g.

R, SAS, Stata) or a Cox model for the terminal event (also available in SPSS), if there

is no need of doing something more complicated. The parametric assumptions have

their price as well. Splines, for example, require the speci�cation of two “smoothing

parameters”, which may or may not be easy to obtain. We will return to considerations

about computation in section 3.4. Thus, it would be useful to be able to see if there is

evidence against H0 even before the joint model is used. While the Likelihood Ratio

Test (LRT) or the Wald test require the maximization of (3.3), the score test does not.

If the null hypothesis is rejected, the shared frailty model is not appropriate and the

terminal event should be jointly modeled (Liu, Wolfe, and Huang, 2004; Ye, Kalb�eisch,

and Schaubel, 2007).

In the following section, we describe tests forH0 based on (3.3), with a focus on those

that do not require the maximization of (3.3).

3.3 Tests for independence

Our goal is to test H0 ∶ 
 = 0, in the presence of the nuisance parameters �; a complete

speci�cation of the null hypothesis is H0 ∶ (
 , �) = (0, �). Abiding by our purpose of

developing a simple test for this hypothesis, we �rst focus on how this can be achieved

while avoiding the direct maximization of (3.3). This can be done by considering the

maximum likelihood estimate �̂0 under 
 = 0 and measuring the variation of (3.3) around


 = 0. This forms the basis of the score test in section 3.3.1. Other approaches, for which

estimation of the joint model is needed, are detailed in Section 3.3.2.

3.3.1 Score Test

The starting point for this is the score function for 
 under H0, de�ned as the derivative

with respect to 
 in (3.3):

U
 (0, �) =
)
)


� (
 , �)
||||
=0

.
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If we denote �̂0 the estimate of � under H0, then

{
U
 (0, �̂0)

}2

Var
{
U
 (0, �̂0)

} (3.5)

follows asymptotically a �2 distribution with 1 degree of freedom. The variance of the

score is

Var
{
U
 (0, �̂0)

}
= (I

 − I
�I−1�� I�
 )

|||
=0,�=�̂0
, (3.6)

where the I s are obtained from the Fisher information matrix

I (
 , �) = (
I

 I
�
I�
 I�� ) .

If the model is semi-parametric, the score function and information matrix of � are re-

placed by a score and an information operator (Rabinowitz, 2000; Kosorok, 2008). Al-

though this does not lead to a closed form of (3.6), any “good” estimate of the variance of

the score can be used. The �rst choice is to replace the denominator of (3.5) with I

 ||
=0,
which is the variance of the score if � were known to be equal to �̂0. By this, the variance

will be underestimated, thus leading to a conservative test statistic. We refer to this as

the naive score test (NST).

Further insight can be obtained by calculating U
 :

U
 (
 , �) = ∑
i

∫ ND
i (ti) log z − Λi(ti |z)z


 log zKi(z)f� (z)dz
∫ Ki(z)f� (z)dz

.

Setting 
 = 0 and replacing � with �̂0, we obtain

U
 (0, �̂0) = ∑
i

∫
{
ND
i (ti) − Λ̂i(ti |xi , z)

}
log zK̂i(z)f� (z)dz

∫ Ki(z)f� (z)dz

= ∑
i
M̂D
i ⋅ ̂log zi , (3.7)

where M̂D
i and

̂log zi are the estimates of MD
i = ND

i (ti) − ∫
ti
0 Yi(s)�i(s)ds , the martingale

residual of the terminal event, and of E [log Zi |Oi(ti)], where the expectation is taken

with respect to the “posterior” distribution K̂i(z)f� (z) of (3.4), with Ri and Λi replaced by

their estimates under H0.
A similar expression involving a correlation between martingale residuals and as-

pects of the posterior distribution of random e�ects was obtained in Jacqmin-Gadda et

al. (2010) in the context of joint latent classes and survival models.

Both estimates in (3.7) are only asymptotically independent samples; in practice,

there is a dependency between the estimates (Therneau and Grambsch, 2000). In par-

ticular, the martingale residuals M̂D
i are constrained to have mean 0 , therefore (3.7)
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is proportional to the sample covariance of the martingale residuals and expected log-

frailties, which is a measure of linear dependence. In fact, if an ordinary linear regression

model is considered:

M̂D
i = a + b ̂log zi + "i ,

then the departure of (3.7) from 0 is equivalent to the departure of the regression coe�-

cient b from 0. Thus, for testing H0, the regular t statistic can be used:

t = r
√
n − 2
1 − r2

(3.8)

where r = Corr(M̂D
i , ̂log zi) and t follows asymptotically a t distribution with n − 2

degrees of freedom under the null hypothesis under H0. We refer to the test based on

(3.8) as the robust score test (RST).

Heuristically, a justi�cation for the RST can be derived by interpreting the quantities

which appear in (3.7). The martingale residuals M̂D
i can be informally interpreted as an

“observed - expected” quantity for the terminal event. For example, if M̂D
i > 0, then the

rate of the terminal event is larger than expected, taking only the xi into account, and how

much larger is determined by how large M̂D
i is. A large (log-)frailty estimate corresponds

to a subject who is at high risk for recurrences. Hence, the larger the value of (3.7), the

stronger the evidence for the association between recurrent and terminal events is. More

frail subjects are more likely to experience the terminal event earlier if r > 0, or later if

r < 0, so the sign of the RST statistic also indicated the direction of the association.

3.3.2 Alternative tests

The likelihood ratio test (LRT) can be computed by maximizing the likelihood (3.3) via

the expectation-maximization algorithm, as described in Liu, Wolfe, and Huang (2004),

and comparing it to the likelihood under H0. If (3.3) is maximized in (
̂ , �), then the LRT

statistic is

D = −2 log
{
l(0, �̂0)
l(
̂ , �)

}

and it asymptotically follows a �2 distribution with one degree of freedom under H0.
The e�cient score test (EST) is described by (3.5) and the e�cient information (3.6),

and as previously mentioned it can be computed numerically. As shown in Murphy and

Vaart (2000), the e�cient information can be obtained as minus the second derivative of

the pro�le likelihood

�prof(
 ) = sup
�
� (
 , �). (3.9)

In practice, we can approximate Ĩ

|||
=0 = −E (

d2
d
 �prof(
 )

|||
=0) with the numeric Hessian

of (3.9) in 
 = 0. This can be obtained from general purpose optimization software, such
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Table 31: Average number of recurrent event in simulated data sets.

�

 0.5 1 1.5

-0.5 2.36 2.44 2.52

-0.25 2.32 2.36 2.41

0 2.27 2.27 2.27

0.25 2.21 2.16 2.12

0.5 2.13 2.05 1.96

as the function optim in R or S-Plus or the package numDeriv in R. We comment in

the Appendix on computational considerations regarding the EST and how it is related

to the NST in this light.

Alternatively, the 
̂ can be obtained from maximizing (3.9) with respect to 
 . The

variance of the estimate Var(
̂ ) can be obtained from the numeric Hessian, and then the

Wald test statistic is

W =

̂√

Var(
̂ )

and it asymptotically follows a standard normal distribution under H0. The sign of W
also corresponds to the direction of the tested association.

3.4 Simulation

A simulation study has been conducted to assess the validity of the Robust Score Test

(RST) and compare the small sample properties to those of the other tests described in

Section 3.3. The simulations have been carried out in the following setting: data sets

consist of n ∈ 100, 200, 500 subjects; for each subject the data is generated according to

model (3.2), for scenarios pertaining to 
 ∈ {−0.5, −0.25, 0, 0.25, 0.5}. The frailty is gen-

erated from a Gamma distribution with mean equal to 1 and variance � ∈ {0.5, 1, 1.5}.

One binary covariate is generated from a Binom(n, 1/2) distribution with �xed regres-

sion coe�cients � = � = 1. An exponential baseline hazard is used, with �0(t) = 1/2 and

r0(t) = 2. The follow-up is ended by either the terminal event, or by an administrative

censoring time Ci = 1, whichever occurs �rst. Note that the recurrent event rate and

the terminal event rate are independent only under H0. Every simulation cycle consist

of 1000 replications under the same conditions.

In Table 31 we show an indication on the size of the simulated data sets. It can be

seen that the number of recurrent events decreases with 
 and with � . The asymmetry

is explained by the fact that when 
 < 0 the recurrent events have a “protective” e�ect

and subjects with many events exit the data set later. The degree to which there is more

variance in the frailty ampli�es this e�ect.
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Figure 31: Estimated � levels with simulated data under H0. Wald and EST (not shown here) are

close to the LRT estimates. Binomial con�dence intervals are also shown, where a “success” is a

p-value smaller than 0.05

We use the abbreviations of the tests as described in Sections 3.3.1 and 3.3.2. Fur-

thermore, we also consider the Wald test from a parametric model where the base-

line intensities are considered piecewise constant with 3 intervals, from the R package

frailtypack; this approach is described in Section 3.2, and we see it as an approxima-

tion to the semiparametric joint model.

Figure 1 compares the type 1 error (false rejections) of the LRT, RST and NST, as a

function of n, under H0, in the case � = 1. Although the estimated � level seems con-

sistently lower for RST than for LRT, bionomial con�dence intervals for the proportion

of rejections have a notable overlap, and both seem to approach the desired 0.05 with

a su�ciently large sample. In this comparison, it can also be seen that the naive score

test (NST) is indeed over-conservative, as it is argued also in Appendix 3.6: even as the

sample size becomes larger, the proportion of rejections is signi�cantly lower then the

nominal � level of 0.05. Finally, we note that the results for � ∈ {0.5, 1.5} (not shown)

are very similar.

To better illustrate the relation between the di�erent tests, we plotted the p-values

obtained in the case 
 = 0, � = 1, n = 500 in Figure 32. Under the null hypothesis, one
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would expect the p-values of a valid test to be approximately uniformly distributed on

[0, 1]. The Wald test and EST are virtually indistinguishable from the LRT in this case.

The �gure indicates that RST approximates the LRT for small deviations as well. The

parametric Wald (WaldPar) test is also shown in the plot; it can be seen that the p values

can di�er wildly from those of the semi-parametric Wald; this can be seen as a trade

o� for the parametric assumption. For other values of n or � very similar �gures were

obtained.

Finally, we analyze the power of the aforementioned tests against the alternatives


 ∈ {−0.5, −0.25, 0.25, 0.5}, for � ∈ {0.5, 1, 1.5}. The results are summarized in Table

32. Two trends are visible regardless of sample size. First, the power of the tests grows

with the frailty variance, meaning that it is more likely to reject the null hypothesis

of no association in more heterogeneous data sets, if this association exists. Second,

in particular for LRT, Wald and EST, the tests fare slightly better for alternatives with


 < 0, which can be explained by the asymmetric size of the simulated data sets showed

in table 31.

As expected, the tests are more powerful when there is a higher number of individ-

uals in the data set. The RST performs better than Wald for small sample sizes (n = 100),
however there is no clear di�erence for others. Generally, the power of the RST is

slightly lower but reasonably comparable with the other tests. In Figure 33 we com-

pare the power of the tests for � = 1. It can be seen that, except for NST which is

over-conservative, the LRT, Wald, EST and RST are quite similar. It looks like for small

samples there is a slight advantage in power of LRT and EST, while the RST is closer to

the Wald test.

Finally, we note that the computation time is much smaller for the RST, as compared

to the other tests, including the parametric Wald test, WaldPar. Average computation

times from the simulations are shown in Table 33.

3.5 Application

We illustrate our methods using data from a study on Mycosis Fungoides (MF). MF

is the most common type of cutaneous T-cell lymphoma that generally presents with

patches and plagues Doorn, Sche�er, and Willemze (2002). Over time a number of pa-

tients progress to tumor stage disease (stage IIB) and a minority develop extracutaneous

localization of the disease. It is well known that there is considerable variability in the

number of recurrent skin tumors and is believed that an increased number of recurrent

skin tumors is associated with disease progression and survival. In addition, it has been

reported that folliculotropism of neoplastic cells is associated with an adverse prognosis.

In Boonk et al. (2014), 46 patients with stage IIB MF were selected from the cutaneous

lymphoma database of the Dutch Cutaneous Lymphoma Group. During follow-up, data

on recurrences of skin tumor and disease progression and survival were collected. We

consider overall survival as the terminal event. Median follow-up was 88 months. Co-

variates considered in this application are age (median 69, range 39–90), gender (33
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Figure 32: Histograms and scatterplots of p-values corresponding to 1000 datasets simulated under

H0 ∶ 
 = 0. Within the scatter plots, a straight line with equation y = x has been added, as well

as a dotted nonparametric smoother. The data sets follow the simulation scenarios of Section 3.5

with n = 500.
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Table 33: Average computation time for di�erent tests. For RST the standard survival package

was used, for WaldPar the frailtypack package, and for EST and LRT or Wald a self-written

algorithm was used, similar to that described in Liu, Wolfe, and Huang (2004).

Computation time (s)

100 200 500

RST 0.04 0.09 0.31

EST 16.18 48.05 138.03

WaldPar 1.04 1.64 2.68

LRT/Wald 44.57 128.25 331.61
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Figure 34: Recurrent event history and survival outcome of 4 patients

males, 13 females), and the presence of folliculotropic MF (26 absent, 20 present). Figure

34 shows examples of the variability in the number of tumors and time intervals between

tumor recurrences. It can be seen that some patients experienced multiple recurrences

at a single follow-up visit; the ties caused by these simultaneous recurrences were ran-

domly broken. 11 patients (23.9%) experienced 0 recurrences, 5 (10.8%) 1 recurrence, 6

(13.0%) 2 recurrences, and 24 (52.1%) more than 2 recurrences. The maximum number

of recurrences was 21. The original publication (Boonk et al., 2014) used the number of

recurrent skin tumors in the �rst year as explanatory variable in a landmark Cox model

at 1 year for overall survival, and showed that the number of recurrent skin tumors was

highly prognostic for subsequent survival.

A gamma frailty model ignoring possible informative censoring due to the terminal

event death, yielded the results shown in Table 34, under “Separate models”. The frailty

variance was estimated to be 1.574. The estimates of the Cox model for the terminal
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Table 34: Estimated regression coe�cients for recurrent events and terminal event, using separate

models and the joint model.

Separate models Joint model

Beta SE p-value Beta SE p-value

Recurrent events

Male gender 0.230 0.687 0.74 0.286 0.476 0.54

Age 0.039 0.020 0.058 0.039 0.018 0.035

Folliculotropic MF 0.019 0.595 0.97 0.039 0.276 0.88

Frailty variance 1.574 < 0.0001 1.358 0.323 < 0.0001
Association parameter (
 ) 0.778 0.276 0.004

Terminal event

Male gender 0.616 0.486 0.20 0.747 0.648 0.24

Age 0.048 0.019 0.012 0.067 0.023 0.004

Folliculotropic MF 0.378 0.402 0.35 0.127 0.486 0.79

event, ignoring the recurrent events is also shown under “Separate models”. Figure 35

shows a scatterplot of the posterior log frailties from the gamma frailty models against

the martingale residuals of the Cox model for the terminal event. The correlation was

estimated to be 0.488, and the p-value of the robust score test was 0.0006. The result of

this quick test indicates that a joint model is really needed to reliably model the associa-

tion between the recurrent skin tumors and death. The result of this joint model, using a

self-written EM-algorithm, is shown in Table 34, under the “Joint model”. The regression

coe�cients in the joint model are generally comparable with the ones from the separate

models. The association parameter 
 was estimated to be positive and highly signi�cant,

indicating an increased death rate for the subjects with a high propensity of recurrent

events, in agreement with the �ndings in Boonk et al. (2014).

3.6 Discussion

We have shown that the estimated correlation between the martingale residual and the

estimated log-frailties can be used as the basis for a test of association between recurrent

events and a terminal event. The advantage of the robust score test is that it is easy to

compute and does not require �tting the joint model. Thus, it can serve as a simple

preliminary check whether models for the recurrent events and for the terminal events

can be �tted separately or whether more complex joint models are needed to obtain

reliable estimates.

We note that heterogeneity with respect to the recurrent events is required not only

for the joint model to be estimated, but also for the implementation of the RST. This can

be assessed via a likelihood ratio test (Nielsen et al., 1992; Therneau and Grambsch, 2000).

In addition, we note that the model described in Section 3.2 leads to the interpretation
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Figure 35: Martingale residuals of terminal event versus the posterior log-frailties estimated from

the recurrent events

of a common hidden factor in�uencing both risks of experiencing recurrent events and

the terminal event. The plausibility of this should be assessed separately, because more

models can describe the type of data encountered in this chapter (Cook and Lawless,

2007, ch. 6.6) and the e�ects of internal time dependent covariates are often di�cult to

separate from that of the frailty (Aalen, Borgan, and Gjessing, 2008, ch. 8.5).

The fact that the martingale residuals and the estimates of the log-frailty are not

samples coming from a bivariate normal distribution should also lead to a cautious in-

terpretation of correlation coe�cients and of the test statistic (3.8). In the simulations of

Section 3.4 we did not notice any increase in the estimated � levels of the RST, but this

might depend on the data set on which the method is employed. Finally, note that there

is no closed form connection between the parameter which describes the association

between recurrent events and terminal event 
 and the correlation � used to calculate

the RST statistic (3.8).

Although we have not explicitly stated that the frailty should follow a gamma dis-

tribution throughout Section 3.2, we still employed this assumption in Sections 3.4 and

3.5. The RST can accommodate any distribution for the frailty, including, for example,
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a two-point mixture or a compound Poisson distribution, as long as the shared frailty

model for recurrences can be estimated. It can be seen from (3.8) that the choice of the

frailty distribution will a�ect only the estimation of
̂log zi . We expect the RST to have

the largest power if the true frailty distribution is used, however this was not checked

in the simulation study.

The idea of a simple test, here in the form of RST, could be extended to more models

which inherit the issues which would prevent practicians to use a more complicated joint

model. Because a recurrent event data in the presence of a terminal event is a particular

case of a multistate model with competing risks (Cook and Lawless, 2007, ch. 6.6), similar

methods could be found by generalizing RST to multistate models with frailty (Putter and

Houwelingen, 2015).

Appendix: Estimation via pro�le likelihood

In Sections 3.3.2 and 3.4 we used the pro�ling out of the nuisance parameters from the

log-likelihood (3.3), in the sense shown by the de�nition (3.9). First, note that, if (
̂ , �̂)
maximizes (3.3), then 
̂ maximizes (3.9), and �̂ is the estimate of � obtained by maximiz-

ing � (
̂ , �). It is clear that

�prof(0) = � (0, �̂0)

and �prof(
 ) ≥ � (
 , �̂0)with equality only when 
 = 0. It follows that �prof(
 )−� (
 , �̂0) ≥ 0.
Thus,

d
d


{
�prof(
 ) − � (
 , �̂0)

}||||
=0
= 0,

which shows that U
 (0, �̂0) from (3.7) is equal to the e�cient score function, U
 (0) =
d
d
 �prof (
 )

|||
=0. This justi�es why (3.7) is the correct score function for testing H0. Fur-

ther, because �prof (
 ) − � (
 , �̂0) is always positive and it has a minimum, it follows that

d2

d
 2
{
�prof(
 ) − � (
 , �̂0)

}
≥ 0

for any value of 
 . This implies that
d2
d
 2 �prof (
 ) >

d2
d
 2 � (
 , �̂0) for all values of 
 , which

is equivalent to

−
d2

d
 2
�prof(
 ) = I
 ≤ I

 = −

d2

d
 2
� (
 , �̂0)

for all 
 . We conclude that �prof(
 ) and � (
 , �̂0) have the same value and the �rst deriva-

tive in 
 = 0, but the curvature of � (
 , �̂0) is more pronounced. This is the intuition

behind the reason why the likelihood � (
 , �̂0) with �xed nuisance parameters can be

used to obtain the correct score, but not the correct information.





Chapter 4

Ascertainment correction in frailty

models for recurrent events data

Abstract

In retrospective studies involving recurrent events, it is common to select individuals

based on their event history up to the time of selection. In this case, the ascertained sub-

jects might not be representative for the target population, and the analysis should take

the selection mechanism into account. The purpose of this chapter is two-fold. First, to

study what happens when the data analysis is not adjusted for the selection, and second,

to propose a corrected analysis. Under the Andersen-Gill and shared frailty regression

models, we show that the estimators of covariate e�ects, incidence and frailty variance

can be biased if the ascertainment is ignored, and we show that with a simple adjustment

of the likelihood, unbiased and consistent estimators are obtained. The proposed method

is assessed by a simulation study and is illustrated on a data set comprising recurrent

pneumothoraces.

4.1 Introduction

In the study of recurrent events it is of interest to model the rate at which the events

occur in time, along with estimating the e�ects of di�erent factors which may in�uence

This chapter has been published as: T.A. Balan, M.A. Jonker, P.C. Johannesma, H. Putter (2016). Ascer-

tainment correction in frailty models for recurrent events data. Statistics in Medicine 35(23), 4183-4201.
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this rate, such as treatments or individual covariates. Usually, it is assumed that the pro-

cess which generates the recurrent events starts at a time 0; this can be, for example, the

diagnosis of a certain disease, a medical intervention, or birth, and that it is ended by

some form of right-censoring. Ultimately, the research aims to extrapolate the conclu-

sions from a sample of individuals to a larger “population at risk”. The sample selection

process is critical for the validity and interpretation of the results.

In a prospective study a random sample is drawn from the target population at time

0, and then followed up for the occurrence of events, whereas in a retrospective study

design, the sample is selected at a time later than 0, with the data up to the time of se-

lection being collected on the ascertained individuals. Prospective studies are desirable

although they may require a long time to be conducted. Their main advantage is that

all aspects of the data collection are under the control of the researcher. Retrospective

studies are usually observational in nature. While cheaper and shorter than prospective

studies, they are associated with less control on the sample selection process. Ideally,

the sampling mechanism should lead to a sample that can be viewed as a random repre-

sentation of the full population of interest at time 0.

When the sampling happens at a time point after 0, the probability for a subject to be

included in the study may depend on the subject’s event history. For example, registries

are often kept only for patients who experienced some recurrent events, not on the whole

population that is at risk to experience these events. Such a sample can not be regarded

as representative for the target population. The necessity to adjust the analysis to take

the selection mechanism into account has been underlined in the context of recurrent

events in Cook and Lawless (2007, ch. 7.3), although most approaches for this problem

are ad-hoc in nature.

In the motivating example of this chapter, only subjects who experienced at least

one occurrence of the event of interest between 1990 and 2014 were registered. Hence,

subjects who only experience events before 1990 or after 2014 are not included in the

study. As a consequence, the individuals who have a higher rate of recurrent events

are over-represented in the sample. If not adjusted for, the ascertainment can bias the

estimation of model parameters in the statistical analysis of such data. Selection bias is

a known problem in epidemiology (Hernán, Hernández-Díaz, and Robins, 2004). Several

paradoxical results in studies involving recurrent events might be explained by a closely

related “index bias” (Dahabreh and Kent, 2011).

The e�ects of the selection scheme are more di�cult to disentangle when random

e�ects are used to model additional heterogeneity or correlation structures present in

the data. The frailty model (Vaupel, Manton, and Stallard, 1979) is commonly used for

recurrent events or clustered failures data (Hougaard, 2000; Cook and Lawless, 2007).

When the selection of individuals depends on the previous history of events, it might

also depends on the value of the random e�ect, further complicating the estimation of

frailty models.

Most of the literature on event-based selection in this context has focused on models

for the waiting times (gaps) between the events. For example, Scheike, Petersen, and
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Martinussen (1999) use an adjusted frailty model to analyze time to pregnancy. In their

case, the selection scheme re�ects itself in truncation of the observed gap times. Their

approach can be used when the selection of individuals is directly related to the length of

the waiting times, rather than a speci�ed calendar time interval. It is worth mentioning

that a closely related problem is that of frailty models for clustered survival data in the

presence of left truncation. Jensen et al. (2004) proposed a corrected likelihood for family

data when observations are collected only on the failure has not occured before some

time. Several papers followed up on this work (Van den Berg and Drepper, 2011; Erik-

son, Martinussen, and Scheike, 2015). Sun and Li (2004) used a frailty model to analyze

clustered survival data, where random e�ects are used to describe a familial structure.

In their work, a family is ascertained when at least two members have experience the

failure before a certain age. They also provide an “ascertainment-adjused” likelihood,

with the focus lying on estimating parameters which describe the latent structure. The

selection scheme in the present motivating example is similar. However, we focus on

quantities which are of more interest in the recurrent event context, such as covariate

e�ects or the intensity of the recurrent event processes.

We show that the selection based on event history may lead to a sample which is

not representative for the initial population at risk, even in very simple ascertainment

scenarios, and that this may lead to biased estimates when not properly accounted for

in the analysis. The novelty of this chapter lies in the fact that we analyze the e�ects of

ignoring the selection process in the context of recurrent events, along with comparing

the adjusted and unadjusted estimators. In Section 4.2, we review the Andersen-Gill and

the shared frailty models, we discuss the general idea of constructing a likelihood for

models which take the selection mechanism into account, and we propose estimation

procedures for both parametric and semiparametric models. The proposed methods are

evaluated through a simulation study in Section 4.3, where we investigate properties

of the estimators of the baseline intensities, regression coe�cients and frailty variances

under several scenarios. Finally, we illustrate the considerations of this chapter on a data

set on recurrent pneumothoraces in Section 4.4, and we lay out our concluding remarks

in Section 4.5.

4.2 Methods

This section is outlined as follows: in 4.2.1 we review the Andersen-Gill and the shared

frailty models, and in 4.2.2 we adapt these models to take the selection mechanism into

account. In 4.2.3 we discuss the estimation of the proposed adjusted models for paramet-

ric speci�cation and we introduce a novel approach for their semiparametric estimation.

4.2.1 Statistical models

The canonical framework for recurrent events is that of counting processes, and partic-

ularly that of Poisson processes (Cook and Lawless, 2007, ch. 2). The history of events
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of an individual i is “counted” by a stochastic process Ni(t) for t ≥ 0, with an intensity

function �i(t).
In the Andersen-Gill (AG) model, Ni is assumed to follow the speci�cations of a non-

homogeneous Poisson process with intensity

�i(t; �, �) = �0(t; �) exp (�′xi(t)) (4.1)

where xi is a vector of possibly time dependent covariates, � is a vector of regression

coe�cients and � is a vector of parameters which characterize the “baseline” intensity

�0. In the shared frailty model, Ni is assumed to follow the speci�cations of a non-

homogeneous Poisson process conditional on the unobserved “frailty” Zi = zi :

�i(t|zi ; �, �) = zi�0(t; �) exp (�′xi(t)) (4.2)

where it is assumed that Zi > 0 and that the Zi ’s are i.i.d. distributed with some density

f� . In both cases we assume that the censoring is independent given the covariates, and

for the shared frailty model we also assume that it is non-informative for the frailty.

Although there is a wide variety of distributions that can be used for Zi , the most

common are the gamma distribution and the log-normal distribution. In the rest of this

chapter, we will consider f� as the gamma density with expectation 1 and variance � ,

f� (z) =
1/�1/�

Γ(1/�)
z1/�−1 exp(−z/�), (4.3)

with � > 0 and for z > 0. This choice is particularly convenient because the marginal

features can be obtained in closed form; see Nielsen et al. (1992) and Murphy (1995a).

The AG model can be seen as a limiting case of the shared frailty model when � → 0;
indeed, it can be seen that in this case all zi ’s are equal to 1 and (4.2) simpli�es to (4.1).

For a subject i, let ni be the number of observed events. We denote the follow-up

time as ti , and the observed recurrent event times as tij with j ∈ 1...ni . Traditionally, the

observed data of a certain individual i is denoted as Oi and it represents the probabilistic

event “ni events at ti1 < ... < tini over the observation time (0, ti)”. In the absence of any

event-dependent sampling, the construction of likelihoods based on counting processes

is detailed in Kalb�eisch and Prentice (2002, ch. 6). In the AG model, from �i de�ned as

in (4.1), P(Oi) can be written as

P(Oi ; �, �) =
ni
∏
j=1

�i(tij ; �, �) exp{−Λi(ti ; �, �)} (4.4)

where Λi(ti ; �, �) is the cumulative intensity, i.e. Λi(ti ; �, �) = ∫ ti0 �i(s; �, �)ds. This leads

to the log-likelihood

�O (�, �) =
n
∑
i=1

ni
∑
j=1
{log �0(tij ; �) + �′xi(tij )} −

n
∑
i=1

∫
ti

0
exp(�′xi(s))�0(s)ds. (4.5)
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In the shared frailty model, a similar expression as (4.4) is obtained conditional on

the frailty Zi = zi , by using the conditional intensity (4.2). The unconditional marginal

probability is obtained by taking the expectation over the random e�ects:

P(Oi ; �, �, �) = EZiP(Oi |Zi ; �, �)

= ∫
∞

0

ni
∏
j=1

�i(tij |zi ; �, �) exp{−Λi(ti |zi ; �, �)}f� (zi)dzi .
(4.6)

If the frailty follows the gamma distribution with density (4.3), this leads to the

log-likelihood

�O (�, �, �) =
n
∑
i=1

ni
∑
j=1

{
log �0(tij ; �) + �′xi(tij )

}
+

+
n
∑
i=1 [

−(1/� + Ni.) log
{
1/� + ∫

ti

0
exp(�′xi(s))�0(s)ds

}
+ gi(�)] , (4.7)

where gi(�) = 1/� log(1/�)+log Γ(1/�+Ni.)−log Γ(1/�) andNi. represents the total number

of events observed for subject i; see Nielsen et al. (1992) for a rigorous and more detailed

derivation of this expression.

4.2.2 Ascertainment adjustment

Ascertainment schemes The speci�cation of Ai depends on the design of the study.

We introduce three examples to provide the intuition behind this concept.

1. (Left truncation) At the time of the selection, data for subject i is available only

if no event occurrences were observed until the age tRi , In this case, Ai is the

probabilistic event “no events occurred between tLi = 0 and tRi”, and P(Ai) =
P(Ni(tRi) = 0).

2. In the case of recurrent events, registry data is available on subjects who expe-

rienced at least one occurrence in the last k years before the sampling time. De-

note the age of individual i at selection as ti . In this case, Ai is the probabilistic

event “at least one event occurred in (tLi , tRi)” where tLi = ti − k and tRi = ti , and

P(Ai) = P(Ni(ti) − Ni(ti − k) > 0).

3. A population is at risk for recurrent events, although only a fraction actually ex-

perience an occurrence during follow-up. After the �rst event, the subjects enter

a database where all subsequent recurrences are collected. If data is collected ret-

rospectively from this database, at a time point where subject i’s age is ti , then Ai
is the probabilistic event “at least one event in (tLi , tRi)” with tLi = 0 and tRi = ti ,
and P(Ai) = P(Ni(ti) > 0).
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As in the motivating example, it is more often the case that, in studies involving recurrent

events, subjects must experience at least one event during a certain time period, which

we refer to as “one-in” ascertainment. This is illustrated by scenarios 2 and 3 above. We

de�ne the ascertainment interval (tLi , tRi) with 0 ≤ tLi < tRi ≤ ti . Left truncation is a

particular selection scenario that, for clarity purposes, we will not develop further, and

focus instead on the “one-in” ascertainment.

The adjusted likelihood For now, denote the parameters of the chosen model (AG

or shared frailty) as �. We de�ne the event Ai as the ascertainment event, the sampling

of subject i from the “population at-risk”. The case of interest is when Ai depends on the

event history of subject i, and implicitly on the intensity of the counting process Ni . In

this case, Ai is a more general event than Oi , since an individual needs to be ascertained

in order for Oi to be observed, therefore Oi ⊂ Ai . This implies that Ai ∩ Oi = Oi and the

likelihood contribution of subject i is given by

P(Oi |Ai ; �) =
P(Oi ∩ Ai ; �)
P(Ai ; �)

=
P(Oi ; �)
P(Ai ; �)

. (4.8)

Heuristically, the meaning of (4.8) is that each contribution is weighted so that subjects

with a low chance of being ascertained (small P(Ai)) receive more weight, as they are

representative for a part of the population of interest which is under-represented in the

ascertained sample.

We de�ne the (ascertainment) adjusted likelihood as the product over the individual

contributions (4.8). The adjusted log-likelihood for n individuals is given by

� (�) =
n
∑
i=1
log P(Oi ; �) −

n
∑
i=1
log P(Ai ; �). (4.9)

We will refer to �O = ∑n
i=1 log P(Oi ; �) as the unadjusted log-likelihood. For the AG

and shared frailty mode, this is given by (4.5) and (4.7). We denote the remaining part,

�A = ∑n
i=1 log P(Ai ; �), as the ascertainment adjustment, so that � (�) = �O (�) − �A(�).

One-in ascertainment: Andersen-Gill We de�ne

ΛAi(�, �) = ∫
tRi

tLi
�i(s; �, �)ds (4.10)

with �i as speci�ed in (4.1). The probability of no events in (tLi , tRi) is P(Ai ; �, �) =
exp (−ΛAi(�, �)). Therefore, when subjects are ascertained only when they experience

at least one event in (tLi , tRi),

P(Ai ; �, �) = 1 − exp (−ΛAi(�, �)) .

This yields the adjusted log-likelihood

� (�, �) = �O (�, �) −
n
∑
i=1
log{1 − exp (−ΛAi(�, �))} (4.11)
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with �O as de�ned in (4.5). As the window of observation, or more preciselyΛAi becomes

smaller, the ascertainment correction becomes larger in magnitude. The score functions

provide insight into the e�ect of the ascertainment adjustment.

Denote S(1)i (s, t) = ∫ ts xi(u) exp(�′xi(u))�0(u)du. The derivatives of (4.11) with re-

spect to the components of � are

U� (�, �) =
n
∑
i=1

ni
∑
j=1

xi(tij ) − ∑
i
S(1)i (0, ti) −

n
∑
i=1

exp (−ΛAi(�, �))
1 − exp (−ΛAi(�, �))

Si(tLi , tRi)

where Si(s, t) = ∫ ts xi(u) exp(�′xi(u))�0(u)du. The last term in this expression arises as

from the ascertainment adjustment, and omitting it would lead to a biased estimate of

� . In principle, similar considerations apply also for �, the parameters which describe

the baseline intensity. For example, if we consider the Breslow estimator for �0, i.e. � is

a vector of elements �k = �0(sk ) where sk is a time point at which an event is observed,

the score vector for � is composed of elements

U�k (�, �) =
Nk
�k

−
n
∑
i=1

Yi(sk ) exp(�′xi(sk ))−

−
n
∑
i=1

YAi (sk ) exp(�
′xi(sk ))

exp (−ΛAi(�, �))
1 − exp (−ΛAi(�, �))

(4.12)

where Yi(t) is an indicator function which is 1 as long as subject i is at risk at t and 0

otherwise, and YAi (t) is an indicator function which is 1 as long as t ∈ (tLi , tRi) . The

second sum term in (4.12) appears due to the ascertainment correction and omitting it

would lead to a biased estimate of �.

One-in ascertainment: shared frailty Here we use the same de�nition for ΛAi as

in (4.10) which can be interpreted as the integrated intensity over the ascertainment

interval with the frailty �xed to 1. Conditional on the frailty, the probability of no events

in (tLi , tRi) is exp (−ziΛAi(�, �)). The unconditional probability is obtained by integrating

over the random e�ect,

EZi {exp (−ZiΛAi(�, �))} = ∫
∞

0
exp (−ziΛAi(�, �)) f� (zi)dzi

=
1/�1/�

(1/� + ΛAi(�, �))1/�
.

Therefore, when subjects are ascertained only when they experience at least one event

in (tLi , tRi),

P(Ai ; �, �, �) = 1 −
1/�1/�

(1/� + ΛAi(�, �))1/�
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yielding the adjusted log-likelihood

� (�, �, �) = �O (�, �, �) −
n
∑
i=1
log

{
1 −

1/�1/�

(1/� + ΛAi(�, �))1/�

}
, (4.13)

with �O as de�ned in (4.7).

Similarly to the Andersen-Gill case, the ascertainment adjustment gives rise to an

extra term involving ΛAi in the score functions for � , and this can be seen to be true also

in the score function for � . The extent of the bias which appears if the ascertainment

adjustment is ignored depends in this case also on � , in addition to � and � . If, again, we

consider the Breslow estimator with �k = �0(sk ) for sk event time points, we obtain

U�k (�, �, �) =
Nk
�k

−
n
∑
i=1

Yi(sk ) exp (�′xi(sk )) ℎ1(�, �, �)−

−
n
∑
i=1

YAi (sk ) exp (�
′xi(sk )ℎ2(�, �, �)) (4.14)

with

ℎ1(�, �, �) =
1/� + Ni.

1/� + Λi(ti ; �, �)

and

ℎ2(�, �, �) =
1/�1/�+1

(1/� + ΛAi)
{
(1/� + ΛAi)1/� − 1/�1/�

}.

4.2.3 Estimation of �0
The “baseline” intensity �0 is seen as parametrized by a vector of parameters �. Our

intention is to cover two cases: fully parametric models (where � is low-dimensional)

and semiparametric models (where � is in�nite-dimensional).

Parametric models Parametric speci�cations of �0, such as exponential or Weibull,

which lead to closed forms of the log-likelihood can be estimated with general purpose

optimization software such as the function optim in R. Such software also provides an

estimate of the Hessian matrix at the maximum likelihood estimate from which standard

errors can be obtained in a straight-forward way. In this chapter we choose a �exible

piecewise constant speci�cation for �0, where we consider the baseline intensity to be

constant on a small number of intervals which partition the follow-up time. The limits

of these intervals are determined so that they contain a roughly equal number of events.

Semiparametricmodels A semiparametric estimator for �0 is, for example, the Bres-

low estimator, which is obtained by solving the score equations corresponding to the

score functions (4.12) for AG and (4.14) for the shared frailty model. Let �0(t) = �t for
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t a known event time and 0 otherwise. The baseline intensity is then parametrized by

� = (�1, ..., �N ) where N is the number of distinct event time points in the data. The

di�culties induced by this speci�cation are that the dimension of � may be large, and

it becomes larger as there are more unique event time points in the data set. There-

fore, direct maximization of the log-likelihood is not usually feasible. We propose a new

two-step iterative algorithm to obtain maximum likelihood estimates for semiparametric

models.

Without any ascertainment adjustment, the high-dimensional � parameter can

be pro�led out directly in the AG model (Johansen, 1983), and indirectly, within an

Expectation-Maximization algorithm, in the shared frailty model (Nielsen et al., 1992).

With ascertainment adjustment, these methods are not available. We propose to alter-

nate between maximizing the log-likelihood with respect to the low-dimensional param-

eters � and � for �xed � and updating the high-dimensional parameter by solving a set of

“pseudo score equations”, which we derive from the score functions (4.12) and (4.14). If

we denote the parameters of the model as �, then the score function for �k takes the form

U�k (�) =
Nk
�k
− ℎ(�) where ℎ depends on whether the AG or the shared frailty model is

used, and whether the likelihood is adjusted for ascertainment. For the adjusted models

this can be seen in (4.12) and (4.14). We de�ne the pseudo-score function as

Ũ�k (�k |�̃) =
Nk
�k

− ℎ (�̃) (4.15)

where � is seen as �xed to �̃. Solving the equation Ũ�k = 0 with respect to �k leads to

�̂k =
Nk
ℎ(�̃)

,

increases the log-likelihood if � is regarded as �xed to �̃. Finally, the algorithm follows

the following steps. First, choose initial values �0, �0 and �0, and �x a small " > 0 as the

desired precision.

1. At the ith iteration, maximize � (�, �|�(i−1)), with � �xed to �(i−1), with a general

optimization software, e.g. optim in R. Obtain the updated �(i) and � (i).

2. Denote �̃ = (�(i), � (i), �(i−1)) and solve the pseudo-score equations (4.15). Obtain

the updated �(i).

3. Repeat steps 1 and 2 until � (�(i), � (i), �(i)) − � (�(i−1), � (i−1), �(i−1)) < "

The advantage of this procedure is that it can estimate any model with a semiparametric

baseline intensity for which an explicit expression of the pseudo-score (4.15) exists.

The initial values �0, �0 and �0 can be obtained from a Cox model ignoring any possible

dependence between observations or ascertainment correction. A similar algorithm was

proposed for frailty models without ascertainment correction (Gor�ne, Zucker, and Hsu,

2006). Simulations which we do not show here indicate that the log-likelihood increases
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with each iteration. Furthermore, for the semiparametric AG and shared frailty models

without ascertainment adjustment, the estimates of the proposed algorithm coincide

with the estimates provided by the available standard software. In the remainder of this

chapter we �x the convergence criterion to correspond to " = 10−6.
Standard error estimates can be obtained from the “non-parametric information ma-

trix”, obtained by taking the second derivatives of the log-likelihood � (�)with respect to

all the parameters, including �. This has been shown to lead to valid standard error es-

timates for the shared frailty model without ascertainment correction (Andersen, Klein,

et al., 1997). As long as the estimates in the ascertainment-adjusted model enjoy similar

asymptotic properties as the ones in the shared frailty model, a similar reasoning may

be applied for this case. Since the semiparametric model can be seen as a limiting case

of a parametric model with a piecewise constant baseline, with the piecewise intervals

becoming smaller, it is to be expected that inverting the non-parametric information

matrix will lead to correct estimates of the standard errors.

4.3 Simulation study

4.3.1 Toy example

We �rst consider a basic example to illustrate the bias which arises by not taking the

ascertainment into account. For this we consider a “full” data set and a “truncated”

version of the same data set where the subjects who have not experienced any event are

removed. This re�ects a simple situation where the selection of subjects is based on a

registry where only individuals with at least one occurrence are present, as described by

case 3 in Section 4.2.2.

First, we simulate subjects under a scenario where 300 individuals have the same

risk, with �i(t) = �i = 1, without covariates or frailty. The cumulative intensity is then

Λi(t) = t for all subjects. In Figure 41 (left) the estimates Λ̂i based on 20 full and truncated

data sets are shown, and with the black line the true value is plotted. The cluster around

this line are estimates based on the AG model on the full data set and the other lines are

the estimates from the truncated data sets. It can be seen that if the subjects which do

not experience any events during follow-up are not part of the data set, the uncorrected

estimates are biased upwards.

Next, we simulate data sets and truncate them as before, this time with a binary

covariate from a Bernoulli(1/2) distribution, as in (4.1). We repeat this procedure 30 times

for a grid of values of � , we estimate �̂ , and we collect the bias �̂ − � . For every value

of � a boxplot of the bias is shown in Figure 41 (center). It can be seen that, for � < 0,
the estimate has a positive bias and for � > 0 the bias is negative. The absolute value of

the bias is larger as � is further away from 0, and for negative values this phenomenon

is more severe.

Finally, we simulate a large data set of 3000 patients from the frailty model (4.2),

with a gamma distributed random e�ect (4.3) with � = 1. We truncate this data set in
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the same way as described before. The individual frailty value is unknown, and it can

be inferred from the conditional distribution of Zi given the data. A particularity of the

gamma shared frailty model is that this “posterior” distribution is also gamma, however

with mean 1/�̂ + Ni. and variance 1/�̂ + Λ̂i(ti), see (Nielsen et al., 1992). From the full

data set, we compute the “posterior” frailty estimates, equal to the expectation of this

conditional distribution:

ẑi =
1/�̂ + Ni.
1/�̂ + Λ̂i(ti)

.

The logarithm of these estimates are shown in a histogram in Figure 41 (right, above).

We show the estimated frailties of the subjects who are part of the truncated data set

in Figure 41 (right, below), clearly indicating that the one-in ascertainment favors the

selection of individuals with a high frailty value. This is because a high frailty value is

associated with a higher rate of recurrent events, leading to an ascertained sample which

is less heterogeneous and not representative of the population at risk.

4.3.2 Set up

The idea of the simulation study is to �rst simulate a random sample of M subjects, from

which the estimates of baseline intensity, regression coe�cients and eventually frailty

variance are obtained. These are regarded as the “correct” estimates. Next, from this

data set we obtain 3 di�erent “ascertained” data sets, by selecting only a subset of the

M subjects. On these “ascertained” data sets, we perform two analyses: one ignoring

the ascertainment correction, in order to assess the extent of the bias induced by event-

dependent selection, and one in which the correct ascertainment correction is used, to

evaluate how the estimates obtained from the adjusted likelihood compare to the “cor-

rect” ones.

By S0 we will refer to the full-data scenario, comprising theM simulated individuals.

The three “ascertained” data sets are obtained from the following scenarios:

• By S1 we refer to the situation where only subjects who experience at least one

event during follow-up are selected in the sample.

• In S2 only the subjects who experience at least one event during an observation

window at the end of the follow-up are kept in the sample.

• In S3 only subjects who experience at least one event in an observation window in

the middle of the follow-up are kept; this pertains to a selection scheme similar to

S2, where the ascertained subjects are also followed until the end of their follow-

up.

In all three cases we assume that the whole follow-up, including the events outside the

ascertainment window, is known for the subjects in the sample.



82 Chapter 4 – Ascertainment

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.5 1.0 1.5 2.0

tim
e

L0

-2
-1
.5

-1
-0
.5

0
0
.4

0
.9

1
.4

1
.9

-0.5 0.0 0.5 1.0 1.5

b

Bias

F
r
a
iltie

s
 o

f a
ll in

d
iv

id
u

a
ls

fra
iltie
s

Frequency

-2
-1

0
1

2

0 200 400

F
r
a
iltie

s
 o

f a
s
c
e
r
ta

in
e
d

 in
d

iv
id

u
a
ls

fra
iltie
s

Frequency

-2
-1

0
1

2

0 100 250

F
i
g

u
r
e

4
1
:

L
e
f
t
:

e
s
t
i
m

a
t
e
s

o
fΛ

0
b
a
s
e
d

o
n

t
h

e
f
u

l
l

d
a
t
a

s
e
t

c
l
u

s
t
e
r
e
d

a
r
o

u
n

d
t
h

e
t
r
u

e
v
a
l
u

e
(
b
l
a
c
k

l
i
n

e
)

a
n

d
f
r
o

m
t
h

e
t
r
u

n
c
a
t
e
d

d
a
t
a

s
e
t

(
t
h

e

h
i
g

h
e
r

s
l
o

p
e
d

l
i
n

e
s
)
;

c
e
n

t
e
r
:

b
i
a
s

i
n

l
o

g
-
h

a
z
a
r
d

r
a
t
i
o

f
o

r
t
w

o
g

r
o

u
p

s
w

h
e
n

t
h

e
a
s
c
e
r
t
a
i
n

m
e
n

t
i
s

i
g

n
o

r
e
d

i
n

t
h

e
t
r
u

n
c
a
t
e
d

d
a
t
a

s
e
t
s
,

f
r
o

m
t
h

e

m
o

d
e
l�

i (t)
=
e
�
′xi�

0 (t)
w

i
t
h
x
i

a
n

i
n

d
i
c
a
t
o

r
v
a
r
i
a
b
l
e

f
o

r
w

h
e
t
h

e
r

t
h

e
s
u

b
j
e
c
t

b
e
l
o

n
g

s
t
o

t
h

e
h

i
g

h
-
r
i
s
k

g
r
o

u
p

,
f
o

r
v
a
l
u

e
s

o
f
�

b
e
t
w

e
e
n

-
2

a
n

d
2
;

r
i
g

h
t
:

h
i
s
t
o

g
r
a
m

s
o

f
t
h

e
p

o
s
t
e
r
i
o

r
l
o

g
-
f
r
a
i
l
t
i
e
s

e
s
t
i
m

a
t
e
s

f
r
o

m
t
h

e
f
u

l
l

d
a
t
a

s
e
t

a
n

a
l
y

s
i
s

(
a
b

o
v
e
)

a
n

d
t
h

e
f
r
a
i
l
t
i
e
s

o
f

t
h

e
s
u

b
j
e
c
t
s

w
h

i
c
h

e
x
p

e
r
i
e
n

c
e

o
n

e
e
v
e
n

t
o

r
m

o
r
e

d
u

r
i
n

g
f
o

l
l
o
w

-
u

p
(
b

e
l
o
w

)
.



4.3 Simulation study 83

The general set-up of the simulations is as follows: we take the baseline intensity

�0(t) ≡ �0 = 2 for each individual. Two covariates are generated independently from a

Bernoulli distribution with P(Xiq = 1) = P(Xiq = 0) = 0.5 for i = 1...M and q = 1, 2. The

regression coe�cients used for the simulation are �1 = 1 and �2 = −0.5. The subjects

are censored at time tC = 1 or by a “drop-out process” determined by an exponential

distribution with mean 2 exp(xi1), whichever comes �rst. For the frailty model (4.2), we

simulate M gamma-distributed random variables according to (4.3) with � = 0.5, and

subsequently with � = 1, and assume that the dropout does not depend on the frailty.

The simulations consist of 1000 replicated data sets, each withM = 500 counting pro-

cesses (individuals) that are simulated from a Poisson process, with the intensities (4.1)

for the no-frailty case and (4.2) for the frailty cases, i.e.

�i(t) = 2 exp(�1xi1 + �2xi2)

for the � = 0 (AG) case and

�i(t|zi) = 2zi exp(�1xi1 + �2xi2)

for the � = 0.5 and � = 1 cases.

For scenario S2 the observation window is chosen as (0.7, 1.0] and for scenario S3 as

(0.3, 0.5). Because the data sets used in S1, S2 and S3 are subsets of the full data set S0,

they contain fewer individuals. The average sizes of the truncated data sets is shown in

Table 41.

Table 41: Data set sizes for S0, S1, S2 and S3 in terms of average number of individuals (M ) and

average number of events per individual (N ./M )

S0 S1 S2 S3

� = 0
M 500 384.15 181.64 173.72

N ./M 2.34 3.05 4.08 4.00

� = 0.5
M 500 342.59 161.28 157.93

N ./M 2.35 3.43 4.87 4.87

� = 1
M 500 308.37 146.07 144.06

N ./M 2.34 3.80 5.56 5.64

For the regression parameters and the frailty variance, the estimates are evaluated

according to systematic bias, root mean-squared error and . The systematic bias is de-

�ned as

1
1000

1000
∑
j=1

(�̂qj − �q)
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for q ∈ 1, 2, where �̂qj is the estimate of �q from the j-th simulation and �q is the true

value of the parameter. The root mean-squared error (RMSE) is de�ned as

1
1000

√
1000
∑
j=1

(�̂qj − �q)2

and the coverage is the percentage of times that the 95% con�dence interval of the es-

timates contains the true value of the parameter. For the regression coe�cients, the

estimated standard error obtained from the maximization software is used to construct

symmetric con�dence intervals. A special case is represented by � , which is restricted

to positive values. Instead, an unrestricted estimate log � is obtained from the maxi-

mization of the likelihood together with a standard error se(l̂og �). A symmetric 95%

con�dence interval for log � can then be constructed on the log-scale as

[l̂og � − 1.96 ∗ se(l̂og �), l̂og � + 1.96 ∗ se(l̂og �)] .

After exponentiating these bounds, a 95% asymmetric con�dence interval is obtained

for �̂ .

Both ascertainment unadjusted and adjusted estimates are obtained from a self-

written algorithm which maximizes the likelihoods (4.11) and (4.13), using a piecewise

constant parametric form for �0. Throughout the simulations, the time axis is split into

8 intervals, which are chosen so that each interval includes roughly the same number of

events. This implies that the intervals themselves may vary from simulation to simula-

tion.

4.3.3 Simulation results

Andersen-Gill The estimates of the baseline intensity �0 from the unadjusted and

adjusted AG model are shown in Figure 42, the estimate from each simulation being

represented by a piece-wise constant function. The 8 intervals are of roughly similar

length across the simulations due to the Poisson speci�cation in Section 4.3.2. It can

be seen that scenario S1 induces an upward bias that seems to be reasonably constant

throughout time. S2 and S3 seem to bias the analysis at all time points, to a similar extent

as S1, however with peaks during the observation window. The adjusted estimates are

unbiased; nevertheless, for the heavier ascertainment scenarios S2 and S3 the estimates

seem to exhibit a noticeably larger variance.

Boxplots of the unadjusted and adjusted estimates of �1 and �2 are shown in Fig-

ure 43. It can be seen that the adjusted estimates are unbiased, although they exhibit a

larger variance. Indeed, the ascertainment-adjusted estimates also have higher estimated

standard errors (not shown here).

The unadjusted estimators are also associated with an underestimated standard error

(not shown here). This re�ects itself in the poor coverage properties of the estimators.

The simulation results of the � = 0 (AG) case are summarized in Table 2. It can be
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Figure 43: Point estimates for regression coe�cients, AG model. The horizontal lines correspond

to the true value of the parameters, �1 = 1.0 and �2 = −0.5.
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observed that, if not corrected for ascertainment, the estimates of �1 are a�ected more

than those for �2. This is due to an imbalance which is caused in the data set: because

x1 also in�uences the risk of censoring as speci�ed in Section 4.3.2, it is less likely that

the subjects experience events during the ascertainment window, simply because they

have less time at risk. The correct model, which adjusts for the ascertainment, provides

unbiased estimates and show a drastic reduction of the RMSE from their unadjusted

counterparts.

Table 42: Simulation results, AG model

Uncorrected Corrected

S0 S1 S2 S3 S1 S2 S3

�1
Bias 0.003 -0.232 -0.273 -0.293 0.010 0.012 0.011

RMSE 0.062 0.238 0.283 0.303 0.085 0.117 0.127

Coverage 0.966 0.036 0.124 0.106 0.950 0.956 0.952

�2
Bias 0.000 0.096 0.119 0.127 0.000 0.002 0.001

RMSE 0.057 0.109 0.136 0.146 0.067 0.089 0.091

Coverage 0.968 0.678 0.690 0.690 0.952 0.956 0.962

Shared frailty We employ two scenarios for the frailty models, one of high hetero-

geneity (� = 1) and one of medium heterogeneity (� = 0.5). For the � = 1 scenario,

the estimates of the baseline intensities are shown in Figure 44. By contrast with Fig-

ure 42, the 8 intervals are more di�erent across simulations. This is due to the fact

that the frailty-induced heterogeneity induces a more uneven spread of the events in

time. Therefore, when determining the piecewise constant intervals as described in Sec-

tion 4.3.2, the outcome can vary more than in the AG case. The larger heterogeneity, as

represented by � = 1, also leads to more bias when the ascertainment is not adjusted for.

However, the adjusted estimates are still unbiased and exhibit a larger variance, simi-

larly with those shown in Figure 42. The baseline intensity estimates with � = 0.5 (not

shown here) show a similar behavior.

The results are summarized in Tables 43 and 44, as well as in Figures 45 and 46. In

terms of the regression coe�cients, the bias is more severe in the higher heterogeneity

scenario, even if only slightly so. As in the case of the AG model, the corrected estimates

are unbiased. The major di�erence lies in terms of the estimate of � . The unadjusted esti-

mates show a large bias towards 0, notably more acute when � = 1. The large bias seems

to lead to a very large variance of the adjusted estimators, as can be seen in Figure 45.

Nevertheless, in the corrected estimators consistently provide major improvements in

terms of RMSE and coverage over their unadjusted counterparts.
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Table 43: Simulation results, shared frailty model, � = 1

Uncorrected Corrected

S0 S1 S2 S3 S1 S2 S3

�1
Bias 0.004 -0.296 -0.302 -0.305 0.001 0.009 0.005

RMSE 0.116 0.311 0.327 0.332 0.148 0.190 0.196

Coverage 0.946 0.143 0.343 0.352 0.946 0.945 0.934

�2
Bias 0.002 0.140 0.147 0.145 0.001 0.001 -0.002

RMSE 0.115 0.172 0.193 0.193 0.139 0.175 0.180

Coverage 0.947 0.660 0.758 0.765 0.948 0.956 0.937

�
Bias -0.007 -0.657 -0.695 -0.716 0.001 0.004 0.011

RMSE 0.108 0.659 0.697 0.718 0.237 0.344 0.404

Coverage 0.963 0.000 0.000 0.000 0.963 0.963 0.946

Table 44: Simulation results, shared frailty model, � = 0.5

Uncorrected Corrected

S0 S1 S2 S3 S1 S2 S3

�1
Bias 0.001 -0.286 -0.297 -0.301 0.000 0.003 0.003

RMSE 0.096 0.298 0.316 0.320 0.127 0.163 0.168

Coverage 0.937 0.069 0.240 0.241 0.935 0.941 0.934

�2
Bias 0.000 0.127 0.136 0.137 -0.003 -0.002 -0.005

RMSE 0.092 0.151 0.171 0.173 0.113 0.145 0.148

Coverage 0.941 0.630 0.717 0.707 0.954 0.954 0.946

�
Bias -0.005 -0.304 -0.327 -0.34 -0.004 -0.007 -0.007

RMSE 0.066 0.306 0.330 0.343 0.109 0.154 0.169

Coverage 0.958 0.000 0.000 0.000 0.958 0.957 0.941
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4.3.4 Incomplete history

In the selection schemes described in Section 4.2, it is essential that, if an individual is

selected for the study, the whole history of events outside the observation window is col-

lected. As will be seen in the motivating example in Section 4.4, this might not always

be the case. To assess the performance of the indicated adjusted models, we consider

the scenario when the data on the history previous to the beginning of the observation

period is (partly) missing. Using the same data sets that were simulated before obtained

under selection schemes 2 and 3, we induce this incomplete character of the data in

the following way. In the “mild incompleteness” scenario, 10% of the individuals are

randomly selected from the ascertained data sets. For them, a “recollection time” is gen-

erated from a uniform distribution between 0 and the left time point of the observation

window (0.7 in S2 and 0.3 in S3). The events before this time point are subsequently

removed from the data set and the adjusted and unadjusted analyses are performed. In

the “heavy incompleteness” scenario, the same is repeated with 50% of the individuals

in the data sets. The results for � = 1 are summarized in Table 45. For � = 0.5, similar

results were observed and are not shown here.

The corrected estimates of the frailty variance � seem to be the most severely af-

fected, particulary in scenario S2. The large bias (0.114 and 0.668), coupled with very

wide con�dence intervals (with coverages of 0.975 and 0.998) indicate that the standard

errors are overestimated. In Figure 47 we plot the ascertainment-adjusted estimated

baseline hazards for this case. By comparison with 44, it can be seen that the ascertain-

ment adjustment does not work as well. The missing event history before time 0.7 leads

to the underestimation of the intensity of the recurrent events process, mostly visible in

the 50% missing case.

The general conclusion is that, when unadjusted for ascertainment, the incomplete-

ness seems to slightly aggravate the problems illustrated in Tables 43 and 44. Neverthe-

less, the bias, RMSE and coverage remain comparable. The ascertainment adjustment

seems to work well also with the incomplete data sets in terms of regression coe�-

cients, at the price of a small increase in bias in and a slight increase in RMSE. In terms

of the estimation of � , we remark that the adjustment induces a positive bias to the esti-

mates. In addition, the overly optimistic results of the coverage, in conjunction with the

increase in RMSE and the bias results, reveals an over estimation of the standard errors.

We conclude that, when the events outside the observation window are not completely

collected, the ascertainment correction is robust in regards to the regression coe�cients,

however the frailty variance parameter should be interpreted with caution.

4.4 Data analysis

Data description The motivating data set comprises observations on primary sponta-

neous pneumothoraces (PSP). Risk factors for developing a PSP are male gender, smok-

ing, and age, with a peak at 25-35 years of age; see Baumann and Noppen (2004) for an

overview on the recurrent characteristics of PSPs.
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Figure 47: Ascertainment-adjusted estimates of baseline intensities, shared frailty model with

� = 1, scenario S2, with 10% incompleteness (left) and 50% incompleteness (right) before the

ascertainment window. the horizontal line at y = 2 corresponds to the true �0 = 2.

More recently, several genetic syndromes have been associated with an increased

risk for (recurrent) episodes of spontaneous pneumothorax, like the Birt-Hogg-Dubé

(BHD) syndrome, see Menko et al. (2009) and Johannesma et al. (2015). BHD is vastly

under-diagnosed and usually patients with PSP do not receive a genetic test for this

event, although (recurrent) PSP in BHD patients are caused by multiple cysts in the

lower parts in the lung. By contrast, the non genetic PSP does not show these cysts at

all on a thoracic CT-scan.

A variety of treatments are available for PSP, which we can divide into 3 categories:

conservative (waiting, drainage, manual aspiration), sticking (pleurectomy, (chemical)

pleurodesis) and cutting (lobectomy, bullectomy). Usually, the patients �rst receive a

non-invasive (conservative) treatment, followed by a more invasive treatment for the

next recurrent episodes.

The selection of the patients occurred as follows; between 2010 and 2014 a ques-

tionnaire was sent to the patients treated after 1990 for (recurrent) PSP. A number of

respondents returned to the hospital and received a folliculin (FLCN ) test to con�rm

BHD and then their PSP and treatment history was recorded. Information on the loca-

tion of the PSP was not available, except for which lung the event took place in. The age

of the patients at each event was recorded, approximated to the year. In total, the data

set comprises 95 patients out of which 65 had PSP episodes only on one of the lungs,

with a total of 220 episodes of PSP.

We de�ne a tie as PSPs occurring in the same year in the same lung. This is observed

in 26 of the 125 lungs with events in the data set. The presence of ties poses a di�culty
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in analyzing the gap times, since 0-length gaps are not meaningful. Even if arti�cially

spread out over a small interval of time, this might lead to a wrong impression on the

length of the true gaps. This poses less of a problem if the intensity of the occurrences

is treated as a non-homogeneous Poisson process, with age as time scale. This is the

course that we follow in this analysis.

The data are shown in a Lexis diagram (Plummer and Carstensen, 2011) in Figure 48.

The ascertainment process can be clearly seen. The general lack of events prior to 1990

casts some doubt on the completeness of the retrospective data collection, however this

aspect is not further considered here. The e�ects of incomplete collection of the event

history prior to the observation window were analyzed by simulation in Section 4.3.4.

Model construction The next step is the construction of a model. Each individual is

represented by two counting processes corresponding to the two lungs, �Li and �Ri . The

intensities of these two processes can be in�uenced either by subject-level factors or by

lung-speci�c history. A priori, there is no reason why one lung should be at a higher

risk than the other. The general idea is that the subject-speci�c factors a�ect both lungs

equally, while the di�erence in treatments between the lungs account for the observed

di�erences between �Li and �Ri .

We choose to model the events on the age time scale for which we take a baseline

intensity common to all lungs from all subjects. The non-parametric estimate of the

baseline intensity will have jumps only at event times, with the �rst event occurs at age

16. However, for the piecewise constant baseline a start of the recurrent events process

must be explicitly de�ned. We choose this as the age of 15, since the risk of PSP before

puberty is practically 0. We include BHD carrier indicator as a time-constant covariate

in the model. At the lung level, we assume that the lungs may be in 4 states: “not under

treatment”, if there was no previous event, or under one of the 3 treatments: conservative,
sticking or cutting. To account for di�erences between individuals, we include a gamma

frailty which is shared for both �Li and �Ri . These may be due to unmeasured covariates,

such as shared environmental or behavioral variables.

In terms of treatments, sticking and cutting should be compared to conservative.
To accommodate this, we assume that the intensity gets multiplied by exp(�cons),
exp(�cons + �stick) or exp(�cons + �cut) according to which treatment the lung is under. In

this case, exp(�cons) is the intensity ratio between one lung which had at least one event

and is under conservative treatment and one lung which had no event and is not under

treatment. This e�ect can also be interpreted as the intensity ratio between a lung which

experienced PSPs and one which has not. On the other hand, exp(�stick) and exp(�cut)
are intensity ratios between a lung which is under sticking or cutting and a lung un-

der conservative treatment. For example, for individual i without BHD and with frailty

zi , which at time t has the left lung under cutting treatment and the right lung on the
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Figure 48: Lexis diagram of the PSP data. In blue the non-BHD patients. Dots represent observed

events. The ascertainment window is marked between vertical lines.
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conservative treatment, the intensities are

�Li (t|zi ; �, �) = zi exp(�cons + �cut)�0(t; �)

�Ri (t|zi ; �, �) = zi exp(�cons)�0(t; �)

A question of interest is whether the treatments perform equally for BHD and non-BHD

patients. Finally, we also include interactions between these terms and BHD status.

Below, we show the results from a parametric baseline with 7 piecewise constant

intervals and a semiparametric model.

Results The results are described in Table 46. The p-values for the regression coef-

�cients are obtained from a Wald test statistic. It can be seen that adjusting for the

ascertainment does not drastically in�uence the point estimates of the regression coe�-

cients, which change at most by one standard error. Also, the estimated standard errors

are larger in the adjusted model, in both the piecewise constant and in the semipara-

metric models. The noticeable e�ect of this is that the main e�ect of the conservative

treatment loses sigini�cance, with the p-value increasing form 0.02 to about 0.3.

Other than that, we remark that statistical signi�cance at the � = 0.05 level was not

observed for any of the variables in the model. Nevertheless, the adjusted model does

give slightly di�erent results. It can be seen that BHD patients are at a higher risk for

PSPs as compared to non-BHD patients. For the non-BHD group, it can be seen that

all treatments elevate the intensity of the event process. Among the 3 treatments, the

sticking seems to perform better. For the BHD group, the cutting treatment seems to

perform better, relative to conservative or sticking. If one of the lungs does not have

any events, the intensity of the treated lung relative to the untreated one is modi�ed

multiplicatively by a factor of exp(0.419 + 0.075) = 1.63. Conversely, for sticking this is

exp(0.419−0.187+0.075−0.166) = 1.15 and for cutting exp(0.419+0.595+0.075−0.934) =
1.16.

In Figure 49, the unadjusted and adjusted baseline intensity estimates are shown, for

both the semiparametric and the piecewise constant models. Similarly with the results

of the simulation study in Section 4.3, the unadjusted baseline is overall larger than the

adjusted estimate.

The p-values are missing in the case of the frailty variance � , because the null hy-

pothesis H0 ∶ � = 0 is at the border of the parameter space and a Wald test would not

be valid in this case. A Likelihood Ratio Test for H0 ∶ � = 0 based on a �2 distribution

with 1 degree of freedom can be constructed by contrasting the estimated frailty model

versus the AG model, which is seen as the limiting case when � → 0, see Therneau and

Grambsch (2000) and Nielsen et al. (1992). The LRT statistics for this hypothesis in the

unadjusted / adjusted models are < 0.01 / 10.64 (piecewise constant) and < 0.01 / 8.57

(semiparametric model), corresponding to p-values of 0.98 / < 0.01 (piecewise constant)

and 0.99 / < 0.01 (semiparametric model). The large di�erences in signi�cance can be

explained by noting that, without correcting for ascertainment, the e�ect of the frailty

is not captured at all, as was seen in the simulation study in Section 4.3. It can however
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Table 46: Data analysis results

Unadjusted Adjusted

Coef. SE p Coef. SE p

Piecewise constant

BHD 0.073 0.19 0.71 0.212 0.35 0.55

Cons 0.866 0.36 0.02 0.500 0.44 0.26

Stick -0.202 0.42 0.69 -0.220 0.51 0.67

Cut 0.525 0.48 0.28 0.567 0.60 0.35

BHD:Cons 0.126 0.44 0.78 -0.001 0.52 1.00

BHD:Stick -0.167 0.52 0.75 -0.087 0.62 0.89

BHD:Cut -0.707 0.67 0.29 -0.958 0.85 0.26

� < 0.001 NA - 1.302 4.18 -

Semiparametric

BHD 0.069 0.19 0.72 0.191 0.22 0.39

Cons 0.871 0.38 0.02 0.419 0.42 0.33

Stick -0.221 0.42 0.61 -0.187 0.46 0.69

Cut 0.491 0.49 0.32 0.595 0.55 0.28

BHD:Cons 0.173 0.46 0.71 0.075 0.49 0.88

BHD:Stick -0.198 0.53 0.71 -0.166 0.58 0.77

BHD:Cut -0.646 0.67 0.34 -0.934 0.77 0.23

� < 0.001 0.07 - 1.73 3.51 -

be seen that the standard errors corresponding to the estimator of � are very large in the

adjusted models, which was also the case in the simulation study in Section 4.3.4. This is

in line with the suspicion that the history before 1990 was incompletely collected. The

same phenomenon of large estimates and very large standard errors was observed in the

same context in Section 4.3.4.

4.5 Discussion

We have shown in this chapter that event-based ascertainment may lead to biased results

when unaccounted for. This bias can be severe and it may lead to very weak coverage

properties, and the true e�ect of various factors might not be captured at all. We can

correct for this bias with the methods proposed in Section 4.2. The merit of the approach

used in this chapter is that unbiased results can be obtained if the event-dependent se-

lection conditions are correctly accounted for in the estimation method. Furthermore,

it was seen in Section 4.3 that the adjusted estimators only exhibit a small increase in

the root mean-squared error as compared to the full-data scenario, as seen in Table 2,

despite a smaller sample size. This suggests that the same results can be obtained from



4.5 Discussion 99

0
2
0

4
0

6
0

8
0

0.00.51.01.52.0
U
n
a
d
ju
s
te
d

a
g
e

L0

s
e
m
i-
p
a
ra
m
e
tr
ic

p
ie
c
e
w
is
e
-c
o
n
s
ta
n
t

0
2
0

4
0

6
0

8
0

0.00.51.01.52.0

A
d
ju
s
te
d

a
g
e

L0

s
e
m
i-
p
a
ra
m
e
tr
ic

p
ie
c
e
w
is
e
-c
o
n
s
ta
n
t

F
i
g

u
r
e

4
9
:

A
d

j
u

s
t
e
d

a
n

d
u

n
a
d

j
u

s
t
e
d

e
s
t
i
m

a
t
e
s

o
f

t
h

e
c
u

m
u

l
a
t
i
v
e

b
a
s
e
l
i
n

e
i
n

t
e
n

s
i
t
y
Λ
0.

T
h

e
g

r
a
y

b
a
n

d
d

e
l
i
m

i
t
s

t
h

e
9
5
%

c
o

n
�

d
e
n

c
e

i
n

t
e
r
v
a
l

f
o

r
t
h

e
s
e
m

i
p

a
r
a
m

e
t
r
i
c

e
s
t
i
m

a
t
e

o
f
Λ
0.

W
i
t
h

d
o

t
t
e
d

l
i
n

e
s
,
t
h

e
p

a
r
a
m

e
t
r
i
c

e
s
t
i
m

a
t
e

w
i
t
h

7
p

i
e
c
e
w

i
s
e

c
o

n
s
t
a
n

t
i
n

t
e
r
v
a
l
s
.



100 Chapter 4 – Ascertainment

the two study designs, prospective study and retrospective study with event-dependent

selection, as long as the ascertainment is correctly modeled. Hence, retrospective studies

on recurrent events might prove to be a viable alternative to the prospective studies.

There are several limitations to the approach used throughout this chapter. First,

we assumed that the whole event history of an individual can be collected at the time

of the selection. This might not be true, especially when the event history has to be

“remembered” by the patients. It can be seen in Figure 48 that very few events seem to

happen before the start of the study (1990). It is possible that the subjects did not recall

earlier events, or that registry data was not available for all the patients. However, the

proposed methods showed promising results, as long as the complete history is collected

for most individuals. The e�ects of incomplete collection of data outside the observation

window are analyzed by simulation in Section 4.3.4.

Second, it is also common in the study of recurrent events that the subjects have to be

alive at the time of the selection. If the rate of the recurrent events is associated with the

terminal event, then joint models for recurrent and terminal events should be adopted;

see, for example, Liu, Wolfe, and Huang (2004). In the data used in Section 4.4, it is

reasonable to assume that death is not an event of interest, since the recurrent events in

this case are not life-threatening. Nevertheless, Cook and Lawless (2007, ch. 7.3) provide

some indication of possible strategies for this type of selection.

Third, as seen in Section 4.3, the adjusted estimators show a larger variance than

their unadjusted counterparts, which is especially visible in the estimates of the frailty

variance. This indicates that the frailty distribution itself is harder to identify than co-

variate e�ects in ascertainment-adjusted models.

Among the advantages of the approach presented in this chapter, is that several ex-

tensions can be obtained to accommodate more complicated models. First, in the frame-

work outlined in Section 4.2, the distributional assumption for the frailty (gamma dis-

tribution) can be relaxed. Likelihoods can be constructed from (4.6) for a larger family

of distributions, however these do not lead to closed form expressions; see Hougaard

(2000).

Second, other similar models which lead to similar likelihood expressions as (4.4)

or (4.6) could be accommodated with this approach. An example is a two-state Markov

model for duration of recurrent episodes, where only subjects who have a �rst recurrence

in an observation window are ascertained; see Cook and Lawless (2007, ch. 6.5).

Finally, we note that the framework introduced in Section 4.2 can be itself extended.

As long as Ai is an event which is more general than Oi , in the sense of equation (4.8), a

similar argumentation can be employed. This can be achieved by extending the de�ni-

tion of what amounts to the event history. Several examples can be found in Cook and

Lawless (2007, ch. 7.3).

The promising results shown by the semiparametric estimation method proposed

in Section 4.2.3 suggest that the properties of the algorithm should be further investi-

gated, and completed by a proof of convergence. The R code used for the simulations in

Section 4.3 is available upon request from the corresponding author. Future work, espe-
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cially in terms of software development, would likely prove to be useful for clinicians.

A focus of future research will be to provide an extension of R’s survival package for

ascertained and truncated data.





Chapter 5

frailtyEM: An R Package for

Estimating Semiparametric Shared

Frailty Models

Abstract

When analyzing correlated time to event data, shared frailty (random e�ect) models are

particularly attractive. However, the estimation of such models has proved challenging.

In semiparametric models, this is further complicated by the presence of the nonpara-

metric baseline hazard. Although recent years have seen an increased availability of soft-

ware for �tting frailty models, most software packages focus either on a small number

of distributions of the random e�ect, or support only on a few data scenarios. frailtyEM
is an R package that provides maximum likelihood estimation of semiparametric shared

frailty models using the Expectation-Maximization algorithm. The implementation is

consistent across several scenarios, including possibly left truncated clustered failures

and recurrent events in both calendar time and gap time formulation. A large number

of frailty distributions belonging to the Power Variance Function family are supported.

Several methods facilitate access to predicted survival and cumulative hazard curves,

both for an individual and on a population level. An extensive number of summary

measures and statistical tests are also provided.

This chapter has been accepted for publication as T.A. Balan and H. Putter (2018). frailtyEM: an R
package for estimating semiparametric shared frailty models. Journal of Statistical Software

103
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5.1 Introduction

Time-to-event data are very common in medical applications. Often, these data are char-

acterized by incomplete observations. For example, the phenomenon of right censoring

occurs when the actual event time is not observed, but the only thing that is known is

that the event has not taken place by the end of follow-up. Sometimes, individuals enter

the data set only if they have not experienced the event before a certain time point. This

is known as left truncation, which, if not accounted for correctly, leads to bias. Regres-

sion models for such data have been developed in the �eld of survival analysis. The most

popular is the Cox proportional hazards model (Cox, 1972), which is semiparametric in

nature: the e�ect of the covariates is assumed to be time-constant and fully parametric,

while the time-dependent probability of observing an event arises from the nonpara-

metric baseline hazard. Cox regression has been the standard in survival analysis for

a few reasons. First, it does not require any a priori assumptions about the baseline

hazard. Second, under the proportional hazards assumption, maximum likelihood es-

timation can be carried out e�ciently using Cox’s partial likelihood. Nowadays, such

models may be estimated with most statistical software, such as R (R Core Team, 2016)

Stata (StataCorp, 2017), SAS (Inc., 2003) or SPSS (IBM Corp, 2016).

When individuals belong to clusters, or may experience recurrent events, the obser-

vations are correlated. In this case the Cox model is not appropriate for modeling indi-

vidual risk. A natural extension is represented by random e�ect “shared frailty” models.

Originating from the �eld of demographics (Vaupel, Manton, and Stallard, 1979), these

models traditionally assume that the proportional hazards model holds conditional on

the frailty, a random e�ect that acts multiplicatively on the hazard. The variance of the

frailty is usually indicative of the degree of heterogeneity in the data. This makes the

choice of the random e�ect distribution relevant. However, the simplicity that made the

Cox model so popular does not carry over to such models.

Arguably the most popular way of �tting semiparametric shared frailty models is via

the penalized likelihood method (Therneau, Grambsch, and Pankratz, 2003), available

for the gamma and log-normal frailty distributions. This is the standard in the survival
package (Therneau and Grambsch, 2000; Therneau, 2015a) in R, in the PHREG command

in SAS and the streg procedure in Stata. This method has the advantage that it is

generally fast and the Cox model is contained as a limiting case when the variance of

the frailty is 0. However, this algorithm can not be used for estimating other frailty

distributions or left-truncated data, and the provided standard errors are presented under

the assumption that the estimated parameters of the frailty distribution are �xed. Log-

normal frailty models may also be estimated in R via Laplace approximation in coxme
(Therneau, 2015b), h-likelihood in frailtyHL (Do Ha, Noh, and Lee, 2012) or Monte

Carlo Expectation-Maximization phmm (Donohue and Xu, 2013; Vaida and Xu, 2000;

Donohue, Overholser, et al., 2011). Parametric and spline based shared frailty models are

implemented for the gamma and log-normal distributions in the frailtypack package

(Rondeau, Mazroui, and Gonzalez, 2012; Rondeau and Gonzalez, 2005).

In Hougaard, 2000, the Power Variance Function (PVF) family was proposed for mod-
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eling the frailty distribution. This family of frailty distributions includes the gamma, pos-

itive stable (PS), inverse Gaussian (IG) and compound Poisson distributions with mass at

0. Each choice of the distribution for the frailty implies a di�erent marginal model, with

some emphasizing early dependence of the observations (IG) and others late dependence

(gamma). Of particular interest is the PS distribution: with assumed proportional haz-

ards conditional on the frailty, the PS implies proportional hazards also unconditional

on the frailty. This is unlike the other distributions which imply non-proportional haz-

ards at the marginal level. Therefore, this is the only distribution where the potential

violation of the proportional hazards is not confounded with a frailty e�ect.

The software implementation of the the PVF family of distributions so far been lim-

ited. At this time, two R packages incorporate a larger number of distributions from this

family: the frailtySurv package (Monaco, Gor�ne, and Hsu, 2017; Gor�ne, Zucker, and

Hsu, 2006) implements the above mentioned distributions except the PS via a pseudo

full likelihood approach and the parfm package (Munda, Rotolo, and Legrand, 2012)

estimates fully parametric gamma, IG, PS and log-normal frailty models.

In this chapter we present frailtyEM (Balan and Putter, 2017), an R package which

uses the general Expectation-Maximization (EM) algorithm (Dempster, Laird, and Ru-

bin, 1977) for �tting semiparametric shared frailty models. This implementation comes

to complete the landscape of packages that may be used for such models, with support

for the whole PVF family of distributions for the scenarios of clustered failures, clustered

failures with left truncation and recurrent events data. In the latter case, di�erent time

scales are supported, such as calendar time (time since origin of the recurrent event pro-

cess) and gap time (time since previous recurrent event). Point estimates for regression

coe�cients are provided with con�dence intervals that take into account the estimation

of the frailty distribution parameters, and plotting methods facilitate the visualization of

both conditional and marginal survival or cumulative hazard curves with 95% con�dence

bands, marginal covariate e�ects, and empirical Bayes estimates of the random e�ects.

A comparison with respect to functionality between frailtyEM and other R packages is

provided in Table 51.

The rest of this chapter is structured as follows. In Section 5.2 we present a brief

overview the semiparametric shared frailty model, and the implications of left trunca-

tion. In Section 5.3 we discuss the estimation method and its implementation. In Sec-

tion 5.4 we illustrate the usage of the functions from the frailtyEM package on three

classical data sets available in R.

5.2 Model

5.2.1 Shared frailty models

In frailtyEM, the general framework is of I clusters with Ji individuals within cluster i,
i = 1, … , I . The event history of individual j from cluster i is represented by a counting

process Nij , with Nij (t) representing the number of events observed until time t . The
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“at-risk” process Yij (t) is de�ned as 1 when individual (ij) is under observation and 0

otherwise, and a vector of possibly time dependent covariates is denoted as xij (t).
The clustered failures scenario is represented when the Nij (t) ≤ 1 and Yij (t) = 0

after an event or right censoring. The data in cluster i consists of Ji possibly right cen-

sored survival times. If Nij (t) exceeds 1, the case of recurrent events is obtained. In this

scenario, it is considered that each cluster contains only one individual (Ji ≡ 1, with

the corresponding counting process Ni). Calendar time (also known as Andersen-Gill)

models, when the time scale is “time since origin” and gap time models, where the time

scale is “time since the previous event” are commonly employed (Cook and Lawless,

2007). When subject i is no longer under observation, the last time point is typically

considered right censored.

The intensity of Nij (or hazard, in the clustered failure scenarios) is speci�ed as

�ij (t|Zi) = Yij (t)Zi exp(�⊤xij (t))�0(t) (5.1)

where Zi is an unobserved random e�ect common to all observations from cluster i
(the “shared frailty”), � a vector of unknown regression coe�cients and �0(t) ≥ 0 an

unspeci�ed baseline intensity function. It is assumed that the Zi are iid random variables

with a distribution referred to as Z , and that event times are independent given Zi . A

strati�ed model (5.1) may also be speci�ed by specifying di�erent baseline intensities

for di�erent groups of observations. In this case, if individual (i, j) belongs to strata s,
�0(t) is replaced by �0s(t).

We consider the general case where theZ follows a distribution with positive support

from the in�nitely divisible family, i.e., they are i.i.d. realizations of a random variable

described by the Laplace transform

Z (c; �, 
 ) ≡ E [exp(−Zc)] = exp(−� (c; 
 )) (5.2)

with � > 0 and 
 > 0. This formulation includes several distributions, such as the

gamma, positive stable, inverse Gaussian and compound Poisson distributions. This

so-called power-variance-function (PVF) family of distributions have been extensively

studied in Hougaard, 2000. As detailed in Appendix A1, we assume that an identi�ability

constraint is imposed on the parameters � and 
 and that the distribution of Z is indexed

by a scalar parameter � .

5.2.2 Likelihood

Henceforth, we consider the problem of estimating � , �0 and � via maximum likelihood.

This is achieved by maximizing the marginal likelihood, based on the observed data and

obtained by integrating over the random e�ect. For simplicity, we omit potential strata

in this section. From model (5.1), the marginal likelihood is obtained as the product over
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clusters of expected marginal contributions, i.e.,

L(�, �, �0(⋅)) = ∏
i
E� [∏j ∫

∞

0

{
Yij (t)Z exp(�⊤xij (t)�0(t)

}dNij (t)

× exp(−∑j ∫
∞

0
Yij (t)Z exp(�⊤xij (t))�0(t)dt)]

The �rst part reduces to a product of contributions from the observed event times of

the counting processes from cluster i. Denote the k-th observed time corresponding to

the counting process Nij as tijk and �ijk = 1 if tijk is an event time and 0 otherwise.

Let Λ̃i = ∑j ∫
∞
0 Yij (t) exp(�⊤xij (t))�0(t)dt and ni = ∑j ∫

∞
0 Yij (t)dNij (t) the number of

observed events in cluster i. The marginal likelihood can be written as

L(�, �, �0(⋅)) = ∏
i [∏j

∏
k

{
exp(�⊤xij (tijk ))�0(tijk )

}�ijk
] E� [Z

ni exp(−ZΛ̃i)] . (5.3)

By using (5.2), the last term may be expressed in terms of the ni-th derivative of the

Laplace transform, i.e.

E� [Zni exp(−ZΛ̃i)] = (−1)ni
(ni )
Z (Λ̃i).

In frailtyEM, the Breslow estimator is employed for the baseline hazard, i.e., �0(t) ≡ �0t
for t an event time, and 0 otherwise. This is equivalent with estimating ∫ t0 �0(s)ds as a

step function with “jumps” of size �0t at event times.

5.2.3 Ascertainment and left truncation

The problem of ascertainment with random e�ect time-to-event data is usually di�cult.

If Zi is the distribution of the frailty of cluster i and Ai denotes the event of selecting

the observations in cluster i, the random e�ect distribution of cluster i given the ascer-

tainment is of the form Zi |Ai . The Laplace transform of Zi |Ai follows from Bayes’ rule

as

Zi |Ai (c) =
E [P(Ai |Zi) exp(−cZi)]

E [P(Ai |Zi)]
. (5.4)

Expressing P(Ai |Zi) depends on the type of the study at hand and on the way the data

were collected.

In frailtyEM an option is included to deal with the scenario of left truncation for

clustered failures. Consider that from a cluster of size J̃i , Ji ≤ J̃i individuals are se-

lected and Ai is the event “selecting Ji individuals with left truncation times tL,i =
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{
tL,i1… tL,iJi

}
”. Then Ai can be expressed as

P(Ai |Zi) = P(Ti1 > tL,i1, Ti2 > tL,i2...TJi > tL,iJi |Zi).

A hidden assumption here is that the true cluster size J̃i does not depend on the frailty.

For example, if a high frailty is associated with both a high rate of events and smaller

cluster sizes, then the distribution of J̃i |Z must also be considered (Jensen et al., 2004).

Assume that, given Zi , the left truncation times tL,i are independent. In this case,

P(Ai |Zi) =
Ji
∏
j=1
exp(−Zi ∫

tL,ij

0
exp(�⊤xij (t))�0(t)dt) . (5.5)

A di�culty here is that the values of the covariate vector and of the baseline intensity

must be known prior to the entry time in the study. Therefore, only cases when xi is

time constant are considered.

Denote Λ̃L,i = ∑j ∫
tL,ij
0 exp(�⊤xij )�0(t)dt. The marginal likelihood may be obtained

from (5.3), (5.4) and (5.5) as

L(�, �, �0(⋅)) = ∏
i [∏j

∏
k

{
exp(�⊤xij (tijk ))�0(tijk )

}�ijk
] ×

×
E� [Zni exp (−Z(Λ̃L,i + Λ̃i))]

E� [exp(−ZΛ̃L,i)]
.

It can also be seen that, if the frailty distribution is degenerate and has no variability (i.e.

E� may be removed), then the contribution of Λ̃L,i cancels out. In particular, under left

truncation, the Laplace distribution of Z|Ai is given by

Z|A(c) =
(c + Λ̃L,i)
(Λ̃L,i)

. (5.6)

This distribution is often referred to as the frailty distribution of the survivors (Hougaard,

2000). If Z is from the PVF family, it can be shown that Z|A is also in the PVF family. As

a result, if Z is gamma distributed, then also Z|A is gamma distributed.

Note that, in general, the ascertainment scheme does not have a simple description

and P(Ai |Zi) may or may not be available in closed form. For example, in family stud-

ies, the families may be selected only when a number of individuals live long enough

(Rodríguez-Girondo et al., 2018). In this case, (5.5) does not hold. In the case of registry

data on recurrent events, individuals (clusters) may be selected only if they have at least

one event during a certain time window (Balan, Jonker, et al., 2016). These speci�c cases

are not currently accommodated by frailtyEM.
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5.2.4 Analysis and quantities of interest

Inference

In frailtyEM, inference from the likelihood (5.3) is based on the non-parametric infor-

mation matrix. This is obtained by treating each �0(t) ≡ �0t as a �nite-dimensional

parameter. Even though its dimension grows with the number of event time points in

the data, this has been shown to lead to consistent variance estimators (Andersen, Klein,

et al., 1997).

For assessing whether the frailty model is a better �t than the Cox proportional haz-

ards model, the likelihood ratio test may be used. With the parametrizations described

in Appendix A1, this is a problem of testing on the edge of the parameter space, and

the test statistic under the null hypothesis follows asymptotically a mixture of �2(0) and

�2(1) distribution (Zhi, Grambsch, and Eberly, 2005). This test is provided as standard

output in frailtyEM.

The Commenges-Andersen score test for heterogeneity Commenges and Andersen,

1995 is implemented in frailtyEM. It may be applied to a proportional hazards model

as �tted by the coxph function or automatically calculated when estimating a frailty

model. If the null hypothesis of no unobserved heterogeneity is not rejected, it might be

preferable to employ simpler Cox-type models.

Marginal and conditional quantities

Several quantities are of interest in the context of frailty models. For a group of indi-

viduals with covariate vector xij (t) and frailty Zi , the cumulative intensity (hazard) is

de�ned as

Λij (t|Zi) = Zi ∫
t

0
exp(�⊤xij (t))�0(s)ds. (5.7)

The survival function for such individual is given by Sij (t|Zi) = exp (−Λij (t|Zi)). These

quantities are conditional on the random e�ect Zi .
The population-level, or marginal quantities may be obtained by integrating out the

frailty from the conditional ones. The marginal survival is given by

Sij (t) = E� [exp(−Λij (t|Zi))] = Z (∫
t

0
exp(�⊤xij (t))�0(s)ds) . (5.8)

The marginal cumulative intensity is then given by Λij (t) = − log Sij (t). The “baseline”

intensities or survival refer to an individual with xij (t) ≡ 0.
In the simple case of only one binary covariate, we assume that there are two groups,

the baseline with x = 0 and “treatment” group with x = 1. In this case, the estimated �
may be interpreted as the conditional intensity ratio (hazard ratio) between two individu-

als with the same frailty. Under a frailty model, the observed hazard ratio between these

two groups is typically attenuated in time (Aalen, Borgan, and Gjessing, 2008, ch. 6).



5.3 Estimation and implementation 111

This marginal intensity ratio is calculated as the ratio of the corresponding marginal

cumulative intensities Λij (t).
Several measures of dependence are implemented in frailtyEM. The �rst is the vari-

ance of the estimated frailty distribution Z , which is useful for the gamma and the PVF

family. The variance of log Z is also useful for the positive stable distribution for which

the variance is in�nite. Other measures of association include Kendall’s � and the median

concordance. A thorough discussion and comparison of these measures can be found in

Hougaard, 2000.

5.2.5 Goodness of �t

Given a large choice of distributions for the frailty, the question comes in selecting the

most suitable one. A comparison of the PVF family of frailty distributions can be found

in Hougaard (2000, ch. 7.8). In frailtyEM, all the frailty distributions depend on a posi-

tive parameter � (see Appendix A1). Given that all the distributions are part of the same

family (with gamma and positive stable being limiting cases in the PVF family), the like-

lihood of di�erent models is comparable across distributions. This argument suggests

that it makes sense, within the PVF family, to select the model with the distribution that

has the highest likelihood.

An explicit assumption of model (5.1) is that the censoring is non-informative on the

frailty. This assumption is usually di�cult to test. In frailtyEM, a correlation score test

is implemented for the gamma distribution, following Balan, Boonk, et al., 2016. This

can also be used, for example, for testing whether a recurrent event event process and a

terminal event are associated.

Martingale residuals have been used to assess goodness of �t in terms on functional

form of the covariates (Therneau, Grambsch, and Fleming, 1990; Lin, Wei, and Ying,

1993). These are provided by the residuals() function. For Cox models, there are sev-

eral methods for assessing the proportional hazards assumption (Therneau and Gramb-

sch, 2000, ch. 6). Graphical methods involve plotting estimated survival or cumulative

intensity curves. The plotting capabilities of frailtyEM are discussed in Section 5.3.4. A

second method is based on Schoenfeld residuals (Grambsch and Therneau, 1994). In R,

this is implemented for Cox models in the cox.zph function from the survival package.

In frailtyEM, this is provided as part of the output and may be used to test whether the

conditional proportional hazards model (5.1) holds. This is detailed in Section 5.3.5.

5.3 Estimation and implementation

5.3.1 Syntax

R> library("frailtyEM")

The main model �tting function in frailtyEM is emfrail:
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R> emfrail(formula, data, distribution, control, ...)

The formula argument contains a Surv object as left hand side and a +cluster()
statement on the right hand side, specifying the column of data that de�nes the di�erent

clusters (this is common to other packages such as frailtypack). This formulation, that

is common to most survival analysis packages, allows for the representation of clustered

failures with left truncation, recurrent events in both calendar time and gap time, time

dependent covariates and discontinuous intervals at risk (Therneau and Grambsch, 2000,

ch. 3.7, ch. 8). Two other statements may be used in the right hand side: +strata() for

de�ning a column with a stratifying variable, and +terminal() for de�ning an event

status column for dependent censoring (e.g. a terminal event in the case of recurrent

events; this triggers the score test for dependent censoring described Section 5.2.5).

The distribution argument determines the frailty distribution. It may be gener-

ated by the emfrail_dist():

R> str(emfrail_dist(dist = "gamma", theta = 2))

List of 4
$ dist : chr "gamma"
$ theta : num 2
$ pvfm : num -0.5
$ left_truncation: logi FALSE
- attr(*, "class")= chr "emfrail_dist"

where dist may be one of "gamma", "stable" or "pvf". For "pvf", the m parameter

determines the precise distribution: for m = −1/2 for the IG, m ∈ (−1, 0) for the so-

called Hougaard distribution and m > 0 a compound Poisson distribution with mass

at 0. The theta parameter determines the starting value of the optimization. The

left_truncation argument, if TRUE, leads to the calculation described in Section 5.2.3.

The control argument may be generated by the emfrail_control() function and

regulates parameters regarding to the estimation.

5.3.2 Pro�le EM algorithm

In frailtyEM, a general full-likelihood estimation procedure is implemented for the

gamma, positive stable and PVF frailty models, using a semi-parametric Breslow esti-

mator for the baseline intensity. The goal is to �nd �, �, �0(⋅) that maximize L(�, �, �0(⋅))
(5.3). This can be achieved in two steps, as

max
�,�,�0

L(�, �, �0) = max
�

{
max
�,�0

L(�, �0|�)
}

where L̂(�) = max�,�0 L(�, �0|�) is the pro�le likelihood of � . The pro�le EM algorithm

refers to using a two-stage maximization procedure: the “inner problem” which involves
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calculating L̂(�) (maximizing L(�, �0|�) for �xed � with the EM algorithm), and the “outer

problem”, maximizing the pro�le likelihood L̂(�) over � .

The inner problem Maximizing the likelihood for �xed � has been proposed for the

gamma frailty in Nielsen et al., 1992 and Klein, 1992, and generalizations are discussed

in Hougaard, 2000. The crucial observation is that the E step involves calculating the

empirical Bayes estimates of the frailties ẑi = E[Zi |data]. This expectation is taken with

respect to the “posterior” distribution of the random e�ect. This is detailed in Appendix

A2. The M step involves estimating a proportional hazards model with the log ẑi as o�set

for each cluster. This is done via the agreg.fit() function in the survival package,

which obtains estimates of � via Cox’s partial likelihood. Subsequently, �0 and Λ̃i (and

Λ̃L,i , in the case of left truncation) are calculated.

The EM algorithm is guaranteed to increase L(�, �0|�) with every iteration and to

converge to a local maximum. Convergence is achieved when the di�erence in L(�, �0|�)
between two consecutive iterations is smaller than ".

The outer problem The “outer” problem involves maximizing L̂(�). For this, a general

purpose Newton-type algorithm is employed (nlm from the stats package).

5.3.3 Standard errors and con�dence intervals

The non-parametric information matrix is not directly obtained by the estimation pro-

cedure described in Section 5.3.2. From the inner problem, the standard error of the

estimates for � and �0(⋅) are calculated with Louis’ formula (Louis, 1982), under the

assumption that � is �xed to the maximum likelihood estimate. The standard errors ob-

tained in this way are included in the output as se and are comparable to the ones from

other semi-parametric frailty models (survival or coxme packages) that assume that �
is �xed. However, this leads to an underestimate of the variability of � and �0(⋅).

In frailtyEM, adjusted standard errors, presented in the column adj se, are cal-

culated by “propagating” the uncertainty from the estimation of � to �, �0(⋅). This is

described in more detail in Appendix A3.

From the outer problem, standard errors for � (more precisely, of log � , since the

maximization takes place on the log-scale for numerical stability) are directly obtained

from the numeric Hessian calculated by nlm. The delta method, as implemented in the

msm package (Jackson, 2011), is employed for calculating the standard errors for � and

the measures of dependence that are detailed in Appendix A1.

Two types of con�dence intervals for � (and for the frailty variance, which, in the

cases where it exists, is 1/�) are provided. The �rst are derived from symmetric con�-

dence intervals on the log-scale. The resulting asymmetric con�dence interval has been

shown to provide good coverage (Balan, Jonker, et al., 2016). The second, more com-

putationally intensive, are referred to as “likelihood-based con�dence intervals”. Under

the null hypothesis, the likelihood ratio test statistic follows a �2(0) + �2(1) distribution.
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The critical value associated with this test statistic is approximately 1.92. Based on L̂(�),
a one-dimensional search is performed to �nd the con�dence interval around the maxi-

mum likelihood estimate �̂ within which log L̂(�) ≥ log L̂(�̂)−1.92. The advantage of this

type of con�dence interval is that it is transformation invariant (with the same coverage

for all derived dependence measures) and it has a 1-1 correspondence with the likelihood

ratio test.

5.3.4 Methods

The emfrail function returns an object of class emfrail that is documented in

?emfrail. Usual methods are associated with this class of objects: print(), coef(),

vcov(), residuals(), model.matrix(), model.frame(), logLik().

The summary() method returns an object of class emfrail_summary(), the printing

of which contains general �t information, covariate estimates and distribution-speci�c

measures of dependence and goodness of �t, discussed in Section 5.2.5. Arguments to

summary() may be used to show con�dence intervals based on either the likelihood

function or the delta method, as described in Section 5.3.3. Other arguments control the

amount of information that is printed and may be used when less output is desirable.

The method for prediction of survival curves and cumulative intensity curves is im-

plemented in predict(). Both conditional and marginal curves de�ned in Section 5.2.4

may be produced. The prediction is made for individuals with covariate values speci-

�ed in a data frame (via the newdata argument) or for a �xed linear predictor (via the

lp argument). For strati�ed models, the strata must also be speci�ed. By default, the

predict function creates predictions for each row of newdata or for each value of lp
separately. With the individual argument, predicted curves may be produced for in-

dividuals with speci�c at-risk patterns (for example, if an individual is not at risk during

a certain time frame), or for individuals with time dependent covariates.

After xij (t) is speci�ed to predict(), Λij (t|Z = 1) is calculated as in (5.7) and from

this the other quantities are derived, including the conditional survival, the marginal

survival (5.8) and the marginal cumulative intensity. Con�dence bands are based on the

asymptotic normality of the estimated �0, and are produced both adjusted and unad-

justed for the uncertainty of � .

5.3.5 Plotting and additional features

Two plot methods are provided based on both graphics package via plot() and the

ggplot2 package, via autoplot(), both with identical syntax. Behind the scenes, they

use calls to predict(). The type argument determines the type of plot:

• type = "hist" for a histogram of the posterior estimates of the frailties;

• type = "pred" for plotting marginal and conditional cumulative hazard or sur-

vival curves;
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• type = "hr" for plotting marginal or conditional estimated hazard ratios be-

tween two groups of individuals. The marginal hazard ratio is determined as the

ratio of the marginal intensities, as described in Section 5.2.4;

• type = "frail" for a scatter plot of the ordered posterior estimates of the frail-

ties (also called a “caterpillar plot”). For the gamma distribution, quantiles of

the posterior distribution are also included. Only available with the autoplot()
method.

The Commenges-Andersen score test for heterogeneity is by default calculated ev-

ery time emfrail is called and is part of the standard output. A separate function

ca_test() is also provided, that may be used independently on Cox models produced

by coxph() from the survival package.

While martingale residuals may be obtained with the residuals() method, the

test for conditional proportional hazards, based on Schoenfeld residuals described in

Section 5.2.5 may be accessed in the $zph �eld of the �t. This is an object of class

cox.zph borrowed from the survival package and equivalent to calling cox.zph on a

Cox model with the estimated log-frailties as o�set. The structure and plot methods are

described in ?cox.zph.

An additional function is provided to calculate the marginal log-likelihood for a vec-

tor of values of � , emfrail_pll(), without actually performing the outer optimization.

This may be useful for visualizing the pro�le log-likelihood or when debugging (e.g., to

see if the maximum likelihood estimate of � lies on the boundary).

5.4 Illustration

The features of the package will now be illustrated with three well-known data sets

available in R: The CGD data set (recurrent events, calendar time), the kidney data set

(recurrent events, gap time) and the rats data set (clustered failures).

5.4.1 CGD

The data are from a placebo controlled trial of gamma interferon in chronic granulo-

tomous disease (CGD) and is available in the survival package. It contains the time

to recurrence of serious infections observed, from randomization until end of study for

each patient (i.e. the time scale is calendar time). For the purpose of illustration, we

will use treat (treatment or placebo) and sex (female or male) as covariates, although

a larger number of variables are recorded in the data set.

R> data("cgd")
R> cgd <- cgd[c("tstart", "tstop", "status", "id", "sex", "treat")]
R> head(cgd)
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tstart tstop status id sex treat
1 0 219 1 1 female rIFN-g
2 219 373 1 1 female rIFN-g
3 373 414 0 1 female rIFN-g
4 0 8 1 2 male placebo
5 8 26 1 2 male placebo
6 26 152 1 2 male placebo

A basic gamma frailty model can be �tted like this:

R> gam <- emfrail(Surv(tstart, tstop, status) ~ sex + treat + cluster(id),
+ data = cgd)
R> summary(gam)

Call:
emfrail(formula = Surv(tstart, tstop, status) ~ sex + treat +

cluster(id), data = cgd)

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

sexfemale -0.227 0.797 0.396 0.396 -0.575 0.57
treatrIFN-g -1.052 0.349 0.310 0.310 -3.389 0.00
Estimated distribution: gamma / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00172
no-frailty Log-likelihood: -331.997
Log-likelihood: -326.619
LRT: 1/2 * pchisq(10.8), p-val 0.00052

Frailty summary:
frailty variance = 0.821 / 95% CI: [0.231, 1.854]
Kendall's tau: 0.291 / 95% CI: [0.104, 0.481]
Median concordance: 0.289 / 95% CI: [0.101, 0.491]
E[log Z]: -0.464 / 95% CI: [-1.164, -0.12]
Var[log Z]: 1.241 / 95% CI: [0.26, 4.341]
theta = 1.218 (0.59) / 95% CI: [0.539, 4.326]
Confidence intervals based on the likelihood function

The �rst two parts of this output, about regression coe�cients and �t summary,

exist regardless of the frailty distributions. The last part, “frailty summary”, provides a

di�erent output according to the distribution.
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Figure 51: Predicted conditional and marginal cumulative hazards for males, one from the treat-

ment arm and one from the placebo arm, as produced by autplot() with type = "pred".

Both the Commenges-Andersen test for heterogeneity and the one-sided likelihood

ratio test deems the random e�ect highly signi�cant. This is also suggested by the con-

�dence interval for the frailty variance, which does not contain 0.

To illustrate the predicted cumulative hazard curves we take two individuals, one

from the treatment arm and one from the placebo arm, both males:

R> library("ggplot2")
R> p1 <- autoplot(gam, type = "pred",
+ newdata = data.frame(sex = "male", treat = "rIFN-g")) +
+ ggtitle("rIFN-g") + ylim(c(0, 2)) + theme_minimal()
R> p2 <- autoplot(gam, type = "pred",
+ newdata = data.frame(sex = "male", treat = "placebo")) +
+ ggtitle("placebo") + ylim(c(0, 2)) + theme_minimal()

The two plots are shown in Figure 51.

The cumulative hazard in this case can be interpreted as the expected number of

events at a certain time. It can be seen that the frailty “drags down” the marginal hazard.

This is a well-known e�ect observed in frailty models, as described in Aalen, Borgan,

and Gjessing (2008, ch. 7). All prediction results could also be obtained directly:

R> dat_pred <- data.frame(sex = c("male", "male"),
+ treat = c("rIFN-g", "placebo"))
R> predict(gam, dat_pred)

For a hypothetical individual that changes treatment from placebo to rIFN-g at time 200,

predictions may also be obtained:
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Figure 52: Predicted conditional and marginal cumulative hazards for a male that switches treat-

ment from placebo to rIFN-g at time 200 as produced by autoplot() with type = "pred"

R> dat_pred_b <- data.frame(sex = c("male", "male"),
+ treat = c("placebo", "rIFN-g"),
+ tstart = c(0, 200), tstop = c(200, Inf))
R> p <- autoplot(gam, type = "pred",
+ newdata = dat_pred_b,
+ individual = TRUE) +
+ ggtitle("change placebo to rIFN-g at time 200") + theme_minimal()

This plot is shown in Figure 52.

A positive stable frailty model can also be �tted by specifying the distribution
argument.

R> stab <- emfrail(Surv(tstart, tstop, status) ~ sex + treat + cluster(id),
+ data = cgd,
+ distribution = emfrail_dist(dist = "stable"))
R> summary(stab)

Call:
emfrail(formula = Surv(tstart, tstop, status) ~ sex + treat +
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cluster(id), data = cgd, distribution = emfrail_dist(dist = "stable"))

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

sexfemale -0.137 0.872 0.407 0.407 -0.337 0.74
treatrIFN-g -1.085 0.338 0.332 0.336 -3.230 0.00
Estimated distribution: stable / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00172
no-frailty Log-likelihood: -331.997
Log-likelihood: -329.39
LRT: 1/2 * pchisq(5.21), p-val 0.0112

Frailty summary:
Kendall's tau: 0.104 / 95% CI: [0.011, 0.236]
Median concordance: 0.102 / 95% CI: [0.011, 0.233]
E[log Z]: 0.067 / 95% CI: [0.006, 0.179]
Var[log Z]: 0.406 / 95% CI: [0.037, 1.176]
Attenuation factor: 0.896 / 95% CI: [0.764, 0.989]
theta = 8.572 (5.41) / 95% CI: [3.232, 90.316]
Confidence intervals based on the likelihood function

The coe�cient estimates are similar to those of the gamma frailty �t. The “Frailty

summary” part is quite di�erent. For the positive stable distribution, the variance is not

de�ned. However, Kendall’s � is easily obtained, and in this case it is smaller than in

the gamma frailty model. Unlike the gamma or PVF distributions, the positive stable

frailty predicts a marginal model with proportional hazards where the marginal hazard

ratios are an attenuated version of the conditional hazard ratios shown in the output.

The calculations are detailed in Appendix A1.

The conditional and marginal hazard ratios from di�erent distributions can also be

visualized easily. We also �tted an IG frailty model on the same data, and plots of the

hazard ratio between two males from di�erent treatment arms created below are shown

in Figure 53.

R> ig <- emfrail(Surv(tstart, tstop, status) ~ sex + treat + cluster(id),
+ data = cgd,
+ distribution = emfrail_dist(dist = "pvf"))
R> newdata <- data.frame(treat = c("placebo", "rIFN-g"),
+ sex = c("male", "male"))
R> pl1 <- autoplot(gam, type = "hr", newdata = newdata) +
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+ ggtitle("gamma") + theme_minimal()
R> pl2 <- autoplot(stab, type = "hr", newdata = newdata) +
+ ggtitle("PS") + theme_minimal()
R> pl3 <- autoplot(ig, type = "hr", newdata = newdata) +
+ ggtitle("IG") + theme_minimal()

While all models shrink the hazard ratio towards 1, it can be seen that this e�ect is

slightly more pronounced for the gamma than for the IG, while the PS exhibits a constant

“average” shrinkage. This type of behaviour from the PS is often seen as a strength of

the model (Hougaard, 2000).

5.4.2 Kidney

The kidney data set is also available in the survival package. The data, presented origi-

nally in McGilchrist and Aisbett, 1991, contains the time to infection for kidney patients

using a portable dialysis equipment. The infection may occur at the insertion of the

catheter and at that point, the catheter must be removed, the infection cleared up, and

the catheter reinserted. Each of the 38 patients has exactly 2 observations, representing

recurrence times from insertion until the next infection (i.e. the time scale is gap time).

There are 3 covariates: sex, age and disease (a factor with 4 levels). A data analysis

based on frailty models is described in Therneau and Grambsch (2000, ch. 9.5.2). For the

purpose of illustration, we do not include the disease variable here.

R> data("kidney")
R> kidney <- kidney[c("time", "status", "id", "age", "sex" )]
R> kidney$sex <- ifelse(kidney$sex == 1, "male", "female")
R> head(kidney)

time status id age sex
1 8 1 1 28 male
2 16 1 1 28 male
3 23 1 2 48 female
4 13 0 2 48 female
5 22 1 3 32 male
6 28 1 3 32 male

R> zph_t = emfrail_control(zph = TRUE)
R> m_gam <- emfrail(Surv(time, status) ~ age + sex + cluster(id),
+ data = kidney, control = zph_t)
R> m_ps <- emfrail(Surv(time, status) ~ age + sex + cluster(id),
+ data = kidney,
+ distribution = emfrail_dist("stable"),
+ control = zph_t)
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Therneau and Grambsch discuss the gamma �t conclude that an outlier case is at

the source of the frailty e�ect. We omit the frailty part of the output; the estimated

frailty variance is 0.397 with a 95% likelihood based con�dence interval of (0.04, 1.03)
and therefore signi�cantly di�erent from 0.

R> summary(m_gam, print_opts = list(frailty = FALSE))

Call:
emfrail(formula = Surv(time, status) ~ age + sex + cluster(id),

data = kidney, control = zph_t)

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

age 0.00544 1.00545 0.01158 0.01170 0.46481 0.64
sexmale 1.55284 4.72487 0.44518 0.49952 3.10868 0.00
Estimated distribution: gamma / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00238
no-frailty Log-likelihood: -184.657
Log-likelihood: -182.053
LRT: 1/2 * pchisq(5.21), p-val 0.0112

However, the LRT is not signi�cant for the positive stable frailty model (which does

not have a de�ned frailty variance, for comparison). Furthermore, the estimated regres-

sion coe�cients are di�erent.

R> summary(m_ps, print_opts = list(frailty = FALSE))

Call:
emfrail(formula = Surv(time, status) ~ age + sex + cluster(id),

data = kidney, distribution = emfrail_dist("stable"), control = zph_t)

Regression coefficients:
coef exp(coef) se(coef) z p

age 0.00218 1.00218 0.00922 0.23649 0.81
sexmale 0.82100 2.27278 0.29873 2.74831 0.01
Estimated distribution: stable / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00238
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no-frailty Log-likelihood: -184.657
Log-likelihood: -184.657
LRT: 1/2 * pchisq(0), p-val>0.5

The test for proportional hazards described in Section 5.2.5 reveals an insight into

how the two models work. The gamma frailty model speci�es conditional proportional

hazards and marginal non-proportional hazards, while the positive stable model speci�es

proportional hazards at both levels.

R> m_gam$zph

rho chisq p
age 0.0368 0.0764 0.782
sexmale -0.2207 2.4923 0.114
GLOBAL NA 2.5445 0.280

R> m_ps$zph

rho chisq p
age 0.0841 0.477 0.489990
sexmale -0.4364 11.392 0.000738
GLOBAL NA 11.480 0.003215

Therefore, the gamma frailty model appears to explain the marginal non-proportionality,

while the positive stable frailty model does not. Such a phenomenon may be observed

if, for example, the PS marginal model is a bad �t for the data. Further research is being

carried out on this topic (Balan and Putter, Forthcoming).

5.4.3 Rats data

These is an example of clustered failure data from Mantel, Bohidar, and Ciminera, 1977

Three rats were chosen from each of 100 litters, one of which was treated with a drug

(rx = 1) and the rest with placebo (rx = 0), and then all followed for tumor incidence.

The data are also available in the survival package.

R> data("rats")
R> head(rats)

litter rx time status sex
1 1 1 101 0 f
2 1 0 49 1 f
3 1 0 104 0 f
4 2 1 91 0 m
5 2 0 104 0 m
6 2 0 102 0 m
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While often used to illustrate frailty models, the gamma frailty �t shows a relatively

large, yet not signi�cant frailty variance

R> summary(emfrail(Surv(time, status) ~ rx + sex + cluster(litter),
+ data = rats))

Call:
emfrail(formula = Surv(time, status) ~ rx + sex + cluster(litter),

data = rats)

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

rx 0.7873 2.1974 0.3135 0.3135 2.5112 0.01
sexm -3.1341 0.0435 0.7385 0.7409 -4.2298 0.00
Estimated distribution: gamma / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.201
no-frailty Log-likelihood: -200.426
Log-likelihood: -199.73
LRT: 1/2 * pchisq(1.39), p-val 0.119

Frailty summary:
frailty variance = 0.445 / 95% CI: [0, 1.678]
Kendall's tau: 0.182 / 95% CI: [0, 0.456]
Median concordance: 0.179 / 95% CI: [0, 0.464]
E[log Z]: -0.239 / 95% CI: [-1.038, 0]
Var[log Z]: 0.559 / 95% CI: [0, 3.678]
theta = 2.245 (2.28) / 95% CI: [0.596, Inf]
Confidence intervals based on the likelihood function

The Surv object takes two arguments here: time of event and status. This implicitly

assumes that each row of the data (in this case, each rat) is under follow-up from time 0

to time. This is very similar to the representation of the recurrent events in gap-time,

where each recurrent event episode is “at risk” from time 0 (time since the previous

event).

We arti�cially simulated left truncation from an exponential distribution with mean

50, which is now an entry time to the study. The rats with a follow-up smaller than the

entry time are removed.

R> set.seed(1)
R> rats$tstart <- rexp(nrow(rats), rate = 1/50)
R> rats_lt <- rats[rats$tstart < rats$time, ]
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The �rst model, m1, is what happens if left truncation is completely ignored. Each

rat is assumed to have been at risk from time 0, which is not the case.

R> m1 <-
+ emfrail(Surv(time, status) ~ rx + cluster(litter),
+ data = rats_lt)

The second model, m2, is what happens when the at-risk indicator is correctly ad-

justed for, with the entry time also present. Refering back to Section5.2.3, this is equiv-

alent to considering P(Z) instead of P(Z |A).

R> m2 <-
+ emfrail(Surv(tstart, time, status) ~ rx + sex + cluster(litter),
+ data = rats_lt)

As may be seen from equation (5.6), this is correct only if there is in fact no left trun-

cation, or if there is no variability in Z (i.e. Z is degenerate at 1). Therefore, this for-

mulation is correct, for example, when the Surv object represents recurrent events in

calendar time, as is the case in Section 5.4.1. This is, for example, what is returned by

the frailty models in the survival package.

The third model, m3, speci�es the correct time at risk but also the fact that the distri-

bution of the frailty must be taken conditional on the entry time. Under this (arti�cial)

left truncation problem, this would be the correct way of analyzing this data.

R> m3 <-
+ emfrail(Surv(tstart, time, status) ~ rx + sex + cluster(litter),
+ data = rats_lt,
+ distribution = emfrail_dist(left_truncation = TRUE))

In this case, the output shows little di�erence between models. This is because the frailty,

even in the complete data set, is not signi�cant. In this case, the frailty distribution is

also not signi�cant in either m2 or m3 and they lead to estimates very close to each other.

In a limited unpublished simulation study, we have seen that applying the correction in

m3 leads to approximately unbiased estimates of the regression coe�cients, unlike m1 or

m2.

5.5 Conclusion

In the current landscape for modeling random e�ects in survival analysis, frailtyEM is

a contribution that focuses on implementing classical methodology in an e�cient way

with a wide variety of frailty distributions. We have shown that the EM based approach

has certain advantages in the context of frailty models. First of all, it is semiparamet-

ric, which means that it is a direct extension of the Cox proportional hazards model. In

this way, classical results from semiparametric frailty models (for example, based on the
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data sets in Section 5.4) can be replicated and further insight may be obtained by �tting

models with di�erent frailty distributions. Until now, the Commenges-Andersen test,

positive stable and PVF family, have not all been implemented in a consistent way in an

R package. Another advantage of the EM algorithm is that, by its nature, it is a full max-

imum likelihood approach, and the estimators have well known desirable asymptotic

properties.

To our knowledge, no other statistical package provides similar capabilities for vi-

sualizing conditional and marginal survival curves, or the marginal e�ect of covariates.

Since this is implemented across a large number of distributions, this might come to the

aid of both applied and theoretical research into shared frailty models. While the ques-

tion of model selection with di�erent random e�ect distributions is still an open one, the

functions included frailtyEM may be useful for further research in this direction.

Evaluating goodness of �t for shared frailty models is still a complicated issue, par-

ticularly in semiparametric models. However, tests based on martingale residuals, such

as that of Commenges and Rondeau, 2000, should be now possible by extrating the nec-

essary quantities from an emfrail �t.

Regarding the left truncation implementation in frailtyEM, it is very similar to that

from the parfm package. However, performing of a larger simulation study to assess

the e�ects of left truncation in clustered failure data with semiparametric frailty models

is now possible. In a limited simulation study we have seen that correctly accounting for

this phenomenon leads to unbiased estimates. The scenario of time dependent covariates

and left truncation is not supported at this time. This is because this would require also

specifying values of these covariates from time 0 to the left truncation time, which would

likely involve some speculation.

Technically, extending the package to other distributions is possible, as long as their

Laplace transform and the corresponding derivatives may be speci�ed in closed form.

An interesting extension would be to choose discrete distributions from the in�nitely

divisible family for the random e�ect, such as the Poisson distribution. The newest

features will be implemented in the development version of the package at https://
github.com/tbalan/frailtyEM.

Appendix A1: Results for the Laplace transforms

We consider distributions from the in�nitely divisible family Ash, 1972, ch 8.5 with the

Laplace transform

Y (c) = exp(−� (c; 
 )).

We now consider how � and 
 can be represented as a function of a positive parameter

� .

https://github.com/tbalan/frailtyEM
https://github.com/tbalan/frailtyEM
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The gamma distribution For Y a gamma distributed random variable,  (c; 
 ) =
log(
 + c) − log(
 ), the derivatives of which are

 (k)(c; 
 ) = (−1)k−1(k − 1)!(
 + c)−k .

For identi�ability, the restriction EY = 1 is imposed; this leads to � = 
 . The distribution

is parametrized with � > 0, � = � = 
 . The variance of Y is varY = �−1. Kendall’s �
is then � = 1

1+2� and the median concordance is � = 4 (21+1/� − 1)
−� − 1. Furthermore,

E log Y =  (�) − log � and var log Y =  ′(�) where  and  ′ are the digamma and

trigamma functions.

The positive stable distribution For Y a positive stable random variable,  (c; 
 ) =
c
 with 
 ∈ (0, 1), the derivatives of which are

 (k)(c; 
 ) =
Γ(k − �)
Γ(1 − 
)

(−1)k−1c
−1.

For identi�ability, the restriction � = 1 is made; EY is unde�ned and varY = ∞. The

distribution is parametrized with � > 0, 
 = �
�+1 .

Kendall’s � is then � = 1 − �
�+1 and the median concordance is � = 22−2

�
�+1 − 1.

Furthermore,

E log Y = −
(

{
�

1 + �

}−1
− 1

)
 (1)

and

var log Y =
(

{
�

1 + �

}−2
− 1

)
 ′(1).

In the case of the PS distribution, the marginal hazard ratio is an attenuated version

of the conditional hazard ratio. If the conditional log-hazard ratio is � , the marginal

hazard ratio is equal to � �
�+1 .

The PVF distributions For Y a PVF distribution with �xed parameter m ∈ ℝ, m > −1
and m ≠ 0,

 (c; 
 ) = sign(m)(1 − 
m(
 + c)−m)
where sign(⋅) denotes the sign. This is the same parametrizaion as in Aalen, Borgan, and

Gjessing, 2008. The derivatives of  are

 (k)(c; 
 ) = sign(m)(−
)m(
 + c)−m−k (−1)k+1
Γ(m + k)
Γ(m)

.

The expectation of this distribution can be calculated as minus the �rst derivative of the

Laplace transform calculated in 0, i.e.,

EY = � ′(0; 
 )(0; �, 
 ) =
�


m.
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The second moment of the distribution can be calculated as the second derivative of the

Laplace transform at 0,

EY 2 = �2 ′2(0) − � ′′(0) =
�2


 2
m2 +

�

 2
m(m + 1).

For identi�ability, we set EY = 1. The distribution is parametrized through a parameter

� > 0 which is determined by 
 = (m + 1)� and � = sign(m)m+1m � . This results in

varY = �−1.
A slightly di�erent parametrization is presented in Hougaard, 2000, dependent on

the parameter �H . The correspondence is obtained by setting �H = (m + 1)� .

The PVF family of distributions includes the gamma as a limiting case when m → 0.
When 
 → 0 the positive stable distribution is obtained. When m = −1 the distribution

is degenerate, and with m = 1 a non-central gamma distribution is obtained. Of special

interest is the case m = −0.5, when the inverse Gaussian distribution is obtained. With

m > 0, the distribution is compound Poisson with mass at 0. In this case, P(Y = 0) =
exp(−m+1m �).

For m < 0, closed forms for Kendall’s � and median concordance are given in

Hougaard (2000, Section 7.5).

Left truncation

To determine the Laplace transform under left truncation, we determine  ̃ from (5.4)

and (5.5).

For the gamma distribution, we have

 ̃ (c; 
 , ΛL) = log(
 + ΛL + c) − log(
 + ΛL)

which implies that the frailty of the survivors is still gamma distributed, but with a

change in the parameter 
 .

For the positive stable we have

 ̃ (c; 
 , ΛL) = (c + ΛL)
 − Λ


L ,

which is not a positive stable distribution any more.

For the PVF distributions, we have

 ̃ (c; 
 , ΛL) = sign(m) (
m(
 + ΛL)−m − (
 + ΛL)m(
 + ΛL + c)−m) ,

which is not PVF any more (however, it stays in the same “in�nitely divisible” family.

Closed forms

The gamma distribution leads to a Laplace transform for which the derivatives can be

calculated in closed form. It can be seen that

(c; �, 
 ) = 
� (
 + c)−� .
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The k-th derivative of this expression is

(k)(c; �, 
 ) = 
� (
 + c)−
−k
Γ(� + k)
Γ(�)

.

This can be exploited also in the case of left truncation, since the gamma frailty is pre-

served, as shown in the previous section.

The inverse gaussian distribution is obtained when the PVF parameter is m = − 12 .

Under the current parametrization, we have � = �/2 and � = � . In this case, the Laplace

transform is

(c; �) = exp
{
� (1 −

√
1 + 2c/�)

}
.

The k-th derivative of this can be written as

(k)(c; �) = (−1)k (
2
�
c + 1)

−k/2 k−1/2 (
√
2� (c + �

2 ))

1/2 (
√
2� (c + �

2 ))

where  is the modi�ed Bessel function of the second kind.

The emfrail() uses the closed form formulas when possible, by default.

Appendix A2: The E step

For the E step � and �0 are �xed, either at their initial values or at the values from the

previous M step. Let ni = ∑j,k �ijk be the number of events in cluster i. The conditional

distribution of Zi given the data is described by the Laplace transform

(c) =
E [Z

ni
i exp(−ZiΛ̃i) exp(−Zic)]
E [Z

ni
i exp(−ZiΛ̃i)]

=
(ni )(c + Λ̃i)
(ni )(Λ̃i)

. (5.9)

The E step reduces to calculating the expectation of this distribution, i.e. the derivative

of (5.9) in 0:

ẑi = −
(ni+1)(Λ̃i)
(ni )(Λ̃i)

. (5.10)

The marginal (log-)likelihood is also calculated at this point to keep track of convergence

of the EM algorithm. It can be seen that (5.3) involves the denominator of (5.9) in addition

to a straight-forward expression of � and �0.
The E step is generally the expensive operation of the EM algorithm. In a few sce-

narios (5.10) may be expressed in a closed form: for the gamma and the inverse gaussian

distributions. In these scenarios, the E step is calculated with the fast_estep() routine.

For all other cases, the E step is calculated via a recursive algorithm with an internal rou-

tine which is described here. For easing the computational burden, this is implemented

in C++ and is interfaced with R via the Rcpp library (Eddelbuettel and François, 2011;

Eddelbuettel, 2013).
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As shown in (5.9), the calculation of the E step for the general case involves taking

derivatives of Laplace transforms of the form

(c) = exp(g(c))

where for simplicity we denote g(c) = −� (c; 
 ). The expression for the k-th derivative

of (c) can be obtained with a classical calculus result, di Bruno’s formula, i.e.,

(n)(c) = ∑
m∈n

n!
m1!m2!...mn!

n
∏
j=1(

g(j)(c)
j! )

mj

(c), (5.11)

where n = {(m1, ..., mn)| ∑n
j=1 j × mj = n}. For example, for n = 3,

3 = {(3, 0, 0), (1, 1, 0), (0, 0, 1)} .

This corresponds to the “partitions of the integer” 3, i.e., all the integers that sum up to

3:

{(1, 1, 1), (1, 2, 0), (3, 0, 0)} .
We implemented a recursive algorithm in C++ which resides in the

emfrail_estep.cpp which loops through these partitions, calculates the corre-

sponding derivatives of  and the coe�cients.

Appendix A3: Standard errors

Considering the vector of parameters � = (�, �0(⋅)), and consider that for a given � ,

�� is the maximizer of the “inner problem” described in Section (5.3.2), i.e. �(�) =
argmax�L(�|�). Further, for a given � , the variance-covariance matrix var(�(�)) is ob-

tained with Louis’ formula (Louis, 1982). The restulting standard errors for � are under-

estimated because they do not factor in the uncertainty in estimating � , as is noted also

in Therneau and Grambsch (2000, sec. 9.5). Below is the sketch of how this is addressed

in frailtyEM, following Hougaard (2000, Appendix B.3).

Let �̂ be the maximum likelihood estimate with variance var(�̂) and standard error

se(�̂), which are given by the maximizer from the “outer problem”. The correct informa-

tion matrix for inference on � is a “perturbed” version of var(�(�̂)), namely

var(�(�̂)) + (
d�
d� )

var(�̂) (
d�
d� )

⊤
.

Here, d�/d� may be approximated as (�+ − �−)/se(�̂) where �+ = �(�̂ + se(�̂)/2) and �− =
�(�̂ − se(�̂)/2). In emfrail, this whole calculation takes place for log � for computational

stability, and to avoid the edge problem when � is close to 0.

Con�dence intervals for the conditional cumulative hazard are obtained from the

part of the variance-covariance matrix corresponding to �0(⋅), and con�dence intervals

for Λ0(t) = ∑s≤t �0(t) are obtained with the usual formula. For con�dence intervals, the

delta method is used to calculate a symmetric con�dence interval for log Λ0(t) for all t ,
which is then exponentiated.
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Summary

Survival analysis is the study of time to event data, and it is a major topic in statistics.

A prominent type of time to event data is represented by life times, which motivates

much of the terminology in the �eld. As a convention, it is common to refer to the event

of interest as death or failure. An individual that is at risk for dying is said to be alive.
Probably the most distinctive feature of survival data is that the event of interest is not

always observed. Rather, the only information available is that the individual had not

died before a certain time point. This phenomenon is known as right censoring and has

motivated the development of special statistical methods for this kind of data.

The probability of being alive at a given time point is given by the survival func-

tion. The most popular way of estimating this in the presence of right censoring is

the “product-limit” estimator, better known as the Kaplan-Meier estimator (Kaplan and

Meier, 1958). Their seminal paper, Nonparametric estimation from incomplete observa-
tions, was found to be the most cited paper in statistics in a recent article in Nature (Van

Noorden, Maher, and Nuzzo, 2014).

The instantaneous probability of dying at a given time point, given that the indi-

vidual has not died before, is known as the hazard function. In demographics, it is also

referred to as the “instantaneous mortality rate”. In survival analysis, it is more common

to work with the hazard rather than the probability density function. The most popular

regression model for survival data is the “proportional hazards” model, commonly re-

ferred to as the Cox model (Cox, 1972). The paper that introduced this, titled Regression
Models and Life-Tables, is the second most cited paper in statistics, according to the same

Nature article.

In The impact of heterogeneity in individual frailty on the dynamics of mortality (Vau-

pel, Manton, and Stallard, 1979), the authors refer to the e�ect of unobserved hetero-

geneity on mortality as frailty. The authors state that “mortality rates for individual

may increase faster with age than observed mortality rates for cohorts”. This implies

that there is a distinction between the individual hazard (“mortality rate”) and the pop-

ulation hazard (“mortality rate for cohorts”). Most importantly, Vaupel et al. recognize

that the individual hazard cannot be directly observed in the presence of unobserved

heterogeneity.

The subtle aspect of the hazard is that, by de�nition, it refers to the individuals still

alive at a certain time point. As individuals with a high frailty tend to die faster, it is

likely that individuals who survived longer are less frail, on average, as compared to
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the whole sample at the start of follow-up. Frailty models, which aim to model the

unobserved heterogeneity with random e�ects, are discussed in most survival analysis

monographs (Andersen, Borgan, et al., 1993; Kalb�eisch and Prentice, 2002; Klein and

Moeschberger, 2005; Aalen, Borgan, and Gjessing, 2008). Several books o�er an exhaus-

tive treatment of such models (Hougaard, 2000; Duchateau and Janssen, 2007; Wienke,

2010).

This dissertation describes new statistical methodology that aims to provide more

insight into di�erent aspects of frailty models. Both theoretical properties and practi-

cal problems are addressed. Of special interest are the “shared frailty” models, that are

employed when the frailty is “shared” between several observations. This is usually the

case when an individual may experience more events (recurrent events) or when indi-

viduals are related (clustered survival data). In Chapter 1 we focus on the frailty e�ects

on observable quantities in Cox models. In Chapter 2, we present a simulation study that

focuses on the properties of shared frailty models for clustered survival data, when the

size of the clusters is small. In Chapter 3, we discuss a proposed score test for association

between a recurrent event process and a terminal event, when the frailty is shared by

both processes. In Chapter 4, we discuss selection bias in the context of recurrent events,

where the selection depends on the outcome and on the underlying frailty. In Chapter 5,

we present the estimation procedure implemented in the frailtyEM R package. In what

follows, we show a more detailed summary for each chapter.

Chapter 1 is the introduction to this dissertation. It follows the structure of a tutorial,

providing an overview of theory and practice surrounding frailty models. In Section 1.2,

we address to univariate frailty models. These are related to the original formulation

of Vaupel, Manton, and Stallard (1979), where the outcome of interest is a singular event

for individuals (death), and the individual event times are assumed to be independent of

each other. Via simulated examples, we illustrate two phenomena speci�c to Cox models.

First, the selection process, that describes the distribution of risk factors in the population

of survivors. Second, the observed marginal covariate e�ect in the Cox model, when

important explanatory variables are omitted. The same phenomena are then studied in

detail with frailty models, for di�erent frailty distributions. The chapter concludes with

a discussion of the identi�ability properties of frailty models in univariate survival data.

In Section 1.3, we illustrate via a simulated data example how marginal correlation

between event times may arise, when covariates “shared” by related individuals are miss-

ing. This is further studied with shared frailty models, wherein the random e�ect is as-

sumed to be shared between di�erent individuals. We study how di�erent correlation

patterns arise from di�erent frailty distributions and we discuss how shared frailty mod-

els may be used for modeling recurrent events. In Section 1.4 we address practical issues

surrounding the estimation of frailty models. We discuss di�erent procedures for semi-

parametric and parametric models, we review the available software and describe how

di�erent data types can be accommodated by software packages. Finally, in Section 1.5

we discuss several proposed extensions of the frailty model.
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In Chapter 2 we analyze situations where it is di�cult to tell the di�erence between

non-proportional hazards and unobserved heterogeneity. This chapter builds on the

results discussed in Chapter 1, especially those regarding the identi�ability of frailty

models. A well known result is that the frailty model is identi�able if covariates are

present and the frailty distribution has �nite moments. We argue that this is problematic,

because the frailty may falsely explain a time dependent covariate e�ect as evidence for

unobserved heterogeneity. While generally thought that this is not a problem for shared

frailty models, we show that it may be, especially if the cluster size is small.

In Section 2.2, we review the proportional hazards models and the conditional pro-

portional hazards assumption commonly made for frailty models. Next, we discuss

how marginal non-proportional hazards may arise from di�erent frailty models. In Sec-

tion 2.3, we present the simulation study. We study the e�ect of the cluster size (in fact,

how “multivariate” the outcome is) on detecting frailty models, when there is no real

unobserved heterogeneity. We analyze the results for di�erent quantities of interest:

the likelihood ratio test, the score test for heterogeneity and estimated parameters. Our

main conclusion is that time dependent covariate e�ects may falsely appear as evidence

for frailty, when the path of the e�ect is somewhat similar to the marginal hazard ra-

tio implied by the frailty model. Although this problem is mitigated with larger sample

sizes, when the cluster size is small (e.g. 2, 3) the distinction between unobserved het-

erogeneity and time-dependent covariate e�ects is subtle. The results are extended to

recurrent events, and a combination of time dependent covariate e�ects in the presence

of frailty. Finally, the phenomenons analyzed in this chapter are illustrated with a data

analysis of a well known data set on recurrent kidney infections.

In Chapter 3, we introduce a score test for association between recurrent events and

a terminal event. If frailty is present and high frailty individuals are associated both with

a higher rate of recurrent events and a higher mortality, then the two event processes

must be jointly analyzed. This is complicated in practice, especially for semiparametric

models. We propose a simple score test for association testing the null hypothesis that

the two models are independent. If this is not rejected, simpler separate analyses may

be carried out.

In Section 3.2, a joint model for recurrent events and a terminal event is introduced,

employing a gamma distributed frailty. This model includes an association parameter

that may be estimated, for which di�erent inference methods are compared. In Sec-

tion 3.3, the “robust score test” is introduced, together with other well known statistical

tests, for the null hypothesis of no association. In Section 3.4, we show via a simulation

study that the proposed test behaves well and, in terms of power, is comparable to more

complicated alternatives. In Section 3.5, the proposed methodology is illustrated on a

data set comprising recurrent skin tumors.

In Chapter 4, the problem of selection bias (or “ascertainment” bias) in recurrent

events is analyzed. The motivating example is a data set comprising recurrent pneu-
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mothoraces. The data was collected only for individuals that had at least one recorded

event during a certain accrual time window. For the selected individuals, the whole event

history was collected. The problem is that, by design, individuals with a higher rate of

events will be over represented in this sample. If unobserved heterogeneity is present,

high frailty patients are over represented. In this chapter, we study the estimation of

frailty parameters and covariate e�ects in this type of scenarios.

In Section 4.2, several selection schemes and a general adjusted likelihood approach

are introduced. We discuss the e�ects of the ascertainment on the estimates from a

model without frailty and from a model with frailty. For the latter, a pseudo maximum

likelihood estimation algorithm is presented. In Section 4.3, the performance of the ad-

justed likelihood approach is studied for di�erent selection scenarios, and it is shown to

work well in general. Finally, in Section 4.4, the proposed methodology is illustrated on

the original motivating data set.

In Chapter 5, we study the estimation of semiparametric shared frailty models in

practice, with a focus on the frailtyEM package (Balan and Putter, 2017) for the R pro-

gramming language. This software is meant to combine the �exibility of semiparametric

models with a large choice of frailty distributions. A major motivation behind writ-

ing this package was to provide well documented user level features. In Section 5.1,

we present an overview of the currently available software for the estimation of frailty

models.

In Section 5.2, the likelihood construction and the e�ect of left truncation and ascer-

tainment are discussed in the context of frailty models. Next, we make an overview of re-

lated results regarding practical problems: hypothesis testing, marginal and conditional

quantities and goodness of �t. In Section 5.3, the software implementation of a pro�le

expectation maximization algorithm is discussed. The proposed estimation method and

the calculations required to obtain standard errors are presented. From a practical point

of view, the functions provided by the package are presented, together with their cor-

responding syntax. Finally, the features of the package are illustrated with examples

involving three well known data sets, covering three important scenarios: recurrent

events in calendar time, recurrent events in gap time and clustered failures.







Samenvatting

De overlevingsanalyse behelst de studie van de tijdsduur tot een gebeurtenis, wat een

belangrijk onderwerp binnen de statistiek is. Een prominent type data over de tijdsduur

tot een gebeurtenis is de levensduur, waar veel van de terminologie aan wordt ontleend.

Het is gebruikelijk om naar de gebeurtenis waar de interesse naar uitgaat te refereren

als overlijden of falen. Een individu dat risico loopt om te overlijden wordt in leven ge-

noemd. Waarschijnlijk is de meest karakteristieke eigenschap van overlevingsdata dat

de gebeurtenis waar de interesse naar uitgaat niet altijd wordt geobserveerd. De enige

informatie die dan beschikbaar is, is dat het individu niet voor een bepaald tijdstip over-

leden is. Dit fenomeen staat bekend als rechtscensurering en is de drijfveer geweest voor

de ontwikkeling van speciale statistische methoden voor dit soort data.

De kans om op een bepaald tijdstip in leven te zijn wordt gegeven door de overle-
vingsfunctie. De meest populaire manier om deze te schatten in geval er rechtsgecen-

sureerde waarnemingen zijn is de “product-limit” schatter, die beter bekend is als de

“Kaplan-Meier” schatter (Kaplan en Meier, 1958). Hun belangrijke paper, Nonparame-
tric estimation from incomplete observations, bleek in een recent artikel in Nature (Van

Noorden, Maher en Nuzzo, 2014) het meest geciteerde statistiek-artikel te zijn.

De instantane kans om te overlijden op een bepaald tijdstip, gegeven dat het indi-

vidu niet al eerder overleden is, staat bekend als de hazardfunctie. In demogra�sche

studies wordt dit ook wel de ïnstantane mortaliteitsgraad"genoemd. In de overlevings-

analyse is het gebruikelijker om met de hazard te werken dan met de dichtheidsfunctie.

Het meest populaire regressiemodel voor overlevingsdata is het "proportionele hazards-

model, waar vaak naar verwezen wordt als het Cox-model. Het artikel waarin dit mo-

del werd geïntroduceerd, genaamd Regression Models and Life-Tables, is het op één na

meest geciteerde statistiekartikel, volgens hetzelfde artikel in Nature.

In The impact of heterogeneity in individual frailty on the dynamics of mortality (Vau-

pel, Manton en Stallard, 1979), verwijzen de auteurs naar het e�ect van ongeobserveerde

heterogeniteit op mortaliteit als fragiliteit (frailty). De auteurs zeggen dat “de mortali-
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teit van een individu kan sneller toenemen als de leeftijd toeneemt dan de waargenomen

mortaliteit in cohorten”. Dit impliceert dat er een onderscheid is tussen de individuele

hazard (“mortaliteit”) en de populatiehazard (“mortaliteit voor cohorten”). Belangrijk

hierbij is dat Vaupel et al. inzien dat de individuele hazard niet direct kan worden waar-

genomen wanneer er sprake is van ongeobserveerde ongelijksoortigheid.

Het subtiele kenmerk van de hazard is dat deze per de�nitie de individuen betreft

die op een bepaald tijdstip nog in leven zijn. Aangezien individuen met een hoge fragili-

teit geneigd zijn eerder te overleden, is het aannemelijk dat individuen die langer over-

leefd hebben, gemiddeld gezien minder fragiel zijn, in vergelijking met de hele steek-

proef aan het begin van de studie. Fragiliteitsmodellen, die als doel hebben om on-

geobserveerde ongelijksoortigheid te modelleren met behulp van zogeheten “random

e�ects”, worden behandeld in de meeste boeken over overlevingsanalyse (Andersen,

Borgan e.a., 1993; Kalb�eisch en Prentice, 2002; Klein en Moeschberger, 2005; Aalen,

Borgan en Gjessing, 2008). Meerdere boeken bieden een uitvoerige uiteenzetting van

zulke modellen (Hougaard, 2000; Duchateau en Janssen, 2007; Wienke, 2010).

In dit proefschrift wordt nieuwe statistische methodologie beschreven, die als doel

heeft om meer inzicht in verschillende aspecten van fragiliteitsmodellen te bieden. Zo-

wel theoretische eigenschappen als praktische problemen worden behandeld. Speciale

aandacht gaat uit naar “gedeelde fragiliteit” modellen, die gebruikt worden wanneer

de fragiliteit “gedeeld” wordt onder meerdere waarnemingen. Dit is meestal het geval

wanneer een individu meerdere gebeurtenissen kunnen overkomen (recurrente gebeur-

tenissen) of wanneer individuen verwant zijn aan elkaar (geclusterde overlevingsdata).

In Hoofdstuk 1 ligt de nadruk op fragiliteitse�ecten op waarneembare grootheden in

Cox-modellen. In Hoofdstuk 2 presenteren we een simulatiestudie die gericht is op ei-

genschappen van gedeelde fragiliteitsmodellen voor geclusterde overlevingsdata, wan-

neer de clusters klein zijn. In Hoofdstuk 3 bespreken we een voorgestelde score toets

voor associatie tussen een recurrent gebeurtenissenproces en een terminale gebeurtenis,

wanneer de frailty wordt gedeeld door beide processen. In Hoofdstuk 4 bespreken we

selectiebias in de context van recurrente gebeurtenissen, waar de selectie afhangt van

de uitkomst en de onderliggende fragiliteit. In Hoofdstuk 5 presenteren we de schat-

tingsprocedure geïmplementeerd in de frailtyEM R software. Hieronder volgt een meer

gedetailleerde samenvatting van elk hoofdstuk.

Hoofdstuk 1 is de inleiding van dit proefschrift. Het heeft de structuur van een tu-

torial, en geeft een overzicht van de theorie en praktijk rondom fragiliteitsmodellen. In

Sectie 1.2 bespreken we univariate fragiliteitsmodellen. Deze worden gerelateerd aan

de originele formulering van Vaupel, Manton en Stallard (1979), waar de uitkomst waar

de interesse naar uitgaat een enkelvoudige gebeurtenissen is for individuen (overlijden),

en waarbij wordt aangenomen dat de individuele gebeurtenistijdstippen onafhankelijk

zijn van elkaar. Met behulp van gesimuleerde voorbeelden illustreren we twee fenome-

nen die speci�ek voor Cox-modellen zijn. Ten eerste het selectieproces, dat de verdeling

van de risicofactoren in de overlevendenpopulatie beschrijft. Ten tweede, het geobser-



Nederlandse Samenvatting 147

veerde marginale covariatene�ect in het Cox-model, wanneer belangrijke verklarende

variabelen worden weggelaten. Dezelfde fenomenen worden dan in detail binnen fra-

giliteitsmodellen bestudeerd, voor verschillende fragiliteitsverdelingen. De sectie wordt

afgesloten met een discussie van de identi�ceerbaarheidseigenschappen van fragiliteits-

modellen in univariate overlevingsdata.

In Sectie 1.3 illustreren we door middel van simulatie hoe marginale correlatie tus-

sen gebeurtenistijdstippen kan ontstaan, wanneer door verwante individuen “gedeelde”

covariaten ontbreken. Dit wordt verder bestudeerd aan de hand van gedeelde fragili-

teitsmodellen, waarin wordt aangenomen dat een “random e�ect” wordt gedeeld door

meerdere individuen. We bestuderen hoe verschillende correlatiepatronen ontstaan bij

verschillende fragiliteitsverdelingen, en we bespreken hoe gedeelde fragiliteitsmodellen

gebruikt kunnen worden voor het modelleren van recurrente gebeurtenissen. In Sec-

tie 1.4 gaan we in op praktische zaken rondom het schatten van fragiliteitsmodellen. We

bespreken verschillende procedures voor semiparametrische en parametrische model-

len, geven een overzicht van de beschikbare software en beschrijven hoe verschillende

soorten data kunnen worden geanalyseerd in softwarepakketten. Tot slot bespreken we

in Sectie 1.5 verscheidene voorgestelde uitbreidingen van het fragiliteitsmodel.

In Hoofdstuk 2 analyseren we situaties waarin het moeilijk is om het verschil te zien

tussen hazards en ongeobserveerde ongelijksoortigheid. Dit hoofdstuk bouwt voort op

de resultaten uit Hoofdstuk 1, in het bijzonder degene over de identi�ceerbaarheid van

fragiliteitsmodellen. Een zeer bekend resultaat is dat het fragiliteitsmodel identi�ceer-

baar is als er covariaten zijn en de fragiliteitsverdeling eindige momenten heeft. We

beargumenteren dat dit problematisch is, omdat de fragiliteit onterecht het e�ect van

een tijdsafhankelijke covariaat kan toewijzen aan ongeobserveerde ongelijksoortigheid.

Terwijl over het algemeen gedacht wordt dat dit geen probleem is voor gedeelde fra-

giliteitsmodellen, laten we zien dat het dat toch kan zijn, vooral als de clusters klein

zijn.

In Sectie 2.2 beschouwen we het proportionele hazards-model en de conditionele

proportionele hazards-aanname die vaak gemaakt wordt voor fragiliteitsmodellen. Ver-

volgens bespreken we hoe marginale hazards kunnen ontstaan van verschillende fra-

giliteitsmodellen. In Sectie 2.3 presenteren we de simulatiestudie. We bestuderen het

e�ect van clustergrootte (in feite hoe “multivariaat” de uitkomst is) op het detecteren

van fragiliteitsmodellen, wanneer er in werkelijkheid geen ongeobserveerde ongelijk-

soortigheid is. We analyseren de uitkomsten voor meerdere grootheden waar de inte-

resse naar uitgaat: de likelihood ratio-toets, de score toets voor ongelijksoortigheid en

geschatte parameters. Onze belangrijkste conclusie is dat e�ecten van tijdsafhankelijke

covariaten onterecht kunnen worden opgevat als bewijs voor fragiliteit, wanneer het

tijdsverloop van het e�ect enigszins lijkt op de marginale hazardratio geassocieerd met

het fragiliteitsmodel. Alhoewel dit probleem minder sterk is bij grotere steekproefgroot-

tes, is het onderscheid tussen ongeobserveerde ongelijksoortigheid en covariaate�ecten

subtiel wanneer de clusters klein zijn (e.g. 2,3). De resultaten worden uitgebreid naar
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recurrente gebeurtenissen, en een combinatie van tijdsafhankelijke covariaate�ecten in

de aanwezigheid van fragiliteit. Ter afsluiting worden de fenomenen die geanalyseerd

worden in dit hoofdstuk geïllustreerd aan de hand van een data-analyse van een bekende

dataset over recurrente nierinfecties.

InHoofdstuk 3, introduceren we een score toets voor associatie tussen recurrente ge-

beurtenissen en een terminale gebeurtenis. Als er fragiliteit aanwezig is en zeer fragiele

individuen een associatie hebben met zowel een hoger aantal recurrente gebeurtenissen

als een hogere mortaliteit, dan moeten beide gebeurtenisprocessen gezamenlijk worden

geanalyseerd. Dit is ingewikkeld in de praktijk, vooral met semiparametrische model-

len. We stellen een eenvoudige score toets voor associatie voor, die de nulhypothese

dat de twee modellen onafhankelijk zijn toetst. Als deze niet verworpen wordt, kunnen

eenvoudigere analyses worden uitgevoerd.

In Sectie 3.2 wordt een gezamenlijk model voor recurrente gebeurtenissen en een

terminale gebeurtenis geïntroduceerd, met een fragiliteit die een gammaverdeling heeft.

Dit model bevat een associatieparameter die geschat kan worden, waarvoor verschil-

lende inferentiemethoden worden vergeleken. In Sectie 3.3 wordt de "robuuste score-

toets"geïntroduceerd, samen met andere bekende statistische toetsen, voor de nulhypo-

these dat er geen associatie is. In Sectie 3.4 laten we met een simulatiestudie zien dat

de voorgestelde toets goed werkt en qua onderscheidend vermogen vergelijkbaar is met

gecompliceerde alternatieven. In Sectie 3.5 wordt de voorgestelde methodologie geïllu-

streerd met een toepassing op data over recurrente huidtumoren.

In Hoofdstuk 4, wordt het probleem van selectiebias (ook wel “toerekeningsbias”)

bij recurrente gebeurtenissen geanalyseerd. Het begeleidende voorbeeld is een dataset

bestaande uit recurrente klaplongen. De data is alleen verzameld voor individuen met

tenminste één geregistreerde gebeurtenis gedurende een zekere aanwasperiode. Voor de

geselecteerde individuen is de gehele gebeurtenissengeschiedenis verzameld. Het pro-

bleem is dat door deze opzet individuen met een hoger aantal gebeurtenissen overgepre-

senteerd zullen zijn in deze steekproef. Als ongeobserveerde gelijksoortigheid aanwezig

is, zullen zeer fragiele patiënten overgerepresenteerd zijn. In dit hoofdstuk bestuderen

we het schatten van fragiliteitsparameters en covariaate�ecten in dit soort scenarios.

In Sectie 4.2 worden een aantal selectiemanieren en een algemene geadjusteerde li-

kelihoodbenadering geïntroduceerd. We bespreken de e�ecten van de selectie op de

schattingen van een model zonder fragiliteit en van een model met fragiliteit. Voor

laatstgenoemd model wordt een pseudo-maximum-likelihood schattingsalgoritme ge-

presenteerd. In Sectie 4.3 worden de prestaties van de geadjusteerde likelihoodbenade-

ring bestudeerd voor verschillende selectiescenarios, en wordt getoond dat deze over

het algemeen goed werkt. Tot slot wordt in Sectie 4.4 de voorgestelde methodologie

geïllustreerd door toepassing op de begeleidende dataset.
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In Hoofdstuk 5, bestuderen we het schatten van semiparametrische gedeelde fragili-

teitsmodellen in de praktijk, met de nadruk op de frailtyEM software (Balan en Putter,

2017) voor de programmeertaal R. Deze software is bedoeld om de �exibiliteit van semi-

parametrische modellen te combineren met een ruime keuze aan fragiliteitsverdelingen.

Een belangrijke reden om deze software te schrijven was om te voorzien in goedgedo-

cumenteerde mogelijkheden op gebruikersniveau. In Sectie 5.1 geven we een overzicht

van op het moment beschikbare software voor het schatten van fragiliteitsmodellen.

In Sectie 5.2 worden de constructie van de likelihood en het e�ect van linkstruncatie

en selectie besproken in de context van fragiliteitsmodellen. Daarna geven we een over-

zicht van gerelateerde resultaten voor praktische problemen: hypothese toetsen, margi-

nale en conditionele grootheden en kwaliteit van de �t. In Sectie 5.3 wordt de software-

implementatie van een gepro�leerd verwachtingsmaximalisatiealgoritme besproken. De

voorgestelde schattingsmethode en de berekeningen die nodig zijn om standaardfouten

te verkrijgen worden gepresenteerd. Uit praktisch oogpunt worden de functies uit de

software gepresenteerd, samen met de bijbehorende syntax. Tot slot worden de mo-

gelijkheden van de software geïllustreerd met voorbeelden waar drie bekende datasets

in voorkomen, en die drie belangrijke scenarios omvatten: recurrente gebeurtenissen

in kalendertijd, recurrente gebeurtenissen in tussenliggende tijd, en geclusterde overle-

veingsgegevens.
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