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CHAPTER 7
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Abstract
A key challenge in the development of CNS drugs is the availability of drug target specific 
blood-based biomarkers. As a new approach, we applied multivariate pharmacokinetic/
pharmacodynamic (PK/PD) analysis in brainECF and plasma simultaneously after 0, 0.17 and 
0.86 mg/kg of the dopamine D2/3 agonist quinpirole (QP) in rats. We measured 76 biogenic 
amines in plasma and brainECF after single and 8-day administration, to be analyzed by 
multivariate PK/PD analysis. Multiple concentration-effect relations were observed with 
potencies ranging from 0.001 – 383 nM. Many biomarker responses propagated over 
the blood-brain-barrier. Effects were observed for dopamine and glutamate signaling in 
brainECF, and branched-chain amino acid metabolism and immune signaling in plasma. 
Altogether, we showed for the first time how multivariate PK/PD could describe a systems-
response across plasma and brain, thereby identifying potential blood-based biomarkers. 
This concept is envisioned to provide an important connection between drug discovery 
and early drug development.

Keywords: Metabolomics, systems pharmacology, PK/PD, CNS drug development, dopa-
mine agonists
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Introduction
One of the key challenges in central nervous system (CNS) drug development is the dis-
covery of blood-based biomarkers that reflect the central response (1,2). Such biomarkers 
enhance the evaluation of the proof of pharmacology of CNS drugs, which is crucial for 
successful drug development (3). It is particularly important to dynamically evaluate the 
biomarker responses in relation to the systems pharmacokinetics (PK) of the drug, given 
that the interaction between PK and pharmacodynamics (PD) typically is non-linear and 
time-dependent (4,5).

While currently biomarker discovery is nowadays typically driven by the known phar-
macological mechanisms, metabolomics fingerprinting is not limited to these pathways. 
Metabolomics analysis has revealed multiple new biochemical pathways in relation to 
drug responses (6–11).

One of the techniques being useful in CNS biomarker discovery is intracerebral microdi-
alysis. It is a well-established technique that has been successfully applied to study drug 
concentrations as well as drug response biomarkers in brain extracellular fluid (brainECF) 
to evaluate CNS PK and PD (12–14). Therefore, microdialysis is the method of choice to 
dynamically evaluate a metabolomics fingerprint in brain extracellular fluid (brainECF) 
simultaneously upon CNS drug treatment. Such dynamical evaluation would improve the 
quantitative insights into systems-wide responses (i.e. changes in biomarker concentra-
tions), thereby shifting CNS drug development from an empirical towards a mechanistic 
discipline (15,16).

In an earlier study we have already shown that a multivariate (PK/PD) evaluation of a 
metabolomics response in plasma reveals multiple dynamics underlying a systems re-
sponse upon treatment with remoxipride (17). In the current study we set out to extend 
this methodology with a simultaneous evaluation of a metabolomics response in both 
plasma and brainECF, using the dopamine D2/3 receptor agonist quinpirole (QP) as paradigm 
compound. Overall, the purpose is to provide insight into the systems-wide biochemical 
responses of CNS drugs, combined with PKPD modeling as a new approach to discover 
blood-based biomarkers of central responses.

Methods
Animals, surgery and experiment
Animals – Animal studies were performed in agreement with the Dutch Law of Animal 
Experimentation and approved by the Animal Ethics Committee in Leiden, the Netherlands 
(study protocol DEC12247). For details on animals, surgery and experiment, we refer to (18).
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Surgery – In short, male Wistar rats (n=44) underwent surgery while anesthetized, to 
receive cannulas in the femoral artery and vein for blood sampling and drug administra-
tion, respectively. The microdialysis probe guides (CMA/12) and their dummy probes were 
implanted in the caudate putamen in both hemispheres. The probes (CMA/12 – Elite 4 
mm) were placed 24 hours before experiment.

Experiment – The animals were subjected to an experiment on two days with 7 days in 
between. On the days of experiment, the rats were randomly assigned to receive 0 mg/
kg (n=12), 0.17 mg/kg (n=16) or 0.86 mg/kg (n=16) QP. Microdialysate samples were col-
lected from -200 to 180 minutes (20-minute interval, 1.5 μl/min, 120 min. equilibration 
time). Blood samples were taken at -5, 5, 7.5, 10, 15, 25, 45, 90, 120 and 180 minutes 
and centrifuged to separate the plasma (1000 x g, 10 min, 4°C). Samples were stored at 
-80°C until analysis. Between the experiment days, the same doses were administered 
subcutaneously.

Chemical analysis of the samples
Targeted monoamine + metabolite analysis – A selection of plasma and microdialysate 
samples collected on experiment day 1 were analyzed by BrainsOnline (Groningen, The 
Netherlands). The samples were delivered on dry ice and stored at -80°C until analysis. 
Monoamines and their metabolites (serotonin, 5-hydroxy indoleacetic acid, dopamine, 
3,4-hydroxyphenylacetic acid, homovanillic acid, glutamate and glycine) were analyzed 
employing SymDAQ derivitization (19,20). Data were calibrated and quantified using the 
Analyst™ data system (Applied Biosystems, Bleiswijk, The Netherlands) to report concen-
trations of the analytes.

Untargeted biogenic amine analysis – The biogenic amines were analyzed in microdialy-
sate and plasma samples of experiment day 1 and 8 according to a previously described 
method (21). Amino acids and amines were derivatized by an Accq-tag derivatization 
strategy. Plasma samples (5 µL) were reduced with TCEP (tris(2-carboxyethyl)phosphine) 
and deproteinated by MeOH. Microdialysate samples (30 µL) were only reduced with 
TCEP. The samples were dried under vacuum while centrifuged (9400xg, 10 min, Room 
Temperature), and reconstituted in borate buffer (pH 8.8) with with AQC (6-aminoquinolyl-
N-hydroxysuccinimidyl carbamate) derivatization reagent. The reaction mixtures were 
injected (1 µL) into an UPLC-MS/MS system, consisting of an Agilent 1290 Infinity II LC 
system, an Accq-Tag Ultra column, and a Sciex Qtrap 6500 mass spectrometer. The peaks 
were assigned using Sciex MultiQuant software, integrated, normalized for their internal 
standards, and corrected for background signal. Only compounds with a QC relative stan-
dard deviation (RSDQC) under 30% were reported to assure quality of the data.
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Data analysis
Pharmacokinetic model – The PK model has been published previously and described the free 
QP concentrations in plasma and brainECF with QP doses ranging from 0.17 to 2.14 mg/kg (18).

Pharmacodynamic models – A PD model was developed for each single metabolite (here-
after called biomarkers) using a population approach in NONMEM® version 7.3.0 with sub-
routine ADVAN13. The inter-individual variability around the parameters and the residual 
error were described by an exponential distribution (suppl. Equation 1, 2). A combination 
of submodels was evaluated for each single biomarker consisting of i) a straight baseline, 
an exponential decay, or a linear slope model; ii) a linear or a sigmoid EMAX concentration 
response model; iii) a transit or no transit compartment model; and iv) a turnover or a 
pool model (Suppl. equations 4 - 7). In addition, a model with no drug response function 
was evaluated (Suppl. equation 8) The models were selected on basis of the objective 
function value (χ2-test, p < 0.05), the condition number, successful convergence and visual 
evaluation of goodness-of-fit plots.

Exploration of target site – For biomarkers showing a response in either plasma or brainECF, 
the site with the response was identified as effect target site. In case a biomarker showed 
a response both in plasma and brainECF, two PD models were developed with either the 
plasma biomarker response driving the brainECF biomarker response or vice versa. The link 
between the response in plasma and brainECF was described by a linear or a non-linear 
brain transport model following Michaelis Menten kinetics (Suppl. Equation 9). The Aikaike 
Information Criterium (AIC) of the ‘brainECF target site model’ was subtracted from that of 
the ‘plasma target site model’ to calculate the ΔAIC for selection of the target site model. 
A negative ΔAIC indicated plasma as target site of effect, while a positive ΔAIC suggested 
brainECF as target site of effect.

Clustering – The longitudinal biomarker responses were simulated for their determined 
target site and subsequently clusters of the dynamical pharmacological responses were 
identified in plasma and brainECF using k-means clustering. The number of clusters was 
selected in two steps. First an elbow plot, depicting number of clusters against within clus-
ter sum of squares, was used to identify a range of potential number of clusters. Second, 
for each potential number of clusters a PK/PD cluster model was developed describing 
the cluster responses. The AIC was used to select the model with the optimal number of 
clusters. Subsequently, a step-wise parameter sharing procedure was applied as previ-
ously described (17). In short, a single parameter (e.g. EC50) was estimated for multiple 
clusters and evaluated by the change in OFV (χ2-test, p < 0.05) to determine whether this 
was statistically different from a model with separate parameters. If no difference was 
found, the shared parameter was kept in the model.
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Significance score calculation - The cluster-based model was compared to a model with 
no drug effect model included, i.e. assuming no effect of QP. A significance score was 
calculated by the change in OFV corrected for the degrees of freedom with a Bonferroni-
corrected significance threshold of α = 0.01 (Suppl. equation 10). A significance score > 0 
reflects a significant effect of QP on a biomarker response.

Effect of eight-day QP administration
Basal biomarker levels (t = 0) in both brainECF and plasma at experiment day 1 and experi-
ment day 8 were compared using two-way ANOVA with interaction between dose and ex-
periment day. Tukey honest significant different test was used for posthoc analysis. BrainECF 
basal biomarker levels were averaged per animal, given that there were 4-6 baseline 
samples for each animal. For the biomarkers that revealed a significant change with experi-
ment day, a covariate analysis was performed in the single biomarker models by estimating 
a separate baseline parameter per combination of treatment group and experiment day. 
Only if the covariate analysis revealed a difference, the effect was considered significant.

Results
Exploration of target site of effect
The metabolomics data revealed 23 biomarkers primarily responding to QP in plasma, and 
15 biomarkers primarily affected by QP in the brain (Table I, Figure 1). DL-3-aminobutyric 
acid and serotonin could only be measured in plasma, while L-glutamine could only be 
measured in brainECF. From all the biomarkers that reflected an effect of plasma QP, 19 
showed a net transport to the brainECF. Inversely, 5 biomarkers exhibited a net transport 
from brainECF into plasma, potentially leading to secondary responses in plasma. The inter-
compartmental transport rates between plasma and brainECF of many biomarkers were 
described by non-linear Michaelis-Menten kinetics (Table I).

Table I. Overview of biogenic amines and their target site that showed a response upon QP treatment. The 
Delta Akaike Information Criterium (ΔAIC) indicates the target site (see methods). Also, the type of brain 
transport is indicated (yes, no or not available (N.A.)). PàB and BàP stand for plasma-to-brain and brain-to-
plasma, respectively. Only biomarkers presented in black showed a significant response in the cluster models.

Biomarker Target site ΔAIC Brain transport

Targeted approach (BrainsOnline)

Dopamine BrainECF - No

DOPAC BrainECF - No

HVA BrainECF - No

Glycine Plasma -56.216 Yes – NonLinPàB

5-HIAA Plasma - No

L-Glutamic acid Plasma - No
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Table I. (continued)
Biomarker Target site ΔAIC Brain transport

Untargeted approach (BMFL)

L-Phenylalanine Plasma -75.811 Yes – NonLinBàP

L-Valine Plasma -73.682 Yes – NonLinBàP

L-Methionine sulfoxide Plasma -55.917 Yes – NonLinPàB

Taurine Plasma -48.638 Yes – NonLinBàP

S-Methylcysteine Plasma -46.564 Yes – Linear

L-Alpha-aminobutyric acid Plasma -40.634 Yes – NonLinPàB

L-Asparagine Plasma -37.597 Yes – NonLinBàP

L-Alanine Plasma -35.086 Yes – NonLinPàB

Gamma-L-glutamyl-L-alanine Plasma -33.872 Yes – NonLinPàB

L-Threonine Plasma -31.734 Yes – Linear

L-Methionine Plasma -24.946 Yes – Linear

L-Histidine Plasma -24.715 Yes – Linear

L-Arginine Plasma -24.469 Yes – NonLinPàB

L-Isoleucine Plasma -13.582 Yes – NonLinBàP

Glycine Plasma -12.572 Yes – Linear

Homocysteine Plasma -10.954 Yes – Linear

L-Serine Plasma -8.129 Yes – Linear

Citrulline Plasma -5.407 Yes – NonLinBàP

L-Leucine Plasma -2.462 Yes – NonLinBàP

DL-3-aminoisobutyric acid Plasma - N.A.

Histamine Plasma - No

L-Glutamic acid Plasma - No

L-Homoserine Plasma - No

Methionine sulfone Plasma - No

Serotonin Plasma - N.A.

L-Proline BrainECF 41.574 Yes – NonLinBàP

N6,N6,N6-Trimethyl-L-lysine BrainECF 27.282 Yes – NonLinBàP

Hydroxylysine BrainECF 8.103 Yes – Linear

L-Lysine BrainECF 4.747 Yes – NonLinBàP

L-4-hydroxy-proline BrainECF 1.111 Yes – NonLinBàP

Homocitrulline BrainECF 0.261 Yes – NonLinBàP

3-Methoxytyramine BrainECF - No

5-Hydroxy-L-tryptophan BrainECF - No

Cystathionine BrainECF - No

Gamma-aminobutyric acid BrainECF - No

L-2-aminoadipic acid BrainECF - No

L-Glutamine BrainECF - N.A.

L-Tryptophan BrainECF - No

L-Tyrosine BrainECF - No

Ornithine BrainECF - No

Putrescine BrainECF - No

Sarcosine BrainECF - No
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Figure 1. Significance score of responding metabolites in brainECF (left) and plasma (right) indicating their 
potential as a biomarker of the QP systems effect. The grey line marks the significance threshold; metabo-
lites right of the line were significantly affected by QP. The red circles indicate the metabolites that distrib-
ute from brainECF to plasma and vice versa. *Cluster 1 was excluded for brainECF since no effect was observed. 
[BO] refers to the amines analyzed by BrainsOnline.

Clustered response patterns in brainECF and plasma
A total of 7 clusters of dynamical biomarker responses in brainECF was selected (Table II). 
Using parameter sharing, it was observed that the biomarkers responded with either a 
high or a low potency (EC50 = 0.01 nM or EC50 = 122 nM, Table III, Figure 2). The turnover 
of these biomarkers was low (0.031 min-1 – 0.056 min-1) or high (0.13 min-1 – 0.44 min-1). 
The responses in plasma were also separated into 7 clusters (Table II) described by models 
with transit compartment models (cluster 1 & 4), pool models (cluster 5 & 6) and turnover 
models (cluster 2, 3 & 7) (Table III). A wider variety of potency parameter estimates were 
identified in plasma as compared to brainECF: 0.01 nM, 17.2 nM, and 113 - 383 nM (Table 
III, Figure 2). Moreover, the direction of response was both up (cluster 1 & 4) and down 
(cluster 2, 3 & 5-7). The responses in brainECF and plasma were well described by the 
cluster-PKPD models (Figure 3, suppl. Figure 2).

Effect of QP on the dopamine pathway
Dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), the 
key constituents of the dopamine pathway, were decreased in brainECF upon QP treatment. 
Whereas the in vivo potency was found to be similar for these biomarkers (122 nM), the 
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maximal inhibition values (DA: 67%, DOPAC: 41%, HVA: 60%) and the turnover rates (DA: 
0.44 min-1, DOPAC: 0.13 min-1, HVA: 0.031 min-1) were different (Table III, Figure 2). No 
responses of QP treatment were observed for DA and HVA in plasma, while DOPAC could 
not be measured in plasma due to assay lower limit of detection of 50 nM.

Table III. Parameter estimates of the cluster models. RSE: relative standard error.

Plasma BrainECF

Parameter Estimate (RSE) Parameter Estimate (RSE)

Cluster 1*

EMAX (%) 4650 (41.1%)

EC50 (nM) 383 (54.3%)

kout (min-1) 0.035 (42.3%)

ktransit (min-1) 0.044 (33.1%)

Table II. Determination of optimal number of clusters in plasma and brainECF using the Akaike Information 
Criterium (AIC). In bold the selected number of clusters.

Plasma BrainECF

# clusters AIC # clusters AIC

4 65500.76 6 78140.64

5 64991.03 7 76518.12

6 64966.79 8 76523.49

7 64876.42 9 78319.55

8 66314.62 10 76535.81

Figure 2. An overview of the concentration-effect relations that underlie the systems responses in brainECF 
(left) and plasma (right). Thick line parts represent the range of observed biomarker concentrations *Clus-
ter 1 was excluded for brainECF since no effect was observed.
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ntransit 8.3 (19.2%)

Cluster 2

IMAX (%) -20 (30.1%) IMAX (%) -20 (6.1%)

IC50 (nM) 113 (98.5%) IC50 (nM) 0.001 (fix)

kout (min-1) 0.057(38.3%) kout (min-1) 0.056 (27.9%)

Cluster 3

IMAX (%) -20 (30.1%) IMAX (%) -29 (7.1%)

IC50 (nM) 17.2 (50.6%) IC50 (nM) 0.001 (fix)

kout (min-1) 0.11 (12.2%) kout (min-1) 0.13 (13.3%)

Cluster 4

EMAX (%) 363 (67.5%) IMAX (%) -15 (13.5%)

EC50 (nM) 113 (98.5%) IC50 (nM) 0.001 (fix))

kout (min-1) 9.58 (104%) kout (min-1) 0.14 (32.7%)

ktransit (min-1) 0.0052 (46.8%)

ntransit 1.79 (17.9%)

Cluster 5

IMAX (%) -41 (14.6%) IMAX (%) -41 (9.0%)

IC50 (nM) 339 (32.8%) IC50 (nM) 122 (51.4%)

kout (min-1) 0.11 (12.5%) kout (min-1) 0.13 (13.3%)

krel (min-1) 0.018 (27.5%)

Cluster 6

IMAX (%) -90 (0.3%) IMAX (%) -67 (4.9%)

IC50 (nM) 0.001 (fix) IC50 (nM) 122 (51.4%)

kout (min-1) 0.10 (18.4%) kout (min-1) 0.44 (47.9%)

krel (min-1) 0.35 (19.6%)

Cluster 7

IMAX (%) -41 (6.4%) IMAX (%) -60 (9.3%)

IC50 (nM) 17.2 (50.6%) IC50 (nM) 122 (51.4%)

kout (min-1) 0.060 (13.5%) kout (min-1) 0.031 (28.9%)

* Cluster 1 was excluded for brainECF since no dose-response was observed.
Consequently, parameter estimates were not informative.
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Figure 3. Goodness-of-fit of the cluster responses as change from baseline in brainECF (top) and plasma (bot-
tom). Dots and error bars mark the geometric mean +/- standard deviation of the observed cluster respons-
es, light lines represent the geometric mean of the single metabolite responses and dark lines show the 
predicted cluster responses. The facet labels show the number of metabolites between the parentheses. 
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Effect of QP on other pathways in brainECF

In brainECF QP was found to interact with the polyamine metabolism (ornithine, putres-
cine), the proline metabolism (proline, L-4-hydroxyproline), neurotransmitter precursors 
(tryptophan, tyrosine), and lysine metabolism (lysine, hydroxylysine) (Table I, Figure 1).

Effect of QP on metabolic pathways in plasma
The systemic response on amino acid metabolism in plasma indicated interactions be-
tween QP and the branched chain amino acid (BCAA) metabolism (leucine, isoleucine, 
valine), neurotransmitter synthesis (phenylalanine), serine-glycine-threonine metabolism 
(serine, glycine, threonine), and histamine metabolism (histidine, histamine) (Table I, 
Figure 1). Furthermore, alpha-aminobutyric acid and DL-3-aminoisobutyric acid strongly 
responded to QP treatment (Table I, Figure 1).

Effect of eigth-day QP administration on basal biomarker levels
Eight-day QP administration did not result in significant changes in basal brainECF biomarker 
levels, but showed a significant change in plasma levels of alpha-aminobutyric acid and 
DL-3-aminoisobutyric acid after 0.17 mg/kg (p < 0.05), but not after 0.86 mg/kg QP (p 
> 0.05) (Figure 4). However, including the interaction between treatment and day as a 
covariate in the PK/PD models for these biomarkers did not result in a significant improve-
ment of the model (p > 0.05), potentially related to the lack of a dose-response relation.

Figure 4. Relative change of L-Alpha-aminobutyric acid levels in plasma after 8-day administration as com-
pared to a single administration. * denotes a significant effect with p < 0.05.
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Discussion
In this study we aimed for combining metabolomics in brainECF and plasma with multivari-
ate PK/PD modeling to obtain insight into the systems response, as well as to explore the 
target site of effect upon CNS drug administration. By integrating time-resolved metabo-
lomics analysis with multivariate PK/PD, we revealed the diverse dynamical responses of 
biogenic amines and amino acids in brainECF and plasma upon administration of the D2/3 
agonist QP. Indeed, the quantitative characterization of the system-wide biomarker re-
sponses showed a variety of in vivo potency and maximal response values in both brainECF 
and plasma. Additionally, the unique evaluation of time-resolved metabolomics in both 
brainECF and plasma revealed a few potential blood-based biomarkers reflecting effects in 
brainECF. Interestingly, it was also observed that many biochemical responses of QP have 
their main origin in the periphery rather than in the brainECF. Finally, our study showed no 
response of eight-day administration on biogenic amine and amino acid levels.

Exploration of target site and identification of blood-based biomarkers
It is a great challenge to identify blood-based biomarkers that reflect neurochemical re-
sponses in the brain. Often, these measurements are done at one time-point. In such case, 
however, correlations between plasma and brainECF responses cannot reveal the causal 
relation. In the current study we were able to use the temporal delay between the brainECF 
and plasma biomarker responses to identify the potential causal relation between them 
(i.e. the slowest response is likely a consequence of the quickest response via transport 
over the blood-brain barrier (BBB)). The BBB has multiple transport systems that transport 
biogenic amines and amino acids, for example, the large neutral amino acid transporter 1 
(LAT1; for transport of e.g. glutamine, tyrosine, tryptophan), the cationic amino acid trans-
porter 1 (CAT1; for transport of arginine and lysine), or the serotonin transporter (SERT; 
for transport of serotonin) (22,23). These transport systems exist at both the luminal and 
abluminal site of the BBB, whereby biogenic amines and amino acids can be transported 
from plasma to brain and vice versa. It is therefore likely that the parallel responses in 
plasma are, at least partially, explained by BBB transport. Interestingly, the number of 
biogenic amines transported from brainECF to plasma was lower than those transported 
from plasma to brain (Table I). This observation it suggests first of all that, even if a drug 
does not cause a direct response in the brain (e.g. because of no exposure), biochemical 
responses may propagate from plasma to brainECF and cause secondary responses. Second, 
the observed assymetry underlines the difficulty of finding blood-based markers reflective 
of drug responses in brainECF. 6 Potential blood-based biomarkers nevertheless reflected 
a response in brainECF (Table I, Figure 1). Importantly, 5 of them showed non-linear trans-
port over the BBB. It is advisable to take this non-linearity into account when evaluating 
blood-based biomarkers as a surrogate for an effect in brainECF. The blood-based biomarker 
response may be restricted by the maximal transport rate over the BBB and hence it 
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may affect the estimation of the maximal effect (EMAX) parameter. Therefore, in order to 
understand the dynamics of the blood-based biomarker response in a clinical context, it 
is recommended to determine the relation between the plasma and brainECF biomarker 
response preclinically similar to the current study.

The effects of eight-day QP administration
Interestingly, while there was a significant response upon eight-day administration of QP 
in PK/PD parameters describing the neuroendocrine response (18), no significant impact 
on basal biomarker levels was identified in the current study, although dopamine, DOPAC 
and HVA were only analyzed for experiment day 1. A possible explanation could be that 
the biological systems that underlie the amino acid and biogenic amine responses have 
greater flexibility than the neuroendocrine system in adapting to perturbations such as QP 
administration.

The effects of QP on multiple pathways
QP appeared to have an overall inhibiting response on multiple biogenic amine pathways. 
First of all, the dopamine metabolism in the brainECF was inhibited, which could be ex-
plained by the response of QP on the D2 autoreceptors located on the presynaptic neuron 
(24). Moreover, QP reduced peripheral phenylalanine concentrations, thereby lowering 
the brain levels of phenylalanine and tyrosine that constitute the basis of the dopamine 
metabolism. Second, although QP did not significantly affect cerebral glutamate levels, 
glutamate signaling may be inhibited by QP, given that glycine, serine, proline and pu-
trescine levels in brainECF were decreased, all acting as co-activator of the NMDA receptor 
(25,26).

Furthermore the reduction of the BCAA levels and the increase of DL-3-aminoisobutyric 
acid in plasma may both be associated with increased activity of the animals. BCAA levels 
were found negatively correlated with activity (27), while DL-3-aminoisobutyric acid was 
observed positively associated with activity (28). Indeed, QP does induce locomotion as 
measure of increased activity and movement (29), and the modified levels of BCAA and 
DL-3-aminoisobutyric acid in our study may be a reflection of that.

Finally, the reduction of histidine and histamine in plasma may reflect an inhibitory ef-
fect of QP on the immune system. Histamine is directly released from dendritic cells, 
macrophages and neutrophils upon production from histidine by the enzyme histidine 
decarboxylase (30). Interestingly, dopamine receptors are expressed in various immune 
cells such as dendritic cells, neutrophils and natural killer cells (31), indicating a potential 
mechanism through which QP may have influenced the histamine metabolism.
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Some limitations of the current study
Of course we are aware of some limitations of this study. First of all, while the results 
in our study strongly indicate a systems wide response for the D2/3 receptor agonist QP, 
it should be confirmed by using other D2 agonists whether the observed responses are 
related to dopaminergic activity, and to which receptor subtype they are related. Such 
analysis would give insights into drug-class specific system-wide responses. For example, 
a multivariate analysis of several antipsychotic D2 receptor agonists showed large neuro-
chemical and behavioral overlap of clozapine with 5-HT2a antagonists, but not haloperidol 
(32). Ultimately, the multivariate PK/PD approach may link in vitro and in vivo characteriza-
tions of drug-class related pharmacology by connecting the pattern of in vivo potencies to 
in vitro affinities.

Second, although the analytical platforms that have been used in the current study are 
well-developed with proven robustness (19,21), glycine measured by the targeted platform 
was described by cluster 3 dynamics, while the glycine response as analyzed by untargeted 
analysis was closer to the cluster 2 pattern (Figure 1). Inter-laboratory reproducibility is 
currently a topic of investigation, although early research suggests good robustness of 
metabolomics platforms towards this type of variation (33). An explanation could be non-
linearity of the apparatus response given the fact that the untargeted analysis provided 
response ratios (analyte peak area/internal standard peak area), whereas the targeted 
analysis presented concentrations. 

Third, although not only biogenic amines and amino acids are expected to respond to QP, 
we were limited by sample volume of the microdialysates. It would be valuable to extend 
the current approach with multiple platforms integrated to obtain a comprehensive insight 
into the system-wide effects of CNS drugs. Fortunately, the microdialysis-metabolomics 
technology is rapidly evolving, requiring lower sample volumes for metabolomics analysis 
(34,35). Furthermore, to counteract the high attrition rates in CNS drug development, it 
will be important to accurately monitor the pharmacology in early clinical drug develop-
ment (3). Such monitoring needs accessible biomarkers that can be obtained from the 
blood, for example. The combined microdialysis-metabolomics technology is envisioned 
valuable and relatively low-cost to develop specific biomarker panels for CNS drugs (or 
drug classes).

Finally, all brainECF measurements were made in the striatum. To gain insight into the 
higher hierarchy of the brain, the brain circuitry, it is essential to do measurements in 
multiple brain regions that are relevant to the drugs’ mechanism of action. Indeed, CNS 
diseases and treatment responses are determined by the balance among signaling of 
multiple neurotransmitters in multiple regions (36–38). Addition of multiple brain regions 
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to a multivariate PK/PD model is therefore envisioned to further elucidate the systems 
pharmacodynamics of CNS drugs.

Conclusion
CNS drug development is challenged by low success rates and high development costs. 
Biomarker-driven drug development is seen as a logical step to improve these success 
rates, and metabolomics holds great promise in this regard. It provides a relatively low-
cost method to comprehensively screen for drug response biomarkers. In this study we 
showed for the first time how time-resolved metabolomics analysis in combination with 
multivariate PK/PD describes the diverse dynamical patterns in brainECF and plasma in a 
pharmacologically meaningful manner to evaluate systems-wide CNS drug effects. More-
over, our approach also enables to explore the target site of effect, as well as to identify 
blood-based biomarkers that are reflective of drug responses in brainECF. Further applica-
tion and development of this method is envisioned to provide an important connection 
between drug discovery and early drug development.
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Supplement 1 – Equations
Inter-individual and residual variability
θi = θpop * eηi (Eq. 1)
Log(Cobs , i , j) = Log(Cpred , i , j) + εi , j  (Eq. 2)

θi is the estimated parameter for individual i; θpop is the estimated parameter for the 
population; ηi follows a normal distribution with mean 0 and variance ω2; Cobs,i,j is the 
observed concentration data point for individual i at timepoint j; Cpred,i,j is the predicted 
concentration for data point for individual i at timepoint j; εi,j follows a normal distribution 
with mean 0 and variance σ2.

Baseline models
No pattern
CMET , BSL = BSLMET (Eq. 3a)

Linear decay function
CMET , BSL = BSLMET *( 1 + s * time) (Eq. 3b)

Exponential decay function
CMET , BSL =( BSLMET - BSLmin )* e- kdec * time + BSLmin  (Eq. 3c)

CMET,BSL is the biomarker concentration given no drug response; BSLMET is the biomarker 
concentration at baseline at time = 0; s is the slope of the change in baseline with time; 
BSLmin is the minimum level of the basal biomarker levels; kdec is the rate of baseline bio-
marker decay with time.

Drug response models
Linear model
E = slope * CQP  (Eq. 4a)

EMAX model

E = 
EMAX * CQP  (Eq. 4b)
EC50 + CQP

E is the magnitude of drug response; Slope is the parameter that determines the strength 
of the drug response; CQP is the drug concentration at the target site, either plasma or 
brainECF; EMAX is the maximal response; EC50 is the drug concentration at half maximal 
response.
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Link models
No transit compartment model
Tr = 1 (Eq. 5a)

Transit compartment model

Tr = ektr * time *
(ktr * time )Ntr

 (Eq. 5b)
e- Ntr * √2π* Ntr

Ntr + 0.5)

Turnover model (effect on biomarker release)
dCMET = kOUT * CMET , BSL *( 1 + E * Tr )- kOUT * CMET  (Eq. 6)

dt

Pool model (effect on biomarker release)
dCMET , pool = kOUT * CMET , BSL - kREL *( 1 + E * Tr )* CMET , pool  (Eq. 7a)

dt
dCMET = kREL *( 1 + E * Tr )* CMET , pool - kOUT * CMET , PL  (Eq. 7b)

dt

No response
CMET = CMET , BSL  (Eq. 8)

Tr describes the time delay of response using a transit compartment model (1 = no delay); 
ktr is the rate at which the response goes through the transit compartments; Ntr is the 
number of transit compartments; CMET is the biomarker concentration in plasma or brainECF 
; kOUT is the hormone turnover rate; CMET,POOL is the biomarker concentration in the pool; 
kREL is the biomarker release rate from the pool into plasma or brainECF.
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Brain transport models
ktransp = ktransp  (Eq. 9a)

ktransp =
Vmax + CMET , target  (Eq. 9b)
km

kOUT , notTS = kOUT , notTS  (Eq. 9c)

kOUT , notTS = 
Vmax + CMET , notTS  (Eq. 9d)km

dCMET , notTS = ktransp * CMET , target - kOUT , notTS * CMET , notTS  (Eq. 9e)
dt

ktransp is the transport rate over the blood-brain-barrier from the target site to the other 
compartment; Vmax the maximal rate with km being the concentration at 50% of the maxi-
mal rate; kOUT,notTS is the elimination rate from the compartment that is not the target site 
compartment.

Significance score calculation
Significance score = OFVref - OFVtest - inv.χ2( 1 -

α
, df ) (Eq. 10)

nbiomarker

OFVref is a model with no drug effect included and OFVtest is a model with the drug effect 
included. The inv.χ2 calculates a penalty for additional parameters (df) in the drug effect 
model on basis of the significance threshold (α) divided by the total number of biomarkers 
(nbiomarker), i.e. bonferroni-correction.
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Supplement 2 – Elbow plots

Figure S1. Elbow plots for the clustering of brainECF (left) or plasma (right) responses. The elbow plot shows 
the balance between the number of clusters and the total variation that is explained by the clusters. The 
‘elbow’ in this figure marks the point where adding another cluster does not further decrease the total un-
explained variation, and is used to define the optimal number of clusters. While this is not always very clear 
from an elbow plot, a series of cluster numbers were selected, marked by the red dots, to subsequently be 
evaluated in a PK/PD cluster model.
Supplement 3 – Goodness-of-fit single biomarkers
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Figure S2. Goodness-of-fit of the cluster models on the baseline corrected single metabolite levels in 
brainECF (top) and plasma (bottom). Dots are the geometric means per time point and dose, while the er-
rorbars mark the geometric standard deviation. The lines represent the model-based predictions for 0 mg/
kg (red), 0.17 mg/kg (green) and 0.86 mg/kg (blue).




