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CHAPTER 2
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Abstract
Introduction: Central nervous system (CNS) diseases affect millions of people worldwide, 
and the number of people is quickly growing. Unfortunately, the success of new CNS drugs 
in clinical development is less than 10%, and this has been contributed to the complexity 
of the CNS, unexpected side effects, difficulties for drugs to penetrate the brain and the 
lack of biomarkers.

Areas covered: First, we discuss how pharmacokinetic/pharmacodynamic (PK/PD) models 
are designed to predict the dose-dependent time course of effect, and how they are used 
to translate drug effects from animal to men. Then, we discuss how pharmacometabolo-
mics provides insight into system-wide pharmacological effects and why it is a promising 
method to study interspecies differences. Third, we advocate the application of PK/PD-
metabolomics modeling to advance translational CNS drug development by discussing its 
opportunities and challenges.

Expert opinion: It is envisioned that PK/PD-metabolomics will increase understanding of 
CNS drug effects and improves translational CNS drug development to increase success 
rates. Successful further development of this concept will need multi-level and longitu-
dinal biomarker evaluation over a large dose range, multi-tissue biomarker evaluation, 
and the generation of a proof of principle by application to multiple CNS drugs in multiple 
species.

Key words: Biomarkers; CNS drug development; Interspecies scaling; Pharmacometabolo-
mics; PK/PD modeling; Systems pharmacology

Highlights
1. Translational CNS drug development is shifting from an empirical to a mechanistic ap-

proach
2. PK/PD modeling in conjunction with scaling principles enables the interspecies transla-

tion of pharmacological CNS effects
3. Pharmacometabolomics provides a mean to compare the system-wide pharmacologi-

cal CNS effects in multiple species
4. An integrated PK/PD-metabolomics is envisioned to increase understanding of CNS 

drug effects and improve translational CNS drug development
5. To achieve an integrated PK/PD-metabolomics approach, we need multi-level bio-

marker evaluations, to study a large dose range, and longitudinal sampling from the 
brain, plasma, and CSF.
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1. Introduction
Central nervous system (CNS) diseases affect millions of people worldwide, and the num-
ber of people with such disease is quickly growing [1]. They are characterized by their high 
complexity as multiple neurotransmitter systems and biochemical pathways are involved 
[2–4]. It is therefore not surprising that CNS drug development suffers from low success 
rates (< 10%) and long duration (~12.6 years) [5,6]. Moreover, it is hampered by CNS medi-
ated side effects (e.g. nausea, dizziness), the presence of the BBB, lack of effective animal 
models and/or lack of integrative investigations in animals to investigate the mechanisms 
of CNS pathology and pharmacology, and the lack of biomarkers representing these 
mechanisms [6–9]. In particular, the translation from preclinical to early clinical studies 
is difficult.

Clearly, there is a need to improve the current methodologies within CNS drug develop-
ment. Two promising methods in this regard are pharmacokinetic/pharmacodynamic (PK/
PD) modeling and pharmacometabolomics [10–12]. PK/PD modeling allows to “charac-
terize and predict the time course of drug effects under (patho)physiological conditions” 
[13]. Pharmacometabolomics involves the “determination of the metabolic state to define 
signatures before and aſter drug exposure that might inform treatment outcomes” [14]. 
This review discusses how translational CNS drug development can be improved by the 
integrated application of PK/PD modeling and pharmacometabolomics. An overview will 
be provided of the role of both fields in translational CNS drug development, after which 
the opportunities and challenges of an integrated approach will be discussed.

2. Biomarker-driven development of central nervous system 
drugs
Current translational CNS drug development highly relies on behavioral endpoints, such as 
the 5-choice serial reaction time task. While these endpoints may provide reasonable con-
struct validity, their predictive validity is low [15,16]. Predictive validity, which includes a 
mechanistic rationale between the drug effect and the endpoint, is important to translate 
the preclinical to the clinical pharmacology [17]. It is therefore that biomarkers are in-
creasingly recognized as an essential element of CNS drug development [7,18–20]. Indeed, 
biomarkers have been defined as indicators of specific pharmacological or physiological 
processes [21,22]. Current biomarker strategies include receptor occupancy [23–25], 
functional imaging [26,27], biochemical measures in CSF [20], EEG [28,29], or physiological 
measures such as hormone release [30]. Biomarkers have been classified into multiple 
pharmacological levels following the causal relation of the drug dose to the clinical effect 
[31]. These are i) genotype or phenotype, ii) drug exposure, iii) target occupancy, iv) target 
activation, v) physiological/laboratory measures, vi) disease processes, vii) clinical scales. 
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Such classifi cati on provides a framework for rati onal drug development. In parti cular, as 
depicted in Figure 1, confi dence in the drug exposure, target binding, and target acti vati on 
are key components to guarantee successful translati onal drug development [12].

Figure 1. The conceptualizati on of an integrati ve approach. The plasma and brain drug exposure profi le are 
determined by the pharmacokineti cs, to drive the target binding and acti vati on of potenti ally multi ple tar-
gets. The acti vati on (or inhibiti on) of these targets elicits multi ple downstream biochemical eff ects, which 
can be evaluated by proteomics or metabolomics. These processes are described by mathemati cal expres-
sions as developed in the fi eld of PK/PD modeling.

3. PK/PD modeling in biomarker-driven CNS drug 
development
Not only the measurement of biomarkers is important for predicti on of the dose-eff ect 
relati on. It is also important to quanti fy the non-linear and ti me-dependent relati ons 
between the biomarkers to obtain insight into the dynamics of the pharmacological pro-
cesses. PK/PD modeling is used to mathemati cally describe these processes in terms of PK 
and PD parameters, for example, clearance, volume of distributi on, maximal drug eff ect or 
in vivo potency. Biomarkers thus enable the quanti tati ve characterizati on of the processes 
that are on the causal path between dose and eff ect. More specifi cally, biomarker data 
gives insight into pharmacokineti c (PK) parameters such as clearance and volume of distri-
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bution, or pharmacodynamic (PD) parameters such as maximal effect and in vivo potency. 
As such, PK/PD parameters provide a quantitative and scalable perspective on interspecies 
differences, thereby allowing the prediction of the first-in-human dose [17,30,32]. The 
components of a PK/PD model are the i) PK model that describes the exposure of the 
drug in the body; ii) the PD model that captures the relation between the drug concentra-
tion and the effect and iii) the link model that accounts for the possible delay between 
the concentration-time and the effect-time profile [13]. These components are further 
described in the next section.

3.1 PK/PD models
3.1.1 PK models
A crucial aspect of successful CNS drug development is the understanding of the distribu-
tion of the drug into the brain [33–35]. The intensity, onset, and duration of CNS drug 
effects depend on the concentration-time profile at the site of drug action. This brain is 
separated from the plasma by the blood-brain-barrier (BBB), which often influences the 
rate and extent of drug distribution into the brain. The transport over this barrier may be 
passive (driven by concentration gradient) and active (driven by transporters). In addition 
to the BBB, other factors, such as plasma protein binding, brain tissue binding, cellular 
uptake, brain metabolism, CSF flow, and physicochemical properties of the drug influence 
the drug exposure profile in the brain (for reviews and key research on this topic see refer-
ences [36–41]). Although classical PK modeling still often is used, physiology-based PK 
(PBPK) modeling is increasingly applied to predict the time course of drug concentrations 
at the site of drug action.

3.1.2. PD models
Whereas the understanding of the drug exposure at the target site is a crucial aspect in 
CNS drug development, the subsequent linkage to the PD (i.e. target binding and activa-
tion, and downstream physiological responses) is equally important for understanding 
drug effects [11,12]. Among others, receptor occupancy [23,25], EEG measures [28,42], 
hormone release [30] have been used to characterize the pharmacodynamic response 
of CNS drugs. The mathematical linkage of PD responses to the drug exposure has been 
extensively reviewed by Danhof et al. (2007) [43]. Still, in practice, an integrative approach 
including PK and PD in one study is often lacking. A widely used equation to link PK to PD 
is the empirical sigmoid Emax equation:

E =
Emax ∙ C , (1)
EC50 + C
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where Emax is the maximal observed drug effect, EC50 is the in vivo potency and C is the 
concentration around the target (e.g. brainECF).

3.1.3 Link models
The effect-time profile is often delayed as compared to the drug concentration-time 
profile. If only plasma drug concentrations are known, one may assume that the delay is 
caused by slow distribution from plasma to the site of drug action. In such case, an effect 
compartment model is used to account for the delay [44]. Slow target binding kinetics may 
also cause a delay between PK and PD, and in such case, these can be explicitly included in 
the model [45]. Finally, downstream signal transduction may be relatively slow compared 
to the plasma PK, drug distribution, and the target binding kinetics, being responsible for 
the delay of the effect-time profile. This is often accounted for by a turnover model [46]. 
It assumes a continuous process of production and degradation (turnover) that drives the 
basal biomarker levels. The drug effect influences either the production or the degrada-
tion rates through inhibition or stimulation, thereby causing an increase or a decrease of 
the biomarkers levels.

3.2 Interspecies scaling
PK/PD modeling enables the rational extrapolation of drug effects between animal and 
men [47]. It does so by explicitly distinguishing the drug- and system-specific parameters 
[17,32]. Typical drug-specific parameters are plasma protein binding, target-binding affin-
ity, and intrinsic efficacy, while examples of system-specific parameters are tissue volumes, 
clearances, receptor expression, and turnover rate constants. While drug-specific param-
eters can be obtained from in vitro experiments, system-specific parameters can only be 
estimated from in vivo data and may be species-dependent. The interspecies scaling of 
these parameters follows two principles: allometric scaling and physiology-based scaling. 
With allometric scaling it is assumed that the parameters are dependent on bodyweight 
following a power function [48,49]:

Phum = Panimal ∙ 
⎛
⎝

BWhuman ⎞b

⎠ , (2)
BWanimal

where P is the mathematical model parameter, BW is the bodyweight, and b is the species-
independent scaling exponent. Typically, allometric scaling is applied to clearance, volume 
of distribution, and turnover rate constants. The scaling exponent generally is 0.75 for 
the clearance, 1 for the drug distribution volume and -0.25 for the turnover rate constant 
[50,51]. As an illustrative example, the acetaminophen clearance extrapolates over a large 
range of species, including zebrafish larvae, rat and human, using allometric scaling [52]. 
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In another study, the prolactin effects of remoxipride were successfully scaled from rat to 
man, by applying allometric scaling on the turnover rate of prolactin in plasma [30].

The principle of physiology-based scaling is to replace the animal parameters by the hu-
man parameters [53]. While the physiology-based scaling of CNS PK is well developed, for 
example to predict the human CSF drug concentrations of acetaminophen and morphine 
[37,39,54,55], it has only started to emerge for PD. Some studies have shown that PD 
parameters such as Emax and EC50 may be similar across species for a series of drugs, for 
example for opioids and their effect on electrocardiogram output [29,56]. In contrast, 
other studies showed species-dependent PD parameters. A recent evaluation of a Tran-
sient Receptor Potential Melastatin-8 blocker showed 3-fold cross-species (mouse versus 
dog) differences in its potency, resulting in clinically important differences in core body 
temperature predictions [57]. In another study, the Emax and EC50 for prolonging the QT-
interval were found to differ between humans and dogs [58]. A third publication showed 
that the affinity of psychoactive drugs differed significantly between, for example, the D1rat 
and 5HT2rat, and D1human and 5HT2human receptors [9]. Also, the Emax and the EC50 of prolactin 
to control its own release was found different between rats and humans [30].

Overall, these examples show that the interspecies translation of CNS drug effects needs 
to be driven by the mechanistic understanding of drug- and system-specific properties at 
the level of PK and PD. Both allometric scaling and physiology-based scaling of PK/PD pa-
rameters can be used to support interspecies translation on basis of in vitro (drug-specific) 
and in vivo (system-specific) parameters. If clinical data is not available from same-in-class 
drugs, multiple species can be evaluated for these properties and simulations of worst-
to-best case scenarios can be used to guide the dosing strategies during early clinical 
development [57].

4. Pharmacometabolomics in biomarker-driven CNS drug 
development
Although PK/PD modeling aims to predict single biomarker time courses, it appears 
that CNS drugs typically affect multiple biochemical pathways [59,60]. For example, ris-
peridone affected multiple pathways including energy metabolism, antioxidant defense 
systems, neurotransmitter metabolism, fatty acid biosynthesis, and phospholipid metabo-
lism [61]. In fact, many successful CNS drugs were identified by serendipity on basis of 
phenotypic changes in vivo [62]. Indeed, the efficacy of neurological drugs is associated 
with multi-target affinity [63–65]. As an example, antipsychotics typically have interactions 
with multiple targets (up to 26 for clozapine and quetiapine) [63,64]. A comparison of 
haloperidol and clozapine showed that they caused a different biochemical phenotype, 
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that of clozapine close to that of the 5-HT2A antagonist M100907 [66]. However, although 
multi-target pharmacology may be related to the efficacy of e.g. clozapine, it is also as-
sociated with unwanted effects, for example cardiovascular disease [63]. Good insight 
into the systems behavior of multi-target drugs is essential to anticipate the (post-)clinical 
benefit-risk balance of drugs during early development. As such, pharmacometabolomics 
is suggested as an important method in drug development to biochemically understand 
in vivo neuropharmacological effects [67–69]. For example, using lipidomics, the underly-
ing pathways were identified that may explain antipsychotic-induced weight gain [70]. 
Metabolomics analyzes hundreds of biochemical molecules in biological samples, and 
as such, it can provide system-wide pharmacological biomarkers [14]. By measuring the 
biochemical end-products of cellular reactions it provides an intermediate metabolic 
phenotype between gene expression and drug effects on one hand, and clinical outcome 
on the other hand. In other words, it fulfills the definition of a type 4 biomarker [31] and 
can provide insights into the pharmacological pathways relevant to the clinical outcome. 
For example, a urinary metabolomics fingerprint could be used to predict the Kellgren-
Lawrence grade as a clinical endpoint for osteoarthritis [71]. As compared to other 
biomarker types, such as functional imaging, pharmacometabolomics is relatively cheap 
and easy to apply in preclinical and early clinical studies. Moreover, biochemical path-
ways are relatively similar across mammalian species, suggesting potential for applying 
pharmacometabolomics in translational drug development [72,73]. The main analytical 
tools that are used for metabolomics are nuclear magnetic resonance (NMR) technology 
and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Both technologies 
have the advantage that they can identify a wide range of small molecules, providing a 
comprehensive picture of the metabolome. The metabolome contains more than 40000 
molecules, which typically have a molecular weight below 2 kD [74].

Of interest for the CNS-pharmacology are the energy substrates, neurotransmitters, amino 
acids and structural lipids, all of which are involved in cell viability, signaling, and cell 
membrane function [2]. It was specifically observed that the corresponding pathways were 
overlapping among CNS drugs and diseases, indicating that multi-biomarker approaches 
are important for the evaluation of drug effects [2,59]. Several clinical studies have been 
performed utilizing pharmacometabolomics for the study of CNS drug effects, although 
the main focus has been on the disease rather than on the treatment [75]. These studies 
showed that pharmacometabolomics has the potential to reveal new insights into lipid-
related side effects of antipsychotics [70,61], enable the early prediction of antidepressant 
effects on multiple biochemical pathways [76], or identify systems biomarkers of motor 
neuron disease treatment [77] and antiparkinson drugs [78].
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4.1 Multivariate analysis of pharmacometabolomics data
The endogenous metabolites are members of biologically highly connected pathways. 
Pharmacometabolomics data is therefore often evaluated by multivariate data analysis, 
which takes into account the connectivity among the individual metabolites. The purpose 
is to identify biomarkers that classify subgroups (e.g. treated vs. non-treated), and to 
elucidate the biochemical pathways that are perturbed with drug treatment. There are 
roughly three types of multivariate analyses: descriptive analyses (e.g. correlations), 
unsupervised methods, and supervised methods. (for review see [79]). An example of 
descriptive analysis is correlations between metabolite levels. These can be used to define 
a network with metabolites as nodes, while edges are drawn if the correlation coefficient 
exceeds a certain threshold (e.g. 0.8). In addition to correlation-based networks, more 
sophisticated methods have been developed, such as Gaussian graphical networks. These 
networks eliminate the direct correlations that are explained by indirect correlations, 
providing a much cleaner network [80,81]. The power of network analysis is that it shows 
a clear picture of the multifactorial changes under particular conditions, for example, 
treated vs. non-treated. In particular, it can identify the key metabolite pathways that 
underlie the pharmacological effects [82], as well as their synergistic or resilient charac-
teristics [83]. A network approach was, for example, used to understand the systems-wide 
effects of sertraline, showing that the tricarboxylic acid and the urea cycle, fatty acids and 
intermediates of lipid biosynthesis, amino acids, sugars and gut-derived metabolites were 
changed with four-week treatment [76]. A well-known unsupervised method is cluster 
analysis, which classifies samples or metabolites on basis of the proximity to each other 
with regard to, for example, the metabolite levels or the chemical similarity. This can 
reveal interesting patterns in the data, such as clusters of genes or metabolites that have 
similar biological functions [84]. Another well-known unsupervised method is principal 
component analysis (PCA), which identifies the latent variables (principal components) 
underlying pharmacometabolomics data [85]. These latent variables then represent the 
‘overall’ effect of a treatment in case of a pharmacometabolomics study. Closely related 
to PCA is the supervised partial least squares regression (PLS). This method optimizes a 
model to predict a certain output variable, for example, disease status or dose [77]. Both 
PCA and PLS elucidate which metabolites are most influential in explaining the variation 
between the subgroups.

4.2 Translational pharmacometabolomics to study CNS drug effects
The specific application of metabolomics in translational drug development has gained 
attention more than 10 years ago [72]. Metabolomics has an advantage over other ‘omics’ 
approaches with regard to interspecies translation. Indeed, endogenous metabolite path-
ways are highly identical among mammalian species. A recent study thoroughly compared 
the biochemical reaction network of rat and human, showing a strong overlap [73]. There 
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are, however, only a few studies that applied metabolomics in vivo to compare different 
species. Some studies showed how the metabolic phenotype of animal disease models 
for osteoarthritis and multiple sclerosis overlapped with the patients’ metabolic pheno-
type, indicating the potential of metabolomics for interspecies translation [72,86,71,87]. 
Although no efforts have yet been made to compare the animal and human metabolic 
phenotypes after drug treatment in vivo, the rat and mouse metabolic phenotypes were 
compared to study their differential sensitivity to cocaine [88]. It was found that the aryl 
hydroxylation pathway was dominant in rats, causing increased excretion of cocaine, 
which was not the case in mice. Interestingly, when comparing microsomes of humans 
versus these two species, the human cocaine metabolism showed a closer resemblance 
to the mice cocaine metabolism, indicating that the mouse is a better animal model for 
evaluation of cocaine sensitivity in humans. This study shows how pharmacometabolomics 
could be used to guide interspecies translation of CNS drug effects. Nevertheless, care 
should be taken with regard to the assumption that the biochemical reaction networks are 
species independent. The bile acid, carbohydrate, glycine-serine-threonine, purine and 
ascorbic acid pathways were found to have reactions specific for rats, while the glycan 
and sphingolipid pathways included human specific reactions, as measured in hepatic 
cells. These species differences may result in large differences in even opposite effects on 
certain endogenous metabolites [73]. In such case, further information on the pathway 
is important to extrapolate the preclinical findings. The ascorbic acid change in rats, for 
example, reflects a change in the glucuronic acid metabolism, which is also present in 
humans [89]. This information can then be used for the interspecies translation.

5. The integration of pharmacometabolomics and PK/PD 
modeling in translational CNS drug development
Translational CNS drug development can thus potentially profit from both PK/PD model-
ing and pharmacometabolomics; both are envisioned to contribute to biomarker-driven 
development. An integration of PK/PD modeling and pharmacometabolomics is envi-
sioned to provide scalable system-specific parameters for multiple biochemical pathways 
that are potentially relevant for the clinical drug effects. A conceptual workflow of such 
translational approach is depicted in Figure 2. Recent suggestions have been made to 
use pharmacometabolomics in PK/PD frameworks as static or dynamic markers [90,91]. 
While static metabolic phenotypes can be used as a predictor for treatment responses, 
dynamic metabolic phenotypes allow to follow the treatment effect over time to evaluate 
the system-wide dynamics [90,92,93].
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Figure 2. The integrati ve approach of metabolomics and PK/PD modeling as applied to interspecies scaling 
in CNS drug development. Such approach starts with animal experiments to collect longitudinal brainECF and 
plasma samples during treatment with a CNS drug. These samples are analyzed for drug concentrati ons and 
metabolomics to subsequently develop a multi variate PK/PD model. By applying the principles of interspe-
cies scaling a humanized model is defi ned to select doses for the clinical study. Plasma drug concentrati ons 
and metabolomics data of the clinical study will be used to recalibrate the model and increase the under-
standing of interspecies diff erences.

5.1 Longitudinal analysis of pharmacometabolomics responses
A longitudinal multi variate evaluati on of pharmacometabolomics data was performed by 
Rasmussen and colleagues, who were one of the fi rst doing that in the fi eld of clinical 
pharmacology [94]. This multi variate fi ngerprint was suitable for guiding dose selecti on of 
recombinant interleukin-21 in pati ents with metastati c melanoma.

5.2 PK/PD based analysis of pharmacometabolomics responses
In additi on to longitudinal evaluati on of the pharmacometabolomics response, the inte-
grati on with PK/PD modeling has been shown in a few studies. Clustering of longitudinal 
transcriptomics data formed the basis for the 6 turnover models in one study. Together, 
these turnover models formed a complex PK/PD model that described the gene-expression 
signaling cascade in the rat liver aft er corti costeroid treatment [84]. In another study, clus-
tering was applied to the PK/PD parameters identi fi ed from pharmacometabolomics data 
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in rats aft er remoxipride treatment [95]. This analysis revealed 6 unique PK/PD relati ons, 
18 potenti al biomarkers and two perturbed pathways (Figure 3). It has the potenti al to 
defi ne a therapeuti c window on basis of multi ple biomarkers, provides a list of biomark-
ers to take into account in additi onal studies, and gives insight into biological eff ects of 
remoxipride. The applicati on of such analysis in multi ple species will give insights into 
species-diff erences on the PK/PD parameters that describe the longitudinal pharmaco-
metabolomics response. Depending on the diff erences in parameters, dosing strategies 
can be defi ned following simulati on of worst-to-best case scenarios as was performed by 
Gosset et al. [57] for the eff ect of a Transient Receptor Potenti al Melastati n-8 (TRPM8) 
blocker on a single marker (core body temperature). Eventually, pharmacometabolomics 
data analysis methods can aid the development of quanti tati ve systems pharmacology 
(QSP) models which aim to mathemati cally describe the interacti ons between multi ple 
elements of the biological system (e.g. biomolecules, cells, ti ssues) in order to understand 
the impact of drugs on the system as a whole [91,96,97]. Quanti tati ve metabolic networks 
can provide a topological basis of QSP models to be integrated with organ-level networks, 
receptor binding kineti cs and PK [91,97]. QSP models are promising for interspecies trans-
lati on by humanizing the animal-based model parameters [9,98,99].

Figure 3. A metabolomics study combined with multi variate PK/PD modeling revealed 6 diverse response 
patt erns (middle) for remoxipride in rats. These response patt erns were represented by 18 metabolites that 
could potenti ally functi on as biomarker (right), rendering further validati on. The response clusters were 
associated with 2 known biological pathways (left ). Modifi ed from reference 95.
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5.3 Predicti on of the human brain pharmacometabolomics responses
In vivo pharmacometabolomics studies typically use plasma samples to characterize the 
system-wide drug eff ects. The plasma metabolic phenotype is a composite extracti on of 
all individual ti ssue metabolic phenotypes. Although this provides the opportunity to 
evaluate whole-body treatment eff ects in an easily accessible body fl uid, it can limit the 
quanti tati ve interpretati on of the treatment response that originates in a specifi c ti ssue. 
This is parti cularly true for CNS treatments, for which the metabolic biomarkers have to 
distribute over the BBB (Figure 4). This was illustrated by the fact that plasma monoamine 
levels were decreased with CNS drug treatment, whereas CSF levels were not aff ected 
[20,78]. Likely, the eff ects were caused in the periphery, and did not provide informati on 
on the central brain eff ects of these drugs.

Figure 4. Brain metabolic phenotypes are refl ected in the periphery via three mechanisms: i) individual 
metabolites distribute to CSF, plasma and urine, and become integrated in the peripheral metabolic phe-
notype; ii) the brain metabolic phenotype aff ects the peripheral nervous signaling, thereby controlling 
the release of peripheral metabolites, such as acetylcholine or norepinephrine; iii) the brain metabolic 
phenotype infl uences the neuroendocrine system via the hypothalamus, modifying the pituitary hormone 
release. Modifi ed from reference 59.



26 CHAPTER 2

A useful technique that has been used to study CNS drug PK and PD is intracerebral mi-
crodialysis [100–103]. It allows longitudinal sampling within a single individual to follow 
the treatment response over time. Moreover, since microdialysis allows the collection 
of molecules with a molecular weight below 20 kD, it is highly suitable for pharmaco-
metabolomics analysis [104,105]. Notably, microdialysis, for ethical reasons, is limited in 
humans. Animals are therefore typically used to characterize the relation between the 
brain- the CSF- and the plasma metabolic phenotypes. Following the translation PK/PD-
metabolomics workflow depicted in Figure 2, the human brain metabolic phenotype can 
subsequently be predicted using the principles of interspecies scaling and calibrated with 
the human plasma and CSF metabolic phenotypes.

5.4 Disease dependent PK/PD-metabolomics approach
This review has mainly focused on the treatment, rather than on the disease. Here, we 
would like to spend a few words on the influence of pathology on the pharmacology; a 
patient may respond differently to a treatment than a healthy individual. Both the CNS 
drug PK and PD can be affected by the disease, and this influence is drug-specific. For 
example, the morphine PK changed with traumatic brain injury [39], and the rate of dopa-
mine metabolism was higher in a rotenone rat model of Parkinson’s Disease as compared 
to control [103]. Thus, the understanding of the two-way interaction between pathology 
and pharmacology in the context of translational CNS drug development is important. 
Metabolomics was found useful to understand species differences with regard to pathol-
ogy [72]. As such, it has potential to translate the pathology-dependent pharmacology 
from animal to men [106].

6. Conclusion
This review discussed the merits of PK/PD modeling and pharmacometabolomics in the 
field of translational CNS drug development. PK/PD models can predict human biomarker 
time courses on basis of animal data using the principles of interspecies scaling. Phar-
macometabolomics can measure the biochemical responses to evaluate the system-wide 
CNS drug effects among species. The integration of PK/PD modeling and pharmacome-
tabolomics studies is envisioned to enable the prediction of longitudinal, dose-dependent 
system-wide responses, and has begun to receive attention [90,91,95]. The opportunities 
and challenges of such integration were discussed with regard to translational CNS drug 
development. Although we are still at the stage of early conceptual development, such 
integration is envisioned to increase understanding of system-wide pharmacology and to 
improve the interspecies translation of CNS drug effects.
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7. Expert opinion
7.1 The potential of integrated PK/PD and pharmacometabolomics in 
translational CNS drug development
CNS drug development is suffering from low success rates, which, for a large part, can 
be attributed to the empirical approach in translational development [6,12]. This led to 
the realization to shift towards mechanism-based prediction of clinical on basis of pre-
clinical pharmacology. In particular, PBPK and PK/PD modeling are increasingly applied 
in drug development to guide dosing strategies for early clinical studies [39,47,57,107]. 
The strength of these models is that they describe the dynamics of pharmacological 
processes, which can be scaled from animals to humans. While the PD models typically 
describe the drug effect on a single biological pathway, pharmacometabolomics provides 
a means to evaluate multiple pathways obtaining a comprehensive insight into the system-
wide pharmacology of a CNS drug [69,108]. Interestingly, the metabolome is structurally 
very similar among mammalian species, enabling a direct comparison of their metabolic 
phenotypes, although there are a few differences that need caution (e.g. ascorbic acid 
production in rats, but not in humans) [72,73]. At this moment, only very few studies have 
been performed to investigate the interspecies correlations of metabolic phenotypes. 
Moreover, pharmacometabolomics is mostly applied in a static manner, although dynamic 
approaches are emerging [90,94,95].

PK/PD modeling and pharmacometabolomics are thus complementary to each other. 
Since both fields have a potential for translational CNS drug development, their integra-
tion is promising. It has the potential to identify the pharmacologically relevant param-
eters of the system-wide drug effects [95]. Using the principles of interspecies scaling, 
these parameters can be humanized, and predict the clinical on basis of the preclinical 
pharmacology. The model can subsequently be validated on basis of the clinical metabolic 
phenotype (Figure 2).

7.2 Challenges and recommendations for the integration of PK/PD modeling 
and pharmacometabolomics
Several aspects of study design and data analysis need consideration to achieve an inte-
gration of PK/PD modeling and pharmacometabolomics.

7.2.1 Multi-level biomarker evaluation
To achieve an integrative understanding of the pharmacological action, multi-level bio-
marker data needs to be collected, for example, plasma drug concentrations, brain drug 
concentrations, (multiple) target occupancies, biochemical biomarkers. Eventually, these 
biomarkers will be linked to physiological measures and clinical outcome during clinical 
development.
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7.2.2 Longitudinal sampling over a large dose range
To capture the dynamics of the PK/PD response, longitudinal data is essential. Serial plasma 
sampling and intracerebral microdialysis are useful methods to obtain time courses of CNS 
drug concentrations, as well as biochemical markers, in plasma and brain. Of interest, 
isotope-labeling based metabolomics (also called flux-based metabolomics) is an emerg-
ing discipline that enables the capturing of network dynamics when applied in combina-
tion with longitudinal sampling [109,110]. Additionally, a large drug concentration range is 
needed to have information on all parts of the non-linear concentration-response curve. 
This is particularly important with a comprehensive pharmacometabolomics evaluation, 
since individual metabolites may have a different position on the concentration-response 
curve [95].

7.2.3 Integrated PK/PD-metabolomics analysis
Longitudinal pharmacometabolomics data in conjunction with drug concentration data 
needs to be described using PK/PD modeling in order to identify a fingerprint of pharma-
cologically relevant parameters such as the in vivo potencies, the maximal drug effects or 
the turnover rates [90,95] (Figure 2, 3). 

7.2.4 Multi-tissue biomarker evaluation
Drug concentrations and endogenous metabolites must be analyzed in multiple biofluids, 
such as plasma, brainECF, and CSF to understand how the plasma metabolic phenotype 
relates to the target site effect (Figure 4).

7.2.5 Generate proof of principle for an integrated PK/PD-metabolomics approach in 
translational CNS drug development
A primary challenge will be the generation of proof of principle for the integrated PK/
PD-metabolomics approach.

First of all, multiple same-in-class drugs are to be compared biochemically using a phar-
macometabolomics approach. Haloperidol and clozapine showed different efficacy on 
basis of a multivariate analysis with 58 different components of movement, as well as a 
multivariate evaluation with monoamines [66]. Although both analyses marked the fact 
that haloperidol and clozapine showed different efficacy, the pattern was not similar for 
the behavioral and the monoamine analysis. This indicates two things: 1) a multivariate 
biochemical is promising with regard to understanding differences between same-in-class 
drugs. 2) The abovementioned analysis showed that the monoamine based evaluation, 
although recognizing the pharmacological complexity, still is oversimplified to explain the 
behavioral outcome.
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A second aspect that needs to be included to provide proof of principle is the application 
of longitudinal metabolomics in multiple species, including humans. Taking into account 
the known species-differences, the interspecies metabolomes should be compared to 
understand and map species differences and evaluate applicability of pharmacometabo-
lomics in translational CNS drug development [73]. In particular, it will be important to 
validate the scaled PK/PD models in humans.

A third aspect is to relate the metabolic fingerprint to relevant clinical (side) effects. Kad-
durah-Daouk et al. [70] nicely showed this for risperidone, olanzapine and aripiprazole, 
comparing their lipidomic profiles. Interestingly, aripiprazole showed less impact on lipids, 
which was associated with the absence of weight gain as a side effect. Further studies will 
indicate whether such approach is generally applicable in drug development.

7.3 The future of translational CNS drug development with an integrated PK/
PD-metabolomics approach
It is envisioned that the integration of PK/PD and pharmacometabolomics will increase the 
understanding of system-wide pharmacology and improve the interspecies translation of 
CNS drugs. Specifically, it is envisioned to enable the extraction of system-wide pharma-
cologically relevant parameters that can be scaled to humans. Additionally, information 
on biomarkers and pathways is obtained. This advancement must be seen together with 
the developments in the field of QSP [91,96,97]. The integrated PK/PD-metabolomics ap-
proach reveals a PK/PD fingerprint biomarker representing the dynamics of known and 
unknown pathways. QSP aims to connect the cellular pathway response with the organ- or 
system-level response. On one hand, the integrated PK/PD-metabolomics approach can 
thus inform QSP models on relevant pharmacological pathways. On the other hand, QSP 
models can identify the mechanistic relationship between the single metabolites described 
by an integrated PK/PD-metabolomics model.

Altogether, an integrated PK/PD-metabolomics approach is envisioned to have a promising 
role in translational CNS drug development by providing a method to scale system-wide 
effects from animal to men (Figure 2).
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