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General introduction
In the first part of this chapter I will review the developments in the field of genome editing. 
Specifically the DNA repair mechanisms involved, the tools available and the applications 
of genome editing in plants. As I have used Agrobacterium tumefaciens for delivery, the 
second part of this chapter will focus on the plant pathogen Agrobacterium, describing the 
mechanisms underlying the transformation of plants by Agrobacterium and its biotechnological 
applications. 

Part 1
Genetic engineering and genome editing
Controlled integration of transgenes and controlled genetic replacement of endogenous 
genes by transgenes based on homologous recombination, also known as gene targeting, is an 
important tool in biotechnology because it can accelerate the rate of functional gene analysis 
and guarantees a save introduction of novel traits. This controlled manipulation of genomes 
is based on the introduction of DNA that contains homology with the chromosomal locus 
allowing for DNA recombination. In lower eukaryotes such as yeast, integration of DNA occurs 
predominantly via homologous recombination and therefore the recombinatorial events 
required for gene-targeting were first studied in the budding yeast Saccharomyces cerevisiae 
[1,2]. In higher eukaryotes this kind of integration also occurs, albeit at low frequencies 
compared to random integration. The first molecular evidence for gene-targeting in animal 
cells was provided by the laboratories of Smithies [3] and Capecchi [4,5] in experiments that 
generated loss-of-function mutations in embryonic mouse stem cells. 
	 In plant cells the first report of gene-targeting appeared in 1988. A DNA repair 
template transferred to tobacco protoplasts was shown to recombine with an integrated 
defective copy of a resistance gene leading to integration of a restored gene [6]. In 1989 this 
was followed by a report showing that delivery of a repair construct via Agrobacterium, a 
bacterium commonly used to transform plants, in the form of a T-DNA could be used for 
gene targeting leading to the correction of a defective gene at its original locus in the genome 
[7]. However, to harness the power of homology-directed recombination for gene insertion or 
gene repair in plants the naturally low HDR frequencies ranging between 10-4 and 10-6 needed 
to be enhanced [7–13]. 
	 Early experiments showed that DNA-damaging agents stimulated the exchange 
between sister chromatids [14], but the most compelling evidence that breaks in the DNA 
enhanced recombination came from studies that showed that a single double-strand break 
(DSB) in the genome dramatically increases the local frequency of recombination. In these 
studies a fragment encompassing the recognition site for a specific DNA endonuclease 
and a defective resistance gene was first inserted into the genome. Recombination with a 
homologous donor DNA increased several orders of magnitude when the cognate DNA 
endonuclease was expressed in the recipient cells [15,16]. 
	 Initially only naturally occurring site specific nucleases (SSNs) were available for 
this purpose. During the last decade, however, artificial site specific endonucleases with a 
customizable DNA recognition and cleavage site were developed that can now be employed 
for targeted modification of almost any genetic information in the genomes of organisms. 
These SSNs can also be used for targeted mutagenesis. When SSNs are expressed and used to 
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induce DSBs, the DNA repair machinery of the cell will seal the break, but when the nuclease 
is persistently present the DNA will be broken again leading to a cycle of break-repair until 
imprecise repair leads to a loss of the nuclease restriction site. In this way mutations can be 
selected at the nuclease target site. If these mutations occur in coding sequences genes can be 
knocked out making it easier to study the function of the mutated gene. Mutations created in 
non-coding regions can be used for instance to disrupt binding sites of pathogen produced 
transcription factors that promote disease [17]. Using SSNs even entire gene clusters can be 
removed by inducing DNA breaks at opposing ends of the gene cluster [18–20] or for the 
knockout of multiple (redundant), non-allelic homologous genes at the same time.

Double-strand break repair
The genome is subject to many agents, both exogenous and endogenous leading to DNA 
damage, that, if unrepaired, may lead to mutation or gross chromosomal rearrangements. 
Such damage includes base lesions, DNA single-strand breaks (SSBs) and DSBs. Repairing 
the damage is vital to maintain an organisms genomic integrity and stability and therefore 
multiple DNA repair pathways have evolved. Exploiting such DNA repair mechanisms of 
DSBs, and to a lesser extent those involved in SSB repair and base excision repair (BER), 
underlies genome editing. Two distinct pathways can be used for the repair of DSBs; non-
homologous end joining (NHEJ) and homologous recombination (HR). Which repair 
pathway is used for the repair of DSBs differs greatly between organisms and the cell cycle 
phase at which the repair of a DSB occurs. Repair via NHEJ operates throughout the cell cycle 
but predominantly in the G1 phase [21], whereas repair via HR is restricted to the S and G2 
phases when sister chromatids are available as a repair template. 	
	 NHEJ repairs DSBs by religating the broken ends irrespective of sequence homology 
and can be precise, but may also result in small deletions or insertions disrupting the genetic 
information [22]. The first step in NHEJ is the binding of the heterodimeric Ku complex to 
both ends of a DSB. This complex is composed of a 70kDa and a 80kDa subunit, named Ku70 
and Ku80, respectively [23]. After the binding of Ku to a DSB, in mammalian cells DNA-PKcs 
is recruited to the end of the DNA break [24,25]. DNA-PKcs, however, is not present in plants 
and fungi. NHEJ is completed by ligation of the DNA ends; this rejoining is carried out by 
a complex of DNA ligase IV, XRCC4 and the XRCC4-like factor [26]. In plants and yeast 
orthologues of these C-NHEJ components have been identified [27–31]. Although several 
bacterial strains have been identified with a NHEJ-like DNA repair mechanism, the repair of 
DSBs in bacteria is predominately based on repair by HR [32,33]. 
	 In the absence of canonical factors involved in Ku-dependent NHEJ, back-up 
pathways are responsible for residual end joining of DSBs [34–37]. Repair via back-up NHEJ 
starts with the resection of the ends producing ssDNA ends that can anneal at microhomology 
regions. The ends may be linked at these microhomology regions, whereafter non-homologous 
tails are removed. The remaining gaps are filled by a specific DNA polymerase and re-ligated 
by DNA ligase I [38]. In these back-up pathways microhomologies sequences (5-25 basepairs) 
are frequently used for the repair of the DSB resulting in deletions [39] and therefore this 
pathway has also been called microhomology mediated end-joining (MMEJ) [40]. Several 
factors involved in repair via MMEJ have been identified: PARP1/2, MRN, CtIP, Ligase3, 
XRCC1 and DNA polymerase θ (Pol θ). The exact molecular mechanism behind MMEJ is 
poorly understood, but PARP1, the MRN complex and Pol θ have been implicated as key 
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players [41–43]. Recently, it has been shown that theta mediated end joining (TMEJ) is the 
dominant pathway for repair in Ku-deficient cells and the occurrence of microhomologies at 
the break site which is the result of the ability of Pol θ to mediate joining of two resected 3’ 
ends harboring DNA sequence microhomology [42,43]. 
	 Homologous recombination is a DNA repair mechanism that uses DNA homology to 
direct DNA repair. These homologous sequences required for repair by HR are preferentially 
found on sister chromatids, but other naturally occurring homologous sequences or an 
artificially introduced repair template may sometimes be used instead. Repair via HR can 
be divided into several subpathways, classical double-strand break repair (DSBR), synthesis-
dependent strand annealing (SDSA), single-strand annealing (SSA) and break-induced 
replication (BIR) [44]. DSBR was initially described to explain crossover events during meiosis 
and gene conversion [45]. SDSA is used for mitotic DSB repair [46] and is the predominant 
repair mechanism for two ended DSBs via HR [47]. In plants evidence has been found for the 
occurrence of DSBR, SDSA and SSA [48]. 
	 HR invariably starts off with the 5’ resection of the ends resulting in large 3’ ssDNA 
stretches that can search for complementary sequences. Repair via SDSA starts with a 3’ end 
invading a homologous double-strand forming a D-loop. This is followed by repair synthesis 
from the 3’ end using the newly paired strand as a template. The “X” shaped structure formed 
at the border between the hetero- and homoduplex of the D-loop is called a Holiday junction. 
After elongation, in SDSA the invading strand is displaced from the D-loop structure and 
anneals back to the 3’ homologous strand that was formed by resection of the other end of 
the DSB. Thus in SDSA the donor molecule remains unaltered and gene conversion without 
loss of sequence information is the final result of the reaction [49]. SDSA is preferably used 
for HR repair in mitotic cells in the S and G2 phase, when a sister chromatid is available as a 
template. DSBR is mainly used for the repair of DSB breaks in meiotic cells. In this case both 
DNA ends invade a homologous chromosome to copy genetic information and this results in 
a double Holiday junction that may be resolved into a crossover or a non-crossover product. 
	 SSA is a repair mechanism that can be used when two homologous sequences are in 
close proximity and arranged in a tandem orientation. Repair via SSA starts with resection 
and the production of 3’ single-stranded overhangs. This is followed by immediate pairing 
of the single stranded complementary sequences found near the break site and trimming of 
the any remaining 3’ ends [50]. SSA is not conservative in contrast to SDSA and DSBR and 
leads to deletion of one repeat and the intervening sequence. Up to one out of three DSBs in 
an artificial genomic region with tandemly arranged duplications was repaired via SSA after 
DSB induction [51].

Site-specific nucleases
To induce targeted DSBs, four different classes of SSNs have been developed: homing 
endonucleases (HEs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and the 
CRISPR/Cas RNA guided endonuclease encoded by the clustered regularly interspaced short 
palindromic repeats (CRISPR)/CRISPR-associated (Cas) system (Fig. 1) [52].
	 The first class of SSNs are the HEs which are a class of proteins typically encoded 
for by introns or inteins and are considered selfish genetic elements, much like transposons 
[53]. This class of proteins can be divided into eight different subclasses: LAGLIDADG, 
H-N-H, His-Cys, GIY-YI G, PD(D/E)xK, HJ resolvase-like, EDxHD and Vsr-like [54]. All 
of these different classes of HEs have large DNA sequence recognition sites varying in length 
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between 12 to 40 basepairs. Because the DNA binding domain and the cleavage domain of 
HEs overlaps [55] creating HEs with new DNA binding specificities is challenging. For HEs 
of the LAGLIDADG class progress has however been made in altering the DNA recognition 
and cleavage site [56,57]. HEs were the first to be used for targeted mutagenesis in Arabidopsis 
and maize and instrumental in showing that DSB induction enhances targeted mutagenesis 
and gene targeting in plants (see Table 1). 
	 In ZFNs the DNA binding domain consisting of zinc fingers is fused to the non-
specific nuclease domain of the FokI nuclease. The zinc-finger array responsible for DNA 
binding is created by combining multiple zinc-finger domains, of the C2H2 class of zinc- 
fingers, that were discovered as part of the transcription factor IIIA [58]. This class of zinc- 
fingers consists of two β-sheets and an α-helix, which fits directly into the major groove of 
double strand DNA. The side chains from the N-terminal part of this helix contact the edges 
of the basepairs. Changing the amino acids in the α-helix may alter the affinity for different 
DNA sequences. Each zinc-finger domain recognizes 3bp of DNA [59]. Zinc-fingers have 
been created for the recognition of most of the 64 possible triplets [60–62]. By fusing the 
FokI nuclease domain to the zinc-finger array a zinc-finger nuclease (ZFN) is created. Two 
ZFNs are usually constructed that bind the DNA at opposing sites of the target sequence, each 
making a nick in one of the DNA strands leading together to a staggered DSB. A problem that 
can arise is the formation of a homodimer consisting of two ZFNs for one of the half sites. As 
a consequence, a DSB may be induced in the genome at a position which was not the initial 
target, possibly leading to toxicity [63]. Miller et al. [64,65] have designed complementary FokI 
cleavage domain variants that together function as an obligate heterodimer. The widespread 
application of ZFNs is however limited because of the limited selectivity conferred by the 
zinc-finger modules, and the complex context-dependent interactions between neighboring 
zinc-finger modules [66,67]. Moreover designing ZFNs typically involves multiple rounds of 
testing without necessarily resulting in a nuclease that performs optimally [66,68–70]. ZFNs 
have been used for genome editing in Arabidopsis, tobacco, soybean and maize (see Table 1). 
	 The third class of artificial restriction enzymes called TAL effector nucleases (TALENs) 
has been developed as the successor of ZFNs. Transcription activator-like effectors (TALEs) 
are produced by plant pathogenic bacteria in the genus Xanthomonas and are transferred via 
type III secretion systems to the host, where they function as important virulence factors that 
act as transcriptional regulators [71–73]. The DNA binding domain of these TALEs contains 
multiple 30-35 amino acid long repeats that each recognizes a single base pair of DNA. Two 
hyper variable amino acids found at positions 12 and 13 of these repeats, known as the repeat-
variable di-residues (RVDs), determine the base specificity [74,75]. Crystallization of the 
TALE DNA-binding domain revealed how the TALE wraps around the sense strand of the 
DNA as a right-handed super helix with each repeat forming a left-handed helix-loop-helix 
structure [76]. The structure also revealed that the 13th amino acid of the RVD determines 
the base specificity by interacting with the major groove, and that the 12th amino acid of the 
RVD stabilizes the loop in the helix-loop-helix structure [76,77]. By fusing the DNA binding 
domain of TALEs to the nuclease domain of FokI, TALENs are constructed that just like 
ZFNs can be designed to bind at opposing sites of the target sequences and create a DSB upon 
dimerization of the nuclease domain [78]. TALENs have been used to modify the genome 
of the following plants: Arabidopsis, barley, Brachypodium, cucumber, maize, rice, soybean, 
tobacco, tomato and wheat (see Table 1). 
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The newest addition to the family of SSNs is the CRISPR\Cas system derived from a prokaryotic 
adaptive immune system that cleaves DNA in a sequence dependent manner. In prokaryotes 
this RNA based defense system provides protection from foreign invading nucleic acids, such 
as viruses and plasmids [79–81]. The CRISPR/Cas system is made up of a Cas gene operon 
and CRISPR arrays. Immunity is acquired by integrating short fragments of invading DNA 
known as spacers between two flanking identical repeats at the proximal region of CRISPR 
loci. Transcripts of these CRISPR arrays, including the spacers, are processed into small 
interfering CRISPR RNAs (crRNAs) approximately 40 nucleotides in length [82]. Together 
with transactivating RNAs (tracrRNAs) these crRNAs form a complex which enables the Cas 
enzyme to cleave homologous double-stranded DNA sequences, known as protospacers, in 
previously encountered invading DNA [83,84]. 
	 There are three distinct classes of CRISPR/Cas systems from which a type II class 
system from Streptococcus pyogenes has mostly been used for genome editing, because only one 
protein (Cas9) is sufficient for nuclease activity in combination with the two RNA molecules 
[85]. A requirement for cleavage is the presence of a conserved protospacer adjacent motif 
(PAM) downstream of the target DNA, with either a 5’-NGG-3’ or 5’-NAG-3’ motif [85–87]. 
The quick development of the CRISPR/Cas system into a tool for genome editing started with 
the discovery that a 20 nucleotide change in the crRNA was sufficient to reprogram the DNA 
target specificity [85], and the subsequent development of a single chimeric guide RNA that 
combines the target specificity of the crRNA with the structural properties of the tracrRNA. 
The first reports of the CRISPR/Cas system being used for genome editing in different 
eukaryotes followed shortly thereafter [88–92]. The Cas9 protein has two active sites in a 
RuvC and a HNH domain, respectively, each of which induces a single-strand break which 
combined create a DSB. To transform Cas9 into a nickase that induces a single strand break 
point mutations have been introduced into the RuvC (D10A) and HNH (H840A) domains 
[85,86,93]. Using a nickase instead of a nuclease strongly decreases the frequency of off target 
mutations, while still increasing the frequency of HDR [94,95]. The CRISPR/Cas system has 
been used successfully for genome editing in the following plants: Arabidopsis, Camelina, 
common wine grape, tobacco, maize, petunia, orchids, potato, red sage, rice, sweet orange, 
tomato, sorghum, watermelon wheat and (see Table 2).

Using site-specific nucleases for genome editing in plants
The outcome of repair of a DSB is dependent on which repair pathway is used. In plants 
and many other higher eukaryotes repair via NHEJ is the predominant pathway used for the 
repair of DSBs. Repair via HR, but also via NHEJ often results in perfect repair of the lesion, 
but therefore also restores the target site for the SSNs allowing for the induction of a new DSB. 
This process can therefore cycle between DSB induction and repair until imperfect repair 
via NHEJ results in a small deletion or insertion that destroys the recognition site of the site 
specific nuclease. 
 	 When SSNs are used to introduce DSBs into a gene, mutations can be induced that 
affect gene function. All four classes of SSNs have been used to this end in both model plants 
as well as in a wide range of crop species (for an overview of see Table 1). High mutation 
frequencies have been found for instance when poplar leaf discs were transformed with a 
constitutive CRISPR/Cas construct resulting in 89% of leaf discs transformed showing an 
albino shoot indicative of mutations created in the phytoene desaturase gene [96]. Maize 
plants regenerated from calli that constitutively expressed the CRISPR/Cas system were 
found to have mutations frequencies up to 70-100% [97]. 
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Figure 1. Site-specific nucleases used for genome editing. (A). Homing endonuclease with 
overlapping DNA binding and cleavage domain. (B) Zinc-finger nuclease (ZFN) composed of multiple 
zinc-fingers that form the DNA binding domain fused to the FokI nuclease domain. (C) TALEN 
composed of the DNA binding domain of transcription activator-like effectors (TALEs) fused to the  
FokI nuclease domain. (D) CRISPR/Cas composed of the Cas9 protein and the sgRNA which determines the base 
specificity with a 20bp sequence that is complementary to the target sequence. 
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Mutations created in the T0 generation however did not show expected inheritance patterns 
and are not always inherited by the T1 progeny [98,99]. In Arabidopsis chimerism was found 
to occur in T1 plants obtained after floral dip transformation [100,101]. More complex genetic 
modifications can be achieved when SSNs are used to induce two DSBs simultaneously, 
including specific deletions [19,69], inversions [102], duplications [102] and translocations 
[103]. In plants ZFNs, homing endonucleases and CRISPR/Cas have been used to create 
targeted chromosomal deletions [20,104–106].
	 When a DSB is induced and simultaneously an artificial repair template lacking the 
nuclease restriction site is present, this may be used for HDR, and the specific mutations 
present in the template introduced into the genome. In plants this has been accomplished in 
the following species: Arabidopsis, tobacco, tomato, soybean, rice, potato, wheat and maize. 
Similarly by using a repair template containing novel genes these can be inserted in this way 
at the DSB site (gene targeting). In plants the introduction of DSBs near the site of the desired 
recombination has been shown to greatly increase the frequency of HDR. The introduction 
of a SSB by engineered nickases also increases the frequency of HDR, although the increase is 
less pronounced as with the introduction of a DSB [107,108]. Repair via HDR has been used 
in plants for targeted modifications of genes in model species as well in several crop species 
using ZFNs [109–112], TALENs [113,114] and the CRISPR/Cas system [115–120]. 

Delivery of site-specific nucleases 
Although the choice for the delivery system used will often be based on efficiency and 
feasibility considerations, the resulting expression levels and concentration of the nuclease 
will also impact the outcome. In plants several methods of delivery have been used for either 
constitutive or transient expression of SSNs. To obtain plants that constitutively express SSNs 
varying plant tissues have been transformed using biolistic or Agrobacterium based methods 
(Table 1 and Table 2). These methods, although relatively easy, have some drawbacks. 
Integration of transgenes may disrupt endogenous genes at the site of transgene integration. 
The presence of transgenes increases the administrative burden in regulatory processes 
needed for marketing of genetically modified crops. Furthermore, depending on the position 
in the genome gene expression levels might be influenced and constitutive expression of the 
SSN may lead to off target effects. Therefore methods are being developed for the transient 
expression of SSNs, for instance by controlling them by inducible or cell specific promoters. 
Alternatively methods for the direct delivery of nuclease mRNA have also been developed 
[90,121,122], as well for the direct delivery of SSN proteins in human cells and drosophila 
[88,123,124] and tobacco protoplasts for which direct introduction of I-SceI and TALEN 
protein was reported [125]. In addition, preassembled CRISPR/Cas complexes of purified 
Cas9 protein and sgRNA have been transfected into protoplasts of Arabidopsis, tobacco, rice 
and lettuce [126]. Direct protein delivery does however require the isolation and purification 
of large quantities of SSNs and the isolation of protoplasts. Therefore, a system that eliminates 
the isolation and purification steps but would still directly deliver the SSN as a protein would 
have value in both academic and commercial settings. The Agrobacterium system may fulfill 
this promise.
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Table 1. Overview of use of homing endonucleases, zing finger nucleaes and TALENs in plants 
Site specific nuclease Transformation method Mutation type Reference

Homing endonucleases

A. thaliana Agrobacterium (Floral dip) TM / Gene excision [185]
Z. mays Agrobacterium (Embryo) TM [186]
Z. mays Agrobacterium (Embryo) TM [187]

Zinc finger nucleases

A. thaliana Agrobacterium (Floral dip) TM [188]
A. thaliana Agrobacterium (Floral dip) TM [189]
A. thaliana Agrobacterium (Floral dip) TM [190]
A. thaliana Agrobacterium (Floral dip) TM / GT [109]
A. thaliana Agrobacterium (Floral dip) TM / GT [110]
G. max Agrobacterium (Hairy roots) TM [191]
N. tabacum Protoplast electroporation TM / GT [111]
Z. mays Agrobacterium (Embryo) TM / Gene addition [112]

TALENs

A. thaliana Agrobacterium (Floral dip) TM [192]
A. thaliana Agrobacterium (Floral dip) TM [193]
A. thaliana PEG-protoplast transfection TM [194]
B. distachyon PEG-protoplast transfection TM [195]
G. max Agrobacterium (Hairy roots) TM [196]
G. max Agrobacterium (Hairy roots) TM [197]

H. vulgare Agrobacterium (Embryonic pollen), Particle 
bombardment GT [198]

H. vulgare Agrobacterium (Embryonic pollen) TM [199]
H. vulgare Agrobacterium (Embryonic pollen) TM [200]
H. vulgare Particle bombardment GT [198]
N. benthamiana mRNA transfection TM [201]
N. benthamiana PEG-protoplast transfection GT [202]
N. tabacum PEG-protoplast transfection TM / GT [113]
O. sativa Agrobacterium (Callus) TM [203]
O. sativa Agrobacterium (Callus) TM [204]
O. sativa Particle bombardment GT [205]
O. sativa PEG-protoplast transfection TM [120]
O. sativa PEG-protoplast transfection TM [206]
S. lycopersicum Agrobacterium (Seedlings) TM / GT [114]
S. tuberosum PEG-protoplast transfection TM [207]
T. aestivum PEG-protoplast transfection TM [208]
Z. mays Agrobacterium (Embryo) TM [209]
TM = targeted mutagenesis, GT = gene-targeting, CD = Chromosomal deletions
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Table 2. Overview of use CRISPR/Cas in plants
CRISP/Cas9 Transformation method Mutation type Reference

A. thaliana Agrobacterium (Floral dip) TM [210]
A. thaliana Agrobacterium (Floral dip) TM [211]
A. thaliana Agrobacterium (Floral dip) TM [212]
A. thaliana Agrobacterium (Floral dip) TM [213]
A. thaliana Agrobacterium (Floral dip) TM [214]
A. thaliana Agrobacterium (Floral dip) TM [215]
A. thaliana Agrobacterium (Floral dip) TM [216]
A. thaliana Agrobacterium (Floral dip) TM [101]
A. thaliana Agrobacterium (Floral dip) TM [217]
A. thaliana Agrobacterium (Floral dip) TM [218]
A. thaliana Agrobacterium (Floral dip) TM [219]
A. thaliana Agrobacterium (Floral dip) TM / GT [116]
A. thaliana Agrobacterium (Floral dip) TM / GT [220]
A. thaliana Agrobacterium (Floral dip) TM (SSA) [106]
A. thaliana Agrobacterium (Floral dip) TM (SSA) [221]
A. thaliana Agrobacterium (Leaf infiltration) CD [222]
A. thaliana Agrobacterium (Leaf infiltration) TM [223]
A. thaliana PEG-protoplast transfection TM [126]
A. thaliana PEG-protoplast transfection TM [224]

A. thaliana PEG-protoplast transfection / Agrobacterium 
(Floral dip) TM / GT [115]

Camelina sativa Agrobacterium (Floral dip) TM [225]
C. lanatus PEG-protoplast transfection TM [226]
C. sinensis Agrobacterium (Leaf infiltration) TM [227]
C. sinensis Agrobacterium (Cotelydons) TM [228]
C. sativus Agrobacterium (Cotelydons) TM [229]
Chrysanthemum morifolium Agrobacterium (Callus) TM [230]
Dendrobium officinale Agrobacterium (protocorns) TM [231]
G. max Agrobacterium (Hairy roots) TM [232]
G. max Agrobacterium (Hairy roots) TM [233]
G. max Agrobacterium (Hairy roots) TM [196]
G. max Agrobacterium (Hairy roots) TM [234]
G. max PEG-protoplast transfection TM [235]
G. max Particle bombardement TM / GT [236]
G. max Agrobacterium (Hairy roots) TM [237]

Gossypium hirsutum L. Agrobacterium (Hypocotyl/cotyledonary 
petiole) TM [238]

Gossypium hirsutum L. Agrobacterium (Hypocotyl/cotyledonary 
petiole) TM [239]

Gossypium hirsutum L. Agrobacterium (Hypocotyl/cotyledonary 
petiole) TM [240]

Hordeum vulgare Agrobacterium (Embryo) CD [241]
L. sativa PEG-protoplast transfection TM [126]
M. truncatula Agrobacterium (Hairy roots) TM [242]
M. truncatula Agrobacterium (Hairy roots) TM [237]
Marchantia polyorpha Agrobaceterium (spores) TM [243]
N. attenuata PEG-protoplast transfection TM [235]
N. attenuata PEG-protoplast transfection TM [126]

N. benthamiana Agrobacterium (Cas9) / guideRNA (CaLCuV 
virus) TM [244]

N. benthamiana Agrobacterium (Cas9) / guideRNA (TVR) TM [245]

N. benthamiana Agrobacterium (Cas9) / guideRNA (TYLCV 
virus) TM [246]

N. benthamiana Agrobacterium (Leaf infiltration) TM [247]
N. benthamiana Agrobacterium (Leaf infiltration) TM [223]
N. benthamiana Agrobacterium (Leaf infiltration) TM / CD [104]
N. benthamiana Agrobacterium (Leaf infiltration) TM [248]
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N. benthamiana Agrobacterium (Leaf infiltration) CD [222]
N. benthamiana PEG-protoplast transfection TM [115]
N. benthamiana PEG-protoplast transfection TM [224]
N. benthamiana PEG-protoplast transfection TM [249]
N. tabacum Agrobacterium (Leaf infiltration) TM [250]
N. tabacum Agrobacterium (Leaf disc) TM [251]
N. tabacum PEG-protoplast transfection TM [252]
N. tabacum PEG-protoplast transfection TM [253]
N. tabacum PEG-protoplast transfection TM / CD [105]

N. tabacum PEG-protoplast transfection / 
Agrobacterium(Leaf disc) TM [254]

O. sativa Agrobacterium (Callus) TM [255]
O. sativa Agrobacterium (Callus) TM [250]
O. sativa Agrobacterium (Callus) TM [210]
O. sativa Agrobacterium (Callus) TM [256]
O. sativa Agrobacterium (Callus) TM [257]
O. sativa Agrobacterium (Callus) TM [211]
O. sativa Agrobacterium (Callus) TM [258]
O. sativa Agrobacterium (Callus) TM [259]
O. sativa Agrobacterium (Callus) TM [260]
O. sativa Agrobacterium (Callus) TM [261]
O. sativa Agrobacterium (Callus) TM [262]
O. sativa Agrobacterium (Callus) TM [263]
O. sativa Agrobacterium (Callus) TM [264]
O. sativa Agrobacterium (Callus) TM [265]
O. sativa Agrobacterium (Callus) TM [266]
O. sativa Agrobacterium (Callus) TM [267]
O. sativa Agrobacterium (Callus) TM [98]
O. sativa Agrobacterium (Callus) TM [268]
O. sativa Agrobacterium (Callus) TM [269]
O. sativa Agrobacterium (Callus) TM [270]
O. sativa Agrobacterium (Callus) TM [271]
O. sativa Agrobacterium (Callus) GT [272]
O. sativa Agrobacterium (Particle bombardment) TM / GT [273]
O. sativa PEG-protoplast transfection TM [126]
O. sativa PEG-protoplast transfection TM [274]
O. sativa PEG-protoplast transfection GT / GI [275]

O. sativa PEG-protoplast transfection /
Agrobacterium TM / CD [20]

O. sativa PEG-protoplast transfection / 
Agrobacterium TM / CD [104]

O. sativa PEG-protoplast transfection / Particle 
bombardement TM [120]

Petunia hybrida PEG-protoplast transfection 
ribonucleoproteins TM [276]

Petunia hybrida Agrobacterium (Leaves) TM / CD [106]
Physcomitrella patens PEG-protoplast transfection TM [277]
Physcomitrella patens PEG-protoplast transfection TM [278]
P. tomentosa Agrobacterium (Leaf disc) TM [96]
P. tomentosa Agrobacterium (Leaf disc) TM [279]
P. tomentosa Agrobacterium (Leaf disc) TM [280]
S. bicolor Agrobacterium (Leaf infiltration) TM [223]
Salvia miltiorrhiza Agrobacterium (Hairy roots) TM [281]
Scopelophila cataractae PEG-protoplast transfection TM [278]
S. lycopersicum Agrobacterium (Cotyledon segments) CD [282]
S. lycopersicum Agrobacterium (Cotyledon segments) TM [283]
S. lycopersicum Agrobacterium (Cotyledon segments) TM [114]
S. lycopersicum Agrobacterium (Cotyledon segments) TM [284]
S. lycopersicum Agrobacterium (Cotyledon segments) TM [285]
S. lycopersicum Agrobacterium (Cotyledon segments) TM [286]
S. lycopersicum A. rhizogenes TM [287]
S. tuberosum Agrobacterium (Callus) TM / GT [119]
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S. tuberosum Agrobacterium (Stem segments) TM [288]
S. tuberosum PEG-protoplast transfection TM [289]
T. aestivum Particle bombardement TM [290]
T. aestivum PEG-protoplast transfection TM [291]
T. aestivum PEG-protoplast transfection TM / GT [120]
T. aestivum PEG-protoplast transfection TM [208]

T. aestivum PEG-protoplast transfection / Particle 
bombardement TM [292]

T. aestivum Agrobacterium (Leaf infiltration) TM [293]
Vitis vinifera Agrobacterium (Embryo) TM [294]
Z. mays Agrobacterium (Embryo) TM [99]

Z. Mays Agrobacterium (Embryo) / Particle 
bombardement TM / GT / GI [295]

Z. mays PEG-protoplast transfection / 
Agrobacterium(Embryo) TM [296]

Z. mays PEG-protoplast transfection / 
Agrobacterium(Embryo) TM [217]

Z. mays PEG-protoplast transfection TM [297]
Z. mays PEG-protoplast transfection TM [223]

Z. mays PEG-protoplast transfection 
ribonucleoproteins TM [298]

 TM = targeted mutagenesis, GT = gene-targeting, CD = Chromosomal deletions
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Part 2
Agrobacterium 
Agrobacterium tumefaciens is known as the causative agent of crown gall disease in plants 
since the beginning of the 20th century. Crown galls arise at the site of infection and are 
the result of uncontrolled cell division. They can be excised and propagated in vitro without 
exogenous plant hormones [127]. Crown galls produce opines, amino-acid derivatives, which 
can be used by Agrobacterium as a nitrogen and carbon source and therefore the galls form 
a favorable niche for the bacterium [128]. The genetic basis for the uncontrolled growth 
of crown galls is the transfer of a copy of the T-region of the a large Tumor inducing (Ti) 
plasmid from the bacterium into plant cells. Processing of this T-region in the bacterium 
results in production of single stranded copies known as T-strands (transfer strands) that are 
transferred through a virB/virD4 type IV secretion system (T4SS) directly into the host cells. 
Upon entry into the host cell the T-strand is directed towards the nucleus and eventually 
may be integrated into the host genome [129]. The genes on this transferred DNA (T-DNA) 
encode for several proteins involved in the production and activation of plant hormones and 
the production of opines [130,131].
 
Induction of the virulence genes
The transformation of plant cells starts with a large cascade of events, the first step of which is 
the detection of phenolic compounds released by wounded plant cells by the bacterium through 
the VirA/VirG two-component sensor/regulatory system. VirA is autophosphorylated upon 
interaction with these phenolic compounds [132–135]. Phosphorylation of VirG by VirA 
leads to the binding of VirG to the vir-boxes of vir genes, stimulating their expression [136]. 
In addition to the VirA/VirG system the chromosomally encoded periplasmic protein ChvE, 
acts synergistically with the VirA/VirG system to induce vir gene expression upon detection 
of specific sugars in the plant sap [137]. Activation of the vir system only occurs in medium 
with a low pH like plant sap and at moderate temperatures (below 30° degrees). Eight operons 
designated VirA, B, C, D, E, F, G and H are largely conserved on the virulence regions of 
different types of Ti-plasmid. [138–140]. 

T-DNA processing
The T-region on the Ti-plasmid is flanked by two imperfect direct repeats (borders) that are 
the only determinants that define the T-DNA, of which only the right border sequence is 
essential for transfer [141]. Both of these borders are recognized by the virulence proteins 
VirD1 and the relaxasome VirD2. A single stranded break is introduced by VirD2 which 
stays covalently attached to the 5’-end of the nick [142,143]. The accessory Vir protein VirD1 
enhances the binding and nicking on supercoiled DNA, while VirC1 and VirC2 further 
increase the efficiency by attaching to the overdrive sequence found close to the right border 
[144,145]. Probably the T-strand is released by displacement synthesis with VirD2 still 
covalently attached to the 5’ end. This nucleo-protein complex is recognized by the T4SS and 
transported into the host cell [146]. 
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The type IV secretion system of Agrobacterium
The T4SS of Agrobacterium through which the T-strand is transported is a large multi-
protein complex that spans the inner membrane, the periplasm and the outer membrane. 
The genes encoding the T4SS are located on the Ti-plasmid and are encoded by a large virB 
operon, consisting of 11 open reading frames, and the virD4 gene. Studying the T4SS has 
led to a division of its components into energy providing subunits (VirB4, VirB11, VirD4), 
inner membrane channel components located predominantly in the inner membrane (VirB3, 
VirB6, VirB8), periplasmic and membrane outer components (VirB7, VirB9), connecting 
component (VirB10), pilus components (VirB2, VirB5) and the VirB1 transglycosylase 
(extensively reviewed [147]). The T4SS present in Agrobacterium also translocates separately 
the T-strand four other so called effector proteins (VirD5, VirE2, VirE3 and VirF) into the host 
cell [148–150]. Their translocation via the T4SS is dependent on a C-terminal translocation 
signal present in all translocated proteins that has a net positive charge with a consensus motif 
of R-X(7)-R-X-R-X-R-X-X(n)>[149]. Combined with VirD2, VirE2 aids in nuclear targeting 
of the T-strand [151,152]. The translocated effector protein VirE3 is highly conserved and has 
two potential NLS by which it binds to importin-α and is transported into the nucleus [153]. 
Upon mutation of VirE3 hardly any attenuation of virulence is observed, but combined with 
the inactivation of VirF the role of VirE3 in virulence becomes apparent [154]. Recently, it 
was shown that VirE3 is a transcription factor which upregulates the VIP1-binding F-box 
gene thereby removing the requirement for VirF [155]. A recent study focusing on the 
virulence protein VirD5 suggests that it binds to centromers/kinetochores and there may 
induce cycle arrest, chromosome missegregation and aneuploidy [156]. The VirF protein is 
an F-box protein [157] which together with homologues of the yeast protein Skp1 and Cullin 
forms a Skp-Cullin-F-box protein (SCF) complex [157]. This complex has been reported to 
target the host protein VIP1 and associated VirE2 for degradation by the 26S proteasome 
[158], which may be required for the uncoating of the T-DNA to enable integration into the 
host cell’s genome. VirF also targets degradation of the transcription factors VBF3 and VBF4 
[159]. Plant species that can be transformed by an Agrobacterium strain lacking virF have 
been shown to induce upon infection the expression of a plant F-box protein, VBF, that can 
functionally replace VirF [160].

T-DNA transfer and integration
T-DNA transfer across the different T4SS components occurs in a tightly controlled manner 
in which the T-strand makes sequential contact with VirD4, VirB11, VirB6, VirB8, VirB9 and 
VirB2 [161]. Although the other components of the T4SS have not been found to interact 
with the T-strand they are essential [161–163]. The translocated VirE2 protein is thought 
to be responsible for protecting the T-strand against degradation by host cell proteases/
nucleases after the T-strand has been transported to the hosts cytoplasm [164]. In the 
nucleus the T-strand is converted into a double strand form, which may be expressed for 
some time and then degraded. Integration into the genome leads to stable transformation and 
the continued expression that is necessary for tumorigenesis. The integration of the T-DNA 
occurs at a random position into the genome [165], which can result in mutation and variable 
expression due to position effects. The molecular mechanism of T-DNA integration was first 
studied in yeast where integration occurs efficiently via HR when the T-DNA contains yeast 
homologous sequences [166]. If no homology is present on the T-DNA integration in both 
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yeast and fungi occurs by NHEJ and is dependent on the C-NHEJ proteins Ku70, Ku80 and 
DNA ligase 4 [167,168]. Studies on the influence of these proteins on T-DNA integration in 
plants by different research groups mostly showed that their absence gave no or limited effects 
[30,169–171]. Disruption of multiple DNA repair pathways simultaneously also did not 
eliminate transformation [172–174]. Recently, it has been shown that the random integration 
of the T-strand occurs through a mechanism involving Pol θ [175].

Biotechnological applications of Agrobacterium
After the discovery of the genetic mechanism behind the transformation of plants by 
Agrobacterium, researchers focused on developing Agrobacterium into a tool for the 
introduction of foreign genes into plants. The genes that are naturally located between 
the borders are not involved in T-DNA transfer and these sequences can be replaced with 
other sequences of interest. The introduction of these genes of interest into the Ti-plasmid 
is however difficult due to its large size, low copy number and its inability to replicate in E. 
coli. The vir region and the T-DNA can however be separated on different plasmids without 
impacting Agrobacterium’s ability to form tumors [176]. The plasmid harboring the T-DNA, 
called the binary vector, contains at least one origin of replication that is functional in both 
Agrobacterium and E. coli and selectable markers for maintenance in Agrobacterium and 
E. coli, hereby allowing the easy cloning of genes on the T-region [176]. The plasmid with 
the intact vir region but lacking the T-region is known as the helper plasmid. The ability to 
introduce foreign genes into plant cells has made Agrobacterium an invaluable tool for plants 
scientists. 
	 Using Agrobacterium plants have been created with enhanced tolerance to abiotic 
and biotic stress and pest resistance. Furthermore, Agrobacterium has been applied to better 
understand plant biology at a cellular and molecular level for example tagging various proteins 
with a fluorescent protein to visualize cell compartments [177]. In addition T-DNA insertion 
libraries have been made in which the T-DNA functions as an insertional mutagen and, by 
extension, a gene tag [178,179]. More recently SSNs have been introduced into plants, using 
Agrobacterium, for targeted gene disruption and gene targeting in plants (see Table 1). In 
recent years, Agrobacterium has also been used to modify plants for the production of useful 
proteins, such as edible vaccines and recombinant antibodies [177]. 
	 Although Agrobacterium only forms tumors on dicotyledonous plants, under 
laboratory conditions it is also capable of transforming monocotyledonous plants [180], yeast 
[166] and a wide range of fungi [181]. Because of its ease of use, low cost and precision it has 
become a preferred vector not only for the genetic modification of plants, but also of yeasts 
and fungi. As mentioned above Agrobacterium not only uses its T4SS for T-DNA transfer but 
also for the translocation of several effector proteins. It has been found that the translocation 
signal of these effector proteins can be attached to heterologous proteins such as the Cre 
recombinase and I-SceI to effectuate their transfer to plant cells [148,149,166,182–184]. 
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Outline of this thesis 
In Chapter 2 we describe the application of CRISPR/Cas in Agrobacterium, to cure 
Agrobacterium from the promiscuous plasmid RP4 and from vectors with the replication unit 
of the octopine Ti plasmid. Furthermore we show that the Cas9 protein fused to a translocation 
signal recognized by the T4SS does not negate its ability to induce DSBs. 
In Chapter 3 yeast was used as a model organism to show that the Cas9 protein can be 
delivered through the T4SS of the plant pathogen Agrobacterium. The transfer of Cas9 was 
effectuated by fusion of a T4SS translocation peptide to the Cas9 protein. 	
In Chapter 4 a method for targeted mutagenesis in Nicotiana benthamiana was developed, 
that is based on the translocation of the Cas9 protein through the T4SS of Agrobacterium. We 
show that concurrent transfer of Cas9 protein and a T-DNA encoding the sgRNA results in 
targeted mutations in the infiltrated leaves of N. benthamiana.
In Chapter 5 we describe two novel approaches for the transient expression of the 
Agrobacterium derived isopentenyl transferase that can be used for the selection of 
transformed plants. The first consisted of the delivery of a T-DNA encoding the ipt gene into 
Pol-θ-deficient Arabidopsis mutants in which only transient expression of the T-DNA occurs 
but no integration. The second approach involved the direct delivery of the IPT protein 
through the Agrobacterium T4SS into Arabidopsis. 
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