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ABSTRACT

Objective

Lynch syndrome (LS) patients are at high risk of developing colorectal cancer (CRC).
Phenotypic variability might in part be explained by common susceptibility loci
identified in Genome Wide Association Studies (GWAS). Previous studies focused
mostly on MLH1, MSH2 and MSHé carriers, with conflicting results. We aimed to
determine the role of GWAS SNPs in PMS2 mutation carriers.

Methods

A cohort study was performed in 507 PMS2 carriers (124 CRC cases), genotyped for
24 GWAS SNPs, including SNPs at 11923.1 and 8g23.3. Hazard ratios (HRs) were
calculated using a weighted Cox regression analysis to correct for ascertainment
bias. Discrimination was assessed with a concordance statistic in a bootstrap cross-

validation procedure.

Results

Individual SNPs only had non-significant associations with CRC occurrence with HRs
lower than 2, although male carriers of allele A at rs1321311 (6p21.31) may have
increased risk of CRC (HR=2.1, 95%Cl: 1.2-3.0). A polygenic risk score (PRS) based
on 24 HRs had an HR of 2.6 (95%Cl:1.5-4.6) for the highest compared to the lowest
quartile, but had no discriminative ability (c statistic 0.52).

Conclusion

Previously suggested SNPs do not modify CRC risk in PMS2 carriers. Future large

studies are needed for improved risk stratification among Lynch syndrome patients.
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INTRODUCTION

Lynch syndrome (LS) accounts for 2-4% of all CRCs and is characterized by a high risk
for developing malignancies, most notably colorectal cancer (CRC) and endometrial
cancer (EC). The underlying cause is a germline mutation in one of the mismatch
repair (MMR) genes: MLH1, MSH2 (EPCAM), MSHé or PMS2. Mutations in all MMR
genes are associated with a significantly increased cancer risk compared to the general
population, although MSH6 and PMS2 carriers show lower penetrance compared
to MLHT and MSH2 carriers."® Within and between family variability is commonly
observed and a range of theories have been proposed to explain the phenomenon,
such as genotype-phenotype correlations, parent-of-origin effects, lifestyle factors
and the influence of common susceptibility loci. The latter, mainly single nucleotide
polymorphisms (SNPs), were identified in genome wide association studies (GWAS)
in large cohorts consisting of sporadic CRC cases.* Among these candidate SNPs,
previous studies have identified statistically significant effects of multiple SNPs in LS
patients, and independent studies replicated the effect of SNPs rs3802842 (11923.1)
and rs16892766 (8923.3) among MLH1 carriers.> ¢ It should be noted, however, that
others have failed to replicate these findings.” 8 Although the latter studies analyzed
cohorts of similar size to our own, few or no PMS2 carriers were included.” Due to a
relatively low penetrance and high phenotypic variability, this specific subset of LS
patients might be of particular interest.” In a previous study among 377 PMS2 carriers,
we found age at CRC diagnosis to vary widely (range 26-86 years) and mean age of
index carriers and mutation-positive family members differed by 10 years.® In the
current study, we aim to determine whether these SNPs modify CRC risk in a large

cohort of PMS2 mutation carriers.

MATERIAL AND METHODS

Sample collection

DNA extracted from leucocyte DNA was collected from 8 Dutch family cancer clinics.
Index carriers included in this study were sent in between 2007 and 2016 to the Clinical
Genetics department, because of a clinical suspicion of LS, e.g. LS-associated cancer
at a young age and/or a positive family history. Mutation analysis was initiated based
on the presence of histological hallmarks (microsatellite instability (MSI) or loss of PMS2
expression in the tumor) and/or when the family complied with the Bethesda Criteria.™
Participating clinics provided DNA samples and clinical data on CRC, age at diagnosis,
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other cancer development and polypectomy. Controls were defined as carriers that
were tested pre-symptomatically, after a pathogenic mutation was identified in the
index carrier of the family. All carriers are referred to gastroenterology departments
after the diagnosis has been established, which then adhere to international
surveillance guidelines, i.e. colonoscopies every 1-2 years from 25 years of age.' Data
was analyzed anonymously. The study was approved by the medical ethical committee
of Leiden University Medical Centre, protocol ID P01-019.

Genotyping

PMS2 genotyping in this cohort was carried out as previously described.[3] SNP
genotyping was done at the LUMC laboratory using a KASp genotyping assay (LGC
Genomics, Hoddesdon, UK). Primers were designed using Primerpicker (KBioscience,
Hoddesdon, UK) and are available upon request. All oligonucleotides were obtained
from Eurofins Genomics (Ebersberg, Germany). Genotypes were called using the CFX

manager software v3.0 (Bio-Rad, Veenendaal, the Netherlands).

Statistical analysis

PMS2 carriers were analyzed as a birth cohort. A Cox-proportional hazards regression
model was fitted to estimate hazard ratios (HRs), with age at CRC as endpoint and
SNP genotype as independent variable. Patients without CRC were censored at
the last age known to be alive. The HR was calculated separately for heterozygous
and homozygous carriers of the risk allele, with homozygotes of the non-risk allele
as reference category. We also calculated the per allele HR (additive model). Cox-
regression analyses were also stratified for gender. These sub-analyses only includes a
per allele (additive) model, due to multiple testing risks. Missing age at CRC diagnosis
(n=3) was imputed using median age of CRC in the general population (age 70, n=2)
or set at one year before death (n=1). The proportional hazards assumption was
investigated by examining the scaled Schoenfeld residuals with a formal statistical test
and by visual inspection.

Previous studies have described the oversampling of cases in clinic-based cohorts.
Moreover, affected family members are more likely to be tested for the mutation and
this too results in oversampling of cases. To adjust for this non-random sampling, we
used a weighted cohort approach as previously described.” Standard errors were
corrected for familial clustering of risk by using the Huber-White sandwich estimator.™
We also calculated two polygenic risk scores (PRS)™ based on 1) the odds ratios
(ORs) reported in the meta-analysis by Ma et al (Supplemental Table 1) and 2) based
on our HRs from the current study.* Kaplan Meier (KM) and Cox regression analysis
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were concurrently performed. A concordance statistic was calculated to assess the
discriminative value of the 24 SNP model. The optimism in the concordance statistic
was estimated by fitting the model in each of 500 bootstrap samples (drawn with
replacement), and validation in the original sample. Analyses were initially performed
for patients with complete data. We also performed imputation of missing values
based on the correlation structure between SNPs and with the outcome (transcan
function in R software, version 3.2). Since results were similar, we only present complete
case results.

Lastly, a post hoc power analysis was performed to assess the chance of finding
significantly increased risks using the collected cohort, which contains all currently
known PMS2 mutation carriers in the participating centers (Supplemental Figure 1).
We had at least 80% power to find an HR of 1.5 for the majority of SNPs. A more
detailed description of the statistical analysis is available in the supplementary methods
(Supplemental File 1). Statistical analyses were performed using STATA version 14
(StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp

LP) and R software (version 3.2, using the rms library).

RESULTS

Cohort

In total, 521 samples from carriers with a germline PMS2 mutation were genotyped,
derived from 152 families. Fourteen patients were excluded because 1) they were
younger than 25 years at censoring and were therefore not yet at risk of developing
CRC (n=11) or 2) insufficient clinical data was available (n=3, including one CRC
case). The analyzed cohort consisted of 124 cases (PMS2 carriers with CRC) and 383
controls (PMS2 carriers without CRC), with attributed person years of 6527 and 19549,
respectively. Person-years were calculated until age of CRC for cases (PMS2 carriers
with CRC, n=125), and age at polypectomy, age of death, or last known age alive
(whichever occurred first) for controls (PMS2 carriers without CRC, n=1, n=1 and n=381
respectively). The mean age was 52.5 for CRC cases and 51.0 for non-cases (Table
1). For a detailed description of the families including genotypes see Supplemental
Tables 2a+2b.
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TABLE 1 Cohort description

No CRC - controls CRC - cases

(n=383) (n=124) All (n=507)
Sex
Male 133 (34%) 60 (48%) 193 (38%)
Female 250 (65%) 64 (52%) 314 (62%)
Age (CRC or censoring)
Mean (s.d.) 51.0(14.2) 52.5(12.7)
Range 25-88 27-88
Index carrier
Yes 38 (10%) 89 (72%) 127 (25%)
No, family member 345 (90%) 35 (28%) 380 (75%)
Other cancers
(no. of carriers)
Endometrial cancer” 30 9 39
Ovarian® 4 0 4
Duodenal cancer” 4 2 6
Breast” 10 3 13
Urothelial® 4 2 6
Esophagus 1 0 1
Leukemia 0 3 3
Testis 2 0 2
Prostate 1 1 2
Vagina 0 1 1
Mesothelioma 0 1 1

‘Index carrier’ means the first person to be tested. Incidence of cancer in the group
of index carriers without CRC: 20 endometrial cancers, 4 ovarian cancers, 3 breast
cancers, 3 cancers of the small intestine, 1 testis cancer and 1 carcinoid. Ten of
these index carriers had not developed any cancer at the time of DNA diagnostics;
they were tested because of polyps at an early age or because they had an (af-
fected) deceased family member. # Lynch syndrome-associated tumor.
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Rs6687758 —— HR: 1.17 (0.82-1.55)
Rs6691170 —0— HR: 1.03 (0.77-1.33)
Rs10936599 —O— HR: 0.93 (0.65-1.32)
Rs1321311 ——0— HR: 1.28 (0.92-1.56)
Rs16892766 —— HR: 1.08 (0.76-1.59)
Rs6983267 —— HR: 1.09 (0.82-1.42)
Rs10795668 —— HR: 1.02 (0.81-1.47)
Rs3802842 —o— HR: 0.84 (0.67-1.25)
Rs3824999 —— HR: 1.05 (0.85-1.37)
Rs4444235 —— HR: 0.77 (0.60-1.01)
Rs9929218 —— HR: 0.96 (0.66-1.26)
Rs4939827 —— HR: 1.02 (0.77-1.29)
Rs12953717 —o— HR: 1.14 (0.86-1.37)
Rs10411210*% —— HR: 0.82 (0.51-1.44)
Rs961253 —— 00— HR: 1.12 (0.81-1.34)
Rs1569686 —— HR: 1.06 (0.85-1.40)
Rs2736100 —— HR: 0.89 (0.66-1.10)
Rs1800734 —0——i HR: 1.21 (0.81-1.41)
Rs1799945 —— HR: 1.29 (0.87-1.92)
Rs5934683 - —_—— HR: 1.07 (0.78-1.50)
Rs5934683 - ¢ —— HR: 0.78 (0.74-1.51)
Rs1800562 — HR: 1.10 (0.60-1.83)
Rs11169552 00— HR: 1.03 (0.77-1.40)
Rs7136702 ——— HR: 1.20 (0.88-1.51)
Rs4779584 —0— HR: 1.28 (0.88-1.67)
0,1 1 10
Hazard ratio for CRC for each SNP (log scale) #Weighted HR
HR

FIGURE 1 Forest plot of HRs for all SNPs. Note: rs5934683 lies on the X chromosome and
was therefore stratified for gender. *SNPs previously associated with increased risk in MLH1
mutation carriers. #Reference category: homozygous for risk allele (due to low number of
homozygous carriers of the non-risk allele). HR: Hazard Ratio.

Rs1321311 - males —0— HR: 2.07 (1.21-2.96)
Rs1321311 - females —— 0 HR: 0.83 (0.63-1.28)
0.1 1 «Weighted HR 10
Hazard ratio for CRC (log scale) HR

FIGURE 2 Forest plot of HRs for rs1321311. Note: p=.005 for males. HR: Hazard Ratio.
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Hardy-Weinberg equilibrium

Two SNPs, rs1048943 (15g24.1) and rs4925386 (20q13), were not in Hardy Weinberg
equilibrium (HWE). Violation of the HWE was present in both cases and controls and
as this might be the result of a genotyping error, these SNPs were removed from the

analysis. Ultimately, 24 SNPs were included in the final analysis.

Risk of colorectal cancer

None of the SNPs individually showed a clear risk modifying effect (Figure 1,
Supplemental Table 1). There was a difference in HR between male and female PMS2
carriers for rs1321311 (6p21.31), with an HR for the each additional A allele of 2.07
(95%Cl: 1.21-2.96, p=0.005) and 0.83 (?5%Cl:0.63-1.28, p=0.56) for males and females,
respectively (Figure 2: Forest plot, Supplemental Figure 2: KM curve).

Combination of rs3802842 & rs16892766

A previous meta-analysis reported a significant pairwise effect on CRC risk of rs3802842
(11923.1) and rs16892766 (8923.3) in MLHT mutation carriers.[6] The HR in the additive
model for this combination in our PMS2 cohort was 0.95 (95%Cl:0.80-1.25, p=0.99). For
carriers of more than three risk alleles the HR was 1.58 (95%Cl: 0.55-3.39) compared
to patients with no risk alleles, see Figure 3 for a comparison of previously publishes
HRs and results from this study. The mean age at CRC diagnosis for 0, 1, and more
than 1 risk alleles was 52.8; 52.9 and 50.4 respectively. The corresponding median ages
were 54 (interquartile range (IQR): 43-62), 51 (IQR:43-63) and 47 (IQR:39-63). There was
a statistically non-significant difference between the median age of CRC diagnosis
between male and female carriers of two or more risk alleles, namely 53 (IQR:39-64,
n=7) and 43.5 years to age (IQR:38-63, n=10, p=0.56, Mann-Whitney test).

Polygenic risk score

The polygenicrisk score was calculated for 444 PMS2 carriers with complete genotyping.
The medians for PRS1 (meta-analysis derived ORs) were -0.12 (interquartile range (IQR):-
0.48-0.30) for controls and -0.03 (IQR:-0.39-0.40) for CRC cases. The HRs for group 2
(second and third quartile) and 3 (fourth quartile) were 1.33 (?5%CI:0.76-2.33) and 1.50
(95%Cl:0.82-2.72) respectively (Table 2). The medians for PRS2 (based on HRs from our
own data) were 0.30 (IQR:-0.057-0.55) for controls and 0.51 (IQR:0.068-0.75) for CRC
cases. The corresponding HRs for group 2 and 3 were 1.05 (95%Cl:0.59-1.89) and 2.62
(95%Cl:1.49-4.60) respectively (Table 2). The KM curves for PRS1 and 2 are shown in
and Supplemental Figure 3 and Figure 4, respectively. The difference between survival
curves was highly significant for PRS2 (p<0.0001). The optimism-corrected c statistic
was only 0.52, indicating no discriminatory value.
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Rs16892766 k

*

] HR: 1.6 (0.34-3.57)

Rs16892766
(Talseth-Palmer et al)

HR: 1.48 (0.5-6.27)

Rs3802842 —— HR: 0.81 (0.47-2.22)

Rs3802842

(Talseth-Palmer et al) HR: 2.68 (1.56-4.63)

Combined t \ g i HR: 1.58 (0.55-3.39)

Combined
(Talseth-Palmer et al)

HR: 4.86 (1.8-13.11)

0,1 1 10

#Weighted HR
Hazard ratio for CRC for each SNP (log scale) HR

FIGURE 3 Forest plot of HRs for rs3802842 and rs16892766. Note: For the combination of the
two SNPs, the plotted HR represents a comparison for carriers of three vs. no risk alleles. HR:
Hazard Ratio.
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TABLE 2 Polygenic risk scores

PRS category  Controls CRC Expected HR p for HR
events
PRS1 Median (IQR)  -0.12(-0.48-0.30) -0.03 (-0.39-0.40)
1st quartile 84 22 28 ref 0.41
2d & .3d 167 54 52 1.33(0.76-2.33)  0.31
quartile
4th quartile 84 33 28 1.50(0.82-2.72)  0.19
PRS2 Median (IQR)  0.30(-0.057-0.55)  0.51 (0.068-0.75)
1st quartile 84 18 26 ref <0.0001
2d & .3d 165 38 53 1.05(0.59-1.89)  0.86
quartile
4th quartile 84 53 30 2.62(1.49-4.60)  0.001

PRS: polygenic risk score. IQR: interquartile range.
PRS1: Weighted on odds ratios from general population, i.e. in sporadic CRC cases.
PRS2: Weighted on hazard ratios from this study
Log rank survival curves PRS1: p=0.32

Log rank survival curves PRS2: p<0.0001

FIGURE 4 Kaplan Meier survival curve with endpoint colorectal cancer for PRS2 . Note: This

0.25 0.50 0.75 1.00

0.00

p<0.0001

Lowest quartile
Highest quartile

— — — Middle two quartiles

plot compares curves for the lowest, the two middle and the highest quartile of the PRS. PRS2 is

based on hazard ratios from the current study. HR: Hazard Ratio. PRS: polygenic risk score.
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DISCUSSION

PMS2 carriers currently represent a relatively small proportion of LS patients. However,
the number of PMS2-associated LS cases is expected to rise with the implementation
of population-based screening protocols for all CRC below age 70. Identification of
PMS2 carriers has been challenging in the past due to difficulties in mutation analysis,
a milder phenotype and many families not fulfilling clinical selection criteria.® % 1>
Obtaining a better understanding of the specific PMS2-associated phenotype is
particularly relevant, as it appears to differ markedly from phenotypes associated with
other MMR mutations. Unfortunately, we were unable to confirm any risk modifying
effects of rs3802842 (11923.1) and rs16892766 (8g23.1), two SNPs previously shown
to be associated with enhanced risk in MLHT mutation carriers.>¢ Studies in MLH1
mutation carriers reported that a higher number of risk alleles in a carrier is associated
with a younger onset of disease (28 years younger for 3 compared to O risk alleles).® In
our cohort, mean ages where 52.8 and 50.4 for 0 compared to more than 1 risk allele,
respectively. As such, there seems to be no clinical utility of rs3802842 and rs16892766
in risk stratification for PMS2 carriers.

Many studies on (genetic) modifiers in LS patients focus on MLHT and MSH2, or MSHé
carriers, while PMS2is seldom analyzed. The only study to include PMS2 carriers (n=40)
found that carriers of the G-alleles of rs10795668 (10p14) and rs9929218 (16g22.1) were
at lower risk of CRC, a notable finding in that this is the opposite effect compared to
sporadic CRC.” The authors conceded that their results should be confirmed in larger
studies. As these findings have not been confirmed in our much larger cohort, we
suggest that these previous findings may indeed have been false positives due to the
small number of carriers included.

A relevant question is why our study did not confirm reported findings of previous
studies of MMR carriers. One explanation might be that although patients have
germline mutations in genes with similar functions, carriers are affected by genetic
modifiers in different ways. Indeed, comparable studies in BRCAT or BRCA2 mutation
carriers have resulted in the identification of SNPs that clearly modify breast cancer risk.
However, BRCAZ2 carriers appear unaffected by SNPs that confer an increased breast
cancer risk in BRCAT carriers, even though both genes play a role in homologous
recombination.’ This could also hold for MMR mutation carriers, as illustrated by the
observation that while rs3802842 and rs16892766 may increase risk in MLH1 carriers,
they do not appear to have an effect in MSH2 or PMS2 carriers.>¢ Researchers should
therefore concentrate on building cohorts large enough to analyze Lynch patients in a

gene-stratified manner.
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Gender stratification in our cohort led to the notable finding that male carriers of allele
A atlocusrs1321311 (6p21.31) show a per allele HR of 2.07 (95%Cl. 1.21-2.96), while the
HR for females was 0.83 (95%Cl: 0.63-1.28). This SNP has been linked to the CDKN1A
gene that encodes the p21 protein. p21 is involved in several (p53-independent)
pathways as a tumor suppressor, although it also has oncogenic characteristics.””
D|nterestingly, down-regulation of p21 is inversely associated with MSI, the hallmark of
Lynch-associated tumors. One study found that a larger proportion of Lynch-associated
CRCs expressed p21 compared to sporadic CRCs (80% vs 31%).2' However, a recent
study reported on expressive Quantitative Trait Loci (eQTL) in colonic tissue based
on data from the GTEx project portal (http://www.gtexportal.org’/home/) and did not
find a statistically significant effect of rs1321311 on CDKN1A expression in sigmoid
and transverse colon tissue (p=0.84 and p=1.00 respectively).?? % It is also unclear why
this effect only appears to be present in male PMS2 carriers. Although no gender
difference was noted by the meta-analysis that identified the SNP "%, it is possible that
gender differences exist, as CRC risk in the general population and in Lynch patients is
known to be higher in men compared to women.?*? Indeed, mutations are more often
found in males than females when assessed for Lynch syndrome.?® Another possible
explanation for this gender specific effect might lie in the effect of other risk modifiers.
It is perceivable that other factors than SNPs have a stronger influence on (colorectal)
cancer development in women, such as hormonal factors.?- 2 Unfortunately data on
hormone levels or other factors previously shown to modify cancer risk in LS such as
medication use (e.g. aspirin) or environmental factors were unavailable for analysis and
as such we were unable to correct for this.?”3 Similarly, data on smoking and BMI were
only available for a small proportion of carriers (n=131, 26%). It should be emphasized
that all results after gender stratification should be interpreted with caution because
of small sample size and multiple testing. This could have led to false associations.

Further studies are needed to validate these findings.

We also investigated the effect of the 24 SNPs on CRC risk in the PMS2 cohort by
means of a polygenic risk score (PRS). While there did not appear to be a significant
effect of the PRS based on ORs from sporadic CRC cohorts, there was a difference
in the cumulative incidence of CRC for PMS2 carriers with a PRS2 (based on HRs in
this study) in the highest quartile. Bootstrap validation however refuted this promising
observation. Further studies are hence needed in other large cohorts.

There were some limitations to this study. Our study consisted exclusively of Dutch
PMS2 carriers and thus had a relatively homogeneous genetic makeup, implying that
differences between our results and previous studies might be due to population-

specific effects.
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A second limitation might be that we did not correct for the specific mutation present in
each family, mainly because in the majority of families the segregating PMS2 mutation
is rare or even unique. A previous study by our group did not identify such a correlation
with CRC risk in PMS2 carriers (Supplemental Tables 2a+2b Table: for more details).*
Unfortunately, we were not able to validate our findings in an external cohort. To
our best knowledge this is one of the largest PMS2 cohorts currently collected, and
bootstrap validation is a strong approach to assess discriminative ability of a prediction
model.® Stratifying our cohort into a discovery and validation cohort was not a viable
option as this would have resulted in a substantial decrease in power. Our study might
already have been underpowered to detect weak associations. However, while such
associations are interesting from a scientific point of view and may be relevant to
tumorigenesis, they are not necessarily useful in clinical practice when the effect is
small. For the two SNPs previously found to increase risk in MLHT mutation carriers, we
had 60-80% power to detect an HR of 1.5, which we would consider clinically relevant.
The previously reported HR in MLH1 carriers for rs3802842 was 2.7, an HR for which we
have ample power to detect (Supplemental Figure 1).

Families with a segregating PMS2 mutation show a high degree of phenotypic
variability. We were not able to confirm the risk modifying effect of rs3802842 (11g23.1)
and 516892766 (8923.3), which were previously found to increase the risk in MLH1-
associated LS. This, together with the established lower penetrance, raises the question
of whether PMS2-associated LS should be considered a separate Lynch disease entity.
Additional explanations for phenotypic variability that warrant greater exploration

include gene-environment interactions and risk modification by other genetic variants.
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SUPPLEMENTAL METHODS - STATISTICAL ANALYSIS

Follow-up and data-collection

For the vast majority of pre-symptomatically tested family members, i.e. controls, last
known age was age at DNA diagnosis and thus —in general - age at start of colonoscopic
surveillance. This is due to the fact that carriers were ascertained through genetic
centres, which made us unable to collect follow-up data, as subsequent surveillance

was done at the gastroenterology and/or gynaecology departments.

Ascertainment bias & weighted analysis

All subjects included in this study were derived from family cancer clinics and were
therefore not randomly selected with respect to their phenotype. In other words they
were selected based on the occurrence of cancer at a young age or due to several
family members being affected. Therefore, these carriers usually belong to high-
risk families, ascertained as a consequence of their relatively severe phenotype. It is
likely that other factors than the germline mutation in PMS2 and the SNPs currently
investigated may play a role in the phenotype variability, such as lifestyle or other
genetic factors."

Weights were calculated based on incidence rates in the Dutch population. HRs
based on a proportion of this cohort have been previously reported and were used
to determine age stratum (5 year) specific weights.® All calculated weights for cases
were smaller than 1, effectively down-weighting cases compared with controls. It is
important to note that for hypothesis testing the unweighted p-value and confidence
interval are reliable.’”? We therefore report the weighted HRs with both the p-values
and the 95% confidence intervals from the unweighted analysis. Both unweighted and
weighted HRs are listed in the tables.

Polygenic risk score

PRS1 and 2 included all 24 SNPs that were found to be in Hardy Weinberg equilibrium,
however two SNPs in the HFE gene were not taken into account in the PRS1 calculation,
because to our knowledge there were no ORs from meta-analysis reported in current
literature. The PRS was calculated as previously described’, by using the following

formula for PRS1 and PRS 2 respectively: n
Z a;log OR;

=1
n

Z a;log HR;
i=1

100



where n is the number of SNPs, ais the number of risk alleles for each SNP and the
OR the meta-analysis derived OR (supplementary table 1)* or the HR from the current
study for each SNP for PRS1 and PRS 2 respectively. PMS2 carriers were categorized
into four groups of equal sizes based on the quartiles in the control group.

Multiple testing

Correction for multiple testing was done by calculating the corrected overall critical
p-value for all performed tests (four per SNP, including gender stratification, four PRS
tests and the combination of rs3802842 and rs16892766) using the Bonferroni method.
This leads to a p value 0.05/101= 0.0005.

Other

Mean age at CRC development was examined using one-way Analysis of Variance
(ANOVA).
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SUPPLEMENTARY TABLE 1 Overview of all tested SNPs, including gender stratification

Allele frequencies PMS2 cohort

Total
SNP / Allfeles MAF Cases (CRC) Controls genotyped
(minor (dbSNP
OR from allele in Overall/ for SNP
literature Genotype Genotype P (total
bold) european) frequency MAF frequency MAF n=507)
1000
rs6687758 AA genomes: 76 0.21 262 0.17 0.36 502
G=0.19
European:
1941 AG 0.22 43 108
DUSP10 GG 3 10
OR: 1.09
(Ma) AG+GG
Per allele
1000
rs6691170 GG genomes: 40 0.41 143 0.38 0.61 500
T=0.26
European:
1941 GT 0.40 64 182
DUSP10 TT 17 54
OR: 1.06 Per allel
(Ma) er allele
rs10936599 TT EXAC: 7 025 24 026 096 495
T=0.28
1000
3926.6 TC genomes: 48 146
T=0.27
European:
MYNN CcC 0.24 67 203
OR:0.93 Per allele
1000
rs1321311 CC genomes 65 0.26 234 0.23 0.19 503
A=0.28
European:
6p21.2 CA 022 50 122
CDKN1A AA 7 25
OR: 1.1 Per allele
1000
rs16892766  AA genomes: 88 0.14 290 0.13 0.67 502
C=0.08
European:
8g23.3 CA 009 30 85
EIF3H CcC 3 6
OR: 1.25
(Ma) CA+CC
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Cox regression - overall

Cox regression - Males

Cox regression - females

PMS2 PMS2
HR (95% ClI) wHR P carriers HR (95% CI) wHR p carriers HR (95% ClI) wHR P
(cases) (cases)

0.6

1.20 (0.82-1.76) 1.27 0.4

0.98 (0.32-2.97) 0.97 1

1.18(0.82-1.72) 1.24 0.4

1.13(0.82-1.55) 1.17 0.5 192 (59) 1.21(0.72-2.03) 1.47 05 310 (63) 1.08 (0.71-1.65) 1.07 0.7
0.7

1.16(0.76-1.75)  1.18 0,5

0.95(0.51-1.76)  0.97 0.9

1.01(0.77-1.33)  1.03 0.9 191 (58) 0.97 (0.66-1.44) 1.05 0.9 309 (63) 1.06(0.74-1.53) 09 0.7
0.8

0.73(0.29-1.88) 0.77 0.5

0.72(0.27-1.91) 0.76 0.5

0.92 (0.65-1.32) 0.93 0.7 189 (60) 0.79 (0.44-1.41) 0.7 04 306 (62) 1.03 (0.69-1.54) 1.38 0.9
0.1

1.45(1.00-2.12) 1.57 0.1

1.02 (0.50-2.05) 1.13 1

1.19(0.92-1.56) 1.28 0.2 193 (60) 1.90(1.21-2.96) 207 O 310(62) 0.90(0.63-1.28)  0.83 0.6
0.9

1.12(0.73-1.72)  0.99 0.6

1.11(0.34-3.57) 1.6 0.9

1.12(0.73-1.71) 1.04 0.6
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SUPPLEMENTARY TABLE 1 Overview of all tested SNPs, including gender stratification

Allele frequencies PMS2 cohort

Total
SNP/ AII'eIes MAF Cases (CRC) Controls genotyped
(minor (dbSNP
OR from allele in Overall/ i
literature Genotype Genotype P (total
bold) european) frequency MAF frequency MAF n=507)
Per allele
1000
rs6983267 T genomes: 31 0.48 108 0.53 0.27 485
T=0.39
European:
8924.21 TG 0.50 49 174
MYC GG 36 87
OR: 1.21
(Ma) Per allele
1000
rs10795668 AA genomes: 12 0.29 31 0.29 0.82 502
A=0.23
European:
10p14 AG 032 49 160
FLJ3802842 GG 61 189
OR: 0.89 Por allel
(Ma) er allele
1000
rs3802842 AA genomes: 67 0.25 190 0.28 0.79 495
C=0.29
European:
11923 AC 0.97 49 159
COLCA1/
cocaz <€ 6 24
OR: 1.11
(Ma) Per allele
1000
rs3824999 AA genomes: 24 0.47 89 0.49 0.55 498
G=0.33
European:
119134 AC 052 67 187
POLD3 CcC 31 100
OR: 0.93 Per allel
(Ma) er allele
1000
rs4444235 T genomes: 44 0.39 105 0.47 0.1 497
C=0.43
European:
14g22.2 TC 0.49 59 188
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Cox regression - overall

Cox regression - Males

Cox regression - females

PMS2 PMS2
HR (95% Cl) wHR p carriers HR (95% Cl)  wHR p carriers HR (95% Cl) wHR p
(cases) (cases)
1.09 (0.76-1.59) 1.08 0.6 191 (58) 0.91(0.57-1.45 082 0.7 311 (63) 1.19(0.70-2.01) 0.9 0.5
0.8
1.04(0.61-1.78) 1.1 0.9
1.16 (0.67-2.01) 1.19 0.6
1.07 (0.82-1.42)  1.09 0.6 185 (57) 1.09 (0.74-1.60) 1.03 0.7 300 (59) 1.10(0.79-1.54) 1.24 0.6
0.4
0.74 (0.34-1.59)  0.66 0.4
0.95(0.46-1.97)  0.81 0.9
1.09 (0.81-1.47)  1.02 0.6 191 (59) 0.97 (0.66-1.43) 0.77 0.9 311 (63) 1.25(0.78-2.00) 1.15 0.4
0.7
0.85(0.60-1.22)  0.81 0.4
1.02(0.47-2.22) 0.81 1
0.92 (0.67-1.25) 0.84 0.6 189 (60) 0.73(0.44-1.22) 074 0.2 307 (63) 1.08 (0.68-1.70) 1.18 0.8
0.3
1.41(0.93-2.15 1.28 0.1
1.20(0.71-2.03) 1.12 0.5
1.07 (0.85-1.37)  1.05 0.5 192 (60) 1.10(0.75-1.62) 1.28 0.6 306 (62) 1.04(0.77-1.39) 1 0.8
0.2
0.82 (0.55-1.25) 0.89 0.4
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SUPPLEMENTARY TABLE 1 Overview of all tested SNPs, including gender stratification

Allele frequencies PMS2 cohort

Total
SNP / AII.eIes MAF Cases (CRC) Controls genotyped
(minor (dbSNP
OR from allele in Overall/ for SNP
literature Genotype Genotype P (total
bold) european) frequency MAF frequency MAF n=507)
BMP4 CcC 18 83
OR: 1.11
(Ma) Per allele
1000
rs9929218 AA genomes: 8 0.30 31 029 054 502
A=0.26
European:
16922.1 AG 0.29 57 155
CDH1 GG 58 193
OR: 0.91 Per allel
(Ma) er allele
1000
rs4939827 CcC genomes: 22 0.48 82 0.49 0.51 500
T=0.35
European:
18921.1 CT 053 73 204
SMAD7 T 27 92
OR:0.85 Por allel
(Ma) er allele
1000
rs12953717 CC genomes: 36 0.42 120 044 083 500
T=0.30
European:
18g21.1 CT 045 65 196
SMAD7 T 22 61
OR: 1.12 Per allele
1000
rs10411210 TT genomes: 1 0.09 3 0.10 0.96 489
T=0.26
European:
199131 TC 010 20 65
RHPN2 CcC 100 300
OR:0.87
(Ma) CC (ref)
CT+TT
1000
rs961253 CcC genomes: 43 0.37 149 0.37 0.49 495
A=0.29
European:
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Cox regression - overall

Cox regression - Males

Cox regression - females

PMS2 PMS2
HR (95% ClI) wHR p carriers HR (95% CI) wHR carriers HR (95% ClI) wHR P
(cases) (cases)

0.60(0.35-1.03) 0.54 0.1

0.78 (0.61-1.01)  0.77 0.1 192 (59) 0.80(0.51-1.26) 0.76 0.3 305(62) 0.74(0.53-1.05  0.85 0.1
0.7

1.07 (0.51-2.30) 1.51 0.9

0.93(0.41-211) 1.26 0.9

0.91(0.66-1.26) 0.96 0.6 193 (60) 0.92(0.57-1.47) 097 0.7 309 (63) 0.97 (0.63-1.50) 0.85 0.9
0.7

1.19(0.73-1.96)  1.31 0.5

1.00 (0.57-1.78)  1.08 1

0.99(0.77-1.29) 1.02 1 192 (59) 0.91(0.61-1.36) 0.74 0.6 308 (63) 1.02(0.73-1.44) 1.04 0.9
0.8

1.08(0.73-1.63) 1.15 0.7

1.17 (0.73-1.88) 1.29 0.5

1.08 (0.86-1.37) 1.14 0.5 192 (60) 1.07 (0.75-1.54) 1.09 0.7 308 (63) 1.04 (0.74-1.47) 1.03 0.8
0.2

0.26 (0.064-1.09) 0.1

0.32(0.087-1.18) 0.1

0.86(0.51-1.44) 0.82 0.6 190 (60) 1.34(0.61-294) 136 0.5 299 (61) 1.00 (0.52-1.94) 1.07 1
0.9
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SUPPLEMENTARY TABLE 1 Overview of all tested SNPs, including gender stratification

Allele frequencies PMS2 cohort

Total
SNP / AII.eIes MAF Cases (CRC) Controls genotyped
(minor (dbSNP
OR from allele in Overall/ for SNP
literature Genotype Genotype P (total
bold) european) frequency MAF frequency MAF n=507)
20p12.3 CA 0.36 63 179
BMP2 AA 12 49
OR:1.12
(Ma) Per allele
1000
rs1569686 GG genomes: 49 0.39 144 0.38 0.38 499
G=0.28
European:
20q11.2 GT omoRs™ 52 181
DNMT3B TT 22 51
OR: 0.57 Per allele
(Ma)
1000
rs2736100 GG genomes: 31 0.50 90 0.46 0.36 498
C=0.48
European:
5p15 GT 050 60 168
TERT T 30 119
OR: 1.07 Per allel
(Ma) er allele
1000
rs1800734 GG genomes: 77 0.22 245 0.20 0.88 501
A=0.32
European:
3p21.3 GA 027 38 112
MLH1 AA 8 21
OR: 1.51
(Ma) Per allele
(1799945  CC DAL W 013 285 013 074 502
1000
6p21.3 CG genomes: 26 89
G=0.07
European:
HFE GG 017 3 6
No meta- CG+GG
analysis
available Per aIIele
1000
Rs5934683 CC genomes:
C=0.34
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Cox regression - overall

Cox regression - Males Cox regression - females

PMS2 PMS2
HR (95% ClI) wHR P carriers HR (95% CI) wHR p carriers HR (95% ClI) wHR p
(cases) (cases)

1.08 (0.73-1.58)  1.09 0.7

1.06 (0.62-1.83) 1.27 0.8

1.04(0.81-1.34) 1.12 0.7 191 (58) 1.20(0.82-1.75) 1.25 0.3 304 (60) 0.87 (0.60-1.26)  0.88 0.5
0.5

0.96 (0.65-1.42) 0.8

1.26 (0.77-2.06) 0.4

1.09 (0.85-1.40) 1.06 0.5 191 (60) 1.11(0.79-1.55) 1.08 0.6 308 (63) 1.04(0.72-1.49) 1.23 0.8
0.1

1.09 (0.68-1.75) 1.26 0.7

0.73(0.42-1.26) 0.8 0.3

0.86 (0.66-1.10) 0.89 0.2 192 (60) 0.69 (0.48-0.97) 0.6 O 306 (61) 0.99(0.71-1.38) 1.03 1
0.7

0.99 (0.69-1.43) 1.14 1

1.30 (0.67-2.54) 1.62 0.4

1.06 (0.81-1.41) 1.21 0.7 193 (60) 0.80(0.51-1.27) 0.81 0.3 308 (63) 1.25(0.86-1.81) 1.89 0.2
0.4

1.27 (0.84-1.93) 1.35 0.3

1.76 (0.45-6.93) 1.36 0.4

1.31(0.86-1.99) 1.35 0.2

1.29(0.87-1.92) 1.29 0.2 192 (59) 1.58 (0.92-2.70) 2.07 0.1 310 (63) 1.12(0.64-1.95) 1.41 0.7

0.2
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Chapter 3.1 | SNP association study in PMS2-associated Lynch syndrome

SUPPLEMENTARY TABLE 1 Overview of all tested SNPs, including gender stratification

Allele frequencies PMS2 cohort

Total
SNP / Allgles MAF Cases (CRC) Controls genotyped
(minor (dbSNP
OR from allele in Overall/ for SNP
literature Genotype Genotype p (total
bold)  european) frequency MAF frequency MAF n=507)
European:
Xp22.2 TC 0.46
GoNL:
SHROOM2  TT C-063
OR: 1.07
(Ma) Per allele
Rs1800562 CC ExAC=0.03 106 0.07 334 006 082 498
1000
6p21.3 TC genomes: 15 40
A=0.01
European:
HFE T 0.04 1 2
No meta- TC+TT
analysis
available Perallele
1000
rs11169552 TT genomes: 5 0.25 25 0.26 0.55 499
T=0.25
European:
12g13.3 TC 025 51 146
ATF1 cC 66 206
OR: 0.92 Per allel
(Ma) er allele
1000
12913.13 cC genomes: 47 0.39 162 034 034 501
T=0.50
LARP4/ European:
DIP2B TC 0.35 % 176
OR: 1.06
(Ma) T 19 41
Per allele
1000
rs4779584 @ genomes: 75 0.19 246 0.22 0.69 499
T=0.49
European:
15913.3 TC 0.20 41 117
GREM1/
SCG5 T 6 14
OR: 1.26
(Ma) Per allele

Threshold for multiple testing: p<0.0005. HR=Hazard ratio. OR=0dds ratio.
95%Cl= 95% confidence interval.



Cox regression - overall Cox regression - Males Cox regression - females

PMS2 PMS2
HR (95% CI) wHR p carriers HR (95% Cl)  wHR p carriers HR (95% CI) wHR p
(cases) (cases)

1.43(0.87-2.35)  0.69 0.2

N/A
0.62(1.19-2.03)  0.73 0.4
191 (59) 1.08 (0.78-1.50) 1.07 0.6 310 (63) 1.05(0.74-1.51)  0.78 0.8
1
1.05(0.56-1.96) 1.18 0.9
1.03 (0.093-11.4) 0.8 1
1.05(0.57-1.93) 1.14 0.9
1.04 (0.60-1.83) 1.1 0.9 190 (59) 0.99 (0.49-1.97) 1.36 1 308 (63) 1.04(0.49-2.21) 0.6 0.9
0.5
1.60 (0.69-3.71) 2.4 0.3
1.48 (0.62-3.57) 1.96 0.4
1.04 (0.77-1.4) 1.03 0.8 190 (59) 1.20(0.80-1.82) 1.13 04 309 (63) 0.88(0.58-1.33)  0.75 0.5
0.6
1.11(0.75-1.66)  1.19 0.6
1.36(0.78-2.36) 1.46 0.3
1.15(0.88-1.51) 1.2 0.3 190 (59) 1.44(0.99-2.10) 1.4 0.1 311(63) 0.94(0.67-1.32) 0.94 0.7
0.4
1.12(0.76-1.64) 1.07 0.6
1.88(0.66-5.39) 2.5 0.2
1.21(0.88-1.67) 1.28 0.2 191 (60) 1.82(1.16-2.86) 1.81 0 308 (62) 0.89(0.57-1.39)  0.83 0.6

MAF=minor allele frequency. wHR: weighted Hazard Ratio. #This meta-analysis uses homozygotes for the
major allele as a reference category.



Chapter 3.1 | SNP association study in PMS2-associated Lynch syndrome

SUPPLEMENTARY TABLE 2A Overview of germline PMS2 mutations in the cohort.
Each row describes 1 family

Genotype molecular Genotype aminoacid  no crc crc  Total
c.856_857delGA p.Asp286Glnfs*12 0 1 1
¢.1078_1081dupATAG p.Gly361Aspfs*5 4 0 4
c.1079_1080del p.lle360Argfs*4 3 1 4
c.1144+42T>A p.(Glu330_Glu381del) 3 0 3
c.1145-?_(*160_?)del deletion exon 11-15 (N 1 12
c.1214C>A p.Serd05* 3 1 4
c.1261C>T p.Argd21* 1 1 2
c137G>T p.Serdéblle 5 2 7
c137G>T p.Serdélle 5 1 6
c137G>T p.Serdélle 5 0 5
c137G>T p.Serdéblle 3 1 4
c137G>T p.Serdé6lle 2 0 2
c137G>T p.Serdélle 2 0 2
c137G>T p.Serdéblle 0 1 1
c.137G>T p.Serdélle 0 1 1
c.137G>T p.Serdélle 0 1 1
c137G>T p.Serdélle 0 1 1
c.163+2T>C p.SerArgfs*5 2 1 3
c.164-7_803+7del deletion exon 3-7 1 0 1
¢.1730dup p.Arg578Alafs* 1 0 1
c.1831dupA p.lle611Asnfs*2 3 1 4
c.1831dupA p.lle611Asnfs*2 1 0 1
c.1831dupA p.lle611Asnfs*2 0 1 1
c.1831dupA p.lle611Asnfs*2 2 1 3
c.1882C>T p.Argb28* 13 2 15
c.1882C>T p.Argb28* 7 2 9
c.1882C>T p.Argb28* 8 1 9
c.1882C>T p.Argb28* 6 1 7
c.1882C>T p.Argb28* 4 2 6
c.1882C>T p.Argb28* 5 0 5
c.1882C>T p.Argb28* 3 2 5
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SUPPLEMENTARY TABLE 2A Overview of germline PMS2 mutations in the cohort.
Each row describes 1 family

Genotype molecular Genotype aminoacid  no crc crc  Total
c.1882C>T p.Argb28* 3
c.1882C>T p.Argb28*

c.1882C>T p.Argb628*

c.1882C>T p.Argb28*

c.1882C>T p.Arg628*

c.1882C>T p.Argb628*

c.1882C>T p.Argb28*

c.1882C>T p.Argb28*

c.1882C>T p.Argb28*

c.1882C>T p.Arg628*

c.1882C>T p.Arg628*

c.211_214del p.Asn71Aspfs*4

c.211_214del p.Asn71Aspfs*4

c.2117delA p.Lys706Serfs*19

c.2117delA p.Lys706Serfs*19

c.2155C>T p.GIn719*

c.2155C>T p.GIn719*

c.2174+1G>A p.?

¢.219_220dup
¢.219_220dup
c.219_220dup
¢.219_220dup
¢.219_220dup
€.2192_2196delTAACT
c.2192_2196delTAACT
c.2192_2196delTAACT
€.2192_2196delTAACT
c.2192_2196delTAACT
c.2192_2196delTAACT
c.2192_2196delTAACT
c.2192_2196delTAACT

p.Gly74Valfs*3
p.Gly74Valfs*3
p.Gly74Valfs*3
p.Gly74Valfs*3
p.Gly74Valfs*3
p.Leu731Cysfs*3
p.Leu731Cysfs*3
p.Leu731Cysfs*3
p.Leu731Cysfs*3
p.Leu731Cysfs*3
p.Leu731Cysfs*3
p.Leu731Cysfs*3
p.Leu731Cysfs*3

O O NN B P b = 0100 UONO =2 NWwWO 2 OO0 0 = =2 =2, NDDNWNDN
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Chapter 3.1 | SNP association study in PMS2-associated Lynch syndrome

SUPPLEMENTARY TABLE 2A Overview of germline PMS2 mutations in the cohort.
Each row describes 1 family

Genotype molecular Genotype aminoacid  no crc crc  Total
c.2275+1G>A p.? 4 0 4
c.2275+1G>A p.? 3 1 4
c.2404C>T p.Arg802* 0 1 1
c.24-12_107del96bp intronic 2 0 2
€.24-12_107delinsAAAT p.?/p.Ser8Argfs*5 4 1 5
c.2444C>T p.Ser815Leu 4 1 5
C.2845+1G>T 0.? 0 1 1
c.247_250dup p.Thr84llefs*9 2 0 2
c.251-2A>C p.? 2 0 2
c.251-2A>C p.? 1 1 2
c.251-2A>C p.? 0 1 1
c.251-2A>C p.? 0 1 1
c.2T>A 1 0 1
c.319C>T p.Arg107Trp 6 1 7
¢.325dupG p.Glu109Glyfs*30 3 1 4
¢.325dupG p.Glu109Glyfs*30 3 0 3
¢.325dupG p.Glu109Glyfs*30 0 1 1
¢.325dupG p.Glu109Glyfs*30 0 1 1
¢.658dupG p.Ser220fs 0 1 1
c.697C>T p.GIn233* 5 0 5
c.697C>T p.GIn233* 1 1 2
c.697C>T p.GIn233* 2 0 2
c.697C>T p.GIn233* 1 0 1
c.697C>T p.GIn233* 0 1 1
c.736_741delCCCCCTinsTGTGTGTGAAG p.Pro246Cysfs*3 7 1 8
c.736_741delCCCCCTinsTGTGTGTGAAG p.Pro246Cysfs*3 3 2 5
c.736_741delCCCCCTinsTGTGTGTGAAG p.Pro246Cysfs*3 3 1 4
c.736_741delCCCCCTinsTGTGTGTGAAG p.Pro246Cysfs*3 3 1 4
c.736_741delCCCCCTinsTGTGTGTGAAG p.Pro246Cysfs*3 3 1 4
c.736_741delCCCCCTinsTGTGTGTGAAG p.Pro246Cysfs*3 4 0 4
c.736_741delCCCCCTinsTGTGTGTGAAG p.Pro246Cysfs*3 2 2 4
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SUPPLEMENTARY TABLE 2A Overview of germline PMS2 mutations in the cohort.

Each row describes 1 family

Genotype molecular

Genotype aminoacid

no crc

crc

Total

c.736_741delCCCCCTinsTGTGTGTGAAG
c.736_741delCCCCCTinsTGTGTGTGAAG
c.736_741delCCCCCTinsTGTGTGTGAAG
c.736_741delCCCCCTinsTGTGTGTGAAG
c.736_741delCCCCCTinsTGTGTGTGAAG
c.736_741delCCCCCTinsTGTGTGTGAAG
c.736_741delCCCCCTinsTGTGTGTGAAG
c.736_741delCCCCCTinsTGTGTGTGAAG
c.736_741delCCCCCTinsTGTGTGTGAAG
c.736_741delCCCCCTinsTGTGTGTGAAG
c.736_741delCCCCCTinsTGTGTGTGAAG
c.736_741delCCCCCTinsTGTGTGTGAAG
c.804-?_903+7del

¢.804-60_804-5%ins2kb
¢.804-60_804-5%ins2kb
¢.804-60_804-5%ins2kb
¢.804-60_804-5%ins2kb

c.823C>T

c.861_864delACAG

c.903G>T

c.904-?_988+?dup

c.904-?_988+?dup
c.904_911delGTCTGCAG

c.943C>T

€.989-?_2275+7del

c.989_1144 + 685del

deletion at least exon 1-11

deletion at least exon 9-11

deletion entire PMS2

deletion entire PMS2

deletion exon 10

p.Pro246Cysfs*3
p.Pro246Cysfs*3
p.Pro246Cysfs*3
p.Pro246Cysfs*3
p.Pro246Cysfs*3
p.Pro246Cysfs*3
p.Pro246Cysfs*3
p.Pro246Cysfs*3
p.Pro246Cysfs*3
p.Pro246Cysfs*3
p.Pro246Cysfs*3
p.Pro246Cysfs*3
p.Tyr268*

p.GIn275*
p.Arg287Serfs*19
p.Tyr268*
p.Glu330Glyfs*7
p.Glu330Glyfs*7
p.Val302Thrfs*4
p.Arg315*

A N N OO 2 00N MAPdhO Mo O, O WO 20O 0 2 0 0 0 -~ N W P>
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Chapter 3.1 | SNP association study in PMS2-associated Lynch syndrome

SUPPLEMENTARY TABLE 2A Overview of germline PMS2 mutations in the cohort.
Each row describes 1 family

Genotype molecular Genotype aminoacid  no crc cre

Total

deletion exon 10

deletion exon 10

deletion exon 11-15

deletion exon 11-15

deletion exon 11-15

deletion exon 11-12

deletion exon 11-12

deletion exon 11-12

deletion exon 11-12

deletion exon 13-15
c.2276-?_c.2445+?del deletion exon 14
€.2276-?7_c.2445+7del
€.2276-?_c.2445+7del
€.2276-?_c.2445+7del

deletion exon 14 and 15

deletion exon 2 1
deletion exon 2

deletion exon 2

deletion exon 2, 5-11, 13-15
deletion exon 2-4 (c.24-?_353+7?del)
deletion exon 5-15

deletion exon 5-7

deletion exon 5-7

deletion exon 5-7

deletion exon 5-7

O O I SOy O RO e T O O S o T o T Y o T o T e R S N Y G

O O —= »H U1 O W O N OO — O -~ N OB N -~ NP>»O P> o1 o0 O —

deletion exon 6-7

duplication of exon 11 + exon 12, inserted in

N

- = N O~ O = U1 = W 0 P, =, NP NN P NN -

intron 12 0 1 1
Two segregating mutations: deletion PMS2

exon 1t/m 11 OR deletion exon 5t/m 7 17 1 18
Total 383 124 507
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Chapter 3.1 | SNP association study in PMS2-associated Lynch syndrome

Power (1-8)

|
|
|
|
|
|
|
|
P(evmuleI publshed HR for 153802842
|
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1
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Hazard ratio (A)

3

—@—— 0=28r51048943 ——@—— 0=.35r51800562
48 151799945 ——@—— 0=.48 1516892766
———@—— 0=.56rs4779584 0=.61rs11169552
=.61rs3802842 ——@—— 0=.62rs1321311
65 rs10795668 0=.65 rs4925386
——&—— 0=66rs961253 ——&—— 0=.67rs7136702
68 rs12953717 ————— 0=.68 rs6691170
——d—— 0=.72 151569686 . 0=.73 rs2736100

0=.41rs10411210
0=.53 rs6687758
0=.61rs10936599
0=.64 rs9929218
0=.66 rs5934683
0=.67 rs4939827
0=.70 rsrs4444235
0=.74 rs6983267

Parameters: a = .05, N = 507, E = 125, p, = .25

SUPPLEMENTARY FIGURE 1 Post-hoc power analysis.
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SUPLEMENTARY FIGURE 2 Kaplan Meier survival curves with endpoint colorectal cancer
for Rs1321311. The p-value represents the comparison between PMS2 carriers who are
homozygous for the non-risk allele with PMS2 carriers who are heterozygous/homozygous for
the risk allele.
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SUPPLEMENTARY FIGURE 3 Kaplan Meier survival curves with endpoint colorectal cancer
for polygenic risk score (PRS) 2. The p-value represents the comparison for the lowest, the two
middle and the highest quartile of the PRS.
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