
Data driven modeling & optimization of industrial processes
Stein, B. van

Citation
Stein, B. van. (2018, September 20). Data driven modeling & optimization of industrial
processes. Retrieved from https://hdl.handle.net/1887/65632

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/65632

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/65632

Cover Page

The handle http://hdl.handle.net/1887/65632 holds various files of this Leiden University
dissertation.

Author: Stein, B. van
Title: Data driven modeling & optimization of industrial processes
Issue Date: 2018-09-20

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/65632
https://openaccess.leidenuniv.nl/handle/1887/1�

5
Cluster Kriging

Data driven models and model-driven optimization are two of the most important
parts of the data driven framework (Section 2.3). Kriging or Gaussian Process
Regression is a popular kernel based data driven regression model. Kriging is
capable of achieving high accuracy predictions and providing, in addition, the
predicted variance, also known as the Kriging variance. The Kriging variance is
used in many applications as the uncertainty or quality measure of a prediction
and is heavily exploited in surrogate model-based optimization.

However, the computational and space complexity of Kriging, that is cubic and
quadratic in the number of data points respectively, is a major bottleneck, es-
pecially with the quantities of data available for the PROMIMOOC project. To
address these issues, Cluster Kriging is proposed as a solution for the time and
space complexity bottleneck. In addition, Cluster Kriging can be used as the sur-
rogate model for Efficient Global Optimization to allow model-driven optimization
on big data.

73

5. CLUSTER KRIGING

In this chapter, a general methodology for the complexity reduction of
Kriging, called Cluster Kriging, is proposed. The main principle of Cluster
Kriging is that the whole data set is partitioned into smaller clusters and
multiple Kriging models are built on top of them. In addition, four Kriging
approximation algorithms are proposed as candidate algorithms within the
new framework. Each of these algorithms can be applied to much larger
data sets while maintaining the advantages and power of Kriging. The pro-
posed algorithms are explained in detail and compared empirically against
a broad set of existing state-of-the-art Kriging approximation methods on
a well-defined testing framework. It is also shown that Cluster Kriging can
be used with the popular model-based optimization framework; Efficient
Global Optimization. According to the empirical study, the proposed al-
gorithms consistently outperform the existing algorithms. Moreover, some
practical suggestions are provided for using the proposed algorithms.
The content of this chapter is primarily based on the publications [53, 54,
55, 56].

74

5.1 Introduction

5.1 Introduction

Kriging, or Gaussian Process Regression [57] is a popular and elegant kernel based
regression model capable of modeling very complex functions. Kriging is used in
many fields e.g., engineering, mining and geology, as a tool for the analysis of
data sets, for prediction purposes and for Surrogate model-based optimization [58].
Many other regression models exist, such as parametric models, which are easy
to interpret but may lack expressive power to model complex functions. On the
other hand, Regression Tree based methods like Random Forests [59] or Gradient
Boosted Decision Trees lack the advantage of interpretation [60] but have more
expressive power. Another method is Linear Model Trees [61], which uses a tree
structure with linear models at the leaves of the tree. There are also more complex
algorithms like Neural Networks, or Extreme Learning Machines [62], that are able
to model very complex functions but are usually not easy to work with in practice.
There are also different kernel based methods such as Support Vector Machines
[63] and Radial Basis Functions [64]. The main advantage of Kriging over other
regression methods is that Kriging provides not only the estimate of the value of a
function, but also the mean squared error of the estimation, the so-called Kriging
variance. The Kriging variance can be seen as the uncertainty assessment of the
model and has been exploited in surrogate model based optimization and many
other applications. Despite the clear advantage of the Kriging variance, Kriging
suffers from one major problem, the high training time and space complexity,
which are O(n3) and O(n2), respectively. Where n denotes the number of points.
To overcome this complexity problem, Kriging approximation algorithms such as
[65] and [66] are introduced. Unfortunately, these approximation algorithms are
usually less accurate than the original Kriging algorithm.

An overview of Kriging approximation methods is presented and a novel divide
and conquer based approach, Cluster Kriging (CK), is introduced. The novel
Cluster Kriging framework contains three steps, Partitioning, Modeling and Pre-
dicting. Each of the steps can be implemented using a wide range of approaches,
which are explained in detail in this chapter. Using these approaches four algo-
rithms are implemented and compared against each other and the state of the
art. One particular interesting and novel algorithm that uses the Cluster Kriging

75

5. CLUSTER KRIGING

methodology is the proposed Model Tree Cluster Kriging (MTCK). MTCK
uses a regression tree with a specified number of leaf nodes to partition the data
in the objective space. A Kriging model is then built on each partition defined by
the tree’s leaves. MTCK uses only one of the trained Kriging models per unseen
record to predict, depending on which leaf node the unseen record is assigned to.
The proposed algorithms are evaluated and compared to several state-of-the-art
alternative Kriging approximation algorithms. A well-defined testing framework
for Kriging approximation algorithms [67] is adopted for the comparisons.

In addition to the Cluster Kriging varients proposed, it is also shown that Clus-
ter Kriging can be integrated in the Efficient Global Optimization framework.
Enabling efficient global optimization for large data sets.

5.2 Kriging

Loosely speaking, Kriging is a stochastic interpolation method in which the output
value of a stochastic process is predicted as a linear function of the observed output
values [68, 69]. In particular, Kriging is the best linear unbiased predictor (BLUP)
and the corresponding mean squared error of prediction is used for uncertainty
qualification. Kriging originates from the field of spatial analysis/geostatistics and
more recently is being widely used in Bayesian optimization and design and anal-
ysis of computer experiments (DACE) [70, 71]. The model features in providing
the theoretical uncertainty measurement of estimations.

When the stochastic process is assumed to be Gaussian, Kriging is equivalent to
Gaussian Process Regression (GPR), where the posterior distribution of the re-
gression function (posterior Gaussian process) is inferred through Bayesian statis-
tics. In this chapter, we shall consider this special case and adopt the mathematical
treatment of the Gaussian process. Assume that input data points are summa-
rized in the set X = {x(1),x(2), . . . ,x(n)} ⊆ Rd and the corresponding output
variables are represented as y = [y(x(1)), y(x(2)), . . . , y(x(n))]>. Specifically, the
mostly used variant of Kriging, Ordinary Kriging, models the regression function
f as a random process, that is a combination of an unknown constant trend µ

76

5.2 Kriging

with a centered Gaussian Process ε. The output variables are considered as the
“noisy” observation of f , that is perturbed by a Gaussian random noise γ:

y(x) = f(x) + γ(x) = µ+ ε(x) + γ(x),

ε(x) ∼ N(0, σ2
ε(x)), γ(x) ∼ N(0, σ2

γ), ε ⊥⊥ γ.

Note that the noises (error terms) γ are assumed to be homoscedastic (identically
distributed) and independent, both from each other and the Gaussian Process ε.
The centered Gaussian process ε is a stochastic process which possesses zero mean
everywhere and any finite collection of its random variables has a joint Gaussian
distribution [57]. It can be completely specified by providing a covariance function
k(·, ·) to calculate the pairwise covariance:

k(x,x′) = Cov[ε(x), ε(x′)].

The covariance function k(·, ·) is a kernel function performing the so-called “kernel
trick”, which computes the inner product on the feature space as a function in
the input space. Consequently, the variance σ2

ε(x) of a Gaussian process ε is
independent from the input x and thus denoted as σ2

ε in the following. In practice,
a common choice is the Gaussian covariance function (also known as squared
exponential kernel):

k(x,x′) = σ2
ε

d∏
i=1

exp
(
−θi(xi − x′i)2

)
, (5.1)

where θi’s are called hyper-parameters, that are either predetermined or estimated
through model fitting, and σ2

ε is inferred by the maximum likelihood method. By
using the Gaussian kernel, the resulting Gaussian process is stationary in the sense
that the process variance is constant: ∀x ∈ Rd, k(x,x) = σ2

ε .

To infer output value y(t) = y(x(t)) at an unobserved data point x(t), the joint
distribution of y(t) and observed outputs y are derived, conditioning on the input
data set X, x(t) and the unknown prior mean µ. Such a joint distribution is a

77

5. CLUSTER KRIGING

multivariate Gaussian and is expressed as follows;[
y(t)

y

] ∣∣∣ X ∼ N

(
µ1n+1,

[
σ2
ε + σ2

γ c>

c Σ + σ2
γI

])
, (5.2)

ci = k(x(t),x(i)), Σij = k(x(i),x(j)),

where 1n+1 denotes a column vector of length n + 1 that contains only 1’s. The
homogeneous variance σ2

γ of the noise can be either determined by the user or
estimated through maximum likelihood method. The posterior distribution of
y(t) can be calculated by marginalizing µ out and conditioning on the observed
output variables y [57]. Without any derivations, the posterior distribution for
Ordinary Kriging is again Gaussian [72]:

y(t) | X,y,x(t) ∼ N
(
m(x(t)), s2(x(t))

)
(5.3)

where the posterior mean and variance are expressed as:

m(x(t)) = µ̂+ c>
(
Σ + σ2

γI
)−1

(y − µ̂1n) (5.4)

s2(x(t)) = σ2
γ + σ2

ε − c>
(
Σ + σ2

γI
)−1

c

+
(1− c>

(
Σ + σ2

γI
)−1

1n)2

1>n
(
Σ + σ2

γI
)−1

1n
(5.5)

µ̂ =
1>n
(
Σ + σ2

γI
)−1

y

1>n
(
Σ + σ2

γI
)−1

1n

Note that the estimation of the trend, µ̂ is obtained by maximum a posteriori
principle (MAP). The posterior mean function (Eq. 5.4) is used as the predic-
tor while the posterior variance (Eq. 5.5) is the so-called Kriging variance that
measures the uncertainty of the prediction.

5.3 Relevant Research

Despite the theoretically sound development of the Kriging model, it suffers sev-
eral issues when applied to large data sets. The major bottleneck is the high time

78

5.3 Relevant Research

and memory complexity of the model fitting process: The inverse of the covari-
ance matrix Σ−1 needs to be computed for both the posterior mean and variance
(Eq. 5.4 and 5.5), which has roughly O(n3) time complexity1. Moreover, when
optimizing the hyper-parameters of the kernel function, the log likelihood function
of those parameters is again calculated through Σ−1, resulting in a O(n3) com-
putational cost per each optimization iteration. Thus, for a large data set, such
a high overhead in model fitting renders Kriging inapplicable in practice. Var-
ious attempts have been made to overcome the computational complexity issue
of Kriging [57]. The contributions towards solving this issue can be roughly split
into three categories:

Subset Methods

The first category of approximation algorithms uses only a subset of the complete
data set to approximate a full Kriging model. The idea behind these methods is
to get a realistic representation of the complete data set by taking only a small
portion of the data points. The main issue with these subset approximation
algorithms is how to identify a subset that represents the complete data set.

Subset of Data (SoD) [73] is a naive approach in reducing complexity by taking
a subset ofm < n data points. The points are ussualy taken at random. The
obvious disadvantage of such an approach is that possible valuable informa-
tion is lost in the process. Taking a representative subset of data points is
a non-trivial task.

Subset of Regressors (SoR) [74] approximates Kriging by a linear combina-
tion of kernel functions on a set of basis points. The basis points are linearly
weighted to construct the predictor. The choice of the basis points does
influence the final outcome. As noted also in [75], there are only m (num-
ber of basis points) degrees of freedom in the model because the model is
degenerate (finite linear-in-the-parameters), which might be too restrictive.

1There are asymptotically faster algorithms for matrix inversion, e.g., Strasssen’s O(n2.807)
and Stothers O(n2.373), but their practical performance is worse than some methods with o(n3)
time complexity.

79

5. CLUSTER KRIGING

Approximation using Sparsity

The second category of approximation algorithms approximate the covariance ma-
trix using sparsity based methods. Most of these algorithms also use a (relevant)
subset of the data like in the category mentioned above.

Sparse On-Line Gaussian Processes (OGP) [76] uses a Bayesian on-line al-
gorithm, together with a sequential construction of a subsample of the data
that specifies the prediction of the GP model. The idea behind constructing
a subsample of basis vectors is very similar to The Fully Independent Train-
ing Conditional mentioned next. The advantage of OGP is that additional
data points can be added to the OGP model without always completely
retraining the model.

Fast Kriging with Gaussian Markov Random Fields [66] is an algorithm
that uses an approximation of the covariance matrix with a sparse precision
matrix. It uses Gaussian Markov Random Fields (GMRF) on a reasonable
dense grid to exploit the computational benefits of a Markov field while
keeping the formula of Kriging weights. This method reduces the complexity
for simple and ordinary Kriging, but might not always be efficient with
universal Kriging.

The Fully Independent Training Conditional (FITC) [77, 78]. Snelson and
Ghahramani proposed what they called Sparse Gaussian Processes using
Pseudo-inputs. It uses a more sophisticated likelihood approximation with
a richer covariance. It is a non-degenerate version of the SoR algorithm.
By providing a set of basis points (Pseudo inputs), the model is fitted and
validated on the training data. As with SoR the choice of basis points is
a problem, this is usually either a subset of the training data or a uniform
distribution over the input space.

Divide and Conquer Methods

The last category contains methods that divide a (big) data set into several smaller
data sets and build a model for each of them. How to split the data set into

80

5.3 Relevant Research

smaller data sets and how to combine the different models is what makes these
algorithms unique. The proposed Cluster Kriging algorithms also belong to this
category.

Bayesian Committee Machines (BCM) [65] is an algorithm similar to the one
we propose, but developed from a completely different perspective. The
basic motivation is to divide a huge training set into several relatively small
subsets and then construct Kriging models on each subset. The benefit of
this approach is that the training time on each subset is satisfactory and the
training task can be easily parallelized. After training, the prediction is made
by a weighted combination of estimations from all the Kriging models. BCM
uses batch prediction to speed up the computation even further. However,
BCM does not seem to correct for different hyper parameters per module,
neither for badly fitted modules, which becomes a major problem when the
number of modules increases.

Several other attempts have been made to divide the Kriging model in sub-models
[79, 80], each solution for different domains. In [79], a Bagging [81] method is
proposed to increase the robustness of the Kriging algorithm, rather than speeding
up the algorithm’s training time. In [80], a partitioning method is introduced
to separate the data points into local Kriging models and combine the different
models using a distance metric.

All of these approximation algorithms have their advantages and disadvantages
and they are compared to our Cluster Kriging algorithms.

For the empirical study, three state of the art algorithms: SoD, FITC and BCM
are selected to compare with the proposed approaches in this paper, as they seem
to be the mostly used in their category.

81

5. CLUSTER KRIGING

5.4 Cluster Kriging

The main idea behind the proposed approach, Cluster Kriging, is to combine
multiple Kriging models trained on each partition of data, where the partitions
are obtained from clustering algorithms. Loosely speaking, if the whole data
set is partitioned into clusters of similar sizes, Cluster Kriging will reduce the
time complexity by a factor of k2 resulting in k ·

(
n
k

)3 (where k is the number
of clusters) if Kriging models are fitted sequentially. When exploiting k CPU
processes in parallel, the time complexity will be further reduced to

(
n
k

)3. In
practice this means that if we take k depending on n our algorithm becomes
quadratic in time, and using k clusters it even reaches linear time complexity.
For the output value y(t) at an unobserved data point x(t), each Kriging model
provides a (local) prediction for y(t). To obtain a global prediction, it is proposed
to either combine the predictions from all the Kriging models or select the most
proper Kriging model for the prediction.

There are many options for the data partitioning, e.g., K-means and Gaussian
mixture models (GMM), and the Kriging model on clusters can also be combined
in different manners. By varying the options in each step of the cluster Kriging,
many algorithms can be generated. Four of them will be explained in the next
section. In this section, the options in each step of the algorithms are introduced
gradually.

5.4.1 Clustering

The first step in the Cluster Kriging methodology is the clustering of the input
data X (and the output variables) into several smaller data sets. In general, the
goal is to obtain a set S containing k clusters on the input data set X.

S = {X1,X2, . . . ,Xk}, where
k⋃
i=1

Xi = X. (5.6)

In addition, the output values y are also grouped according to the clustering of
X: y = [y>1 ,y

>
2 , . . . ,y

>
k]>. The clustering can be done in many ways, with the

82

5.4 Cluster Kriging

most simple and feasible approach being random clustering. For our framework
however we introduce three more sophisticated partitioning methods that are used
in the experiments later on.

Hard Clustering

The hard clustering splits the data into k smaller disjoint data sets:

k⋂
i=1

Xi = ∅

This can be achieved by various methods, for instance the K-means algorithm
(Eq. 5.7). K-means clustering minimizes the within-cluster sum of squares, that
is expressed as:

arg min
S

k∑
i=1

∑
x∈Xi

||x− µ(i)||2, (5.7)

where µ(i) is the centroid of cluster i and is calculated as the mean of the points
in Xi. The minimization of the within-cluster sum of squares takes only O(nkd)

execution time.

Fuzzy Clustering

Instead of using a hard clustering approach, a fuzzy clustering algorithm can
be used to introduce slight overlap between the various smaller data sets, which
might increase the final model accuracy. To incorporate fuzzy clustering, instead of
directly applying cluster labels, the probabilities that a point belongs to a cluster
are calculated (Eq. 5.8) and for each cluster (n · o)/k points with the highest
membership values are assigned, where o is a user defined setting that defines
the overlap. o is set between 1.0 (no overlap) and 2.0 (completely overlapping
clusters).

In principle, any fuzzy clustering algorithm can be used for the partitioning. In
this section the Fuzzy C-Means (FCM) [82] clustering algorithm and the Gaussian
Mixture Models (GMM) [83] are used. FCM is a clustering algorithm very similar

83

5. CLUSTER KRIGING

to the well known K-means. The algorithm differs from K-means in that it has
additional membership coefficients and a fuzzifier. The membership coefficients
of a given point give the degrees that this point belongs to each cluster. These
coefficients are normalized so they sum up to one. The algorithm can be fitted
on a given dataset and returns the coefficients for each data point to each cluster.
The number of clusters is a user defined parameter. Fuzzy C-means optimizes the
objective function given in Eq. 5.8 iteratively. In each iteration, the membership
coefficients of each point being in the clusters are computed using Eq. 5.9. Subse-
quently, the centroid of each cluster µ(j) is computed as the center of mass of all
data points, taking the membership coefficients as weights. The objective of fuzzy
C-means is to find a set of centroids that minimizes the following function:

n∑
i=1

k∑
j=1

wmij ||x(i) − µ(j)||2, (5.8)

where wij are the membership values (see Eq. 5.9) and m is the so-called fuzzifier
(set to 2 in this chapter). The fuzzifier determines the level of cluster fuzziness as
follows:

wmij =
1∑k

c=1

(
||x(i) − µ(j)||
||x(i) − µ(c)||

) 2
m−1

(5.9)

The other fuzzy clustering procedure used is the Gaussian Mixture Models. GMM
are used together with the expectation-maximization (EM) algorithm for fitting
the Gaussian models. The mixture models are fitted on the training data and
later used in the weighted combination of the Kriging models by estimating clus-
ter membership probabilities of the unseen data points. The advantage of this
clustering technique is that it is fairly robust and that the number of clusters can
be specified by the user. For the GMM method one could use the full covari-
ance matrix whenever the dimensionality of the input data is small. However,
when working with high-dimensional data a diagonal covariance matrix can be
used instead. The time complexity of GMM depends on the underlying EM algo-
rithm. In each iteration EM, it takes O(nk) operations to re-estimate the model
parameters.

84

5.4 Cluster Kriging

Regression Tree Partitioning

The third method used is the partitioning by use of a Regression Tree [84] on the
complete training set. The regression tree splits the dataset recursively at the
best splitting point using the variance reduction criterion. Each leaf node of the
Regression Tree represents a cluster of data points. The number of leaves (or the
number of records per leave) can be set by the user. By reducing the variance in
each leaf node and therefore the variance in each dataset, the Kriging models can
be fitted to the local datasets much better as will be presented later on. The time
complexity of using a Regression Tree for the partitioning is O(n), given that the
depth of the tree or the number of leaf nodes is set by the user.

Figure 5.1: Visualisation of a Model Tree. The top node is the root and the
bottom nodes are the leaves with attached models. Each record in the data (on the
left) is assigned to a leaf node of the regression tree.

The partitioning done by the regression tree depends on the splitting criterion.
For a faster execution of the Cluster Kriging algorithm we could choose to use
a splitting criterion that splits the dataset in each node evenly, balancing the
load for each of the local Kriging models attached to the leafs. From emperical
experience we know that splitting using the standard variance reduction function
generally results in better performing models than using such an evenly splitting
criterion. This is likely due to the fact that datasets with a lower variance can be
more easily fitted by a Kriging model.

85

5. CLUSTER KRIGING

5.4.2 Modeling

After partitioning the data set into several clusters, Kriging models are fitted on
each of the smaller data sets. The Kriging algorithm is applied on each cluster
individually, this way each model will be optimized on its own training set and
will have different hyper-parameters. For simplicity we assume, in this chapter,
the kernel functions used on each cluster to be the same. As for the regression
tree approach, the data set, or more precisely the input space, is partitioned by
the tree algorithm and, for each leaf node, a Kriging model is computed using
the data belonging to this node (Fig. 5.1). A similar technique is introduced
in the context of combining linear regression models [85, 86, 61]. In general,
the predictive (posterior) distribution of the target variable y(t) on each cluster
is:

y(t) | Xl,yl,x(t) ∼ N
(
ml(x

(t)), σ2
l (x(t))

)
, l = 1, . . . , k, (5.10)

whereml and σ2
l are specified again by Eq. 5.4 and 5.5 except that X,y are replaced

by Xl,yl here. Note that building the Kriging models can be easily parallelized,
which gives an additional speedup to Cluster Kriging. Another benefit of building
each model separately, is that each model has usually a much better local fit than
a single global Kriging model would obtain.

5.4.3 Prediction

After training various Kriging models, unseen data points need to be predicted.
For this prediction, there are several options. Depending on the partitioning
method used before, the simplest way of predicting the unseen data points is by
using a single local model. When the partitions are overlapping, a combination of
the different local models into one global model is required.

Single Model Prediction

The most straightforward method which can be used to predict unseen data points
is by using only one of the local Kriging models. This does require the partitioning
used to create partitions based on locality like k-means clustering or a regression

86

5.4 Cluster Kriging

tree. First, the partitioning method is used to predict which cluster the new data
point belongs to, then the Kriging model trained using this particular cluster is
used to predict the mean and variance at the new data point.

In case of the Regression Tree procedure, the targets are predicted from new
unseen data points by first deciding which model needs to be used, using the
Regression Tree. The target is then predicted using the specific Kriging model
assigned to the leaf node (Figure 5.1). The main advantage of this method is that
there is no combination of different predictions and only one of the local Kriging
models needs to provide a prediction. This results in a significant speed-up for the
prediction task. A possible disadvantage of this method is that you might loose
the global information of the target function and that predictions close to the
cluster borders may be less reliable. In Figure 5.2, a visualisation of predictions
from a fitted Cluster Kriging model using regression trees is shown, marking the
intersections between the different local models with black dashed lines. It can be
observed that the edges of the local models are not completely matching, meaning
that the predictions near the border are not as smooth as they would be in a global
Kriging model. It can also be observed that the area covered by each cluster is
not the same, this is due to the splitting criterion of the regression tree. While the
splitting criterion could be choosen in such a way that it balances the cluster sizes,
using variance reduction as the splitting criterion generally gives better fitted local
models.

Optimal weighting procedure

Instead of using single model predictions, the multiple local models can be com-
bined into one global model using various combination procedures. When the
input data set is separated by hard clustering methods, the Gaussian processes
built on different clusters are independent from each other. In this sense, it is
possible to construct a global Gaussian process model as the superposition of
Gaussian processes from all the clusters. In addition, a weighting scheme is used
to model how much “trust” should be put on the prediction from each cluster. The

87

5. CLUSTER KRIGING

Figure 5.2: The landscape of the two dimensional Ackley function on the left, and
on the right is the contours of the Model Tree Cluster Kriging mean function, with
the tree partitioning visualized by dashed lines. The index of the clusters are shown
in the middle of each rectangle.

weighted superposition of all Gaussian processes is [55]:

y(t) | X,y,x(t) ∼ N

(
k∑
l=1

wlml(x
(t)),

k∑
l=1

w2
l σ

2
l (x(t))

)

The overall prediction and its variance depend on the weights used in the equation
above. Intuitively, the optimal prediction is achieved when the variance of the
estimation is minimal. To obtain such an optimal predictor, the overall Kriging
variance should be optimized with respect to the weights, resulting in the following
optimization task:

minimize
{w1,...,wk}

k∑
l=1

w2
l σ

2
l (x(t))

subject to
k∑
l=1

wl = 1, wl ≥ 0, l = 1, . . . , k.

88

5.4 Cluster Kriging

The optimal weights are obtained by solving the problem above (see [55, 54] for
details):

w∗l =
1/σ2

l (x(t))∑k
i=1 1/σ2

i (x(t))
. (5.11)

The optimal weights are then used to construct the optimal predictor, which is
the inner product of the model predictions with the optimal weights.

Membership Probabilities

For the GMM and other soft clustering approaches, the membership probabilities
can be used for unseen records to define the weights for the combination of pre-
dictions. For each unseen record, the membership probabilities that this record
belongs to the k clusters are calculated and directly used as the weights in the
weighted sum of predictions and variances given by the Kriging models:

wl = Pr(C = l | X,x(t)), for l = 1, . . . , k (5.12)

where C is the cluster indicator variable ranging from 1 to k. The rationale behind
such a weighting scheme can be shown from the following derivation. In general,
the goal here is to express the predictive distribution of variable y(t) that is the
conditional density function on the whole data set X, using the posterior densities
from all clusters. By applying the total probability with respect to the cluster
indicator variable C, such a density function p can be written as [54]:

p(y(t) | X,y,x(t))

=

k∑
l=1

p(y(t), C = l | X,y,x(t))

≈
k∑
l=1

p(y(t) | Xl,yl,x(t)) Pr(C = l | X,x(t)) (5.13)

The independence assumption between Gaussian process models still holds ap-
proximately when the amount of the overlap between clusters is small. Thus, the
density function g(y(t) | X,y,x(t)) approximately equals to Eq. 5.13. The first

89

5. CLUSTER KRIGING

term inside the sum in Eq. 5.13 is the predictive density function obtained from
each cluster. The second term represents the probability of data point x(t) be-
longing to a cluster, which is the weight in Eq. 5.12. Consequently, the overall
predictive density function is a mixture of predictive distributions of all the Gaus-
sian process models on clusters. To predict y(t), the expectation of the conditional
density function p(y(t) | X,y,x(t)) is calculated:

IE[y(t) | X,y,x(t)]

=

k∑
l=1

∫ ∞
−∞

y(t)
k∑
l=1

g(y(t) | Xl,yl,x(t)) Pr(C = l | X,x(t)) dy(t)

=

k∑
l=1

Pr(C = l | X,x(t))IE[yt | Xl,yl,x
t]

=

k∑
l=1

wlml(x
(t)) (5.14)

Note that ml(x
t) is the mean function as shown in Eq. 5.10 and 5.14 suggests

that the overall prediction made on the whole data set can be expressed as a
convex combination of the local predictions on each cluster of data, in which the
combination weights are membership probabilities of GMM or similar clustering
approaches. Furthermore, the variance of the prediction (expectation) above is
derived as follows:

Var[y(t) | X,y,x(t)]

= IE[y(t)
2
| X,y,x(t)]− IE[y(t) | X,y,x(t)]2

=

k∑
l=1

wl

(
Var[y(t) | Xl,yl,x(t)] + IE[y(t) | Xl,yl,x(t)]2

)
− IE[y(t) | X,y,x(t)]2

=

k∑
l=1

wl

(
σ2
l (x(t)) +m2

l (x
(t))
)
−

(
k∑
l=1

wlml(x
(t))

)2

(5.15)

Note that σ2
l (x(t)) is again the Kriging variance at point x(t) from cluster l.

90

5.5 Flavors of Cluster Kriging

5.5 Flavors of Cluster Kriging

Using the three stages and various components for each stage of the Cluster Krig-
ing methodology, various algorithms can be implemented. In this chapter we asses
four different flavors of Cluster Kriging:

Optimally Weighted Cluster Kriging (OWCK), which uses a hard (K-
means) clustering technique to partition the data into k clusters. Subse-
quently, a Kriging model is trained on each cluster and to predict unseen
data points, the predictions and variances of each model are combined using
the Optimal Weights Procedure (Subsection 5.4.3).

Optimally Weighted Fuzzy Cluster Kriging (OWFCK), which uses a soft
clustering technique (Fuzzy C-Means) to partition the data into k overlap-
ping clusters and also uses the Optimal Weights Procedure combining the
different predictions (Subsection 5.4.3).

Gaussian Mixture Model Cluster Kriging (GMMCK), which uses Gaussian
Mixture Models to partition the data into k overlapping clusters and the
trained Kriging models are weighted using the membership probabilities
assigned on the unseen data by the Gaussian Mixture Model (Subsection
5.4.3).

Model Tree Cluster Kriging (MTCK), the proposed novel algorithm, uses a
regression tree with a fixed amount of leaf nodes to partition the data in the
objective space. A Kriging model is then trained on each partition defined
by the tree’s leaves. MTCK uses only one of the trained Kriging models per
unseen record to predict (Subsection 5.4.3), depending on which leaf node
the unseen record is assigned to.

First a decision tree regressor is constructed using the complete dataset. The
tree is generated from the root node by recursively splitting the training data
using the target variable and the variance reduction criterion. Once a node
contains less than the minimum samples needed to split or the node contains
only one record, the splitting stops and the node is called a leaf. To control
the number of clusters, the user can set the maximum number of leaves or

91

5. CLUSTER KRIGING

the minimum leaf size. Next, each leaf node is assigned a unique index and
each record belonging to the leaf is assigned to this index. For each leaf, a
Kriging model is computed using only those records assigned to this leaf.
Each Kriging model is now able to predict a particular region defined by the
Regression Tree.

For the prediction of the target for unseen records, the regression tree decides
which Kriging model should be used. The final predicted mean and variance
is provided by this Kriging model.

5.6 Experimental Setup and Results

A broad variety of experiments is executed to compare Optimally Weighted Clus-
ter Kriging and its Fuzzy and Model Tree variants, to a wide set of other Kriging
approximation algorithms. The algorithms included in the test are; Bayesian
Committee Machines, both with shared parameters (BCM sh.) and with individ-
ual parameters (BCM), Subset of Data (SoD), Fully Independent Training Con-
ditional (FITC), Optimally Weighted Cluster Kriging (OWCK) using K-means
clustering, Fuzzy Cluster Kriging using Fuzzy C-means (OWFCK), Fuzzy Clus-
ter Kriging with Gaussian Mixture Models (GMMCK) and, finally, Model Tree
Cluster Kriging (MTCK).

The above algorithms are evaluated on three different data sets from the UCI
machine learning repository [25]:

• Concrete Strength [87], a data set with 1030 records, 8 attributes and one
target attribute. The task is to predict the strength of concrete.

• Combined Cycle Power Plant (CCPP) [88], a data set of 9.568 records, 3

attributes and one target attribute. The target is the hourly electrical energy
output and the task is to predict this target.

• SARCOS [89], a data set from gaussianprocess.org with a training set of
44.484 records, 21 attributes and 7 target attributes. The task is to predict
the joint torques of a anthropomorphic robot arm. All 21 attributes are

92

5.6 Experimental Setup and Results

used as training data but only the 1st target attribute is used as target. The
dataset comes with a predefined test set of 4.449 records.

In addition, 8 synthetic datasets with each 10.000 records, 20 attributes and one
target attribute are used. The synthetic datasets are generated using benchmark
functions from the Deap Python package [90] and are often used in optimization.
The functions are Ackley, Schaffer, Schwefel, Rastrigin, H1, Rosenbrock, Himmel-
blau and Diffpow.

5.6.1 Hyper-Parameters

The hyper-parameters in each Kriging model are set via the Maximum Likelihood
Estimation (MLE). As the constant trend µ also needs to be estimated, we use
the so-called concentrated log likelihood for the estimation. For this numerical
optimization task, we adopt a quasi-Newton method (BFGS) [91] with restarting
heuristic. Each of the Kriging approximation algorithms has a hyper-parameter
that can be tuned by the user to define the number of data points, clusters or
inducing points, basically defining the trade-off between complexity and accuracy.
For each of the algorithms a wide range of these hyper-parameters are used to
see the effect and make a fair comparison between the different algorithms. The
overlap for each of the Fuzzy algorithms is set to 10%, since from empirical expe-
rience we know that 10% works well. Although higher percentages (above 10%)
usually increase accuracy, the increase of accuracy is not significant and costs ad-
ditional training time as well. For the Model Tree variant, the number of leaves
is enforced by setting a minimum number of data points per leaf and an optional
maximum number of leaves. For the Concrete Strength dataset and all synthetic
datasets: FITC is set to a range of inducing points starting from 32 and increasing
in powers of 2 to 512. SoD is set to the same range as FITC but for SoD this
means the number of data points. BCM, both shared and non-shared versions and
all Cluster Kriging variants are set to a range from 2 to 32 clusters, increasing
with powers of 2. For the Combined Cycle Power Plant dataset: FITC is set to a
range of inducing points starting from 64 and increasing in powers of 2 to 1024.
SoD is set to the a range from 256 to 4.092 data points. BCM, both shared and

93

5. CLUSTER KRIGING

non-shared versions and all Cluster Kriging variants are set to a range from 4 to
64 clusters.

Finally, for the SARCOS dataset, the range of FITC’s inducing points stays the
same as for the CCPP dataset, for SoD the range is from 512 to 8.184 data points,
and for all cluster based algorithms and the model tree variant, the range is set
from 8 to 128 clusters.

5.6.2 Quality Measurements

The quality of the experiments is estimated with the help of 5-fold cross vali-
dation, except of the SARCOS dataset, which uses its predefined test set. The
experiments are performed in a test framework similar to the framework proposed
by Chalupka, K. et al. [67], i.e., several quality measurements are used to evaluate
the performance of each algorithm. The Coefficient of determination R2 score,
Mean Standardized Log Loss (MSLL) (see [57] Section 8.1) and the Standardized
Mean Squared Error (SMSE) are measured for each test run. The Mean Stan-
dardized Log Loss is a measurement that takes both the predicted mean and the
predicted variance into account. Penalizing wrong predictions that have a small
predicted variance more than wrong predictions with a large variance.

MSLL =

〈
1

2
· log(πσi + (yi − ŷi)2/σi)− triv

〉
Where σt is the predicted variance for record xi and ŷi the predicted mean. With
triv the trivial score simulating a predictor that predicts the overall mean and
standard deviation:

triv =
1

2
· log(πσy + (yi − ȳ)2/σy)

For MSLL and SMSE lower scores are better, for R2, 1.0 is the best possible score
meaning a perfect fit and everything lower is worse.

94

5.6 Experimental Setup and Results

Table 5.1: Average R2 score per dataset for each algorithm

Dataset SOD OWCK GMMCK OWFCK FITC BCM BCM sh. MTCK

Concrete 0.784 0.826 0.839 0.696 0.675 -81.888 -242.459 0.851
CCPP 0.948 0.937 0.968 0.916 0.890 0.220 -24.602 0.968
Sarcos 0.964 0.894 0.996 0.570 0.941 -627.280 0.448 0.999
Ackley 0.952 0.957 0.951 0.954 0.260 0.921 -0.039 0.981
Schaffer 0.321 0.388 0.369 0.406 0.208 0.452 -0.050 0.672
Schwefel 0.990 0.973 0.977 0.947 0.006 0.969 -0.043 0.999
Rast 0.973 0.947 0.948 0.932 0.322 0.914 -0.043 0.998
H1 0.676 -0.082 0.527 -1.125 0.165 0.657 -0.046 0.977
Rosenbrock 0.999 0.997 0.997 0.981 0.000 0.994 -0.050 1.000
Himmelblau 0.997 0.995 0.995 0.981 0.291 0.994 -0.044 1.000
Diffpow 0.995 0.991 0.991 0.975 0.001 -0.001 -0.001 1.000

Table 5.2: Average MSLL score per dataset for each algorithm

Dataset SOD OWCK GMMCK OWFCK FITC BCM BCM sh. MTCK

Concrete -0.837 -0.946 -1.100 -0.692 -0.629 18.590 68.013 -1.140
CCPP -0.089 -1.438 -1.525 -1.109 -1.165 7.826 69.346 -1.193
Sarcos -1.926 -1.371 -3.147 -0.302 -1.463 780.090 507.721 -3.429
Ackley -1.622 -1.516 -1.517 -1.462 -0.104 7.352 13.010 -2.012
Schaffer 0.477 -0.073 0.081 -0.091 -0.107 16.872 11.707 -0.514
Schwefel -2.554 -2.013 -2.162 -1.944 -0.002 -0.144 12.034 -3.278
Rast -2.179 -1.686 -1.807 -1.642 -0.193 4.554 11.590 -2.901
H1 -0.766 -0.276 -0.540 -0.060 -0.059 9.018 17.393 -1.967
Rosenbrock -3.479 -2.915 -3.074 -2.738 high* 0.612 18.575 -4.054
Himmelblau -3.204 -2.646 -2.790 -2.553 -0.193 -1.422 12.826 -3.739
Diffpow -3.020 -2.548 -2.666 -2.438 high* high* high* -3.744

5.6.3 Results

The results of experiments on the real world data sets Concrete Strength, CCPP
and SARCOS are shown in Figure 5.3 and the results on the Synthetic data sets

95

5. CLUSTER KRIGING

Table 5.3: Average SMSE score per dataset for each algorithm

Dataset SOD OWCK GMM-CK FCM-CK FITC BCM BCM sh. MTCK

Concrete 0.216 0.174 0.161 0.304 0.325 82.888 243.459 0.149
CCPP 0.052 0.063 0.032 0.084 0.110 0.780 25.602 0.032
Sarcos 0.036 0.106 0.004 0.430 0.059 628.280 0.552 0.001
Ackley 0.048 0.043 0.049 0.046 0.740 0.079 1.039 0.019
Schaffer 0.679 0.612 0.631 0.594 0.792 0.548 1.050 0.328
Schwefel 0.010 0.027 0.023 0.053 0.994 0.031 1.043 0.001
Rast 0.027 0.053 0.052 0.068 0.678 0.086 1.043 0.002
H1 0.324 1.082 0.473 2.125 0.835 0.343 1.046 0.023
Rosenbrock 0.001 0.003 0.003 0.019 1.000 0.006 1.050 0.000
Himmelblau 0.003 0.005 0.005 0.019 0.709 0.006 1.044 0.000
Diffpow 0.005 0.009 0.009 0.025 0.999 1.001 1.001 0.000

are shown in Figures 5.4 and 5.5. The results are shown with both objectives,
time and accuracy (x and y axis respectively) in mind to show the trade-off and
to show that some algorithms are performing better in both objectives. The R2

scores of each dataset per algorithm, averaged over all folds, are shown in Table
5.1. The MSLL scores are provided in Table 5.2 and the SMSE scores in Table
5.3. The best results for each dataset are shown in bold face.

5.6.4 Parameter Setting Recommendations

To use the Cluster Kriging algorithms, the minimum cluster size or the number of
clusters has to be set as a user defined parameter. It is recommended to set this
parameter in such a way that each individual cluster contains between 100 and
1000 records. 1000 records is still computationally tractable by Kriging in terms
of execution time and 100 records is in most cases still doable in terms of fitting
the Kriging model. Selecting smaller cluster sizes is likely to result in poorly fitted
models and selecting cluster sizes larger than 1000 will in most cases not increase
accuracy but will only increase execution time. These recommendations are purely
based on empirical observations and depend highly on the dataset one is working

96

5.6 Experimental Setup and Results

(b) Concrete (c) CCPP

(d) Sarcos

Figure 5.3: Quality measurements of each algorithm with the hyper-parameters
increasing in sample sizes for FITC and SoD, and decreasing in cluster sizes for the
cluster based algorithms as explained in Subsection 5.6.1. The results are shown for
the Concrete, CCPP and Sarcos datasets. The training time is given on the x axis
and the R2 score on the y axis. The dashed green line indicates the non dominated
set.

with. For MTCK smaller cluster sizes are usually still fine because of the low
variance in the records per leaf due to the splitting criterion of the Regression
Tree.

97

5. CLUSTER KRIGING

(b) Ackley (c) Schaffer

(d) Schwefel (e) Rastrigin

Figure 5.4: Quality measurements of each algorithm with the hyper parameters
increasing in sample sizes for FITC and SoD, and decreasing in cluster sizes for the
cluster based algorithms on the first half of synthetic datasets. The training time
on the x axis and the R2 score on the y axis. The green line indicates the non
dominated set.

5.7 Efficient Global Optimization

In many real-world optimization problems, such as optimizing the manufacturing
of car body parts or the production of steel, function evaluations are costly, ei-
ther in time or money. Efficient Global Optimization (EGO) [70] is a procedure

98

5.7 Efficient Global Optimization

(b) H1 (c) Rosenbrock

(d) Himmelblau (e) Diffpow

Figure 5.5: Quality measurements of each algorithm with the hyper parameters
increasing in sample sizes for FITC and SoD, and decreasing in cluster sizes for the
cluster based algorithms on the second half of the synthetic datasets. The training
time on the x axis and the R2 score on the y axis. The green line indicates the non
dominated set.

designed to use a very low number of function evaluations while optimizing a spe-
cific function. The procedure uses a surrogate model to approximate the response
surface of the real function. The surrogate model is fitted using an initial space fill-
ing Design of Experiments (DOE) [92]. Once the surrogate model is fitted on this
data, optimization on the surrogate model’s response surface can be performed

99

5. CLUSTER KRIGING

to find good candidate solutions for the black-box function to be optimized. This
step does not require any additional expensive function evaluations since it uses
the surrogate model. For the selection of these candidate points, EGO uses an
infill-criterion, which is meant to provide a nice balance between exploration and
exploitation. The newly found candidate solution is then evaluated against the
black-box function and added to the data set and used to re-fit the surrogate
model. This procedure is repeated untill the convergence criteria are met.

The Efficient Global Optimization [70] or Bayesian optimization [93, 94] is a se-
quential model-based global optimization algorithm that is built on stochastic
models over the unknown objective function. The Kriging modeling technique [95]
is originally proposed as the underlying model in EGO.

5.7.1 The Efficient Global Optimization Algorithm

EGO [70] is proposed to optimize expensive objective functions by sequentially
choosing new candidate solutions from an underlying Kriging model. The can-
didate solutions are obtained by maximizing the so-called acquisition function or
infill-criterion. Acquisition functions usually take the mean and variance of the
posterior process (Eq. 5.10) into account, in order to balance the exploration and
exploitation of the global search. Adding the newly obtained data points into the
underlying Kriging model, its posterior process is modified and the acquisition
function is updated accordingly. In this manner, a sequence of new solutions are
generated iteratively. This algorithm is summarized in Algorithm 5.1. Many ac-
quisition functions have been proposed and investigated [96]. The most popular
ones are: Lower Bound (LB) [97], the Probability of Improvement (PI) [98, 99] and
Expected Improvement (EI) [70]. In this chapter, we focus only on the expected
improvement, that is defined as follows, in terms of minimization:

EI(x) = IE[max{0,min(y)− y(x)} | y]

= (min(y)−m(x))Φ

(
min(y)−m(x)

s(x)

)
+ s(x)φ

(
min(y)−m(x)

s(x)

)
(5.16)

100

5.7 Efficient Global Optimization

Algorithm 5.1 Efficient Global Optimization
1 Generate the initial data set X,y
2 Fit the Kriging model hyper-parameters on the initial data set X,y.
3 while the stop criteria are not fulfilled do
4 Find global optimum of the infill criterion:

x∗ = argmaxx EI(x)

5 Evaluate x∗: y∗ = y(x∗) and append x∗, y∗ to X,y.
6 Re-estimate the Kriging model hyper parameters
7 end while

where Φ(·), φ(·) denote the cumulative distribution function and the probability
density function of the standard normal distribution, respectively. It takes into
account the quantity of the expected improvement and also rewards a higher vari-
ance. In addition, the gradient of the expected improvement is given in Equation
5.17, as it is required by the quasi-Newton optimization procedure, that is used
in the next subsections.

∇EI(x) = φ(u)∇s(x)− Φ(u)∇m(x) (5.17)

u =
min(y)−m(x)

s(x)

When applying the EGO algorithm to a large initial data set (e.g., in the experi-
ment design), the CPU time spent on the hyper-parameter re-estimation becomes
computationally infeasible. To relax this issue, it is proposed to use time complex-
ity reduction techniques that have been developed for the Kriging model.

5.7.2 Cluster Kriging-based EGO

It is proposed to exploit the Cluster Kriging variants in the EGO algorithm, for
time complexity reduction. Although various complexity reduction (or approxi-
mation) methods exist for Kriging, we state that Cluster Kriging is more suitable
for the EGO algorithm for the following reasons.

101

5. CLUSTER KRIGING

Firstly, the Kriging models on each cluster can be executed in parallel, which yields
an additional linear speedup in practice. Secondly, after a new candidate solution
is found through the acquisition function, the hyper-parameters of Kriging needs
to be re-estimated. Taking the cluster information into account, it is proposed to
only re-estimate the Kriging models on the clusters that this new solution belongs
to. This operation results in another linear speedup in the hyper-parameter re-
estimation procedure, as in the best scenario, only one Kriging model is subject to
re-fitting. Thirdly, the acquisition function, e.g., the expected improvement is still
well-defined on Cluster Kriging because either the posterior process (Eq. 5.10) or
at least the mean and variance function (Eq. 5.14) can be derived. The algorithm
is presented in Algorithm 5.2.

In the algorithm, the initial fitting procedure can be parallelized (line 2). Usually,
the cluster (and the Kriging model on it) that the new solution belongs to is
updated (line 13-16). A counter c is incremented every time when a new candidate
solution is generated (line 5). If the c value, that is the recently appended data
points, are more than 10% of the initial data set, the clustering is performed again
to keep the size of each cluster balanced and capture the information contained
in the newly added points.

5.7.3 Experiments

Several experiments are conducted to show both the empirical time complexity
and convergence rate of the proposed Cluster Kriging based EGO, including all
the variants of Cluster Kriging discussed earlier in this chapter. The performance
of the proposed algorithm is compared to the original EGO that uses Ordinary
Kriging (OK). For our experiments, the benchmark functions chosen are Ackley,
Rastrigin and Schaffer. These functions are chosen because they are used often
in optimization experiments, are highly multi modal, and are of a relatively high
complexity.

Experiment 5.1 The algorithms compared are: EGO with Ordinary Kriging
(OK), Tree-based local Kriging models (MTCK), Superposition of Kriging models
(OWCK) and the mixture of Kriging models (GMMCK). Each of the Cluster
Kriging variants uses 5 clusters. Both execution time and convergence rate are

102

5.7 Efficient Global Optimization

Algorithm 5.2 Cluster Kriging based Efficient Global Optimization (CK-EGO)

Input: Data set X,y obtained on a black-box function f . The number of clusters
q. The clustering method is chosen from K-means, GMM or regression trees
by the user.

1: Initial Clustering: {Xi,yi}qi=1 ← X,y
2: Create the Kriging model for each cluster:

y | Xi,yi ∼ N
(
mi(x), s2i (x)

)
, i = 1, . . . , q

3: c← 0
4: while the stop criteria are not fulfilled do
5: x∗ = argmaxx EI(x)
6: Evaluation: y∗ = f(x∗)
7: c← c+ 1
8: if c > 10% the number of data points in X then
9: Merge the data set: X,y← {Xi,yi}qi=1

10: Clustering the data set X,y and re-create the Kriging models for each
cluster.

11: c← 0
12: else
13: for every cluster i that x∗ belongs to do
14: Append x∗, y∗ to Xi,yi.
15: Re-estimate the hyper-parameter for the Kriging model on cluster i.
16: end for
17: end if
18: end while
19: return x∗

103

5. CLUSTER KRIGING

being measured with a fixed set of EGO iterations and optimization budget. The
convergence is measured by taking the absolute error between the real optimum
of the benchmark functions and the found optimum for each iteration of EGO.
Each EGO run performs 10 iterations for the three benchmark functions in two
dimensions. Three different initial sample sizes are used to train the surrogate
models, 500, 1000 and 5000 points in order to illustrate the growth of CPU time
required per algorithm, when the size of the data available increases. For each
different experimental setup, the average time and distance to the optimum is
recorded over 20 runs with different random seeds.

Experiment 5.2 The algorithms, OK, MTCK and OWCK are compared in five
dimensions on the benchmark functions Ackley and Rastrigin also varying the
algorithm that maximizes the expected improvement. CMA-ES and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm are compared.

Results From Figure 5.7 it can be observed that the Cluster Kriging based EGO
variants perform very similar to OK, depending on the target function, a specific
variant even outperforms Ordinary Kriging. Due to the relatively large variance
in the results it is difficult to judge which algorithm performs better. However,
from the CPU time in Figure 5.6 it can be observed that Cluster Kriging and
in particular MTCK takes only a fragment of the time that Ordinary Kriging
requires. Using a sample size of 500 points this difference is mainly due to the
re-fitting of only one local model at a time. This can be seen by comparing
MTCK with GMMCK and OWCK, since all three cluster Kriging variants use
the same number of local models and only MTCK uses an adaptive local model
strategy. When the number of points increases to 1.000 and even 5.000, the
difference between the three cluster Kriging variants decreases but the difference
with Ordinary Kriging becomes enormous. This shows that using EGO with
Ordinary Kriging quickly becomes infeasible when the number of data points
grow.

From Figure 5.8 it can be observed that also in higher dimensions Cluster Kriging
does not under-perform Ordinary Kriging. In addition, it can be observed that
using different optimization strategies for the expected improvement affects the
convergence rate. However, the best optimization strategy clearly depends on the
target function.

104

5.8 Conclusions

5.8 Conclusions

A novel Kriging approximation methodology, Cluster Kriging, is proposed, using
a combination of smaller Kriging models trained on partitions of the data set.
Four different algorithms using this methodology are proposed and explained in
detail and a broad comparison between the novel algorithms and other state of
the art Kriging approximation algorithms is done. The results of the experiments
(as given in Section 5.6) clearly show that for each data set, the Gaussian Mixture
Models Cluster Kriging (GMM CK) and the Model Tree Cluster Kriging (MTCK)

(a) CPU time (500, 2) (b) CPU time (1000, 2)

(c) CPU time (5000, 2)

Figure 5.6: Average CPU time (in sec.) per benchmark function for varying
sample sizes (nsamples , ddimensions). In blue the MTCK algorithm, OK is denoted in
grey, GMMCK in yellow and OWCK in green.

105

5. CLUSTER KRIGING

(a) Ackley (500, 2) (b) Rastrigin (500, 2) (c) Schaffer (500, 2)

(d) Ackley (5000, 2) (e) Rastrigin (5000, 2) (f) Schaffer (5000, 2)

Figure 5.7: Average convergence of the absolute error of three benchmark functions
in two dimensions, with varying training sample sizes n and 10 iterations of EGO.
Shown is the average over 20 runs (lines) and one standard deviation (shaded areas).

106

5.8 Conclusions

(a) Ackley (500, 5) (b) Rastrigin (500, 5)

Figure 5.8: Average convergence of the absolute error of two benchmark functions
in five dimensions using different optimization algorithms. 500 training samples and
50 iterations of EGO are used. Shown is the average over 20 runs (lines) and one
standard deviation (shaded areas).

outperform the other algorithms in all measurements. It can also be observed that
the Bayesian Committee Machine algorithms, both with shared parameters and
with individual parameters, are very unstable when the number of clusters is
above 8. This is most likely due to poor recombination of models with different
hyper-parameters and the chance of poor fitting of one of the clusters. In terms
of training time, Subset of Data is much faster than any of the other algorithms,
though it pays for this complexity reduction by a decrease in accuracy. Both for
SoD and FITC, the training time increases faster than the training time of the
cluster based algorithms. It is shown that the membership probabilities of the
Gaussian Mixture Model can be used as weights in the combination of the various
Kriging models’ predictions. It is also shown that a Model Tree of Kriging models
works very well in high-dimensional problems and requires less prediction time
due to the fact that only one Kriging model per unseen data point is used for
prediction.

It is shown that Cluster Kriging can be applied in the EGO algorithm for com-
plexity reduction. Three variants of Cluster Kriging are validated in combination
with EGO on some test functions. Based on the empirical results that are shown

107

5. CLUSTER KRIGING

in Section 5.7, it can be concluded that EGO using Cluster Kriging is much faster
in terms of time complexity compared to the traditional EGO that employs an
Ordinary Kriging model. Moreover, each of the Cluster Kriging variants perform
very well compared to EGO using Ordinary Kriging in terms of convergence speed.
From the results shown in Subsection 5.7.2, it can be inferred that the MTCK
model fits the objective function well due to the reason that it captures local
information much better than Ordinary Kriging.

108

