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General Introduction
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General introduction
In the first part of this chapter I will review the developments in the field of genome editing. 
Specifically the DNA repair mechanisms involved, the tools available and the applications 
of genome editing in plants. As I have used Agrobacterium tumefaciens for delivery, the 
second part of this chapter will focus on the plant pathogen Agrobacterium, describing the 
mechanisms underlying the transformation of plants by Agrobacterium and its biotechnological 
applications. 

Part 1
Genetic engineering and genome editing
Controlled integration of transgenes and controlled genetic replacement of endogenous 
genes by transgenes based on homologous recombination, also known as gene targeting, is an 
important tool in biotechnology because it can accelerate the rate of functional gene analysis 
and guarantees a save introduction of novel traits. This controlled manipulation of genomes 
is based on the introduction of DNA that contains homology with the chromosomal locus 
allowing for DNA recombination. In lower eukaryotes such as yeast, integration of DNA occurs 
predominantly via homologous recombination and therefore the recombinatorial events 
required for gene-targeting were first studied in the budding yeast Saccharomyces cerevisiae 
[1,2]. In higher eukaryotes this kind of integration also occurs, albeit at low frequencies 
compared to random integration. The first molecular evidence for gene-targeting in animal 
cells was provided by the laboratories of Smithies [3] and Capecchi [4,5] in experiments that 
generated loss-of-function mutations in embryonic mouse stem cells. 
	 In plant cells the first report of gene-targeting appeared in 1988. A DNA repair 
template transferred to tobacco protoplasts was shown to recombine with an integrated 
defective copy of a resistance gene leading to integration of a restored gene [6]. In 1989 this 
was followed by a report showing that delivery of a repair construct via Agrobacterium, a 
bacterium commonly used to transform plants, in the form of a T-DNA could be used for 
gene targeting leading to the correction of a defective gene at its original locus in the genome 
[7]. However, to harness the power of homology-directed recombination for gene insertion or 
gene repair in plants the naturally low HDR frequencies ranging between 10-4 and 10-6 needed 
to be enhanced [7–13]. 
	 Early experiments showed that DNA-damaging agents stimulated the exchange 
between sister chromatids [14], but the most compelling evidence that breaks in the DNA 
enhanced recombination came from studies that showed that a single double-strand break 
(DSB) in the genome dramatically increases the local frequency of recombination. In these 
studies a fragment encompassing the recognition site for a specific DNA endonuclease 
and a defective resistance gene was first inserted into the genome. Recombination with a 
homologous donor DNA increased several orders of magnitude when the cognate DNA 
endonuclease was expressed in the recipient cells [15,16]. 
	 Initially only naturally occurring site specific nucleases (SSNs) were available for 
this purpose. During the last decade, however, artificial site specific endonucleases with a 
customizable DNA recognition and cleavage site were developed that can now be employed 
for targeted modification of almost any genetic information in the genomes of organisms. 
These SSNs can also be used for targeted mutagenesis. When SSNs are expressed and used to 
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induce DSBs, the DNA repair machinery of the cell will seal the break, but when the nuclease 
is persistently present the DNA will be broken again leading to a cycle of break-repair until 
imprecise repair leads to a loss of the nuclease restriction site. In this way mutations can be 
selected at the nuclease target site. If these mutations occur in coding sequences genes can be 
knocked out making it easier to study the function of the mutated gene. Mutations created in 
non-coding regions can be used for instance to disrupt binding sites of pathogen produced 
transcription factors that promote disease [17]. Using SSNs even entire gene clusters can be 
removed by inducing DNA breaks at opposing ends of the gene cluster [18–20] or for the 
knockout of multiple (redundant), non-allelic homologous genes at the same time.

Double-strand break repair
The genome is subject to many agents, both exogenous and endogenous leading to DNA 
damage, that, if unrepaired, may lead to mutation or gross chromosomal rearrangements. 
Such damage includes base lesions, DNA single-strand breaks (SSBs) and DSBs. Repairing 
the damage is vital to maintain an organisms genomic integrity and stability and therefore 
multiple DNA repair pathways have evolved. Exploiting such DNA repair mechanisms of 
DSBs, and to a lesser extent those involved in SSB repair and base excision repair (BER), 
underlies genome editing. Two distinct pathways can be used for the repair of DSBs; non-
homologous end joining (NHEJ) and homologous recombination (HR). Which repair 
pathway is used for the repair of DSBs differs greatly between organisms and the cell cycle 
phase at which the repair of a DSB occurs. Repair via NHEJ operates throughout the cell cycle 
but predominantly in the G1 phase [21], whereas repair via HR is restricted to the S and G2 
phases when sister chromatids are available as a repair template. 	
	 NHEJ repairs DSBs by religating the broken ends irrespective of sequence homology 
and can be precise, but may also result in small deletions or insertions disrupting the genetic 
information [22]. The first step in NHEJ is the binding of the heterodimeric Ku complex to 
both ends of a DSB. This complex is composed of a 70kDa and a 80kDa subunit, named Ku70 
and Ku80, respectively [23]. After the binding of Ku to a DSB, in mammalian cells DNA-PKcs 
is recruited to the end of the DNA break [24,25]. DNA-PKcs, however, is not present in plants 
and fungi. NHEJ is completed by ligation of the DNA ends; this rejoining is carried out by 
a complex of DNA ligase IV, XRCC4 and the XRCC4-like factor [26]. In plants and yeast 
orthologues of these C-NHEJ components have been identified [27–31]. Although several 
bacterial strains have been identified with a NHEJ-like DNA repair mechanism, the repair of 
DSBs in bacteria is predominately based on repair by HR [32,33]. 
	 In the absence of canonical factors involved in Ku-dependent NHEJ, back-up 
pathways are responsible for residual end joining of DSBs [34–37]. Repair via back-up NHEJ 
starts with the resection of the ends producing ssDNA ends that can anneal at microhomology 
regions. The ends may be linked at these microhomology regions, whereafter non-homologous 
tails are removed. The remaining gaps are filled by a specific DNA polymerase and re-ligated 
by DNA ligase I [38]. In these back-up pathways microhomologies sequences (5-25 basepairs) 
are frequently used for the repair of the DSB resulting in deletions [39] and therefore this 
pathway has also been called microhomology mediated end-joining (MMEJ) [40]. Several 
factors involved in repair via MMEJ have been identified: PARP1/2, MRN, CtIP, Ligase3, 
XRCC1 and DNA polymerase θ (Pol θ). The exact molecular mechanism behind MMEJ is 
poorly understood, but PARP1, the MRN complex and Pol θ have been implicated as key 
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players [41–43]. Recently, it has been shown that theta mediated end joining (TMEJ) is the 
dominant pathway for repair in Ku-deficient cells and the occurrence of microhomologies at 
the break site which is the result of the ability of Pol θ to mediate joining of two resected 3’ 
ends harboring DNA sequence microhomology [42,43]. 
	 Homologous recombination is a DNA repair mechanism that uses DNA homology to 
direct DNA repair. These homologous sequences required for repair by HR are preferentially 
found on sister chromatids, but other naturally occurring homologous sequences or an 
artificially introduced repair template may sometimes be used instead. Repair via HR can 
be divided into several subpathways, classical double-strand break repair (DSBR), synthesis-
dependent strand annealing (SDSA), single-strand annealing (SSA) and break-induced 
replication (BIR) [44]. DSBR was initially described to explain crossover events during meiosis 
and gene conversion [45]. SDSA is used for mitotic DSB repair [46] and is the predominant 
repair mechanism for two ended DSBs via HR [47]. In plants evidence has been found for the 
occurrence of DSBR, SDSA and SSA [48]. 
	 HR invariably starts off with the 5’ resection of the ends resulting in large 3’ ssDNA 
stretches that can search for complementary sequences. Repair via SDSA starts with a 3’ end 
invading a homologous double-strand forming a D-loop. This is followed by repair synthesis 
from the 3’ end using the newly paired strand as a template. The “X” shaped structure formed 
at the border between the hetero- and homoduplex of the D-loop is called a Holiday junction. 
After elongation, in SDSA the invading strand is displaced from the D-loop structure and 
anneals back to the 3’ homologous strand that was formed by resection of the other end of 
the DSB. Thus in SDSA the donor molecule remains unaltered and gene conversion without 
loss of sequence information is the final result of the reaction [49]. SDSA is preferably used 
for HR repair in mitotic cells in the S and G2 phase, when a sister chromatid is available as a 
template. DSBR is mainly used for the repair of DSB breaks in meiotic cells. In this case both 
DNA ends invade a homologous chromosome to copy genetic information and this results in 
a double Holiday junction that may be resolved into a crossover or a non-crossover product. 
	 SSA is a repair mechanism that can be used when two homologous sequences are in 
close proximity and arranged in a tandem orientation. Repair via SSA starts with resection 
and the production of 3’ single-stranded overhangs. This is followed by immediate pairing 
of the single stranded complementary sequences found near the break site and trimming of 
the any remaining 3’ ends [50]. SSA is not conservative in contrast to SDSA and DSBR and 
leads to deletion of one repeat and the intervening sequence. Up to one out of three DSBs in 
an artificial genomic region with tandemly arranged duplications was repaired via SSA after 
DSB induction [51].

Site-specific nucleases
To induce targeted DSBs, four different classes of SSNs have been developed: homing 
endonucleases (HEs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and the 
CRISPR/Cas RNA guided endonuclease encoded by the clustered regularly interspaced short 
palindromic repeats (CRISPR)/CRISPR-associated (Cas) system (Fig. 1) [52].
	 The first class of SSNs are the HEs which are a class of proteins typically encoded 
for by introns or inteins and are considered selfish genetic elements, much like transposons 
[53]. This class of proteins can be divided into eight different subclasses: LAGLIDADG, 
H-N-H, His-Cys, GIY-YI G, PD(D/E)xK, HJ resolvase-like, EDxHD and Vsr-like [54]. All 
of these different classes of HEs have large DNA sequence recognition sites varying in length 
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between 12 to 40 basepairs. Because the DNA binding domain and the cleavage domain of 
HEs overlaps [55] creating HEs with new DNA binding specificities is challenging. For HEs 
of the LAGLIDADG class progress has however been made in altering the DNA recognition 
and cleavage site [56,57]. HEs were the first to be used for targeted mutagenesis in Arabidopsis 
and maize and instrumental in showing that DSB induction enhances targeted mutagenesis 
and gene targeting in plants (see Table 1). 
	 In ZFNs the DNA binding domain consisting of zinc fingers is fused to the non-
specific nuclease domain of the FokI nuclease. The zinc-finger array responsible for DNA 
binding is created by combining multiple zinc-finger domains, of the C2H2 class of zinc- 
fingers, that were discovered as part of the transcription factor IIIA [58]. This class of zinc- 
fingers consists of two β-sheets and an α-helix, which fits directly into the major groove of 
double strand DNA. The side chains from the N-terminal part of this helix contact the edges 
of the basepairs. Changing the amino acids in the α-helix may alter the affinity for different 
DNA sequences. Each zinc-finger domain recognizes 3bp of DNA [59]. Zinc-fingers have 
been created for the recognition of most of the 64 possible triplets [60–62]. By fusing the 
FokI nuclease domain to the zinc-finger array a zinc-finger nuclease (ZFN) is created. Two 
ZFNs are usually constructed that bind the DNA at opposing sites of the target sequence, each 
making a nick in one of the DNA strands leading together to a staggered DSB. A problem that 
can arise is the formation of a homodimer consisting of two ZFNs for one of the half sites. As 
a consequence, a DSB may be induced in the genome at a position which was not the initial 
target, possibly leading to toxicity [63]. Miller et al. [64,65] have designed complementary FokI 
cleavage domain variants that together function as an obligate heterodimer. The widespread 
application of ZFNs is however limited because of the limited selectivity conferred by the 
zinc-finger modules, and the complex context-dependent interactions between neighboring 
zinc-finger modules [66,67]. Moreover designing ZFNs typically involves multiple rounds of 
testing without necessarily resulting in a nuclease that performs optimally [66,68–70]. ZFNs 
have been used for genome editing in Arabidopsis, tobacco, soybean and maize (see Table 1). 
	 The third class of artificial restriction enzymes called TAL effector nucleases (TALENs) 
has been developed as the successor of ZFNs. Transcription activator-like effectors (TALEs) 
are produced by plant pathogenic bacteria in the genus Xanthomonas and are transferred via 
type III secretion systems to the host, where they function as important virulence factors that 
act as transcriptional regulators [71–73]. The DNA binding domain of these TALEs contains 
multiple 30-35 amino acid long repeats that each recognizes a single base pair of DNA. Two 
hyper variable amino acids found at positions 12 and 13 of these repeats, known as the repeat-
variable di-residues (RVDs), determine the base specificity [74,75]. Crystallization of the 
TALE DNA-binding domain revealed how the TALE wraps around the sense strand of the 
DNA as a right-handed super helix with each repeat forming a left-handed helix-loop-helix 
structure [76]. The structure also revealed that the 13th amino acid of the RVD determines 
the base specificity by interacting with the major groove, and that the 12th amino acid of the 
RVD stabilizes the loop in the helix-loop-helix structure [76,77]. By fusing the DNA binding 
domain of TALEs to the nuclease domain of FokI, TALENs are constructed that just like 
ZFNs can be designed to bind at opposing sites of the target sequences and create a DSB upon 
dimerization of the nuclease domain [78]. TALENs have been used to modify the genome 
of the following plants: Arabidopsis, barley, Brachypodium, cucumber, maize, rice, soybean, 
tobacco, tomato and wheat (see Table 1). 
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The newest addition to the family of SSNs is the CRISPR\Cas system derived from a prokaryotic 
adaptive immune system that cleaves DNA in a sequence dependent manner. In prokaryotes 
this RNA based defense system provides protection from foreign invading nucleic acids, such 
as viruses and plasmids [79–81]. The CRISPR/Cas system is made up of a Cas gene operon 
and CRISPR arrays. Immunity is acquired by integrating short fragments of invading DNA 
known as spacers between two flanking identical repeats at the proximal region of CRISPR 
loci. Transcripts of these CRISPR arrays, including the spacers, are processed into small 
interfering CRISPR RNAs (crRNAs) approximately 40 nucleotides in length [82]. Together 
with transactivating RNAs (tracrRNAs) these crRNAs form a complex which enables the Cas 
enzyme to cleave homologous double-stranded DNA sequences, known as protospacers, in 
previously encountered invading DNA [83,84]. 
	 There are three distinct classes of CRISPR/Cas systems from which a type II class 
system from Streptococcus pyogenes has mostly been used for genome editing, because only one 
protein (Cas9) is sufficient for nuclease activity in combination with the two RNA molecules 
[85]. A requirement for cleavage is the presence of a conserved protospacer adjacent motif 
(PAM) downstream of the target DNA, with either a 5’-NGG-3’ or 5’-NAG-3’ motif [85–87]. 
The quick development of the CRISPR/Cas system into a tool for genome editing started with 
the discovery that a 20 nucleotide change in the crRNA was sufficient to reprogram the DNA 
target specificity [85], and the subsequent development of a single chimeric guide RNA that 
combines the target specificity of the crRNA with the structural properties of the tracrRNA. 
The first reports of the CRISPR/Cas system being used for genome editing in different 
eukaryotes followed shortly thereafter [88–92]. The Cas9 protein has two active sites in a 
RuvC and a HNH domain, respectively, each of which induces a single-strand break which 
combined create a DSB. To transform Cas9 into a nickase that induces a single strand break 
point mutations have been introduced into the RuvC (D10A) and HNH (H840A) domains 
[85,86,93]. Using a nickase instead of a nuclease strongly decreases the frequency of off target 
mutations, while still increasing the frequency of HDR [94,95]. The CRISPR/Cas system has 
been used successfully for genome editing in the following plants: Arabidopsis, Camelina, 
common wine grape, tobacco, maize, petunia, orchids, potato, red sage, rice, sweet orange, 
tomato, sorghum, watermelon wheat and (see Table 2).

Using site-specific nucleases for genome editing in plants
The outcome of repair of a DSB is dependent on which repair pathway is used. In plants 
and many other higher eukaryotes repair via NHEJ is the predominant pathway used for the 
repair of DSBs. Repair via HR, but also via NHEJ often results in perfect repair of the lesion, 
but therefore also restores the target site for the SSNs allowing for the induction of a new DSB. 
This process can therefore cycle between DSB induction and repair until imperfect repair 
via NHEJ results in a small deletion or insertion that destroys the recognition site of the site 
specific nuclease. 
 	 When SSNs are used to introduce DSBs into a gene, mutations can be induced that 
affect gene function. All four classes of SSNs have been used to this end in both model plants 
as well as in a wide range of crop species (for an overview of see Table 1). High mutation 
frequencies have been found for instance when poplar leaf discs were transformed with a 
constitutive CRISPR/Cas construct resulting in 89% of leaf discs transformed showing an 
albino shoot indicative of mutations created in the phytoene desaturase gene [96]. Maize 
plants regenerated from calli that constitutively expressed the CRISPR/Cas system were 
found to have mutations frequencies up to 70-100% [97]. 
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Figure 1. Site-specific nucleases used for genome editing. (A). Homing endonuclease with 
overlapping DNA binding and cleavage domain. (B) Zinc-finger nuclease (ZFN) composed of multiple 
zinc-fingers that form the DNA binding domain fused to the FokI nuclease domain. (C) TALEN 
composed of the DNA binding domain of transcription activator-like effectors (TALEs) fused to the  
FokI nuclease domain. (D) CRISPR/Cas composed of the Cas9 protein and the sgRNA which determines the base 
specificity with a 20bp sequence that is complementary to the target sequence. 
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Mutations created in the T0 generation however did not show expected inheritance patterns 
and are not always inherited by the T1 progeny [98,99]. In Arabidopsis chimerism was found 
to occur in T1 plants obtained after floral dip transformation [100,101]. More complex genetic 
modifications can be achieved when SSNs are used to induce two DSBs simultaneously, 
including specific deletions [19,69], inversions [102], duplications [102] and translocations 
[103]. In plants ZFNs, homing endonucleases and CRISPR/Cas have been used to create 
targeted chromosomal deletions [20,104–106].
	 When a DSB is induced and simultaneously an artificial repair template lacking the 
nuclease restriction site is present, this may be used for HDR, and the specific mutations 
present in the template introduced into the genome. In plants this has been accomplished in 
the following species: Arabidopsis, tobacco, tomato, soybean, rice, potato, wheat and maize. 
Similarly by using a repair template containing novel genes these can be inserted in this way 
at the DSB site (gene targeting). In plants the introduction of DSBs near the site of the desired 
recombination has been shown to greatly increase the frequency of HDR. The introduction 
of a SSB by engineered nickases also increases the frequency of HDR, although the increase is 
less pronounced as with the introduction of a DSB [107,108]. Repair via HDR has been used 
in plants for targeted modifications of genes in model species as well in several crop species 
using ZFNs [109–112], TALENs [113,114] and the CRISPR/Cas system [115–120]. 

Delivery of site-specific nucleases 
Although the choice for the delivery system used will often be based on efficiency and 
feasibility considerations, the resulting expression levels and concentration of the nuclease 
will also impact the outcome. In plants several methods of delivery have been used for either 
constitutive or transient expression of SSNs. To obtain plants that constitutively express SSNs 
varying plant tissues have been transformed using biolistic or Agrobacterium based methods 
(Table 1 and Table 2). These methods, although relatively easy, have some drawbacks. 
Integration of transgenes may disrupt endogenous genes at the site of transgene integration. 
The presence of transgenes increases the administrative burden in regulatory processes 
needed for marketing of genetically modified crops. Furthermore, depending on the position 
in the genome gene expression levels might be influenced and constitutive expression of the 
SSN may lead to off target effects. Therefore methods are being developed for the transient 
expression of SSNs, for instance by controlling them by inducible or cell specific promoters. 
Alternatively methods for the direct delivery of nuclease mRNA have also been developed 
[90,121,122], as well for the direct delivery of SSN proteins in human cells and drosophila 
[88,123,124] and tobacco protoplasts for which direct introduction of I-SceI and TALEN 
protein was reported [125]. In addition, preassembled CRISPR/Cas complexes of purified 
Cas9 protein and sgRNA have been transfected into protoplasts of Arabidopsis, tobacco, rice 
and lettuce [126]. Direct protein delivery does however require the isolation and purification 
of large quantities of SSNs and the isolation of protoplasts. Therefore, a system that eliminates 
the isolation and purification steps but would still directly deliver the SSN as a protein would 
have value in both academic and commercial settings. The Agrobacterium system may fulfill 
this promise.
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Table 1. Overview of use of homing endonucleases, zing finger nucleaes and TALENs in plants 
Site specific nuclease Transformation method Mutation type Reference

Homing endonucleases

A. thaliana Agrobacterium (Floral dip) TM / Gene excision [185]
Z. mays Agrobacterium (Embryo) TM [186]
Z. mays Agrobacterium (Embryo) TM [187]

Zinc finger nucleases

A. thaliana Agrobacterium (Floral dip) TM [188]
A. thaliana Agrobacterium (Floral dip) TM [189]
A. thaliana Agrobacterium (Floral dip) TM [190]
A. thaliana Agrobacterium (Floral dip) TM / GT [109]
A. thaliana Agrobacterium (Floral dip) TM / GT [110]
G. max Agrobacterium (Hairy roots) TM [191]
N. tabacum Protoplast electroporation TM / GT [111]
Z. mays Agrobacterium (Embryo) TM / Gene addition [112]

TALENs

A. thaliana Agrobacterium (Floral dip) TM [192]
A. thaliana Agrobacterium (Floral dip) TM [193]
A. thaliana PEG-protoplast transfection TM [194]
B. distachyon PEG-protoplast transfection TM [195]
G. max Agrobacterium (Hairy roots) TM [196]
G. max Agrobacterium (Hairy roots) TM [197]

H. vulgare Agrobacterium (Embryonic pollen), Particle 
bombardment GT [198]

H. vulgare Agrobacterium (Embryonic pollen) TM [199]
H. vulgare Agrobacterium (Embryonic pollen) TM [200]
H. vulgare Particle bombardment GT [198]
N. benthamiana mRNA transfection TM [201]
N. benthamiana PEG-protoplast transfection GT [202]
N. tabacum PEG-protoplast transfection TM / GT [113]
O. sativa Agrobacterium (Callus) TM [203]
O. sativa Agrobacterium (Callus) TM [204]
O. sativa Particle bombardment GT [205]
O. sativa PEG-protoplast transfection TM [120]
O. sativa PEG-protoplast transfection TM [206]
S. lycopersicum Agrobacterium (Seedlings) TM / GT [114]
S. tuberosum PEG-protoplast transfection TM [207]
T. aestivum PEG-protoplast transfection TM [208]
Z. mays Agrobacterium (Embryo) TM [209]
TM = targeted mutagenesis, GT = gene-targeting, CD = Chromosomal deletions
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Table 2. Overview of use CRISPR/Cas in plants
CRISP/Cas9 Transformation method Mutation type Reference

A. thaliana Agrobacterium (Floral dip) TM [210]
A. thaliana Agrobacterium (Floral dip) TM [211]
A. thaliana Agrobacterium (Floral dip) TM [212]
A. thaliana Agrobacterium (Floral dip) TM [213]
A. thaliana Agrobacterium (Floral dip) TM [214]
A. thaliana Agrobacterium (Floral dip) TM [215]
A. thaliana Agrobacterium (Floral dip) TM [216]
A. thaliana Agrobacterium (Floral dip) TM [101]
A. thaliana Agrobacterium (Floral dip) TM [217]
A. thaliana Agrobacterium (Floral dip) TM [218]
A. thaliana Agrobacterium (Floral dip) TM [219]
A. thaliana Agrobacterium (Floral dip) TM / GT [116]
A. thaliana Agrobacterium (Floral dip) TM / GT [220]
A. thaliana Agrobacterium (Floral dip) TM (SSA) [106]
A. thaliana Agrobacterium (Floral dip) TM (SSA) [221]
A. thaliana Agrobacterium (Leaf infiltration) CD [222]
A. thaliana Agrobacterium (Leaf infiltration) TM [223]
A. thaliana PEG-protoplast transfection TM [126]
A. thaliana PEG-protoplast transfection TM [224]

A. thaliana PEG-protoplast transfection / Agrobacterium 
(Floral dip) TM / GT [115]

Camelina sativa Agrobacterium (Floral dip) TM [225]
C. lanatus PEG-protoplast transfection TM [226]
C. sinensis Agrobacterium (Leaf infiltration) TM [227]
C. sinensis Agrobacterium (Cotelydons) TM [228]
C. sativus Agrobacterium (Cotelydons) TM [229]
Chrysanthemum morifolium Agrobacterium (Callus) TM [230]
Dendrobium officinale Agrobacterium (protocorns) TM [231]
G. max Agrobacterium (Hairy roots) TM [232]
G. max Agrobacterium (Hairy roots) TM [233]
G. max Agrobacterium (Hairy roots) TM [196]
G. max Agrobacterium (Hairy roots) TM [234]
G. max PEG-protoplast transfection TM [235]
G. max Particle bombardement TM / GT [236]
G. max Agrobacterium (Hairy roots) TM [237]

Gossypium hirsutum L. Agrobacterium (Hypocotyl/cotyledonary 
petiole) TM [238]

Gossypium hirsutum L. Agrobacterium (Hypocotyl/cotyledonary 
petiole) TM [239]

Gossypium hirsutum L. Agrobacterium (Hypocotyl/cotyledonary 
petiole) TM [240]

Hordeum vulgare Agrobacterium (Embryo) CD [241]
L. sativa PEG-protoplast transfection TM [126]
M. truncatula Agrobacterium (Hairy roots) TM [242]
M. truncatula Agrobacterium (Hairy roots) TM [237]
Marchantia polyorpha Agrobaceterium (spores) TM [243]
N. attenuata PEG-protoplast transfection TM [235]
N. attenuata PEG-protoplast transfection TM [126]

N. benthamiana Agrobacterium (Cas9) / guideRNA (CaLCuV 
virus) TM [244]

N. benthamiana Agrobacterium (Cas9) / guideRNA (TVR) TM [245]

N. benthamiana Agrobacterium (Cas9) / guideRNA (TYLCV 
virus) TM [246]

N. benthamiana Agrobacterium (Leaf infiltration) TM [247]
N. benthamiana Agrobacterium (Leaf infiltration) TM [223]
N. benthamiana Agrobacterium (Leaf infiltration) TM / CD [104]
N. benthamiana Agrobacterium (Leaf infiltration) TM [248]
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N. benthamiana Agrobacterium (Leaf infiltration) CD [222]
N. benthamiana PEG-protoplast transfection TM [115]
N. benthamiana PEG-protoplast transfection TM [224]
N. benthamiana PEG-protoplast transfection TM [249]
N. tabacum Agrobacterium (Leaf infiltration) TM [250]
N. tabacum Agrobacterium (Leaf disc) TM [251]
N. tabacum PEG-protoplast transfection TM [252]
N. tabacum PEG-protoplast transfection TM [253]
N. tabacum PEG-protoplast transfection TM / CD [105]

N. tabacum PEG-protoplast transfection / 
Agrobacterium(Leaf disc) TM [254]

O. sativa Agrobacterium (Callus) TM [255]
O. sativa Agrobacterium (Callus) TM [250]
O. sativa Agrobacterium (Callus) TM [210]
O. sativa Agrobacterium (Callus) TM [256]
O. sativa Agrobacterium (Callus) TM [257]
O. sativa Agrobacterium (Callus) TM [211]
O. sativa Agrobacterium (Callus) TM [258]
O. sativa Agrobacterium (Callus) TM [259]
O. sativa Agrobacterium (Callus) TM [260]
O. sativa Agrobacterium (Callus) TM [261]
O. sativa Agrobacterium (Callus) TM [262]
O. sativa Agrobacterium (Callus) TM [263]
O. sativa Agrobacterium (Callus) TM [264]
O. sativa Agrobacterium (Callus) TM [265]
O. sativa Agrobacterium (Callus) TM [266]
O. sativa Agrobacterium (Callus) TM [267]
O. sativa Agrobacterium (Callus) TM [98]
O. sativa Agrobacterium (Callus) TM [268]
O. sativa Agrobacterium (Callus) TM [269]
O. sativa Agrobacterium (Callus) TM [270]
O. sativa Agrobacterium (Callus) TM [271]
O. sativa Agrobacterium (Callus) GT [272]
O. sativa Agrobacterium (Particle bombardment) TM / GT [273]
O. sativa PEG-protoplast transfection TM [126]
O. sativa PEG-protoplast transfection TM [274]
O. sativa PEG-protoplast transfection GT / GI [275]

O. sativa PEG-protoplast transfection /
Agrobacterium TM / CD [20]

O. sativa PEG-protoplast transfection / 
Agrobacterium TM / CD [104]

O. sativa PEG-protoplast transfection / Particle 
bombardement TM [120]

Petunia hybrida PEG-protoplast transfection 
ribonucleoproteins TM [276]

Petunia hybrida Agrobacterium (Leaves) TM / CD [106]
Physcomitrella patens PEG-protoplast transfection TM [277]
Physcomitrella patens PEG-protoplast transfection TM [278]
P. tomentosa Agrobacterium (Leaf disc) TM [96]
P. tomentosa Agrobacterium (Leaf disc) TM [279]
P. tomentosa Agrobacterium (Leaf disc) TM [280]
S. bicolor Agrobacterium (Leaf infiltration) TM [223]
Salvia miltiorrhiza Agrobacterium (Hairy roots) TM [281]
Scopelophila cataractae PEG-protoplast transfection TM [278]
S. lycopersicum Agrobacterium (Cotyledon segments) CD [282]
S. lycopersicum Agrobacterium (Cotyledon segments) TM [283]
S. lycopersicum Agrobacterium (Cotyledon segments) TM [114]
S. lycopersicum Agrobacterium (Cotyledon segments) TM [284]
S. lycopersicum Agrobacterium (Cotyledon segments) TM [285]
S. lycopersicum Agrobacterium (Cotyledon segments) TM [286]
S. lycopersicum A. rhizogenes TM [287]
S. tuberosum Agrobacterium (Callus) TM / GT [119]
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S. tuberosum Agrobacterium (Stem segments) TM [288]
S. tuberosum PEG-protoplast transfection TM [289]
T. aestivum Particle bombardement TM [290]
T. aestivum PEG-protoplast transfection TM [291]
T. aestivum PEG-protoplast transfection TM / GT [120]
T. aestivum PEG-protoplast transfection TM [208]

T. aestivum PEG-protoplast transfection / Particle 
bombardement TM [292]

T. aestivum Agrobacterium (Leaf infiltration) TM [293]
Vitis vinifera Agrobacterium (Embryo) TM [294]
Z. mays Agrobacterium (Embryo) TM [99]

Z. Mays Agrobacterium (Embryo) / Particle 
bombardement TM / GT / GI [295]

Z. mays PEG-protoplast transfection / 
Agrobacterium(Embryo) TM [296]

Z. mays PEG-protoplast transfection / 
Agrobacterium(Embryo) TM [217]

Z. mays PEG-protoplast transfection TM [297]
Z. mays PEG-protoplast transfection TM [223]

Z. mays PEG-protoplast transfection 
ribonucleoproteins TM [298]

 TM = targeted mutagenesis, GT = gene-targeting, CD = Chromosomal deletions
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Part 2
Agrobacterium 
Agrobacterium tumefaciens is known as the causative agent of crown gall disease in plants 
since the beginning of the 20th century. Crown galls arise at the site of infection and are 
the result of uncontrolled cell division. They can be excised and propagated in vitro without 
exogenous plant hormones [127]. Crown galls produce opines, amino-acid derivatives, which 
can be used by Agrobacterium as a nitrogen and carbon source and therefore the galls form 
a favorable niche for the bacterium [128]. The genetic basis for the uncontrolled growth 
of crown galls is the transfer of a copy of the T-region of the a large Tumor inducing (Ti) 
plasmid from the bacterium into plant cells. Processing of this T-region in the bacterium 
results in production of single stranded copies known as T-strands (transfer strands) that are 
transferred through a virB/virD4 type IV secretion system (T4SS) directly into the host cells. 
Upon entry into the host cell the T-strand is directed towards the nucleus and eventually 
may be integrated into the host genome [129]. The genes on this transferred DNA (T-DNA) 
encode for several proteins involved in the production and activation of plant hormones and 
the production of opines [130,131].
 
Induction of the virulence genes
The transformation of plant cells starts with a large cascade of events, the first step of which is 
the detection of phenolic compounds released by wounded plant cells by the bacterium through 
the VirA/VirG two-component sensor/regulatory system. VirA is autophosphorylated upon 
interaction with these phenolic compounds [132–135]. Phosphorylation of VirG by VirA 
leads to the binding of VirG to the vir-boxes of vir genes, stimulating their expression [136]. 
In addition to the VirA/VirG system the chromosomally encoded periplasmic protein ChvE, 
acts synergistically with the VirA/VirG system to induce vir gene expression upon detection 
of specific sugars in the plant sap [137]. Activation of the vir system only occurs in medium 
with a low pH like plant sap and at moderate temperatures (below 30° degrees). Eight operons 
designated VirA, B, C, D, E, F, G and H are largely conserved on the virulence regions of 
different types of Ti-plasmid. [138–140]. 

T-DNA processing
The T-region on the Ti-plasmid is flanked by two imperfect direct repeats (borders) that are 
the only determinants that define the T-DNA, of which only the right border sequence is 
essential for transfer [141]. Both of these borders are recognized by the virulence proteins 
VirD1 and the relaxasome VirD2. A single stranded break is introduced by VirD2 which 
stays covalently attached to the 5’-end of the nick [142,143]. The accessory Vir protein VirD1 
enhances the binding and nicking on supercoiled DNA, while VirC1 and VirC2 further 
increase the efficiency by attaching to the overdrive sequence found close to the right border 
[144,145]. Probably the T-strand is released by displacement synthesis with VirD2 still 
covalently attached to the 5’ end. This nucleo-protein complex is recognized by the T4SS and 
transported into the host cell [146]. 

Thesis_cm_def.indd   23 20-7-2018   08:43:38



24

The type IV secretion system of Agrobacterium
The T4SS of Agrobacterium through which the T-strand is transported is a large multi-
protein complex that spans the inner membrane, the periplasm and the outer membrane. 
The genes encoding the T4SS are located on the Ti-plasmid and are encoded by a large virB 
operon, consisting of 11 open reading frames, and the virD4 gene. Studying the T4SS has 
led to a division of its components into energy providing subunits (VirB4, VirB11, VirD4), 
inner membrane channel components located predominantly in the inner membrane (VirB3, 
VirB6, VirB8), periplasmic and membrane outer components (VirB7, VirB9), connecting 
component (VirB10), pilus components (VirB2, VirB5) and the VirB1 transglycosylase 
(extensively reviewed [147]). The T4SS present in Agrobacterium also translocates separately 
the T-strand four other so called effector proteins (VirD5, VirE2, VirE3 and VirF) into the host 
cell [148–150]. Their translocation via the T4SS is dependent on a C-terminal translocation 
signal present in all translocated proteins that has a net positive charge with a consensus motif 
of R-X(7)-R-X-R-X-R-X-X(n)>[149]. Combined with VirD2, VirE2 aids in nuclear targeting 
of the T-strand [151,152]. The translocated effector protein VirE3 is highly conserved and has 
two potential NLS by which it binds to importin-α and is transported into the nucleus [153]. 
Upon mutation of VirE3 hardly any attenuation of virulence is observed, but combined with 
the inactivation of VirF the role of VirE3 in virulence becomes apparent [154]. Recently, it 
was shown that VirE3 is a transcription factor which upregulates the VIP1-binding F-box 
gene thereby removing the requirement for VirF [155]. A recent study focusing on the 
virulence protein VirD5 suggests that it binds to centromers/kinetochores and there may 
induce cycle arrest, chromosome missegregation and aneuploidy [156]. The VirF protein is 
an F-box protein [157] which together with homologues of the yeast protein Skp1 and Cullin 
forms a Skp-Cullin-F-box protein (SCF) complex [157]. This complex has been reported to 
target the host protein VIP1 and associated VirE2 for degradation by the 26S proteasome 
[158], which may be required for the uncoating of the T-DNA to enable integration into the 
host cell’s genome. VirF also targets degradation of the transcription factors VBF3 and VBF4 
[159]. Plant species that can be transformed by an Agrobacterium strain lacking virF have 
been shown to induce upon infection the expression of a plant F-box protein, VBF, that can 
functionally replace VirF [160].

T-DNA transfer and integration
T-DNA transfer across the different T4SS components occurs in a tightly controlled manner 
in which the T-strand makes sequential contact with VirD4, VirB11, VirB6, VirB8, VirB9 and 
VirB2 [161]. Although the other components of the T4SS have not been found to interact 
with the T-strand they are essential [161–163]. The translocated VirE2 protein is thought 
to be responsible for protecting the T-strand against degradation by host cell proteases/
nucleases after the T-strand has been transported to the hosts cytoplasm [164]. In the 
nucleus the T-strand is converted into a double strand form, which may be expressed for 
some time and then degraded. Integration into the genome leads to stable transformation and 
the continued expression that is necessary for tumorigenesis. The integration of the T-DNA 
occurs at a random position into the genome [165], which can result in mutation and variable 
expression due to position effects. The molecular mechanism of T-DNA integration was first 
studied in yeast where integration occurs efficiently via HR when the T-DNA contains yeast 
homologous sequences [166]. If no homology is present on the T-DNA integration in both 
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yeast and fungi occurs by NHEJ and is dependent on the C-NHEJ proteins Ku70, Ku80 and 
DNA ligase 4 [167,168]. Studies on the influence of these proteins on T-DNA integration in 
plants by different research groups mostly showed that their absence gave no or limited effects 
[30,169–171]. Disruption of multiple DNA repair pathways simultaneously also did not 
eliminate transformation [172–174]. Recently, it has been shown that the random integration 
of the T-strand occurs through a mechanism involving Pol θ [175].

Biotechnological applications of Agrobacterium
After the discovery of the genetic mechanism behind the transformation of plants by 
Agrobacterium, researchers focused on developing Agrobacterium into a tool for the 
introduction of foreign genes into plants. The genes that are naturally located between 
the borders are not involved in T-DNA transfer and these sequences can be replaced with 
other sequences of interest. The introduction of these genes of interest into the Ti-plasmid 
is however difficult due to its large size, low copy number and its inability to replicate in E. 
coli. The vir region and the T-DNA can however be separated on different plasmids without 
impacting Agrobacterium’s ability to form tumors [176]. The plasmid harboring the T-DNA, 
called the binary vector, contains at least one origin of replication that is functional in both 
Agrobacterium and E. coli and selectable markers for maintenance in Agrobacterium and 
E. coli, hereby allowing the easy cloning of genes on the T-region [176]. The plasmid with 
the intact vir region but lacking the T-region is known as the helper plasmid. The ability to 
introduce foreign genes into plant cells has made Agrobacterium an invaluable tool for plants 
scientists. 
	 Using Agrobacterium plants have been created with enhanced tolerance to abiotic 
and biotic stress and pest resistance. Furthermore, Agrobacterium has been applied to better 
understand plant biology at a cellular and molecular level for example tagging various proteins 
with a fluorescent protein to visualize cell compartments [177]. In addition T-DNA insertion 
libraries have been made in which the T-DNA functions as an insertional mutagen and, by 
extension, a gene tag [178,179]. More recently SSNs have been introduced into plants, using 
Agrobacterium, for targeted gene disruption and gene targeting in plants (see Table 1). In 
recent years, Agrobacterium has also been used to modify plants for the production of useful 
proteins, such as edible vaccines and recombinant antibodies [177]. 
	 Although Agrobacterium only forms tumors on dicotyledonous plants, under 
laboratory conditions it is also capable of transforming monocotyledonous plants [180], yeast 
[166] and a wide range of fungi [181]. Because of its ease of use, low cost and precision it has 
become a preferred vector not only for the genetic modification of plants, but also of yeasts 
and fungi. As mentioned above Agrobacterium not only uses its T4SS for T-DNA transfer but 
also for the translocation of several effector proteins. It has been found that the translocation 
signal of these effector proteins can be attached to heterologous proteins such as the Cre 
recombinase and I-SceI to effectuate their transfer to plant cells [148,149,166,182–184]. 
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Outline of this thesis 
In Chapter 2 we describe the application of CRISPR/Cas in Agrobacterium, to cure 
Agrobacterium from the promiscuous plasmid RP4 and from vectors with the replication unit 
of the octopine Ti plasmid. Furthermore we show that the Cas9 protein fused to a translocation 
signal recognized by the T4SS does not negate its ability to induce DSBs. 
In Chapter 3 yeast was used as a model organism to show that the Cas9 protein can be 
delivered through the T4SS of the plant pathogen Agrobacterium. The transfer of Cas9 was 
effectuated by fusion of a T4SS translocation peptide to the Cas9 protein. 	
In Chapter 4 a method for targeted mutagenesis in Nicotiana benthamiana was developed, 
that is based on the translocation of the Cas9 protein through the T4SS of Agrobacterium. We 
show that concurrent transfer of Cas9 protein and a T-DNA encoding the sgRNA results in 
targeted mutations in the infiltrated leaves of N. benthamiana.
In Chapter 5 we describe two novel approaches for the transient expression of the 
Agrobacterium derived isopentenyl transferase that can be used for the selection of 
transformed plants. The first consisted of the delivery of a T-DNA encoding the ipt gene into 
Pol-θ-deficient Arabidopsis mutants in which only transient expression of the T-DNA occurs 
but no integration. The second approach involved the direct delivery of the IPT protein 
through the Agrobacterium T4SS into Arabidopsis. 
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Abstract
The genome editing toolkit has been expanded with the RNA guided Cas9 endonuclease from 
the type II CRISPR/Cas system from Streptococcus pyogenus. Compared to its rapid adaptation 
in eukaryotes as a genome editing tool, applications of CRISPR/Cas systems in bacteria have 
progressed relatively slowly. Nonetheless CRISPR/Cas systems have been used to edit bacterial 
genomes and to control gene expression in a range of prokaryotes. Here we developed an 
engineered CRISPR/Cas system for use in the plant pathogen Agrobacterium tumefaciens. We 
show that this system can be used to cure Agrobacterium from the promiscuous plasmid RP4 
and from vectors with the replication unit of the octopine Ti plasmid. Curing of complete Ti 
plasmids was not successful, possibly because of the presence of a toxin anti-toxin system. 

Introduction
CRISPR (clustered regularly interspaced short palindromic repeats) and Cas (CRISPR 
associated) nucleases are found in many different prokaryotes, where they function as adaptive 
immune systems that act against bacteriophages and other invading nucleic acids [1]. The 
prototypical CRISPR/Cas endonuclease from the type II bacterial CRISPR/Cas system found 
in Streptococcus pyogenus can be programmed to create targeted double strand breaks (DSBs) 
by an engineered single guide RNA (sgRNA) [2]. The Cas9 endonuclease is directed to a 
desired sequence by specifying a 20 basepair sequence of the sgRNA which directs the Cas9 
nuclease to a 20 nucleotide complementary sequence [2,3]. Selection of target sequences is 
limited by the requirement of a so called protospacer-associated motif (PAM) which is a 
requisite for Cas9 activity [4,5]. 
	 DSBs introduced in the genome with the CRISPR/Cas system can either be repaired 
via non-homologous end joining (NHEJ) or by homologous recombination (HR) and thus 
the system can be exploited for targeted mutagenesis or gene replacement. Because most 
bacteria lack an efficient NHEJ repair mechanism, DSBs are lethal if repair cannot occur by 
HR. Repair via HR can however be used to replace or correct existing genes by providing an 
artificial repair template with homology to the target sequence. 
	 DSBs induced by an engineered CRISPR/Cas system from Streptococcus have been 
used for genome editing via HR in Streptococcus [6], E. coli [6–10], multiple Streptomyces 
species [11–13], Lactobacillus reuteri [14] and two different Clostridium species [15–17]. 
Furthermore the CRISPR/Cas system has also been used to selectively repress transcription 
of target genes using a mutated Cas9 protein without nuclease activity [18–21]. 
	 In this chapter we describe development of an engineered CRISPR/Cas system in 
the gram-negative soil dwelling bacterium Agrobacterium. We show that Cas9 is active in 
Agrobacterium and can be used for the curing of the promiscuous plasmid RP4 and small 
derivatives of the octopine Ti plasmid. Furthermore we show that our version of the Cas9 
protein with a C-terminal translocation tag for translocation by the Agrobacterium VirB/D4 
T4SS is functional and therefore can be used in the following chapters as an effective nuclease. 
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Results

Design of a Cas9/sgRNA expression system for Agrobacterium
In order to induce DSBs at specific sites in the Agrobacterium genome we expressed Cas9 and 
sgRNAs under the control of the acetosyringone inducible virF promoter that has been used 
previously for the expression of various heterologous proteins [22,23]. The Cas9 protein used 
in our experiments was modified to contain the C-terminal transport signal that is recognized 
by the Agrobacterium VirB/D4 T4SS secretion channel, which is required for the experiments 
in Chapters 3 and 4. 
	 Initially a vector was designed for expressing a sgRNA directed against the sacB 
marker (pNCas9FsacB) and introduced into an Agrobacterium strain with an pTiAch5 into 
which a small plasmid conferring kanamycin resistance and containing the sacB gene had 
integrated by HR via a single crossover. This plasmid can be lost again by the reverse HR 
reaction. This will occur spontaneously at a low frequency, but these deletion events can 
be selected on sucrose plates. A DSB within the integrated small plasmid can efficiently be 
repaired by this reverse HR reaction. In order to test CRISPR/Cas activity in Agrobacterium we 
therefore directed the system for induction of DSBs in the sacB gene. Efficient DSB induction 
would therefore lead to loss of kanamycin resistance in the survivors. 
	 Single colonies obtained after electroporation with the Cas9 and sgRNA expression 
vector were re-streaked on medium with kanamycin and all were sensitive (Fig. 1a) indicating 
that recombination between the flanking repeats had been induced by the DSB and that the 
integrated small plasmid had been lost from pTiAch5. To ensure that loss of the plasmid was 
not the result of spontaneous recombination events that had occurred without DSB induction 
by the engineered CRISPR/Cas system, a control experiment was performed with a vector 
expressing the modified NCas9F protein in the absence of the sgRNA. In absence of the 
sgRNA all of the colonies obtained after electroporation had remained resistant to kanamycin 
(Fig. 1b).
	 These results combined indicate that the Agrobacterium CRISPR/Cas expression 
cassette is functional and is capable of efficiently inducing DSBs that promote the 
recombination of direct repeats flanking the DSB.

 

Figure 1. Screening for homologous recombination of repeats surrounding the SacB and Km marker present on 
the modified pTiAch5 identified by the loss of Km marker. LBA4001/pSDM3684 transformed with pNCas9FsacB 
(A) or pNCas9F (B) were grown in the absence (control) or presence of kanamycin.
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Curing of RP4 
As the previous experiments showed that the CRISPR/Cas system was active in Agrobacterium, 
we tested if it could be used to cure plasmids by inducing DSBs. As a candidate for curing 
we chose the promiscuous plasmid RP4 which is maintained extremely stable under non-
selective conditions and has a copy number of about four to seven [24]. The CRISPR/Cas 
system described in the previous experiments was modified to target a region upstream of the 
replication initiation gene trfA (pNCas9FtrfA) and upstream of the replication origin region 
(oriV) (pNCas9ForiV) both with a protospacer containing a GG motif at the 3’ end that 
enhances DSB break induction [25]. Cells were plated on medium with gentamicin selecting 
for the presence of pNCas9FtrfA and pNCas9ForiV after electroporation. After vir induction 
these colonies were checked for sensitivity to kanamycin, tetracyclin and carbenicillin as 
curing of RP4 would result in loss of the nptII, tetA and bla genes found on RP4. Induced 
Agrobacterium cells expressing only the NCas9F protein were all still resistant to kanamycin 
(Fig. 2b), thereby excluding that the curing of RP4 could occur due to the restrictive induction 
conditions. However, after expression of the NCas9F protein combined with an sgRNA 
targeting the region upstream of trfA 100% (36/36) of the colonies had become sensitive to 
kanamycin (Fig. 2a), tetracyclin and carbenicillin. After expression of the NCas9F protein 
combined with an sgRNA targeting upstream of the oriV about ~69% (25/36) of the tested 
colonies had become sensitive to kanamycin, tetracyclin and carbenicillin. PCR on the trfA 
locus confirmed the loss of RP4 in these colonies (Fig. 2c). Similar curing efficiencies were 
obtained after expression of the NCas9F protein and the sgRNA targeting the region upstream 
of trfA under control of the coliphage T5 promoter. 
	 These results showed that DSB induction in the RP4 plasmid is an effective method 
for the curing of RP4 from Agrobacterium. 

Figure 2. Screening of Agrobacterium for the loss of plasmid RP4. Loss is detected by kanamycin sensitivity. 
LBA1100(RP4) transformed with pNCas9FtrfA (A) or pNCas9F (B) were grown in the absense (control) or presence 
of kanamycin. PCR on the trfA locus using kanamycin sensitive colonies (C). M: DNA marker, +: positive control
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Stability of the octopine Ti plasmid
As the previous experiments showed that Agrobacterium can be cured of RP4 we performed 
an experiment to test if Agrobacterium can be similarly cured of its octopine Ti plasmid. 
Because vir induction of Agrobacterium cells also increases the copy number of the Ti 
plasmid and its stability [26] an expression system was used in which Cas9 and the sgRNA 
were brought under the control of the T5 coliphage promoter [27]. With this system curing 
of RP4 was effective (see previous paragraph). Two new plasmids were created with the T5 
expression system targeting the virD4 (pT5NCasFvirD4) and agaA (pT5NCasFagaG) locus 
on the Ti plasmid and introduced into the Agrobacterium strains LBA1010, LBA1100 and 
LBA288. LBA1010 contains the complete Ti plasmid pTiB6 [28], LBA1100 contains the 
T-region-deleted helper plasmid [29] and LBA288 does not contain a Ti plasmid [30]. The 
pT5NCasFvirD4 or pT5NCasFagaG plasmids were introduced by electroporation. Cells 
were plated on medium with gentamicin selecting for the presence of the plasmids. Selected 
colonies were analyzed for the presence of the Ti plasmid by PCR. This analysis showed that 
the Ti plasmid was still present in all the LBA1010 and LBA1100 transformants. Sequence 
analysis of the segment encompassing the DSB site in the regions of the virD4 and agaA gene, 
respectively, did not reveal any mutations introduced as the result of error prone repair via a 
NHEJ mechanism. 
	 The transformation of both pT5NCasFvirD4 and pT5NCasFagaA to LBA1010 
resulted in low numbers of transformants. To determine if this was a direct result of DSB 
induction we introduced a control plasmid that targets the trfA locus of RP4 (pT5NCas9FtrfA) 
and thus introduces no DSBs in the Ti plasmid of LBA1010 and LBA1100. The high numbers 
of transformants obtained after electroporation with this control plasmid were used to 
estimate the relative electroporation frequencies of the plasmids targeting the virD4 and agaA 
locus. These results suggests that only 3% (pT5NCas9FagaA) up to 20% (pT5NCasFvirD4) of 
the transformants receiving a CRISPR/Cas plasmid inducing a DSB survive.
	 The construct targeting the agaA locus did not cause a strong decrease in the 
transformation frequency in LBA288 (no Ti plasmid) and LBA1100 (disabled Ti plasmid 
without the agaA locus) (Fig. 3). After transformation of pT5NCas9FvirD4, there was also 
a decrease in the relative transformation efficiency seen in LBA288 (Ti plasmid less), but 
presence of virD4 in LBA1010 and LBA1100 led to a further strong decrease in relative 
transformation efficiency. These results combined indicate that DSBs induction in the Ti 
plasmid negatively affects the number of transformants. 

Figure 3. Transformation effi-
ciencies of different Agrobac-
terium strains electroporated 
with pT5NCasFvirD4 and pT-
5NcasFagaA, targeting the 
virD4 and agaA locus respec-
tively. Relative transformation 
efficiencies are determined 
by dividing colony count of 
pT5NCas9FvirD4 and pT5N-
Cas9FagaA, respectively, by 
the colony count of transfor-
mation with pT5NCas9trfa. 
Error bars indicate the SEM 
(N=3).
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To test if the presence of the Ti plasmid is indeed involved in the reduction of the 
transformation efficiency a crossing was set up between LBA657, which can transfer its 
octopine Ti plasmid without requiring induction, and LBA288 derivatives expressing either 
pT5NCasFvirD4 or pT5NCasFtrfA. The transconjugant frequency decreased ~65 fold with 
the strain containing pT5NCasFvirD4 in the recipient compared to the transconjugant 
frequency with pT5NCasFtrfA (Fig. 4). This shows that presence of pT5NCas9virD4 in the 
recipient can prevent establishment of the Ti plasmid and indicates that a DSB is efficiently 
formed at the virD4 locus in the Ti plasmid.
	 These results combined with the strong decrease in number of transformants seen 
after electroporation indicate that DSB induction in an established octopine Ti plasmid and 
its subsequent degradation is lethal to Agrobacterium.

 

Curing of mini Ti plasmids
As curing of the octopine Ti plasmid was not successful and DSB formation in the Ti plasmid 
led to lethality instead, this suggested the presence of one or more toxin anti-toxin systems 
on the Ti plasmid preventing its loss from the host. In order to exclude that the Ti repABC 
replicator had special properties preventing its loss, we tested whether small mini Ti plasmids 
that lack such putative toxin anti-toxin system could be cured by DBS induction in these mini 
Ti plasmids. Three different Agrobacterium strains were used, each carrying a different octopine 
Ti plasmid derivative all of which have a Tn1 insertion and therefore provide carbenicillin 
resistance (LBA2803, LBA2811 and LBA2821) [30]. A CRISPR/Cas construct targeting the 
bla gene encoding a β-lactamase present in the Tn1 insertion on these plasmids was tested for 
its ability to cure the mini octopine Ti plasmid derivatives (pNCas9TN1). The introduction 
of a vector only encoding the NCas9F protein into LBA2803, LBA2811 and LBA2821 did 
not result in colonies that had become sensitive to carbenicillin. DSB induction on the small 
Ti plasmid derivatives with the pNCas9FTN1 vector did however result in high curing 
efficiencies of 77% (LBA2803) (Fig. 5a), 97% (LBA2811) (Fig. 5b) and 100% (LBA2821) (Fig. 
5c) based on sensitivity to carbenicillin. PCR on the repC locus confirmed the loss of the mini 
Ti plasmids in all the carbenicillin sensitive colonies in LBA2811 and LBA2821 expressing 
Cas9 and the sgRNA. PCR on the LBA2803 colonies expressing NCas9F and the sgRNA that 
had remained resistant to carbenicillin also showed no PCR product (repC locus), indicating 
that the mini Ti plasmid had been lost also in these colonies and that carbenicillin resistance 

Figure 4. Transconjugant 
frequency after mating 
between LBA657 and 
LBA288 pT5NCas9FvirD4 
or LBA288 pT5NCas9F-
trfA, respectively. Error 
bars indicate the SEM 
(N=3).
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may have been maintained by spontaneous mutations or by transposition of Tn1 to another 
site in the genome. As a control we also introduced pNCas9TN1 in LBA657 (containing a 
Ti plasmid with an Tn1 insertion) which resulted in a low transformation efficiency but no 
curing.
	 These results show that DSB induction in mini octopine Ti plasmids is an effective 
tool for curing of these mini Ti plasmids. These results also provide a further indication of the 
presence of toxin anti-toxin systems elsewhere in the Ti plasmid that prevents their curing. 

Figure 5. Screen for the loss of mini Ti plasmids. Agrobacterium strains expressing both the NCas9F protein and 
sgRNA targeting the bla gene encoding β-lactamase (pNCasF-TN1) were compared to Agrobacterium strains 
only expressing the NCas9F protein. Loss of the mini Ti plasmid results in loss of carbenicillin resistance. LBA2803 
(A-C), LBA2811 (D-F) and LBA2821 (G-I) each harboring a different mini Ti plasmid were transformed with 
pNCasF-TN1 (A, D, G) or pNCasF (B, E, H) and grown in presence or absense (control) of carbenicillin. PCR on 
the repC locus of the mini-Ti plasmids using carbenicillin sensitive colonies of LBA2803, LBA2811 and LBA2821 
(C, F, I). M: DNA marker, +: positive control
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Discussion
In this study we have shown that the CRISPR/Cas9 based endonuclease system can be 
expressed in Agrobacterium and can be used to induce DBSs. Such DSBs could be used to 
increase the recombination between flanking direct repeats to excise a previously integrated 
non-replicating plasmid and can be used therefore to increase the efficiency of obtaining 
gene deletion events which until now required the screening of vast numbers of colonies. 
Furthermore the CRISPR/Cas9 system could be used to cure Agrobacterium cells of the 
promiscuous IncPα RP4 plasmid and mini Ti plasmids.
	 The Cas9 protein used in our experiments has been fused with a hydrophilic 
C-terminal secretion signal with a net positive charge [31] used previously to translocate 
several heterologous proteins through the type IV secretion system of Agrobacterium 
[23,31,32]. We show that the addition of this secretion signal does not negate the ability of 
Cas9 to induce DBSs.
	 The loss of the integrated non-replicating plasmid through DSB induction occurred 
at low basal expression levels of Cas9 and the sgRNA without requiring induction of the virF 
promoter. Curing of RP4 did however require higher expression levels of Cas9 and the sgRNA 
either through induction of the virF promoter or by constitutive expression under control of 
the T5 promoter. This suggests that with low expression levels of Cas9 and the sgRNA DSB 
induction does not occur on all copies of RP4 simultaneously and therefore not all copies 
are lost and cut RP4 molecules can be repaired via HR using still intact copies of RP4 as a 
template. 
	 DSB induction in the octopine Ti plasmid negatively correlated with the survival 
of Agrobacterium cells harboring the Ti plasmid. Also a very low transconjugant frequency 
was observed when the Ti plasmid was transferred via mating to a recipient Agrobacterium 
expressing a CRISPR/Cas targeting the Ti plasmid. This shows that Ti plasmids have difficulty 
in establishing in a host expressing the CRISPR/Cas system which in line with its original 
biological function in defense. However, removal of an already established Ti plasmid by 
introduction of CRISPR/Cas turned out to be impossible. This suggests that one or more toxin 
anti-toxin systems are encoded by the Ti plasmid in which a long-lived toxin is neutralized by 
a short lived anti-toxin. Evidence for the presence of such a system has already been found for 
stability of the nopaline pTiC58 plasmid [33]. Attempts to identify the toxin anti-toxin system 
present on the octopine Ti plasmid using bioinformatics tools for the prediction of toxin anti-
toxin systems was however not successful. This could be because the bioinformatics tools 
used can only identify type II toxin anti-toxin.
	 In summary, we have created a CRISPR/Cas system that is active in Agrobacterium 
and can be used to promote homologous recombination on DNA repeats and to cure 
Agrobacterium of RP4 and mini octopine Ti plasmids. 

Material & Methods
Agrobacterium strains and media
Agrobacterium strains used in this study are listed in Table 1. All Agrobacterium strain were 
grown in LC (LB medium with 5g/l NaCl) at 290C with the appropriate antibiotics at the 
following concentrations: gentamicin 40 μg/ml; carbenicillin 75 μg/ml; kanamycin 100 μg/
ml; tetracyclin 2 μg/ml. Plasmids were electroporated into Agrobacterium as described in den 
Dulk-Ras and Hooykaas [34]. 
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Plasmid construction
The HindIII/NotI fragment with the virF promoter and the gene encoding a translation 
fusion between a nuclear localization signal, the Cre-recombinase and the last 37 amino 
acids of the Agrobacterium virulence protein VirF (pvirFpromoter-NLS::Cre::VirF37c) [32] 
from pSDM3155 was inserted into the HindIII/NotI sites of pUC18 to create pSDM2131. 
The Cre-recombinase fragment was removed by digestion of pSDM2131 with SalI and 
BglII and was replaced by a small linker containing a BglII site (annealed oligos DS061 and 
DS062). The Cas9 BamHI fragment from plasmid pMJ920 (Addgene plasmid #42234) [35] 
was inserted into the BglII site of pvirF-NLS::BglII Linker::VirF37c creating a translational 
fusion between a nuclear localization signal, Cas9 and the C-terminal 37 amino acids of VirF 
(NLS::Cas9::VirF37c) under the control of the virF promoter. The HindIII/NotI fragment 
with pvirF-NLS::Cas9::VirF37c was inserted into the HindII/NotI sites of pBBR6 (see Table 1) 
creating plasmid pNCas9F. 
	 For the construction of the sgRNA construct under the control of the virF promoter a 
segment of DNA was synthesized at BaseClear and was provided in the pUC57Kan backbone 
(pDualsgRNAcassette). This synthesized DNA fragment contains two sgRNA expression 
cassettes in direct repeat with a BbsI and BsaI restriction site respectively in which annealed 
oligo’s with the protospacer sequence were cloned into the BbsI site. Table 3 shows an overview 
of the oligo’s used to create the different protospacers. The entire fragment was excised with 
NotI and cloned into the NotI site of pNCasF.
	 pT5NCasF was created by amplifying the NLS::Cas9::VirF37c fragment from 
pNCas9F with DS356 and DS359. This fragment was cloned into the HindIII and NotI 
sites of pBBR6. Into this construct the T5 promoter amplified with DS360 and DS361 was 
cloned into BamHI and NheI site 5’ of the NLS::Cas9::VirF37c resulting in pT5NCas9F. 
To create the sgRNA expression cassette under control of the T5 promoter and the virF 3’ 
terminator the T5 promoter fragment was amplified from pQE-30 with DS349 and DS350 
and the structural part of the sgRNA together with the virF 3’ terminator was amplified from 
pDualsgRNAcassette with DS351 and DS352. These PCR products were combined and used as 
template with DS349 and DS352 and the resulting PCR product was cloned into NotI digested 
pDualsgRNAcassette backbone (pT5sgRNA). To insert the protospacer sequence, annealed 
and phosphorylated oligo’s were inserted into BbsI digested pT5sgRNA. After insertion of the 
protospacer sequence the T5sgRNA cassettes were cloned into the NotI site of pT5NCas9F. 
	 The pTi Ach5 plasmid with cointegrated pSDM3684 conferring kanamycin 
resistance and containing the sacB gene was created by electroporation of pSDM3684 into 
wildtype Agrobacterium strain Ach5 (LBA4001). Single crossover events of pSDM3684 with 
pTiAch5 were detected by selection on kanamycin. Plasmid pSDM3684 is a derivative of 
pIN61 containing fragments homologous to the pTiAch5. As pSDM3684 cannot replicate in 
Agrobacterium maintenance is only possible after cointegration with the Ti plasmid by HR.

Recombination and curing experiments
For the recombination experiments the pNCas9FsacB and pNCas9F plasmids were introduced 
via electroporation into Agrobacterium strain Ach5 with the modified cointegrated Ti-Ach5:: 
pSDM3684 (described above). Cells were plated on medium with gentamycin selecting for 
the presence of the plasmids. Single colonies were re-streaked on medium with and without 
kanamycin (100 μg/ml) to detect loss of the integrated pSDM3684 plasmid. No induction 
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was required as un-induced levels of expression were sufficient for DSB induction and 
recombination of direct repeats flanking the DSB.
	 For the RP4 curing experiments pNCas9FtrfA and pNCas9F were electroporated into 
LBA1100 (RP4). Colonies were grown overnight at 29°C in LC with appropriate antibiotics. 
Induction of the virF promoter was performed at 28°C at OD600 = 0.25 for 16 hours in 
induction medium containing 200µM acetosyringone (Sigma-Aldrich Co.) . Dilution series 
were plated to obtain single colonies which were re-streaked on plates containing tetracycline, 
carbenicillin or kanamycin and on plates without antibiotics. Loss of RP4 was confirmed by 
PCR with primers DS347 and DS348 (trfA locus). 
	 For Ti plasmid and mini Ti plasmid curing experiments, the pT5NCas9virD4, 
pT5NCas9FagaA, pT5NCas9FtrfA and pT5NCas9TN1 plasmids were electoporated into 
LBA288, LBA1010 and LBA1100. Loss of the Ti plasmid was checked via PCR using primers 
DS317 and DS318 (repC locus). Loss of the mini Ti plasmids from LBA2803, LBA2811 
and LBA2821 were checked by re-streaking single colonies on medium with and without 
carbenicillin (75 μg/ml) and was further confirmed by PCR using primers DS317 and DS318 
(repC locus). The relative transformation efficiencies depicted in Figure 3 were calculated by 
dividing the colony count after electroporation with pT5NCas9FvirD4 and pT5NCas9FagaA 
by the colony count after electroporation with pT5NCas9FtrfA. 

Table 1. Plasmids used in this study
Plasmid Marker Properties Source
pIN61 Km sacB vector Vergunst (unpublished)

pDSM2131 Cb Cloning vector with NLS-Cre-VirF42n 
fragment Vergunst (unpublished)

pDSM3155 Gm Cre::virFΔ42N [35]

pSDM3684 Km Vector containing octopine T-DNA flanks, 
sacB gene and Km marker Den Dulk-Ras (unpublished)

pNCas9F Gm vir inducible NCas9F expression vector This study

pQE-30 Cb Cloning vector for expression under control 
of the T5 promoter Qiagen

pDualsgRNAcassette Km sgNRA cloning vector, virF promoter This study

pNCas9FsacB Gm vir inducible NCas9F and sgRNA targeting 
sacB This study

pT5NCas9 Gm NCas9F expression vector under control of 
the T5 promoter This study

pNCas9FtrfA Gm NCas9F and sgRNA targeting upstream of 
trfA under control of the virF promoter This study

pNCas9ForiV Gm NCas9F and sgRNA targeting upstream of 
oriV under control of the virF promoter This study

pT5NCasFT5virD4 Gm NCas9F and sgRNA targeting virD4 under 
control of the T5 promoter This study

pT5sgRNA Gm sgNRA cloning vector, T5 promoter This study

pT5NCasFT5trfA Gm NCas9F and sgRNA targeting trfA under 
control of the T5 promoter This study

pT5NCasFT5agaG Gm NCas9F and sgRNA targeting agaG under 
control of the T5 promoter This study

pT5NCasFT5Tn1 Gm NCas9F and sgRNA targeting Tn1 under 
control of the T5 promoter This study

pBBR6 Gm Derrivative of the broad host-range plasmid 
pRL662 [22]

pMJ920 Cb Vector for mammalian expression of Cas9 [35]
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Table 2. Overview of Agrobacterium strains used in this study

Strain Chromosomal 
Background Properties Source

LBA288 C58 Cured of Ti plasmid [36]
LBA657 C58 pTiB6::Tn1 [36]
LBA1010 C58 pTiB6 [28]
LBA1100 C58 pTiB6 disarmed [29]
LBA2803 C58 mini Ti plasmid [30]
LBA2811 C58 mini Ti plasmid [30]
LBA2821 C58 mini Ti plasmid [30]
LBA1100 RP4 C58 pTiB6 disarmed + RP4 Wittleben (Unpublished)
LBA4001/pSDM3684 Ach5 pTi-Ach5::pSDM3684 den Dulk-Ras, Hooykaas (Unpublished)

Table 3. Overview of primers used in this study
Primer name Sequence
DS060 Linker GATCTACTAGTGCTGCACGG
DS061 Linker GATCCCGTGCAGCACTAGTA
DS256 SacB guideRNA NotI FW ATATGCGGCCGCAGCTCCTATGATAGTCGATA
DS257 SacB guideRNA NotI RV ATATGCGGCCGCGGGACCAGCACACTTAGATA
DS270 trfA protospacer ATTGCTGGACACCAAGGCACCAGG
DS271 trfA protospacer AAACCCTGGTGCCTTGGTGTCCAG
DS272 OriV protospacer ATTGTGCCACCCGCGTCGCCGAGG
DS273 OriV protospacer AAACCCTCGGCGACGCGGGTGGCA
DS317 repCfw TGCCTAACAAAGGTACAAGG
DS318 repCrv GTCAAGAACCTGATCAATCGC
DS339 virD4 target fw ATTGACCTCTGTGCTGGGCGACGG
DS340 virD4 target rv AAACCCGTCGCCCAGCACAGAGGT
DS345 agaA fw ATTGCGCGGAGTCTCGGATCGAGG
DS346 agaA rv AAACCCTCGATCCGAGACTCCGCG
DS349 FW T5 promoter GATCGCGGCCGCCTCGAGAAATCATAAAAAATTT
DS350 RV T5 promoter TTCTTCACGAAGACCCCAATCTGTGTGAAATTGTTATCCG
DS351 FW guideRNA + virF 3’ ATTGGGGTCTTCGTGAAGAA
DS352 RV guideRNA + virF 3’ CGATGCGGCCGCGGGACCAGCACACTTAGATA
DS356 RV Cas9F TCGAGCGGCCGCTCATAGACCGCGCGTTGATC

DS359 NCas9F HindIII BamHI NheI CTAGAAGCTTGGATCCCTACGGCTAGCATGGATAAAGCG
GAATAATTCC

DS360 T5 FW BamHI CTAGGGATCCCTCGAGAAATCATA
DS361 T5 RV NheI GGTAGCTAGCAGTTAATTTCTCCT
DS376 TN1 fw1 ATTGTTACTTCTGACAACGATCGG
DS377 TN1 rev1 AAACCCGATCGTTGTCAGAAGTAA
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Abstract
The RNA guided Cas9 endonuclease derived from the type II CRISPR/Cas system from 
Streptococcus pyogenes has been developed as a new potent tool for gene knockout in bacteria, 
yeast, fungi, animal cells and plants. Usually the system is introduced in cells by transfer of the 
encoding genes. Here we show that the Cas9 protein can also be delivered in cells through the 
bacterial type IV secretion system (T4SS) of the plant pathogen Agrobacterium tumefaciens. 
Cas9 transfer was effectuated by fusion of a T4SS translocation peptide to the Cas9 protein. 
Co-cultivation of yeast with an Agrobacterium strain expressing both Cas9 and the sgRNA did 
not lead to mutations in yeast. However after co-cultivation of a yeast expressing the sgRNA 
for CAN1 (canavanine) with an Agrobacterium strain expressing Cas9 (CAN1) mutations 
were obtained. Concurrent translocation of a T-DNA together with the Cas9 protein was 
possible and among T-DNA transformations CAN1 mutants could be identified at low 
frequency. However, concurrent translocation of a T-DNA encoding the sgRNA and Cas9 did 
not result in targeted mutations at the CAN1 locus. 

Introduction
The RNA guided endonucleases encoded by the Clustered Regularly Interspaced Short 
Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems are of great interest 
to the biotechnology community because of their use in genome editing. In prokaryotes 
where the CRISPR/Cas system originates, it functions as an adaptive immune system that 
acts against bacteriophages and other invading nucleic acids [1]. The Cas9 protein from the 
type II bacterial CRISPR/Cas system found in Streptococcus pyogenus, can be programmed 
by an engineered single guide RNA (sgRNA) to create targeted double strand breaks (DSBs) 
at a desired sequence in any host cell [2]. By specifying 20 nucleotides of the sgRNA the 
Cas9 endonuclease can be directed to 20 basepair complementary target sequences [2,3]. A 
limitation is that the target sequence must be flanked by a protospacer-associated motif (PAM) 
that is required for Cas9 activity [4,5]. DSBs introduced in the genome with the CRISPR/Cas 
system can either be repaired via non-homologous end joining (NHEJ) or by homologous 
recombination (HR). Repair via the error prone NHEJ pathway can result in small deletions 
and insertions enabling effective reverse genetics. Repair via HR can be used to replace or 
correct existing genes by providing an artificial repair template with homology to the target 
sequence. For targeted mutagenesis of host cells the genes encoding the Cas9 nuclease and the 
sgRNA are usually introduced in the new host and expressed. High expression levels of these 
transgenes is however not wanted because it increases the frequency of off-target mutations 
[6,7]. Here, we developed a system for the direct delivery of the Cas9 protein to yeast through 
the type IV secretion system of Agrobacterium tumefaciens. 
	 This bacterium is a soil-dwelling organism that is most commonly known for causing 
crown gall disease in plants by genetically transforming these with a set of oncogenes. It is 
the preferred vector for plant transformation, but is also frequently used as a vector for the 
transformation of yeasts [8] and fungi [9,10]. Agrobacterium uses a Type IV Secretion System 
(T4SS), encoded by the virB genes and virD4 gene on its Ti plasmid, for the translocation 
of the T-DNA [11–13]. Along with the T-DNA, several virulence proteins are translocated 
independently of the T-DNA into the host cell [14]. Translocation of proteins through the 
T4SS has been shown to be dependent on a hydrophilic C-terminal secretion signal with a 
net positive charge [15]. Certain heterologous proteins can be translocated through the T4SS 
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after fusion to the translocation signal of one of the virulence proteins [14,16,17]. In this way 
the Cre recombinase and homing endonuclease I-SceI were translocated by Agrobacterium 
into host cells to effect DNA recombination in the genome of target cells [14–16]. Here, we 
developed a system for the direct delivery of the Cas9 protein to yeast through the type IV 
secretion system of Agrobacterium.

Results

Translocation of the Cas9 endonuclease 
To test if the Cas9 protein could be translocated through the T4SS of Agrobacterium, an 
expression plasmid was created encoding a Cas9 fusion protein with a N-terminal nuclear 
localization signal and the C-terminal 37 amino acid translocation signal of the Agrobacterium 
virulence protein VirF (pNCas9F). The production of the fusion protein (NCas9F) was under 
control of the acetosyringone inducible virF promoter to ensure that production would only 
occur in the presence of a functional T4SS. The CAN1 gene was used as target locus for double 
strand break induction by Cas9. As an eukaryotic recipient we used a yeast strain expressing 
a sgRNA targeting the CAN1 locus from the strong TEF1 promoter [18]. This locus encodes 
a plasma membrane arginine transporter which mediates the uptake of arginine and its toxic 
analogue L-canavanine into the cell. Mutation of CAN1 leads to L-canavanine resistance. In 
our experiments translocation of NCas9F could therefore be detected by an increased number 
of L-canavanine resistant cells after co-cultivation with Agrobacterium. 

The CAN1 mutation frequency of the recovered yeast cells was found to be ~2.5 * 
10-5 after co-cultivation with Agrobacterium strain LBA1100 expressing NCas9F compared 
to ~0.2 * 10-5 after control co-cultivation with the same Agrobacterium lacking the NCas9F 
expression plasmid. To show that this about tenfold increase in the frequency of L-canavanine 
resistant colonies was the result of the combined nuclease activity of the translocated NCas9F 
and the CAN1 sgRNA, the CAN1 locus of 16 L-canavanine resistant colonies obtained after 
co-cultivation was amplified by PCR and Sanger sequenced. This revealed that 15 of the 16 
L-canavanine resistant colonies had mutations directly upstream of the PAM sequence (Fig. 
2a), whereas the CAN1 locus of the 16th colony had a single base pair substitution 300 bp 
upstream of the PAM sequence. The eight L-canavanine resistant colonies obtained after a co-
cultivation with an Agrobacterium strain lacking NCas9F had mutations that were not located 
directly upstream of the PAM sequence but were instead randomly distributed throughout 
the CAN1 gene and therefore represented spontaneous mutations. 

Figure 1. Translocated Cas9 mediated 
mutagenesis. CAN1 mutation frequency 
found in yeast  after co-cultivation with 
an Agrobacterium strain translocating 
NCas9F (pNCas9F) and an Agrobacterium 
strain lacking NCas9F (Control). Error 
bars indicate the SEM (N=3).
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Translocation of NCas9F and sgRNA by Agrobacterium
As the previous experiments showed that the NCas9F was functional after translocation we 
performed an experiment to test the translocation of a NCas9F and a sgRNA complex through 
the T4SS of Agrobacterium. A plasmid was created that puts CAN1 sgRNA production 
under the control of the virF promoter and has the 3’ flanking region of virF functioning 
as a terminator sequence (psgRNAvirF5’). The functionality of the Agrobacterium sgRNA 
expression cassette was confirmed with an assay in which DSBs induced by the sgRNA/
NCas9F complex stimulated the looping out of a previously plasmid integrated into the 
genome of Agrobacterium (Chapter 2). The frequency of L-canavanine resistant colonies was 
determined after co-cultivation with several different Agrobacterium strains that expressed 
either the combination of both the sgRNA and NCas9F, neither one or only NCas9F (Fig. 3). 
A comparison between the different CAN1 mutation frequencies showed the expression of 
sgRNA in Agrobacterium did not enhance the mutation frequency, and that co-cultivations 
with translocated NCas9F only led to an increased mutation frequency if the sgRNA was 
expressed in yeast cells. Co-cultivation with the yeast strain expressing the CAN1 sgRNA 
confirmed that NCas9F protein was translocated from Agrobacterium in the presence of 
sgRNA. These results therefore indicate that sgRNA/NCas9F complexes are not translocated 
by the T4SS.

Figure 2. Alignments of the CAN1 target with sequences obtained from L-canavanine resistant colonies after 
co-cultivation. The PAM sequence is highlighted in dark grey and the recognition sequence of the sgRNA is in 
light grey. Insertions are marked in red and deletions are marked in blue and microhomologies are underlined. 
The occurrence of the mutations is noted on the right hand side. (A) Mutations found after co-cultivation 
with an Agrobacterium strain delivering the NCas9F protein. (B) Mutations found after co-cultivation with an 
Agrobacterium strain delivering both NCas9F and a T-DNA mediating G418 resistance.
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Comparison of mutagenesis by translocated Cas9 protein and Cas9 expressed from a 
translocated T-DNA
To compare the targeted mutagenesis frequencies between translocated Cas9 and Cas9 from a 
translocated T-DNA two T-DNA vectors were created both containing an expression cassette 
in which the NCas9F protein is expressed from the strong TEF1 promoter. The first T-DNA 
vector pNCas9FPDA1 contains a T-DNA that upon entry of a yeast cell can integrate into the 
yeast genome at the PDA1 locus via homologous recombination. The second T-DNA vector 
contains a T-DNA with a 2μ origin of replication that circularizes and replicates in yeast 
(pNCas9F2μ). Both of these T-DNA vectors carry a dominant KanMX selectable marker 
which allows selection of transgenic yeast resistant to G418. Immediately after co-cultivation 
with a recipient yeast expressing a sgRNA directed to the CAN1 locus the mutation frequency 
was determined by selection on L-canavanine. The results (Fig. 4) obtained indicated that co-
cultivation with an Agrobacterium strain translocating NCas9F results in a CAN1 mutation 
frequency that is in the same order of magnitude as the mutation frequency after co-cultivation 
with either of the strains delivering a T-DNA from which NCas9F is expressed.

Figure 3. Translocation of sgRNA/NCas9F complex. CAN 1 mutation frequencies after co-cultivation with 
Agrobacterium translocating NCas9F (pNCas9F) in the presence or absence of sgRNA production in  (psgRNA) in 
Agrobacterium. Bottom row indicates the presence of the sgRNA targeting the CAN1 in the recipient yeast strain. 
Error bars indicate the SEM (N=3).
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Recovery frequency of mutants at non-selectable loci
To determine at which frequency yeast colonies with mutations at non-selectable loci could be 
recovered by our methodology, an Agrobacterium strain was created that not only translocates 
the NCas9F protein but also a T-DNA conferring G418 resistance (pSDM8002). This T-DNA 
was used to determine the frequency at which mutated yeast colonies could be recovered for 
non-selectable loci.
	 A co-cultivation was conducted with this Agrobacterium strain and a yeast strain 
expressing the sgRNA targeting the CAN1 locus. After co-cultivation yeast transformants 
were selected on G418 containing medium, and the G418 resistant colonies were subsequently 
tested for L-canavanine resistance. Out of a total of 1890 transformants, two colonies from 
independent co-cultivations were found that were also L-canavanine resistant. Sequencing of 
the CAN1 locus revealed that both colonies had the same 7 basepair deletion upstream of the 
PAM (Fig. 2b) that was previously found already in the first experiment. These results indicate 
that after NCas9 translocation targeted mutations can be recovered in yeast at non-selectable 
loci at a frequency of about 1:1000 T-DNA transformants.

Translocation of both Cas9 and a T-DNA expressing the sgRNA
As we could not obtain evidence for translocation of the complete NCas9F complex from 
Agrobacterium into yeast, we subsequently studied whether we could obtain targeted 
mutagenesis in yeast by translocation of the NCas9F protein combined with the translocation 
of a T-DNA coding for the sgRNA could induce targeted mutations. For this purpose two 
sgRNA expression vectors were created, an integrative T-DNA vector (psgRNAPDA1) and a 

Figure 4. Translocated NCas9F compared to constitutively expressed NCas9F. Mutation frequencies of CAN1 
(x10-5) after co-cultivation of a recipient yeast expressing the CAN1 sgRNA with Agrobacterium donor strains 
with integrative T-DNA vector expressing NCas9F (pNCas9FPDA1), circularizing T-DNA vector expressing NCas9F 
(pNCas9F2μ) or protein translocation vector with NCas9F (pNCas9F). Error bars indicate the SEM (N=3).
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circularizing T-DNA vector (psgRNA2μ) both conferring to G418 resistance. Co-cultivations 
were performed with Agrobacterium strains expressing NCas9F in combination with either 
of the sgRNA encoding T-DNA vectors. These co-cultivations did however not increase the 
CAN1 mutation frequency (Fig. 5). Transfer of both T-DNA’s was confirmed by selection 
on G418. The transfer of the NCas9F protein in the presence of either T-DNA vector was 
confirmed when the co-cultivations were performed with a recipient yeast strain expressing 
the CAN1 sgRNA (Fig. 5). Because previous experiments showed that the concurrent transfer 
of the NCas9F protein and a T-DNA occurs at low frequencies, the same co-cultivations were 
performed at a much larger scale and a total of 2*109 recovered yeast cells was plated on dual 
selection medium containing both L-canavanine and G418. No colonies were however found 
that were L-canavanine resistant due to mutations directly upstream of the PAM. These results 
combined indicate that concurrent transfer of the NCas9F protein and a T-DNA expressing 
the sgRNA did not induce targeted mutations. 

Discussion
In this study we have shown that it is possible to translocate Cas9 of the type II bacterial 
CRISPR system from Agrobacterium to yeast. After translocation, Cas9 was capable of 
forming a complex with a sgRNA and create targeted DSBs that after imperfect repair via 
NHEJ resulted in targeted mutations. Several of the mutations found within the CAN1 gene 
were probably the result of repair using small existing 4bp microhomologies (Fig. 2a and 
Fig. 2b). This may be one of the preferred ways to repair the DSB in the absence of a repair 
template [19–21].

Figure 5. Mutation frequency after co-cultivation with integrative T-DNA expressing the CAN1 sgRNA 
(psgRNAPDA1), circularizing T-DNA expressing the CAN1 sgRNA (psgRNA2μ) and translocated NCas9F 
(pNCAS9F). CAN1 mutation frequencies after co-cultivation with yeast strain not expressing the sgRNA (dark 
grey) and a yeast strain expressing the sgRNA (light grey). Bottom row indicates the presence of the sgRNA 
targeting the CAN1 in the recipient yeast strain. Error bars indicate the SEM (N=3).
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	 The mutation frequency which we found with translocated NCas9F is about a tenfold 
lower than the previously reported mutation frequencies obtained when Cas9 was expressed 
directly from a plasmid in yeast [18]. This could be due to limiting levels of translocated 
NCas9F, the short presence of NCas9F in the host after translocation or because not every 
yeast cell in the co-cultivation mixture is susceptible to Agrobacterium mediated transfer of 
NCas9F, or could be the consequence of a combination of these factors. 
	 Mutations induced by the translocation of the sgRNA/NCas9F complex from 
Agrobacterium to yeast could not be detected in the experiments performed. Mutations were 
however found if an Agrobacterium strain expressing both NCas9F and the sgRNA was co-
cultivated with a yeast strain expressing the sgRNA, confirming the translocation of NCas9F 
in the presence of the sgRNA. Furthermore we showed that the sgRNA/NCas9F complex 
forms a functional complex in Agrobacterium (Chapter 2). Therefore we speculate that the 
large size of the NCas9F/sgRNA complex (100 Å x 100 Å x 50 Å) [22] and other large proteins 
probably requires (partial) unfolding to be transferred complex through the T4SS pore which 
is only 10 Å at its narrowest point [23]. Such unfolding would disrupt the interaction between 
NCas9F and the sgRNA.
	 The mutation frequencies found with translocated NCas9F protein and Cas9 
expressed from a T-DNA were in the same order of magnitude. This showed that protein 
translocation of Ncas9F occurs at a similar frequency as T-DNA transfer. Transient presence 
of NCas9F could have a positive effect on the frequency of off-target mutations by the limiting 
availability of the nuclease [6,7].
	 Combined transfer of NCas9F and a T-DNA encoding the CAN1 sgRNA did not 
result in targeted mutations after co-cultivation, although transfer of both NCas9F and the 
T-DNA could be detected individually. Combined transfer of NCas9F and a T-DNA encoding 
the sgRNA is however capable of inducing targeted mutations in plants after ten days 
(unpublished data). Therefore we speculate that the lack of targeted mutations is caused by 
insufficient levels of sgRNA, or because sufficient levels of sgRNA requires the double strand 
formation of the T-DNA expressing the sgRNA at which point the translocation of NCas9F 
has potentially already stopped. 
	 In summary the experimental data discussed above show that it is possible to use 
Agrobacterium for the translocation of the Cas9 protein into yeast cells to create targeted 
mutations in yeasts. Because under laboratory conditions Agrobacterium is capable of 
transforming various other hosts including filamentous fungi, our methodology may be 
applicable more broadly.

Material and methods

Yeast strains and media
Derivatives of the Saccharomyces cerevisiae strain YPH499 (MATa  ura3-52 lys2-801 ade2-
101 trp1-Δ63 his3-Δ200 leu2-Δ1) were used in all experiments. YPH499 was grown on 
YEPD before transformation and then propagated on SD medium minus the auxotrophic 
compound(s) complemented by the plasmid(s). Transformation of YPH499 was done using 
the standard LiAc method [24].
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Agrobacterium strains
The Agrobacterium strain LBA1100 (C58 containing pTiB6Δ (ΔT-DNA, Δocc, Δtra), Rif, Spc) 
was used for all experiments [25]. Agrobacterium was grown in LB (5 g/l NaCl) medium 
containing the appropriate antibiotics at the following concentrations: gentamicin 40 μg/
ml, rifampicin 10 μg/ml, spectinomycin 250 μg/ml, kanamycin 100 μg/ml. Plasmids were 
electroporated to LBA1100 as described in den Dulk-Ras and Hooykaas (1995).

Plasmid construction
For the construction of pNCas9F see Chapter 2. The pSDM8002 backbone was created by 
cloning the 2µ replicon EcoRI fragment from pSLF178k [28] into the EcoRI site of pSDM8000 
[29]. To create the T-DNA vectors that expres NCas9F, the NLS::Cas9F::VirF fragment was 
amplified via PCR with DS122 and DS123. This PCR fragment was digested with XbaI, 
and cloned into the XbaI and blunted (Klenow) XhoI site of p414-TEF1p-Cas9-CYC1t 
(Addgene #43802, [18]). From the resulting backbone the NLS::Cas9::VirF including the 5’ 
TEF1 promoter and the 3’ CYC1 terminator was amplified by PCR with DS124 and DS125. 
This PCR fragment was cloned into the blunted XbaI site (Klenow) of pSDM8001 [30] to 
create pNCas9FFPDA1 and the blunted XhoI site of pSDM8002 to create pNCas9F2μ. The 
pSDM8002 backbone was created by cloning the 2µ replicon EcoRI fragment from pSLF178k 
[28] into EcoRI site of pSDM8000 [29]. The T-DNA sgRNA expression vectors were created 
by amplifying the CAN1 sgRNA expression cassette including the SNR52 promoter and the 
SUP4 terminator from p426-SNR52p-gRNA.CAN1.Y-SUP4t (Addgene #43803, [18]) via 
PCR with either DS114 and DS115 or DS119 and DS120 and inserted into the XbaI site of 
pSDM8001 and the XhoI site of pSDM8002, respectively.
	 To create the Agrobacterium sgRNA expression vector, the virF 3’ region was 
amplified using DS097 and DS099 adding a XbaI, StuI and SalI site and two flanking BglII 
sites. The resulting PCR fragment was cloned into the BglII site pOPHIS Borderless [31]. The 
virF 5’ flanking region was amplified using DS100 and DS101 and inserted into the XbaI and 
StuI sites of pOPHIS with the virF 3’ flanking region. The complementary oligo’s DS104 and 
DS105 were annealed and inserted into the BsbI sites of pEN_Chimera [32]. From pEN_
Chimera the entire CAN1 sgRNA cassete was amplified by PCR with DS102 and DS103 and 
cloned into the StuI and SalI sites of pOPHIS with the virF 5’ and virF 3’ flanking regions 
creating psgRNA. 

Co-cultivations of Agrobacterium with yeast
Co-cultivations of Agrobacterium with the YPH499 yeast strain were carried out as previously 
described with the following minor modifications [33]. Agrobacterium was grown overnight 
at 29°C in LB (5 g/l NaCl) with appropriate antibiotics. Induction of the virF promoter was 
performed at 28°C at OD600 = 0.25 for 6 hours in induction medium [30] containing 200 
µM acetosyringone (Sigma-Aldrich Co.). The yeast strain with the p426-SNR52p-gRNA.
CAN1.Y-SUP4t plasmid [18] was grown overnight in MY minus the auxotrophic growth 
compound (uracil) complemented by the plasmid and then diluted 10 times in YEPD and 
cultured for 6 hours. Yeast (107 cells) and Agrobacterium (2*108 cells) were mixed and spotted 
on nitrocellulose filters on induction medium plates [8] containing 200µM acetosyringone 
(Sigma-Aldrich Co.) followed by an incubation at 21°C for 7 days. 
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Determination of the CAN1 mutation frequency and T-DNA transfer frequency
Yeast was recovered from the nitrocellulose filter and plated on minimal yeast medium 
containing L-canavanine sulfate (60 μg mL-1, Santa Cruz Biotechnology Inc.) to select for 
mutations of the CAN1 locus and cefotaxime (200 μg mL-1, FORMEDIUM™) to stop the growth 
of Agrobacterium. Total yeast cell numbers were determined by plating serial dilutions of yeast 
on YEPD plates containing cefotaxime (200 μg mL-1, FORMEDIUM™). The CAN1 mutation 
frequency was determined by dividing the number of L-canavanine resistant colonies by 
total colony count based on the serial dilutions on YEPD. To determine the T-DNA transfer 
frequency yeast recovered from the nitrocellulose filter was plated on YEPD containing G418 
(200 μg mL-1, FORMEDIUM™) and cefotaxime (200 μg mL-1, FORMEDIUM™). The transfer 
frequency was determined by dividing the number of G418 resistant colonies by the total 
colony count based on the serial dilutions on complete yeast medium.

Mutation analysis of the CAN1 locus
Yeast was grown overnight in YEPD at 30°C. Genomic DNA was isolated from 2 ml cultures 
using the yeastartm genomic DNA kit from Zymoclean (protocol 1). The CAN1 locus was 
amplified from L-canavanine resistant colonies by PCR with primers DS086 and DS088 and 
the PCR fragment was cloned into pJET2.1 (CloneJET PCR Cloning Kit, Thermo Fischer 
Inc.) before sequencing (Macrogen Europe Inc.).

Table 1. Overview of primers used in this study
Primer name Sequence
DS060 GATCTACTAGTGCTGCACGG
DS061 GATCCCGTGCAGCACTAGTA
DS072 AGTCAGATCTGAAAAACATCAAAAAAAACCAG
DS073 GCTAAGATCTCGTTTCAGGAAAGTTTCGGAGGAG
DS086 CTTCAGACTTCTTAACTCCTGT
DS088 TGAGGGTGAGAATGCGAAATG
DS097 AGGCCTCCTTCCGTCGACCTATCCGTGCTGTTCGTCAC
DS098 AGATCTTCTAGACCTTCCAGGCCTCCTTCCGTCGACCT
DS099 AGATCTGGGACCAGCACACTTAGATA
DS100 TCTAGAAGCTCCTATGATAGTCGATA
DS101 AGGCCTATCGCTCCTGTGCTTTTGAA
DS102 AGGCCTATTGGGGTCTTCGAGAAGAC
DS103 GTCGACTAATGCCAACTTTGTACAAG
DS104 ATTGGATACGTTCTCTATGGAGGA
DS105 AAACTCCTCCATAGAGAACGTATC
DS114 CTCGAGTCTTTGAAAAGATAATGTATG
DS115 CTCGAGAGACATAAAAAACAAAAAAAG
DS119 ACTAGTTCTTTGAAAAGATAATGTATG
DS120 ACTAGTAGACATAAAAAACAAAAAAAG
DS122 CTATTCTAGAATGGATAAAGCGGAATTAAT
DS123 ATCGGAATTCTCATAGACCGCGCGTTGATC
DS124 CCCGGGAGCTCCGGATGCAAGGGTTC
DS125 CCCGGGGGTACCGGCCGCAAATTAAAG
DS126 ATGGATAAAGCGGAATTAATTCC
DS127 TCATAGACCGCGCGTTGATCG
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Table 2. Overview of plasmids used in this study
Name Description Vector type, organism

pCas9F pvirFpromoter:NLS::Cas9::VirF37C Expression vector, 
Agrobacterium

pCas9FPDA1 rightborder:PDA1:KANMX:tef:NLS::Cas9::
VirF37C:cyc1t:PDA1:leftborder Binary vector, yeast

pCas9F2μ rightborder:KANMX:tef:NLS::Cas9::VirF37C:
cyc1t:2µ:leftborder Binary vector, yeast

psgRNAPDA1 rightborder:PDA1:KANMX:SNR52:gRNACan1:
SUP43':PDA1:leftborder Binary vector, yeast

psgRNA2μ rightborder:KANMX:SNR52:gRNACan1:SUP43':
2µ:leftborder Binary vector, yeast

pSDM8001 rightborder:PDA1:KANMX:PDA1:leftborder Binary vector, yeast

pSDM8002 rightborder:KANMX:2µ:leftborder Binary vector, yeast

psgRNA pvirFpromoter:SNR52:gRNACan1:SUP4:3'virF Expression vector, 
Agrobacterium

p426-SNR52p-gRNA.CAN1.Y-SUP4t SNR52:gRNACan1:SUP4 Expression vector, yeast
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Abstract
The RNA guided endonuclease based on the CRISPR/Cas system of Streptococcus pyogenus 
is a potent new tool for genome engineering in plants. Delivery of this system is usually done 
by transforming plants with Agrobacterium tumefaciens which transfers a T-DNA encoding 
the required genes through its Type IV Secretion System (T4SS). Instead, here we report the 
delivery of the Cas9 protein of the CRISPR/Cas system of Streptococcus pyogenus through 
the T4SS of Agrobacterium, simultaneously with transfer of a T-DNA encoding the sgRNA 
directed against the phytoene desaturase gene. Transfer of Cas9 was accomplished by fusion 
of a T4SS translocation peptide to the Cas9 protein. Infiltration of Nicotiana benthamiana 
leaves with an Agrobacterium suspension resulted in targeted mutations at the phytoene 
desaturase locus. Deep amplicon sequencing showed that translocation of NCas9F through 
the T4SS resulted in deletion and insertion frequencies that are eighteen and twelve fold lower, 
respectively, than after delivery of a T-DNA encoding both Cas9 and the sgRNA. Mutations 
induced by translocated NCas9F were found upstream of the PAM and were distributed in the 
same manner as mutations induced with Cas9 expressed from a T-DNA. 

Introduction
Genome editing in plants can be achieved by the induction of site-specific double stranded 
breaks (DSBs) in the genome with several classes of nucleases. Meganucleases, Zinc-Finger 
Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs) and more 
recently the CRISPR/Cas system (for: clustered regularly interspaced palindromic repeats / 
CRISPR-associated) have become important tools for the targeted genetic modification of 
plant genomes. DSBs induced by these nucleases can be repaired through non-homologous 
end joining (NHEJ) or homologous recombination (HR). Repair via error-prone NHEJ can 
result in small insertions and deletions enabling reverse genetics. By providing an artificial 
repair template with homology to the target sequence, repair via HR can be used to replace 
or correct existing genes.
	 The CRISPR/Cas system, originating from prokaryotes, functions as an adaptive 
immune system that acts against invading bacteriophages and other invading nucleic acids 
[1]. The prototypical CRISPR/Cas endonuclease from the type II bacterial CRISPR/Cas system 
found in Streptococcus pyogenus can be programmed to create targeted double strand breaks 
(DSBs). The tracrRNA and crRNAs can be engineered into a single guide RNA (sgRNA) [2]. 
The Cas9 endonuclease can be directed to a specific target sequence by the incorporation of a 
20 nucleotide sequence in the sgRNA that is complementary to the target sequence [2,3]. This 
20 base pair (bp) target sequence has to be flanked by a 3 bp protospacer-associated motif that 
is required for Cas9 activity [4,5].
	 For targeted mutagenesis in plant cells, the genes encoding the RNA guided 
endonuclease system are usually introduced using Agrobacterium tumefaciens. Translocation 
of the T-DNA occurs via its Type IV Secretion System (T4SS), encoded by the virB genes and 
virD4 gene on its Ti plasmid [6,7]. Independently of the T-DNA, several virulence proteins 
are transported alongside the T-DNA into the host cell [8]. A hydrophilic secretion signal 
with a net positive charge is responsible for the translocation of proteins through the T4SS [9]. 
Several heterologous proteins, fused to this secretion signal, have been translocated through 
the T4SS [8–11]. In this way the Cre recombinase and homing endonuclease I-SceI were 
translocated by Agrobacterium into host cells to effect DNA recombination in the genome of 
target cells [8–10]. 
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In this study we show that delivery of the Cas9 protein through the T4SS of Agrobacterium 
can be used for targeted mutagenesis in Nicotiana benthamiana. 

Results
Engineering the Cas9 expression constructs
In order to be able to test the translocation of the Cas9 protein of the type II class of CRISPR/
Cas systems from bacteria to N. benthamiana cells a translational fusion between Cas9 and 
the last 37 amino acids of the Agrobacterium virulence protein VirF was created. These 37 
amino acids are known to function as a recognition signal for the T4SS of Agrobacterium and 
can be used to target proteins for translocation [8–10]. Target recognition of the CRISPR/Cas 
system requires an RNA guide. In Chapter 3, it was shown that the sgRNA, when expressed in 
Agrobacterium, was not translocated via the T4SS together with the Cas9 protein to yeast cells. 
Therefore, a T-DNA vector was created encoding a sgRNA targeting the phytoene desaturase 
(PDS) gene, for expression of the sgRNA in the host cells. The protospacer of this sgRNA 
contains an GG motif at the 3’ end of the target sequence, which has been shown to increase 
the frequency of targeted mutagenesis [12]. To compare the targeted mutagenesis frequency 
of the translocated NCas9F protein to constitutively expressed Cas9, a T-DNA vector was 
used expressing Cas9 under control of the ubiquitin promoter and the sgRNA under control 
of the small nuclear RNA promoter U6-26 [13].

Targeted mutagenesis in N. benthamiana leaves with translocated Cas9
To test the functionality of the translocated Cas9 in N. benthamiana, leaves were infiltrated 
with an Agrobacterium strain expressing the NCas9F protein and a T-DNA encoding the PDS 
sgRNA or a T-DNA expressing both Cas9 and the sgRNA. Ten days post infiltration, the 
tissue was harvested and the DNA was extracted. To easily detect mutations induced by the 
NCas9F nuclease we used the restriction enzyme loss method [14], as the target sequence 
of the sgRNA overlaps with a DdeI restriction site. To enrich for DNA molecules carrying 
mutations the genomic DNA of the infiltrated leaves was pre-digested with DdeI. A 490 
bp fragment was then amplified by PCR with primers flanking the target sequence, and 
the resulting PCR products were again digested with DdeI. Restriction digestion resistant 
bands were cloned and analyzed by sequencing. Translocation of a T-DNA encoding both 
Cas9 and the sgRNA resulted in restriction digestion resistant PCR products in all of the 
nine infiltrated leaves (Fig.  1a). The resistent PCR products were isolated and cloned into 
a high-copy vector transformed into E. coli and individual plasmid clones were sequenced. 
Deletions ranging from 1 to 11 bp, single nucleotide insertions and small deletions combined 
with insertions were found (Fig. 1b). Translocation of the NCas9F protein together with a 
T-DNA encoding the PDS sgRNA resulted in restriction digestion resistant PCR products 
in seven out of nine infiltrated leaves (Fig. 1a). The sequences of the PCR products were 
very similar to those obtained by T-DNA encoded Cas9, including deletions ranging from 
1 to 9 bp, single nucleotide insertions and combinations (Fig. 1c). The results showed that 
translocated NCas9F protein together with a sgRNA encoded by a T-DNA can bring about 
targeted mutagenesis in cells of N. benthamiana leaves. 
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Figure 1. CRISPR/Cas9 endonuclease-induced mutagenesis. The PDS target site was amplified using genomic 
DNA that was pre-digested with DdeI. The resulting 490bp PCR products were digested with DdeI. (A) DdeI 
resistant 490bp bands (arrow) obtained from tissue co-transformed by NCas9F protein and T-DNA encoding 
the sgRNA and by pDeCasPDS containing genes encoding Cas9 and sgRNA. (B) Sequence analysis of mutations 
obtained after NCas9F protein translocation and T-DNA encoding the sgRNA. (C) Sequence analysis of mutations 
obtained after transfer of T-DNA encoding Cas9 and sgRNA.  The DdeI target site and PAM are indicated. Inser-
tions are shown in bold, deletions with dashes and microhomologies are underlined. Length of insertions and 
deletions are shown at the left. Numbers of multiple clones with the same sequence are indicated at the right.
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Efficiency of mutagenesis by translocated Cas9 protein in comparison with Cas9 expressed 
from a T-DNA
In order to detect mutations, enrichment by restriction enzyme digestion was applied in the 
experiments described in the previous paragraph. In order to compare the efficiency of targeted 
mutagenesis after NCas9F protein delivery with that after T-DNA transfer directly, amplicon 
deep sequencing was performed. Amplicons were generated by PCR from DNA isolated 
from nine independently infiltrated leaves, 10 days after inoculation. These PCR amplicons 
covering the protospacer and PAM sequences were sequenced using the illumina HiSeq 2500 
platform. Figure 2 depicts the results as relative numbers of mutated reads per position. Most 
deletions detected were found 3 to 13 bp upstream of the PAM sequence irrespective of how 
Cas9 was delivered (Fig. 2a). Deletions in cells expressing Cas9 and sgRNA from a single 
T-DNA were likewise found 3 to 13 bp upstream of the PAM, but at a higher frequency than 
in cells into which the NCas9F protein had been translocated (Fig. 2a). Almost all insertions 
found with both translocated NCas9F and Cas9 and sgRNA expressed from a single T-DNA 
were located 3 to 4 bp upstream of the PAM (Fig. 2b). Such single bp insertions were not 
detected in sequenced amplicons obtained from non-infiltrated N. benthamiana tissue. The 
percentage of sequences with a deletion obtained from tissue with translocated NCas9F was 
found to be 0.24%, but the percentage seen after expression of Cas9 and sgRNA expressed 
from a single T-DNA was found to be eighteen fold higher at 4.31%. Similarly, the insertion 
frequency with translocated NCas9F was found to be 1.55% and 12 fold higher at 19.8% after 
expression of Cas9 and sgRNA from a single T-DNA. Further analysis revealed that around 
~80% of these single bp insertions are adenosine or thymidine insertions. 
	 These results show that mutations created with translocated NCas9F protein have 
a similar distribution of both deletions and insertions as those seen after expression from a 
single T-DNA, albeit at 12-18 fold lower frequencies. 

Regeneration of plants from mutated leaves
As previous experiments showed that translocated NCas9F was effective in creating targeted 
mutations in the leaf cells of N. benthamiana we tested if plants could be regenerated from such 
cells. Leaf discs were excised from N. benthamiana leaves infiltrated with an Agrobacterium 
strain expressing the NCas9F protein and a T-DNA encoding the sgRNA and were placed on 
selective medium containing kanamycin to select for the presence of the T-DNA. This resulted 
in the formation of 150 resistant calli from which shoots were regenerated on shoot-induction 
medium. Total DNA was isolated from these regenerated shoots from which the target locus 
was amplified by PCR. The amplified bands were treated with the restriction enzyme DdeI as 
loss of the restriction site was taken as indicator for the presence of a mutation. Undigested 
bands were not found, which indicated that none of the regenerated shoots had homozygous 
or heterozygous mutation at the desaturase target locus. 
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Figure 2. Deletion frequency (A) and insertion frequency (B) for each nucleotide of the PDS target. Deep se-
quencing analysis of the target sequence obtained from tissue infiltrated with an Agrobacterium transferring 
NCas9F protein combined with a T-DNA expressing the sgRNA and tissue infiltrated with Agrobacterium transfer-
ring a T-DNA expressing both Cas9 and sgRNA. Relative numbers of mutated reads are depicted as a fraction of 
the total number of reads numbers per position.
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Discussion 
In this study we have shown that the NCas9F protein of the type II bacterial CRISPR system 
can be translocated from Agrobacterium to N. benthamiana and combined with a T-DNA 
expressing a sgRNA induced targeted DSBs that after imperfect repair via NHEJ resulted in 
targeted mutations. 
	 Mutations induced by translocated NCas9F were distributed similarly as mutations 
induced with Cas9 expressed from a T-DNA. The deletion and insertion frequencies were 
however about eighteen and twelve fold lower, respectively, with translocated NCas9F protein 
than with Cas9 expressed from a T-DNA. These lower frequencies could be due to limiting 
levels of translocated NCas9F, the short presence of NCas9F in the host after translocation, 
lower activity of NCas9F protein compared to Cas9 protein, or because transfer of T-DNA 
and NCas9F does not always occur simultaneously.
	 High levels of small insertions several basepair upstream of the PAM were detected 
in our experiments using amplicon sequencing. Using the restriction enzyme loss method, 
the most common mutations found were also small insertions although the frequency was 
slightly lower than in our experiments using amplicon sequencing. Other reports about 
targeted mutagenesis in N. benthamiana with CRISPR/Cas using the enzyme loss method 
to detect mutations do not mention these high levels of small insertions [15–18]. High levels 
of small insertions were however reported in Arabidopsis after DSB induction with CRISPR/
Cas using next-generation sequencing [13]. This suggests that the outcome of repair of DSBs 
induced with CRISPR/Cas in plants results in a low frequency of small deletions and a high 
frequency of single bp insertions upstream of the PAM. These single bp insertions mainly 
consist of adenosine or thymidine insertions which is consistent with the ‘A-rule’ which states 
that polymerases are known to preferentially incorporate deoxyadenosine-monophosphate 
(dAMP) when template base coding is not available [19].
	 We attempted to obtain N. benthamiana shoots with targeted mutations induced 
by translocated NCas9F. A total of a 150 shoots were regenerated from leaf discs taken from 
infiltrated leaves and analyzed for targeted mutations. With a combined insertion and deletion 
frequency of 1.79% a few mutated shoots were expected. However we did not find a single line 
with targeted mutations. This suggests that either we were very unlucky (chance less than 7%) 
or that the frequency is in fact lower, for instance because cells with mutations mostly have 
both alleles mutated, which would reduce the percentage of mutated cells to 0.9%.
	 In summary the experimental data discussed above show that it is possible to use 
Agrobacterium for the translocation of the Cas9 protein into plant cells to create targeted 
mutations, but that the frequency is low. Therefore, it will be laborious to identify and 
regenerate the mutated cells into complete mutated plants. 
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Material & Methods
Plasmid construction
For the construction of NCas9F see materials & methods of Chapter 2.
	 To create the sgRNA expression vectors oligo’s DS196/DS197 were phosphorylated, 
annealed and subsequently cloned into the BbsI site of pEn-Chimera [13]. A correct clone was 
used as entry vector for a Gateway reaction with destination vector pDe-CAS9 [13] resulting 
in pDECas9PDS and destination vector pMDC100 [20] resulting in psgRNAPDS.

Leaf infiltration
Seeds of N. benthamiana were germinated and grown in controlled climate chambers 
at 24°C with a 16 h light /8 h dark photoperiod with 75 % humidity for a period of three 
weeks before infiltration. Agrobacterium strain AGL1 with pNCasF and psgRNAPDS or 
pDECasPDS were grown overnight at 29°C shaking at 180 RPM in a 10 ml culture of LB (5 
g/l NaCl) supplemented with appropriate antibiotics. The next day Agrobacterium cells were 
re-suspended in induction medium [21] to an OD600 of 1.2 and were then kept at room 
temperature for 3 hours without shaking. The Agrobacterium cells were then introduced into 
the two youngest leaves of 3 weeks old N. benthamiana plants using needleless 1 ml syringes. 

Footprint detection
Leaf discs were harvested 4 days post infiltration from which genomic DNA was isolated 
using CTAB DNA extraction [22]. Genomic DNA (500ng) was pre-digested with DdeI 
(Thermo Scientific Inc.) before the target sequence was amplified using primers DS192 and 
DS193. Amplified products were digested again with DdeI (Thermo Scientific Inc.) after 
which resistant bands were cloned into pJET1.2 (Thermo Scientific Inc.). Individual clones 
were sent for Sanger sequencing (Macrogen Inc.). 

Shoot regeneration
Infiltrated leaves were surface sterilized by immersion into 70% ethanol for 1 minute followed 
by immersion into 1% fresh sodium hypochlorite with 0.1% Tween 20 for 30 minutes. From 
these leaves discs (with a diameter of 1 cm) were excised and put on selection medium (1X 
Murashige and Skoog basal salt mixture, 1x Gamborg’s B5 vitamins, 3% Sucrose, 0,59 g/l 
MES, 1.0 mg/l BAP, 0.1 mg/l NAA, 0.4% Gelrite pH 5.7, 100 μg/ml kanamycin and 320 μg/ml 
timentin). Leaf discs were transferred onto fresh medium every 10 days until shoots appeared. 
Shoots were transferred to 1/2 MS medium (100 μg/ml kanamycin and 320 μg/ml timentin).

Amplicon deep sequencing
Leaves of three weeks old N. benthamiana plants were infiltrated and tissue was collected 
10-days post infiltration. DNA was isolated using CTAB DNA isolation; 100ng of this DNA 
was used for amplification with the primers listed in Table 1 with Illumina adapter sequences 
using Phusion® High-Fidelity DNA Polymerase. Amplicons were purified from gel using the 
Zymoclean™ Gel DNA Recovery Kit. Paired-end sequencing was performed by BaseClear 
B.V. on the Illumina HiSeq 2500 platform. Data analysis was performed using the integrative 
genome viewer [23,24] and the Galaxy webserver [25–27]. Deletion and insertion frequencies 
were determined by dividing the number of reads containing insertions or deletions by the 
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total number of reads. Number of reads containing insertions or deletions was determined 
using a custom script that sorted and counted unique reads. 

Table 1. Overview of primers used in this study
Primer Sequence

DS190 FW Nb target GGNGG ATTGGGCATGCAAAGTCTCTCAGG

DS191 RV Nb target GGNGG AAACCCTGAGAGACTTTGCATGCC

DS192 FW GGNGG Restric GGTGTGCCTGATAGGGTGAC

DS193 RV GGNGG Restric GGCAAACACAAAAGCATCTCC

DS217 Cas9-F FW 1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAAGGCCACCTTTTGACTC
AATATG

DS218 Cas9-F RV 1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAAAATCTGCAGGAGAAA
CATGG

DS219 Cas9-F FW 2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAACGGCCACCTTTTGACTC
AATATG

DS220 Cas9-F RV 2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACAATCTGCAGGAGAAA
CATGG

DS221 Cas9-F FW 3 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAGGGCCACCTTTTGACTC
AATATG

DS222 Cas9-F RV 3 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAGAATCTGCAGGAGAAA
CATGG

DS223 Cas9-F FW 4 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAATGGCCACCTTTTGACTCA
ATATG

DS224 Cas9-F RV 4 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAATAATCTGCAGGAGAAA
CATGG

DS225 Cas9-F FW 5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACAGGCCACCTTTTGACTCA
ATATG

DS226 Cas9-F RV 5 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACAAATCTGCAGGAGAAA
CATGG

DS227 Cas9-F FW 6 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACCGGCCACCTTTTGACTCA
ATATG

DS228 Cas9-F RV 6 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACCAATCTGCAGGAGAAA
CATGG

DS229 Cas9-F FW 7 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGGGCCACCTTTTGACTC
AATATG

DS230 Cas9-F RV 7 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACGAATCTGCAGGAGAAA
CATGG

DS231 Cas9-F FW 8 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACTGGCCACCTTTTGACTCA
ATATG

DS232 Cas9-F RV 8 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTAATCTGCAGGAGAAA
CATGG

DS233 Cas9-F FW 9 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGAGGCCACCTTTTGACTC
AATATG

DS234 Cas9-F RV 9 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGAAATCTGCAGGAGAAA
CATGG

DS253 WT FW TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCATGGCCACCTTTTGACTCA
ATATG

DS254 WT RV GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCATAATCTGCAGGAGAAAC
ATGG

DS235 T-DNA Cas9 FW 1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCGGCCACCTTTTGACTCA
ATATG
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DS236 T-DNA Cas9 RV 1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCAATCTGCAGGAGAAA
CATGG

DS237 T-DNA Cas9 FW 2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGGGGCCACCTTTTGACTCA
ATATG

DS238 T-DNA Cas9 RV 2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGGAATCTGCAGGAGAAA
CATGG

DS239 T-DNA Cas9 FW 3 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTGGCCACCTTTTGACTCA
ATATG

DS240 T-DNA Cas9 RV 3 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGTAATCTGCAGGAGAAA
CATGG

DS241 T-DNA Cas9 FW 4 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATAGGCCACCTTTTGACTCA
ATATG

DS242 T-DNA Cas9 RV 4 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATAAATCTGCAGGAGAAA
CATGG

DS243 T-DNA Cas9 FW 5 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATCGGCCACCTTTTGACTCA
ATATG

DS244 T-DNA Cas9 RV 5 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATCAATCTGCAGGAGAAA
CATGG

DS245 T-DNA Cas9 FW 6 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGGGCCACCTTTTGACTCA
ATATG

DS246 T-DNA Cas9 RV 6 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATGAATCTGCAGGAGAAA
CATGG

DS247 T-DNA Cas9 FW 7 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTGGCCACCTTTTGACTCA
ATATG

DS248 T-DNA Cas9 RV 7 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTAATCTGCAGGAGAAA
CATGG

DS249 T-DNA Cas9 FW 8 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAAGGCCACCTTTTGACTC
AATATG

DS250 T-DNA Cas9 RV 8 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAAAATCTGCAGGAGAAA
CATGG

DS251 T-DNA Cas9 FW 9 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCACGGCCACCTTTTGACTCA
ATATG

DS252 T-DNA Cas9 RV 9 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCACAATCTGCAGGAGAAA
CATGG
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Abstract
Plant transformation systems use a selectable marker gene which is co-delivered with the gene 
of interest for efficient selection of transformation events among the large numbers of non-
transformed plants cells. Throughout the years several marker genes have been developed 
usually based on conditional dominant genes many of which are antibiotic resistance genes. 
An alternative non antibiotic marker gene is the isopentenyl transferase gene (ipt), found on 
the Ti-plasmid of Agrobacterium tumefaciens, which increases cytokinine levels stimulating 
organogenesis in many cultured plant tissues and which is widely used to regenerate transgenic 
plants from cultured cells after transformation. Constitutive expression of ipt however results 
in loss of apical dominance and an inability to form roots and therefore its removal after 
selection is essential to produce normal plants. Instead of integrating and subsequently 
removing the ipt gene we have tested whether the transient expression of IPT can be used for 
the selection of transformed plants. The first approach consisted of the delivery of a T-DNA 
encoding the ipt gene into the Pol-θ-deficient Arabidopsis integration mutant in which 
only transient expression of the T-DNA occurs but no integration. The second approach 
involved the direct delivery of the IPT protein through the Agrobacterium VirB/D4 T4SS into 
Arabidopsis. We show that the combined transfer of the IPT protein with a T-DNA encoding 
a CRISPR/Cas system can be used to obtain mutated shoots. Furthermore if the transfer of 
a T-DNA is combined with the transfer of the IPT protein, T-DNA transformants can be 
identified based on shoot induction without requiring selection for the T-DNA. 
 
Introduction
For efficient selection of transformation events among the large numbers of non-transformed 
plants cells, plant transformation systems use a selectable marker gene which is co-delivered 
with the gene of interest. Throughout the years several marker genes have been developed 
usually based on conditional dominant genes. By selection for these genes transgenic plants 
can be obtained eventually. These selection systems do however have several shortcomings: 
(1) the presence of marker genes prevents usage of the same marker in a next round of 
transformation; (2) integration of the marker genes limits the usage of these plants due to 
regulatory concerns; (3) concerns have been raised specifically on the release of antibiotic 
resistance genes. 
	 An alternative non antibiotic selection gene which been used successfully is the 
isopentenyl transferase gene (ipt) found on the Ti-plasmid of Agrobacterium tumefaciens. 
This isopentenyl transferase catalyzes the condensation of isopentenyl pyrophosphate, a 
precursor of several cytokinines [1,2]. Increased levels of these cytokinines have been shown 
to induce cell proliferation and shoot formation in several plants species [3–6]. The ipt gene 
derived from Agrobacterium has been used as a visible marker for identifying transgenic 
plants, which are bushy due to enhanced cytokinin levels. Unfortunately plants expressing 
ipt lose apical dominance and are unable to form roots and therefore removal of the ipt 
gene is required to obtain normal plants. For the removal of the ipt gene from transgenic 
cells two different approaches have been developed based on site specific recombination 
[7–13] or on transposition by the maize transposable element Ac [14]. Naturally the ipt 
gene is introduced into plant cells by Agrobacterium as part of the T-DNA. This bacterium 
has a type IV secretion system (T4SS), encoded by the virB genes and virD4 gene on its Ti 
plasmid, through which translocation of the T-DNA occurs [15,16]. Several virulence protein 
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are transported independently alongside the T-DNA into the host cell [17]. Recognition 
and translocation of proteins through the Agrobacterium VirB/D4 T4SS is dependent on a 
hydrophilic secretion signal with a net positive charge in the C-terminal part of the proteins 
[18]. Several heterologous proteins, fused to this secretion signal, have been translocated 
through the Agrobacterium VirB/D4 T4SS [17–20]. In this way the homing endonuclease 
I-SceI and the Cre recombinase were translocated into host cells to effect DNA recombination 
in the genome of target cells [17–19].
	 In this study we have developed two different methods for the transient expression 
of IPT that can be used for the selection of transformed plants. The first consists of delivery 
of a T-DNA encoding the ipt gene in the Pol-θ-deficient Arabidopsis mutant in which only 
transient expression of the T-DNA occurs but no integration [21]. The second involves the 
direct delivery of the IPT protein into Arabidopsis through the Agrobacterium VirB/D4 T4SS.

Results
Shoot formation via transient expression of the ipt gene in Pol-θ-deficient Arabidoposis
To test if Arabidopsis shoots can be recovered after the transient expression of the ipt gene we 
created a T-DNA vector containing the ipt gene from the Agrobacterium octopine Ti plasmid 
(pSDM3679). This T-DNA was introduced into an Agrobacterium strain already containing 
a T-DNA vector that provides resistance to the herbicide phosphinothricin (PPT), but also 
encoded a CRISPR/Cas system targeting the protoporphyrinogen oxidase (PPO) locus 
(pSDM3905). Both of these T-DNA vectors could stably replicate together in Agrobacterium 
as their replication units were compatible: incP for pSDM3679 and pVS1 for pSDM3905. 
The resulting strain LBA3718 was used to transform the roots of wild type Arabidopsis and 
the roots of the T-DNA integration resistant Pol-θ-deficient mutant (teb-5). This second 
T-DNA, pSDM3905, was added to test if the transient expression of a CRISPR/Cas system 
was effective in inducing targeted mutations (discussed in the next paragraph). Although no 
T-DNA integration occurs in teb-5 roots, genes on a transferred T-DNA are still expressed 
transiently [21]. 
	 After cocultivation for 3 days Arabidopsis wild type roots were transferred to hormone 
free medium containing PPT to select for the presence of the T-DNAs from pSDM3905. After 
three weeks such roots developed dark green callus tissue. Shoot formation was observed after 
six weeks with ~6.5% (47/720) of the calli (Fig. 1d). As this was not seen after cocultivation 
with strains lacking the ipt gene, this probably reflects the temporary or ongoing transient 
expression of the ipt gene or continuing activity of the encoded IPT protein. Cocultivated 
roots placed on shoot induction medium developed dark callus tissue with shoots on 14.6% 
of the calli (Fig. 1f). Similar cocultivations were done with the teb-5 mutant. On hormone free 
medium containing PPT, dark green calli were formed from which shoots appeared after 6 
weeks. Shoot formation was observed with ~1.2% (10/864) of the calli, a ~fivefold reduction 
compared to wild type roots. With teb-5 roots dark green callus tissue always developed shoot 
tissue whereas with wild type roots dark green callus tissue did not always develop shoot tissue 
(Fig. 1a; Fig. 1d). Five of the ten shoots obtained after transformation of teb-5 roots that were 
transferred to hormone free medium exhibited normal growth and root formation suggesting 
that they were not stably transformed with the ipt gene. This suggests that transient expression 
of the ipt gene from a T-DNA in teb-5 roots is effective in inducing shoot formation. Neither 
non transformed teb-5 roots nor wild type roots developed dark green calli and shoots 
(Fig. 1b; Fig 1e).
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Targeted mutagenesis in shoots recovered after transient expression of the ipt gene and 
CRISPR/Cas
In the previous experiments we were able to recover several shoots on selection medium 
after the cocultivation of teb-5 roots with LBA3718. To test if (transient) presence of the 
T-DNA expressing CRISPR/Cas9 had resulted in targeted mutations the recovered shoots 
were analyzed for the presence of footprints at the PPO locus. A 950 basepair (bp) fragment 
was amplified by PCR from the PPO locus with primers flanking the target sequence from 
genomic DNA isolated from a single leaf. This PCR product was digested with FauI, as the 
target site of the sgRNA overlaps with a FauI site, and restriction digestion resistant bands 
were cloned and analyzed by sequencing. Three shoots (3/10) that were analyzed showed FauI 
resistant PCR products (Fig. 2a). Sequencing of the PCR products showed that mutations 
were present consisting of small deletions several bp upstream of the PAM (Fig. 2c). Several 
of the targeted mutations we detected after the co-transfer of the T-DNA expressing ipt and 
the T-DNA expressing the CRISPR/Cas system using the restriction enzyme site loss method 
[22] did not contain a mutated FauI site and therefore are probably the result of incomplete 
digestion of the PCR product. The three shoots with targeted mutations (2, 6, and 10) showed 
a bushy phenotype consistent with constitutive expression of the ipt gene suggesting that the 
T-DNA encoding ipt might still be present (Fig. 2d). Therefore all shoots were analyzed for 
the presence of both T-DNA’s using PCR. The pSDM3905 T-DNA was still detected in shoot 
number 2, 5, 6 and 10 and the T-DNA encoding the ipt gene (pSDM3679) was detected in 
shoot number 2, 6 and 10 (Fig. 2b). 

Figure 1. Shoot formation after cocultivation of wild-type (D, F) and teb-5 roots (A,C) with Agrobacterium strain 
LBA3718 that transfers a T-DNA encoding the ipt gene (pSDM3679) and a T-DNA encoding a CRISPR/Cas system 
targeting the PPO locus (pSDM3905). (A,D) Roots cocultivated with LBA3718 placed on hormone free medium 
containing PPT. (B,E) Non cocultivated roots on hormone free medium containing PPT. (C,F) Roots cocultivated 
with LBA3718 placed on shoot induction medium containing PPT.
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	 These results indicated that non-integrated T-DNA can remain present for a long 
period of time or that T-DNA’s can integrate by a process independent of Pol θ in a low 
percentage of the cells. 

Figure 2. CRISPR/Cas induced mutagenesis in teb-5 roots. (A) The PPO target site was amplified using genomic 
DNA of 10 teb-5 shoots transformed by LBA3718 and a wild type leaf and the resulting PCR products were 
digested with FauI and separated on agarose gel. A control PCR sample without template (C) was included. 
(B) Detection of the presence of the T-DNA from pSDM3679 and pSDM3905 via PCR. (C) Sequence analysis of 
mutations in shoot number 2, 6 and 10. The sgRNA is in green, the restriction site is underlined, deletions are 
shown by dashes, insertions in bold and microhomology in red. Numbers on the right are length of deletions (-) 
and insertions (+). (D) Shoot number 2, 6, and 10 showing a bushy phenotype. Shoot number 8 is an example of 
a shoot showing a normal phenotype.
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Shoot induction after translocation of the IPT protein 
The previous experiments suggested that transient expression of ipt from a non-integrated 
T-DNA is effective in inducing shoot formation in the roots of teb-5. To eliminate the 
requirement for this mutant line we tested if the IPT protein can be translocated through the 
Agrobacterium VirB/D4 type IV secretion system and is capable of inducing shoot formation 
after translocation. 
	 For the translocation of the IPT protein an expression plasmid was created encoding 
the isopentenyl transferase fused to the C-terminal 37 amino acid translocation signal of the 
Agrobacterium virulence protein VirF. This translocation signal has previously been used 
for the translocation of several heterologous proteins [17–19]. The production of the fusion 
protein (IPTF) was under the control of the acetosyringone inducible virF promoter to ensure 
that production would occur concomitantly with formation of a functional VirB/D4 type IV 
channel. 
	 To assay for the translocation of the IPTF protein roots had been co-cultivated with 
Agrobacterium expressing the IPTF protein (LBA3720) after which the root segments were 
placed on hormone free medium. After six weeks shoot formation was observed on the plates 
with root fragments that had been co-cultivated with Agrobacterium strain expressing the 
IPTF protein (Fig. 3a; Fig. 3b). On plates with root fragments that were co-cultivated with an 
Agrobacterium strain not expressing IPTF no shoot induction was observed (Fig. 3c). 
	 Because translocated IPTF successfully initiated shoot formation we tested if shoot 
formation could be used to visually identify T-DNA transformants if the translocation of a 
T-DNA is combined with the transfer of IPTF. A binary vector (pBIN19) was introduced into 
the Agrobacterium expressing the IPTF protein. The resulting strain (LBA3721) was used to 
transform the roots of wild type Arabidopsis. After co-cultivation for three days roots were 
transferred to hormone free medium. After five weeks shoot formation was observed on 
several root fragments. These shoots were analyzed for the presence of the nptII gene present 
on the T-DNA by PCR. Shoot number 1, 3 and 5 contained the T-DNA showing that T-DNA 
transformants can be selected for using shoot formation induced by transferred IPTF as a 
visual selection marker (Fig. 3d). 
	 These results show that the IPTF protein is effectively translocated to Arabidopsis 
roots at sufficient levels to induce shoot formation in Arabidopsis root fragments and this 
induction of shoot formation can be used to identify T-DNA transformants. 

Combined transfer of the IPT protein and a T-DNA encoding the CRISPR/Cas system
As the previous experiments showed that translocated IPTF is effective in inducing shoot 
formation we added the binary vector encoding the CRISPR/Cas system targeting the PPO 
locus (pSDM3905) to the Agrobacterium strain expressing the IPTF protein resulting in 
Agrobacterium strain LBA3719. Roots were co-cultivated with LBA3719 for three days after 
which roots were placed on hormone free medium containing PPT to select for the T-DNA 
encoding the CRISPR/Cas system targeting the PPO locus. Shoot formation was observed on 
one root fragment (1/1392). DNA was isolated from three individual leaves of this shoot. To 
easily detect sgRNA-guided mutations induced by Cas9 we used the same restriction enzyme 
loss method described above. The target locus was amplified via PCR with primers flanking 
the target sequence using three different parts of the shoot and the resulting PCR products 
were digested with FauI. Resistant bands were observed in all three samples (Fig. 4a). 
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Figure 3. Shoot regeneration after translocation of the IPTF protein. (A) Roots after co-cultivation with 
Agrobacterium expressing IPTF. (B) Close up of shoot after co-cultivation of roots with Agrobacterium expressing 
IPTF (C). Non co-cultivated roots on hormone free medium (D). PCR on the nptII locus in shoots that were 
recovered after co-cultivation with Agrobacterium containing pBIN19 and expressing IPTF.

Figure 4. CRISPR/Cas induced mutagenesis in a wild type shoot after co-cultivation with LBA3719. (A) The 
PPO target site was amplified using genomic DNA from three individual leaves from a shoot recovered after 
co-transfer of IPTF and the T-DNA from pSDM3905 (1-3) and a wild type leaf (WT). A control sample without 
template (-) was included. The resulting PCR products were digested with FauI and separated on an agarose 
gel. (B) Shoot regenerated after co-transfer of IPTF and the T-DNA from pSDM3905. (C) Sequence analysis of 
mutations detected. The sgRNA is in green, restriction site is underlined, deletions are shown by dashes, 
insertions in red and templated insertion is in bold. Numbers on the left are length of deletions (-) and insertions 
(+). Numbers of multiple clones with the same sequence are shown on the right.
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Using the relative band intensities the number of mutations was estimated at around ~87% 
in each of the three samples (Fig. 4a). The resistant PCR products were cloned into a high-
copy vector, transformed to E. coli and individual clones were sequenced. Analysis of these 
sequences showed that the plant contains three different kinds of mutations; a 16 bp deletion, 
a 36 bp deletion and a templated insertion (Fig. 4c). Because of the high mutation frequency 
in the essential PPO gene stunted growth was observed in the recovered plant (Fig. 4a).
	 These results combined show that the translocation of the IPTF protein combined 
with the transfer of a T-DNA encoding a CRISPR/Cas system resulted in a shoot with targeted 
mutations.

Discussion
In this study we have shown that the ipt gene can be transiently expressed from a T-DNA 
in the Pol- θ-deficient teb-5 mutant to induce shoot formation. Furthermore we showed 
that the IPT protein can be translocated through the Agrobacterium VirB/D4 T4SS and is 
effective in inducing shoot formation. If the translocation of the IPTF protein is combined 
with the transfer of a T-DNA encoding a CRISPR/Cas system it is possible to recover plants 
with mutations. We also showed that T-DNA transformants could be identified using shoot 
formation induced by translocated IPTF as a visual identification method. 
	 The T-DNA encoding the ipt gene and the T-DNA encoding the CRISPR/Cas system 
which were used to transform teb-5 roots could still be detected via PCR in 40% (4/10) and 
30% (3/10) of the obtained shoots, respectively. This suggests that non-integrated T-DNA 
persists in the plant cells for a prolonged period up to five weeks. We can however not exclude 
that the T-DNA was still detected due to incomplete removal of all Agrobacterium or that 
T-DNA integration still occurs in teb-5 plants via an alternative integration pathway.
When selection of shoot formation by IPTF protein transfer was done after cocultivation with 
an Agrobacterium strain containing a T-DNA encoding a CRISPR/Cas system, a shoot was 
obtained with a high frequency of targeted mutations that were evenly distributed throughout 
the plant. This suggests that these mutations occurred early in the development of the shoot. If 
the frequency of shoot formation after co-transfer can be improved, it will allow for the easy 
recovery of plants with a high frequency of targeted mutations. 
	 In summary we developed two systems for which we employ shoot regeneration by 
IPT activity to identify transformants, which grow with a normal phenotype, because they do 
not contain an integrated ipt gene as in previous methods.

Material & Methods
Agrobacterium strains and media
Agrobacterium strains and plasmids used in this study are listed in Table 1 and Table 2, 
respectively. All Agrobacterium strain were grown in LB (5 g/l NaCl) with the appropriate 
antibiotics: gentamicin (40 μg/ml); carbenicillin (75 μg/ml); kanamycin (100 μg/ml); 
spectinomycin (250 μg/ml). Plasmids were electroporated into AGL1 as described in den 
Dulk-Ras and Hooykaas (1995). 
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Plasmid construction 
To create the expression plasmid for expression of the IPT protein fused to the 37 last amino 
acids of the Agrobacterium virulence protein VirF (IPTF) in Agrobacterium, the ipt gene was 
amplified by PCR from LBA1 with primers IPT1/IPT2 and was inserted into the EcoRV 
and SalI sites of pSDM3190. From this modified pSDM3190 vector a 1900bp HindIII/XbaI 
fragment was cut and inserted into the HindIII and XbaI sites of pBBR6, creating pSDM3678. 
For construction of the binary vector for the expression of ipt in plant cells, the ipt gene was 
amplified by PCR from LBA1 with primers IPT3 and IPT4 and inserted into the XbaI and 
XhoI sites of pART7-YFP-HAII. The NotI fragment (p35S::ipt::t35S) from this vector was 
cut and inserted into the NotI site of pBluescript creating pBSK-p35S-IPT-t35S. From pBSK-
p35S-IPT-t35S a HindIII and SacI fragment (p35S::ipt::t35S) was cut and inserted into the 
HindIII and SacI sites of pBIN19 creating pSDM3679.

Protein translocation and plant transformation experiments
Root transformations were performed as described previously [17,24,25], using Agrobacterium 
strain AGL1. Briefly, seedlings from wild type Arabidopsis (ecotype Col-0) and the teb-5 
mutant (Pol-θ-deficient line, ecotype Col-0, [26]) were grown for 10 days. Roots were removed 
from seedlings and precultured on callus induction medium [25], followed by a three day 
co-cultivation period with Agrobacterium. After co-cultivation roots were transferred to B5 
medium [27] containing vancomycin (100 μg/ml) and timentin (100 μg/ml) to kill remaining 
Agrobacterium. The selection for the T-DNA of pSDM3905 was done by adding PPT (30 μg/
ml) to the medium. After three weeks calli were transferred to medium without PPT. 

Detection of the T-DNAs
The presence of pSDM3905 and pSDM3679 T-DNAs was performed with PCR using 
primers pair SP558/SP559 (detecting Cas9) and DS585/DS589 (detecting ipt), respectively. 
The presence of the pBIN19 T-DNA was detected using primers nosNPTII1/nosNPTII2 
(detecting nptII).

Detection of mutations
DNA was isolated from a single leaf using CTAB DNA extraction [28]. The target sequence 
was amplified using primers SP392 and SP538. Amplified products were digested with 
FauI (New England Biolabs) after which resistant bands were cloned into pJET1.2 (Thermo 
Scientific Inc.). Individual clones were sent for Sanger sequencing (Macrogen Inc.).
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Table 2. Overview of strains used in this study
Strain Genomic background Plasmids Source
AGL1 AGL1 - [31]
LBA3718 AGL1 pSDM3679 + pSDM3905 This study
LBA3719 AGL1 pSDM3578 + pSDM3905 This study
LBA3720 AGL1 pSDM3679 + pBIN19 This study
LBA3721 AGL1 pSDM3679 This study

Table 3. Overview of primers used in this study
Primer name Sequence
IPT1 agcgatatcATGGACCTGCATCTAATTTTCG
IPT2 acggtcgactATACATTCCGAACGGATGAC
IPT3 ccgctcgagCAGTTTGTATTCAATATACTGC
IPT4 gctctagaATACATTCCGAACGGATGAC
SP392 CACTTTGACAGATTAGGTAG
SP538 CTAAGGCTACACCAGCGACG
DS558 GGAACTAACTCTGTGGGATG
DS559 CACACCTGAAGCGTTGATAG
NOSNPTII1 AAGCCTGAACTCACCGCGAC
NOSNPTII2 CCGGCACCAACCGAACATAC
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CRISPR/Cas-geïnduceerde gerichte mutagenese met Agrobacterium 
gemedieerde eiwitoverdracht

Het kunnen aanbrengen van mutaties in het genoom van planten is om (in ieder geval) twee 
redenen relevant. In de eerste plaats vormt het de basis van veel fundamenteel plantonderzoek. 
Daarnaast wordt het gebruikt voor het creëren van nieuwe plantenrassen die (bijvoorbeeld) 
resistent zijn tegen insecten of herbiciden. Vroeger werden er een technieken gebruikt die 
resulteerden in mutaties op willekeurige plekken in het genoom. Daardoor kostte het veel 
moeite om planten te identificeren met de juiste mutatie. Dat probleem doet zich niet voor 
bij gericht aangebrachte mutaties. Om die reden is het aanbrengen van gerichte mutaties voor 
zowel het toegepast plantonderzoek als voor het creëren van nieuwe plantenrassen van grote 
toegevoegde waarde.
	 Er zijn verschillende manieren waarop gerichte mutaties kunnen worden aangebracht. 
Eén van die manieren is door middel van het aanbrengen van dubbelstrengsbreuken (DSB). 
Een DSB in het DNA kan door twee verschillende DNA-reparatietrajecten gereperareerd 
worden, te weten het homologe recombinatietraject en het Niet-Homologe End-Joining traject 
(NHEJ). Het homologe recombinatietraject kan gebruik maken van het zusterchromatide 
als sjabloon voor nauwkeurige reparatie, maar kan ook gebruik maken van een artificieel 
geïntroduceerd reparatiesjabloon waarmee genen kunnen worden vervangen, toegevoegd 
of aangepast. Het NHEJ maakt geen gebruik van een sjabloon, maar stimuleert de directe 
ligatie van de DSB-uiteinden, wat kan resulteren in kleine inserties en deleties op de plaats 
van herstel, zogenaamde mutaties. 
	 Voor het aanbrengen van gerichte dubbelstrengsbreuken kan gebruik worden 
gemaakt van plaats-specifieke nucleases (PSN-en). Tot vijftien jaar geleden waren er alleen 
natuurlijk voorkomende PSN-en beschikbaar waarvan de DNA herkenningsplaats lastig 
was aan te passen. In de laatste twee decennia zijn echter verschillende artificiële PSN-en 
ontwikkeld waarvan de DNA herkenningsplaats vrij eenvoudig kan worden aangepast. Deze 
PSN-en zijn eiwit of eiwit/RNA-complexen die een specifieke DNA-sequentie herkennen en 
daar een DSB induceren. 
	 Om deze PSN-en te kunnen gebruiken, moeten deze worden geïntroduceerd in 
doelwitcellen. In dit proefschrift hebben we getest of de bacterie Agrobacterium tumefaciens 
hiervoor als vector zou kunnen worden gebruikt. Vanwege het efficiënte mechanisme van 
DNA-overdracht is de bodembacterie Agrobacterium een veelgebruikte vector geworden 
voor het genetisch modificeren van planten. Tijdens de modificatie met Agrobacteriumwordt 
het T-DNA afkomstig van het tumor-inducerende plasmide naar de kern van de gastheercel 
getransporteerd, waarna het wordt ingebouwd in het plantengenoom. De genen aanwezig 
op het T-DNA zijn niet essentieel voor de overdracht van het T-DNA naar de gastheercel 
en kunnen daarom worden vervangen door andere DNA-sequenties. Tegelijkertijd met 
het transport van het T-DNA worden ook enkele virulentie eiwitten overgebracht naar de 
gastheercel. Zowel het T-DNA als deze eiwitten worden via het Type IV secretie systeem (T4SS) 
van Agrobacterium overgebracht. Naast het transformeren van planten kan Agrobacterium 
onder laboratorium omstandigheden ook worden gebruikt voor de genetische modificatie 
van onder andere gisten en schimmels. 
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Het in dit proefschrift beschreven onderzoek richt zich op het gebruik van het CRISPR/Cas 
systeem voor mutagenese en op het gebruik van Agrobacterium als vector voor de overdracht 
van verschillende eiwitten. 
	 In Hoofdstuk 1 wordt een overzicht gepresenteerd van de PSN-en die beschikbaar 
zijn voor het aanbrengen van gerichte DSB-en en van de wijze waarop DSB-en worden 
gerepareerd. Daarnaast bevat dit hoofdstuk een beschrijving van enerzijds het mechanisme 
waarop Agrobacterium het T-DNA en virulentie eiwitten overbrengt en anderzijds van de 
biotechnologische toepassingen van A. tumefaciens.
	 Hoofdstuk 2 beschrijft de aanpassing van het CRISPR/Cas systeem voor gebruik in 
Agrobacterium. De DSB-en aangebracht met het CRISPR/Cas systeem leiden tot effectieve 
recombinatie van de flankerende “repeats” rond de negatieve selectie marker sacB die eerder 
is geïntegeerd via homologe recombinatie met een enkele cross-over. DBS-inductie op het 
stabiele RP4 plasmide resulteerde in het verlies van het RP4 plasmide. DSB-inductie op het 
octopine Ti plasmide van Agrobacterium leidde niet tot verlies van het Ti plasmide, maar wel 
tot een sterke afname in het aantal transformanten na expressie van het CRISPR/Cas systeem. 
Dat duidt erop dat DSB-inductie op het Ti plasmide en de daarop volgende degradatie lethaal 
is voor Agrobacterium.
	 Hoofdstuk 3 beschrijft hoe het Cas9 eiwit van het CRISPS/Cas systeem, gefuseerd 
met het translocatie signaal van het virulentie eiwit VirF, kon worden overgebracht van 
Agrobacterium naar Saccharomyces cerevisiae. Na overdracht zorgde het Cas9 eiwit, in 
combinatie met het in S. cerevisiae tot expressie gebrachte sgRNA, voor gerichte mutaties 
(inserties/deleties) in het CAN1 locus. Co-cultivatie van een Agrobacterium stam die zowel 
het sgRNA als het heterologe Cas9 eiwit tot expressie brengt, leidde niet tot mutaties op het 
CAN1 locus. Dit duidt erop dat het eiwit/RNA-complex van het Cas9 eiwit en sgRNA niet 
wordt getransporteerd door het T4SS. 
	 Hoofdstuk 4 beschrijft de toepassing van het eerder ontwikkelde CRISPR/Cas systeem 
met het heterologe Cas9 eiwit dat door het T4SS systeem kan worden getransporteerd met als 
doel het aanbrengen van gerichte mutaties in Nicotiana benthamiana. Simultaan transport 
van het heterologe Cas9 eiwit met een T-DNA dat codeert voor het sgRNA gericht tegen 
het fytoeen desaturase gen, resulteerde in mutaties in het fytoeen desaturase gen. Amplicon 
sequencing liet zien dat mutaties die op deze wijze waren aangebracht, plaatsvonden met een 
lagere frequentie dan mutaties die waren aangebracht door de introductie van een T-DNA dat 
codeert voor zowel het Cas9 eiwit als het sgRNA.
	 Hoofdstuk 5 beschrijft tot slot de ontwikkeling van een systeem dat kan worden 
ingezet voor de selectie van transformanten door gebruik te maken van het isopentenyl 
transferase gen (ipt). De overdracht van het ipt gen naar een Pol-θ deficiënte Arabidopsis 
thaliana mutant resulteerde in transiënte expressie van het ipt gen en scheut formatie, 
maar resulteerde niet in integratie van het T-DNA. Ook direct transport van het IPT eiwit 
door het T4SS systeem van Agrobacterium naar Arabidopsis resulteerde in scheut formatie. 
Gecombineerd transport van het IPT eiwit samen met een T-DNA dat codeert voor het 
CRISPR/Cas systeem, dat DSB-en induceert in het polyphenol oxidase gen, resulteerde in 
regeneratie van scheuten met gerichte mutaties zonder te selecteren op de aanwezigheid van 
het T-DNA. 
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