
Multi-biomarker pharmacokinetic-pharmacodynamic relationships of
central nervous systems active dopaminergic drugs
Brink, W.J. van den

Citation
Brink, W. J. van den. (2018, November 21). Multi-biomarker pharmacokinetic-
pharmacodynamic relationships of central nervous systems active dopaminergic drugs.
Retrieved from https://hdl.handle.net/1887/65997
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/65997
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/65997


 
Cover Page 

 
 

 
 
 

 
 
 

The handle  http://hdl.handle.net/1887/65997 holds various files of this Leiden University 
dissertation. 
 
Author: Brink, W.J. van den 
Title: Multi-biomarker pharmacokinetic-pharmacodynamic relationships of central 
nervous systems active dopaminergic drugs 
Issue Date: 2018-11-21 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/65997
https://openaccess.leidenuniv.nl/handle/1887/1�


CHAPTER 8
GENERAL DISCUSSION AND CONCLUSION
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Diseases of the Central Nervous System (CNS) decrease the quality of life of millions of 
people worldwide (1–3). A lot of time, effort and resources are therefore put into the 
development of CNS drugs, while the success rates are low. For example, in the period 
from 2003 – 2011, almost 400 CNS drugs entered phase I clinical development, while less 
than 10% of them received market approval (4). The main reasons for these low success 
rates are the lack of understanding of the complexity of the brain, the presence of the 
blood-brain-barrier limiting drug penetration, CNS mediated side effects, and the lack 
of good biomarkers that represent the interaction of the drug with neurophysiological 
systems (5–7).

Systems pharmacology aims to integrate multiple biological systems for the evaluation 
pharmacological effects to improve the understanding and the prediction of drug effects 
(8–12). While several examples show the merits of systems pharmacology (13,14), they 
are driven by a priori insights into detailed pharmacological knowledge. This is not always 
available during early drug development. As an alternative, the pharmacometabolomics 
approach in combination with multivariate statistical methods provides an unbiased and 
data-driven way to evaluate the system-wide drug effects at the level of biochemical path-
ways (15–17). However, in order to understand and extrapolate the typically non-linear 
drug effects, one needs to quantify the relation between drug dose and response using 
pharmacokinetic/pharmacodynamic (PK/PD) modeling (18–20). In other words, it will 
be important to divert from a fully empirical approach towards a mechanistic approach, 
without loosing the unbiased and data-driven properties of pharmacometabolomics. Ad-
ditionally, given the limited access to the brain in terms of sampling, it is important to 
discover blood-based biomarkers that represent drug effects in the brain. In this thesis, 
we therefore asked two questions:
1. How can we quantify the relation between drug dose and the dynamic systems re-

sponse in vivo?
2. How can we obtain blood-based markers that represent central drug effect?

Section I – General introduction
As an initial step, in Chapter 2, these questions were placed in the context of translational 
pharmacology of CNS drugs with particular focus on interspecies scaling. On one hand, me-
tabolomics enables comprehensive evaluation of interspecies differences at the biochemi-
cal level (21–23). On the other hand, mechanistic PK/PD modeling in combination with allo-
metric and physiology-based scaling is used to extrapolate drug responses from one species 
to another (18,19). Moreover, mechanistic PK/PD modeling can potentially be applied to 
describe the relation between neurological drug effects and blood-based biomarkers, as 
will be discussed below. PK/PD-metabolomics modeling was proposed as an integration 
of PK/PD and pharmacometabolomics with the potential to increase understanding and 
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extrapolati ve ability during translati onal drug development (Figure 1). In Chapter 3, a 
systemati c search was performed in PubMed to investi gate the pathways involved in dopa-
minergic drug eff ects, as well as the availability of blood-based biomarkers related to these 
pathways. A multi tude of pathways appeared to be associated with dopaminergic drug 
eff ects. This included the neurotransmitt er, the nitric oxide and the kynurenine pathway 
in the brain, as well as neuroendocrine and energy pathway responses in the periphery. 
Although this may parti ally be att ributed to the lack of selecti vity of dopaminergic drugs 
(24,25), also selecti ve drugs appeared to perturb multi ple pathways (26–28). Additi onally, 
we found no studies describing the relati on between drug eff ects in the brain and blood-
based biomarkers, except for prolacti n. Moreover, pharmacological eff ects were typically 
evaluated in a stati c manner, with no quanti fi cati on of the dynamics underlying the dose 
response relati on. On basis of these two chapters, we identi fi ed three goals an integrati ve 
PK/PD-metabolomics method needs to fulfi ll in order to answer our questi ons:
- Longitudinal measurement of a systems biomarker response with multi ple dose levels 

included
- Simultaneous evaluati on of drug concentrati ons and drug response biomarkers in 

plasma and the brain
- Integrati on of PK/PD principles into pharmacometabolomics data analysis

Figure 1. Proposed workfl ow of PK/PD metabolomics in interspecies scaling Modifi ed from (56) with per-
mission of Taylor and Francis.
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Secti on II – The dynamical neuroendocrine systems response to study 
dopamine D2 drug eff ects
One way to discover blood-based biomarkers is to evaluate the neuroendocrine systems 
response to CNS drug administrati on (Figure 2). The neuroendocrine system is a connec-
ti on between the neural system and the endocrine system, composed of the hypothala-
mus, the pituitary and the distant endocrine organs. Neural projecti ons from the hypo-
thalamus to the pituitary, for example the tuberoinfundibular dopamine (TIDA) neurons, 
are controlled by neurochemicals, such as dopamine, serotonin or acetylcholine. These 
neurons then release signal (e.g. dopamine) into the pituitary to regulate the release of 
hormones (e.g. prolacti n) from the anterior pituitary into the circulati on (29). Additi onal 
to this mechanism, hypothalamic neurons can also release neuropepti des (e.g. oxytocin) 
directly into the circulati on from their end-feet located in the posterior pituitary. As one 
of the blood-based biomarker strategies depicted in Figure 2, this principle has been used 
to evaluate dopaminergic drug eff ects with prolacti n as blood-based biomarker (30–33).

Although widely applied with proven applicability in biomarker-driven drug development, 
a single-biomarker approach has limitati ons. As we have seen, dopaminergic drugs exhibit 
multi ple eff ects on the neuroendocrine system. To anti cipate a broader in vivo pharmaco-
logical profi le, we set out for a multi -biomarker approach that can refl ect the dynamic en-
docrine systems response to dopamine drug administrati on. In Chapter 4 we investi gated 
the feasibility of a dynamical neuroendocrine systems response upon administrati on of 
the dopamine D2 antagonist remoxipride. Interesti ngly, only adenocorti cotropic hormone 
(ACTH) and prolacti n showed a response, while brain-derived neurotropic factor (BDNF), 
follicle-sti mulati ng hormone (FSH), growth hormone (GH), luteinizing hormone (LH), thy-
roid sti mulati ng hormone (TSH) and oxytocin remained unaff ected by remoxipride (Table 
I). The number of neuroendocrine biomarkers responding to the dopamine D2 agonist 
quinpirole was also low as we showed in Chapter 5, although now also GH and TSH re-
sponded in additi on to ACTH and PRL (Table I). Considering that the dopaminergic system 
is biologically connected to more pituitary hormones and neuropepti des than those iden-
ti fi ed in our studies, for example FSH and LH (34), it is likely that the underlying biological 
networks are resilient to dopaminergic perturbati on by remoxipride and quinpirole. Also, 
the absence of remoxipride eff ect on GH and TSH release suggests no basal D2 receptor 
acti vati on by endogenous dopamine. Considering the higher affi  nity of quinpirole to the 
D2 receptor relati ve to endogenous dopamine, it is indicated that only high levels of D2 
receptor acti vati on infl uence the release. Further studies with multi ple dopamine agonists 
and antagonists are required to validate this series of neuroendocrine markers that can 
evaluate pharmacological perturbati on of the dopaminergic system.
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Table I. Overview of neuroendocrine responses aft er remoxipride and quinpirole administrati on

Remoxipride Quinpirole

Alpha MSH NA 0

Beta Endorphin NA 0

Neurotensin NA 0

Orexin A NA 0

Oxytocin 0 0

Substance P NA 0

ACTH + +

BDNF 0 0

FSH 0 0

GH 0 -

LH 0 0

PRL + -

TSH 0 -

NA: not measured

Figure 2. Diff erent physiological mechanisms through which blood-based biomarkers may be related to 
pharmacological eff ects in the brain. Modifi ed from (57) with permission of Springer.
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An important question is how the hormone-specific potencies are to be interpreted. Two 
factors influence the potency: receptor affinity and signal transduction efficiency (35). 
For remoxipride, prolactin was assumed to be the ‘gold standard’ as biomarker for D2 
receptor activation. While ACTH was found controlled by dopamine in a D2 specific man-
ner, remoxipride would inhibit its release following this mechanism (36). Interestingly, an 
increase of ACTH release was observed in Chapter 4. Therefore, ACTH likely represents an 
off-target effect. Concretely, it was concluded that the effect was possibly mediated via the 
adrenergic receptor, given the ratio of potencies EC50,ACTH/EC50,PRL being similar to the ratio of 
receptor affinities ki,α2/ki,D2 (37) (Chapter 4). While this is an example of the affinity driving 
the differences in potency estimates, Chapter 5 shows how signal transduction efficiency 
determined the differences in potency estimates with quinpirole. Indeed, we could well de-
scribe the ACTH, GH, prolactin and TSH responses assuming equal affinity (kA), but different 
maximal effect (EM) and signal transduction efficiency (τ) (Equation 1, Figure 3, Chapter 5). 
Interestingly, τ could be assumed being related to D2 receptor expression on the hormone 
releasing ‘troph’ cells in the pituitary (Equation 2), showing that the signal transduction 
efficiency can be driven by the characteristics of a specific biological subsystem.

Figure 3. Simulated concentration-effect relation profiles between quinpirole and ACTH, PRL, GH and TSH 
(solid lines) fitted by equation 1 and 2 (dashed lines)

E =
Em * τ * C

 (1)
kA + (1 + τ) * C

τ = τ0 * eslp * receptor expression  (2)
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Additional to single-administration biomarker responses, Chapter 5 also presented the 
effects of longer-term quinpirole administration. This is potentially important for drugs 
with intended chronic use, amongst which antiparkinson D2 agonists. Indeed, the effect 
of D2 agonists may be subject to sensitization or tolerance as was shown in rats (38). The 
basal levels of ACTH and prolactin were changed after 8-day administration relative to 
a single administration. Moreover, not only the basal levels were changed, but also the 
potency of quinpirole affecting the TSH release. Thus, homeostatic feedback mechanisms 
may cause changes in basal biomarker levels, as well as the responsiveness of biomarkers 
to the drug. Interestingly, the biogenic amine and amino acid responses were not changed 
with longer-term quinpirole administration (Chapter 7). This suggests that the systems 
related to biogenic amines and amino acids are more resilient than the neuroendocrine 
system to longer-term quinpirole treatment.

As a final remark on using the neuroendocrine system to identify blood-based biomarkers 
of pharmacological action in the brain, we would like to discuss the topic of target site 
of drug action. The pituitary is not protected by the blood-brain-barrier, and hence, it is 
exposed to plasma drug concentrations. While we could statistically identify brain extracel-
lular fluid (brainECF) as target site for the effect of remoxipride on prolactin, also confirmed 
by others (31), this was not possible for ACTH. Neither could we draw such conclusion 
for the effect of quinpirole on ACTH, GH, prolactin and TSH. In case of quinpirole, we 
assumed that with 5 times higher concentrations around the D2 receptor in the brain as in 
plasma (i.e. Kp,uu = 5), the brain influence would be dominant. However, we acknowledge 
that the hormone release likely is influenced both at the level of the hypothalamus and 
the pituitary. The current lack of simultaneous drug and dopamine concentration data in 
both tissues hampers the development of a model describing a two-level influence of the 
drug. However, the collection of this type of data appears possible; others have performed 
microdialysis sampling in the hypothalamus (39) and the pituitary (40), enabling the quan-
titation of dopamine and drug levels in both tissues.

Altogether, these chapters included longitudinal measurement of a neuroendocrine sys-
tems biomarker, after multiple doses of a D2 antagonist and a D2 agonist. By applying a 
PK/PD evaluation to these data, we gained quantitative insights into the neuroendocrine 
response to dopaminergic drugs and relate those to drug-specific and system-specific 
pharmacological characteristics.

Section III – The dynamical biochemical systems response to study dopamine D2 
drug effects
In section III the multi-biomarker approach was extended from a neuroendocrine platform 
with up to 15 hormones and neuropeptides to a metabolomics platform containing 76 
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amino acids and biogenic amines (41). Several statistical methodologies had been devel-
oped dealing with time-resolved high-dimensional (e.g. metabolomics) data. Clustering, 
for example, is a useful method to identify the main longitudinal patterns in a multivariate 
dataset (42,43). However, in our experiments we intended not only to include the dimen-
sion of time, but also the dimension of dose and sampling site (i.e. plasma and brainECF), in 
a parallel study design. A multivariate method that can include multiple dimensions, such 
as time, dose and sampling site, ANOVA-simultaneous component analysis (ASCA) was de-
veloped (44). It has been applied to study the effects of dose and time on a metabolomics 
response in osteoporosis arthritis guinea pigs receiving different dose levels of vitamin C. 
While this method filled the gap of taking into account underlying study design factors in 
multivariate statistics, it did not apply very well to our data. In contrast to the guinea pig 
data, our sampling times are very close and unevenly spaced. Therefore, the successive 
data points are correlated in a non-linear manner. Treating these time points as factor 
would limit the identification of the underlying dynamics. More importantly, none of the 
existing methods dealing with multivariate dynamical patterns integrates pharmacological 
principles into the data analysis. Therefore, we set out to integrate PK/PD principles into 
multivariate data analysis. In Chapter 6, we measured time-resolved biogenic amine and 
amino acid patterns upon administration of several remoxipride dose levels. Then, using a 
three-step approach of i) fitting a turnover model to each single biomarker; ii) clustering 
the metabolites on basis of the pharmacological parameter estimates; and iii) fitting a 
turnover model to each cluster of biomarkers, we identified 6 different PK/PD patterns in 
the data. The in vivo potency values related to the clusters were estimated to be 0.0027, 
0.019 or 0.12 μM, indicating multiple pathways involved in remoxipride pharmacology. 
Although we cannot indicate whether these differences were related to off-target effects 
or differences in signal transduction efficiency, either way this PK/PD-metabolomics model 
provided a way to define a therapeutic range on basis of a systems response. Furthermore, 
from the 44 analytes that could be robustly analyzed, 18 were identified as potential 
biomarker for further validation. While this was a step forward shifting the fully empirical 
multivariate statistical methods towards a mechanistic modeling approach, the PK/PD-
metabolomics method lacked one important feature. No information was included on the 
biomarker responses in the brain. Unfortunately, at the time, the measurement of biogenic 
amine and amino acid response in brainECF by means of intracerebral microdialysis ap-
peared not robust enough. In Chapter 7, however, after optimization of the microdialysis 
method for biogenic amine and amino acid analysis, simultaneous biomarker measure-
ments in brainECF and plasma were included. Using model comparison metrics, the target 
site of action related to the individual biomarkers was identified. The clustering step, now 
both on the brainECF and the plasma response, was different from that applied in Chapter 
6. While the remoxipride responses could all be described by turnover models, a larger 
variety of models, including pool models, turnover models and transit compartment mod-
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els, was needed for the quinpirole responses. Therefore, parameter-based clustering not 
being possible, the clustering was based on simulated biomarker patterns. This clustering 
approach was proven successful by a good fit of the cluster patterns, as well as the single 
metabolite patterns by the cluster-based PK/PD model. From this chapter, there are three 
important conclusions to draw. First of all, even considering that the plasma quinpirole 
concentrations are 5 times lower than those in brainECF, there are multiple effects observed 
with plasma as target site. Second, while these biomarker responses originate in other tis-
sues than the brain, most of them are propagated to the brain via transport over the BBB 
by various transporters. Thus even a drug that does not penetrate the brain, might cause 
secondary responses in the brain (Figure 4). Third, although multiple biomarker responses 
were observed in brainECF, only a few of them were transported over the BBB into plasma 
as a potential blood-based biomarker (Figure 4).

Figure 4. Potential biomarkers of quinpirole effect in brainECF (left) or plasma (right), positioned right from 
the vertical grey line. Red circles indicate the biomarkers that distribute over the blood-brain-barrier.

Counter-intuitively, many of the amino acids and biogenic amines that decreased upon 
remoxipride treatment, were also inhibited by quinpirole. Since in both studies a control 
group receiving saline was included, the responses must be attributed to drug action. A 
possible explanation could be that the responses of either remoxipride or quinpirole are 
caused via another target than the D2 receptor. Quinpirole has high affinity for the D2 and 
the D3 receptor. There is, however, no reason to believe that D3 receptor opposes D2 
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receptor, such that D3 receptor agonism leads to similar actions as D2 receptor antago-
nism. Alternatively, remoxipride possibly interacts with the adrenergic receptor at high 
concentrations (Chapter 3); however, in Chapter 6 the highest dose was reduced by 50%. 
Interestingly, remoxipride has higher affinity as an antagonist for the sigma receptor than 
for the D2 receptor (37,45,46). Sigma receptor ligands have been investigated in clinical 
trials for several indications, including diarrhea (agonists) and schizophrenia (antagonists) 
(47,48). Activation of the sigma receptor reduced the motility of the ileum (49). Antago-
nism of the sigma receptor, possibly leading to increased motility of the ileum, may lead 
to shorter intestinal transit time and the concordant reduction of amino acid uptake. 
Furthermore, the sigma receptor inhibits NMDA receptor sensitization by phosphoryla-
tion of the NR1 subunit (50). As an antagonist, remoxipride may thus have disinhibited 
NMDA receptor sensitization, with the reduction of the NMDA co-activators glycine and 
serine as a consequence of negative feedback. The reduction of biogenic amine and amino 
acid levels caused by remoxipride may thus be mediated via the sigma receptor. Although 
a definitive answer to this matter remains elusive, it underlines the need for extension 
of our work with other dopamine ligands to identify the responses that are specifically 
related to D2 receptor interaction.

Altogether, in Chapter 6 and Chapter 7, we have developed a methodology that accounts 
for the pharmacological principles underlying the relation between the drug dose and the 
systems biomarker response. Concretely, we could identify unique in vivo concentration-
effect relations, target site of drug action, and potential blood-based biomarkers repre-
senting the systems response.

We have shown how the PK/PD-metabolomics method, in combination with serial blood 
and brainECF sampling and multiple dose levels included, enables the identification of 
multiple concentration-effect relations and the concordant target site of drug action, 
and potential blood-based biomarkers that represent these pharmacological properties. 
Furthermore, as a step towards further mechanistic insight, in a targeted analysis on the 
neuroendocrine system, we could reveal the relation between drug response, signal trans-
duction efficiency and D2 receptor expression on the pituitary hormone secreting cells. 
This positions the PK/PD-metabolomics method in between the unbiased, yet empirical 
multivariate statistical methods and the mechanism-based quantitative systems pharma-
cology (QSP) approaches (Figure 5).
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Figure 5. Positi oning of PK/PD-metabolomics models between quanti tati ve systems pharmacology (QSP) 
models and multi variate stati sti cal models

Perspecti ves of the PK/PD-metabolomics method in CNS drug development
CNS drug development is hampered by poor understanding of pharmacological mecha-
nisms underlying the drug eff ects on one hand, and lack of (blood-based) biomarkers 
representi ng these mechanisms on the other hand. Given that insight into pharmacologi-
cal mechanisms are strongly associated with the success in clinical drug development (20), 
there is a need for methodologies that enable early investi gati on of these mechanisms. 
The PK/PD-metabolomics method has the potenti al to increase early insights into phar-
macological mechanisms in an unbiased and integrated manner. Metabolomics analysis 
can easily be added to the standard batt ery of analysis performed in (pre-)clinical studies. 
Currently, the metabolomics analysis of one sample costs between the 25 and 400 euros, 
depending on the sensiti vity and the number of analytes. A hypotheti cal study with 50 
subjects and 20 samples per subject will thus cost between 25,000 and 400,000 euros. In 
the context of the costs of late att riti on, this is negligible (4).

PK/PD-metabolomics could have an advantage from early drug discovery to late drug 
development. During early drug discovery, drugs are typically selected on basis of their 
affi  nity to the target of interest. However, it is argued that the effi  cacy of many CNS drugs 
is related to multi -target affi  nity, rather than the selecti vity for a single-target (24). Multi -
variate analysis of in vitro receptor affi  nity profi les of anti -Parkinson drugs revealed sub-
clusters of the D2 agonists, and it was suggested that other receptors were also involved in 
the effi  cacy of these drugs. PK/PD-metabolomics could provide the basis of the correlati on 
between these in vitro receptor affi  nity profi les and the in vivo potency profi les to further 
investi gate the relati on between the in vitro binding fi ngerprint and the in vivo systems 
eff ects.
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During early drug development, PK/PD-metabolomics will be of value for the discovery 
of biomarkers, as well as their characterization in terms of pharmacological parameters. 
Moreover, we have shown how blood-based biomarkers can be discovered with metabolo-
mics analysis performed both in brainECF and plasma. These biomarkers will be of great value 
for CNS drug development, given the limitations of human brain sampling. Ultimately, PK/
PD-metabolomics could provide the basis of interspecies scaling of a systems-biomarker 
response as tool in the guidance of the first-in-human dosing regimen. The subsequent 
validation of the PK/PD-metabolomics model on human metabolomics data could create 
insights into interspecies differences relevant for drug development.

Finally, in this thesis inter-individual variation was mostly assumed not present given the 
standardized experimental design. However, inter-individual variation is a key element 
in precision medicine during clinical development (51). PK/PD-metabolomics is easily 
extended to describe personal drug responses in order to optimize dosing regimen in an 
individualized manner. For example, the reduction of TSH by D2 agonists is known to ex-
acerbate the clinical condition of hypothyroidism patients (52). Knowing the quantitative 
relation between D2 agonist dose and the TSH response will enable personalized dosing 
guidance preventing an unacceptable reduction of TSH levels.

Further development of the PK/PD-metabolomics method
While we have shown the potential of the PK/PD-metabolomics method, we would like to 
make a few recommendations for further research.

Application of the PK/PD-metabolomics method to other D2 ligands and clinical 
validation for proof-of-concept
This thesis has shown the development and feasibility of the PK/PD-metabolomics ap-
proach, which now is ready for further validation to generate a proof-of-concept. As we 
discussed earlier, the comparative results of the D2 agonist quinpirole and the D2 antagonist 
remoxipride appeared non-intuitive, possibly because non-dopaminergic responses are 
involved. Therefore, to ensure the discovery of dopamine system specific biomarkers, we 
recommend applying the PK/PD-metabolomics method to multiple D2 ligands to reveal the 
overlapping systems biomarker responses. Furthermore, as we argued in Chapter 2 the 
PK/PD-metabolomics method has potential to bridge the lack of mechanistic biomarkers 
that can be used across preclinical and clinical drug development. In Chapter 7 we showed 
how a combination of microdialysis and PK/PD-metabolomics enables the identification 
of blood-based biomarkers. As visualized in Figure 1, an important future step will be the 
clinical validation of these biomarkers.
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Microdialysis in multiple brain locations to study regional responses in the brain
In our experiments, microdialysate samples were collected from the caudate putamen to 
evaluate biomarker responses representing the function of striatal neurons. A higher level 
of complexity is presented in the form of brain circuitry that would allow for a regional 
evaluation of CNS pharmacology (7,14). An interesting next step will be to connect those 
circuits to the underlying biochemical processes. We recommend the simultaneous evalu-
ation of biochemical responses in multiple brain regions, such as the caudate putamen, 
the prefrontal cortex or the nucleus accumbens, in order to evaluate the biochemistry 
related to the circuit functionality. Simultaneous microdialysis sampling in multiple brain 
regions has proven feasible for CNS PK studies (53).

Additionally, cerebrospinal fluid (CSF) sampling should be included in future PK/PD-metab-
olomics studies. CSF-based biomarkers have the advantage over blood-based biomarkers 
that they are not blocked by the BBB. Indeed, in our study with quinpirole, we found many 
brainECF biomarkers not reflected in plasma. CSF might provide a good alternative.

Application of PK/PD-metabolomics to measurements from multiple analytical platforms
The PK/PD-metabolomics methodology was developed on basis of the biogenic amine 
and amino acid metabolomics platform. The choice of this platform was based on our ex-
pectation that many of these biomarkers would respond to dopamine ligands. Indeed, we 
identified many of them responding to remoxipride and quinpirole. However, many other 
biomarkers, for example, lipids and acylcarnitines, may also be included in the future to 
study the effects of CNS drugs on multiple biochemical pathways. Our analyses were lim-
ited to biogenic amines and amino acids because of limited microdialysate sample volume. 
Indeed, with microdialysis, there is a compromise between sample volume, time resolu-
tion and recovery of the biomarker into the microdialysate. Fortunately, developments 
at the microdialysis-metabolomics interface are continuously increasing, also focusing on 
improving the sensitivity of analytical methodology (54,55).

Inclusion of sex differences in the study design
While in our studies only male animals were included for purposes of standardization, 
there is clear evidence for the impact of sex on biological pathway functionality in disease 
and drug effect (56,57). Indeed, sex difference was one of the factors that limited the 
comparison of studies in Chapter 3 and Chapter 5. As an example, the interaction between 
dopamine or dopamine agonists and the pituitary D2 receptor is influenced by estrogen, 
that is expressed in much higher levels in females than in males (58,59). Given the impor-
tance of sex differences in disease and drug effect, it will be important to include sex as a 
variable in clinical and preclinical studies. 
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General conclusion
We set out to quantify the relation between drug dose and the dynamic systems biomarker 
response, as well as to discover blood-based biomarkers that represent drug effects in the 
brain. To that end, we developed the PK/PD-metabolomics method for identification of the 
main PK/PD patterns in the data. These PK/PD patterns were described in terms of phar-
macologically relevant parameters, such as EMAX and EC50, enabling inter- and extrapolation 
of the systems biomarker response. For the neuroendocrine system, with more knowledge 
available on the physiological processes involved, we could obtain further mechanistic 
insights, relating signal transduction efficiency to D2 receptor expression in the pituitary. 
Furthermore, with time-resolved metabolomics data available in both brainECF and plasma, 
PK/PD-metabolomics enabled the identification of the target site of drug effect for the 
different biomarkers, as well as the discovery of blood-based biomarkers of drug effects 
in the brain. Being positioned between the general multivariate statistical methods and 
QSP models, PK/PD-metabolomics will be useful to provide quantitative pharmacological 
insights into the systems response of CNS drugs in a data-driven manner. 
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