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Abstract. In this paper we present a model to price and hedge basket credit derivatives and
collateralised loan obligation. Based upon the copula-approach by Schönbucher and Schubert
(2001) the model allows a specification of the joint dynamics of credit spreads and default
intensities, including a specification of the infection dynamics which cause credit spreads to
widen at defaults of other obligors. Because of a high degree of analytical tractability, joint
default and survival probabilities and also sensitivities can be given in closed-form which
facilitates the development of hedging strategies based upon the model. The model uses a
generalisation of the class of Archimedean copula functions which gives rise to more realistic
credit spread dynamics than the Gaussian copula or the Student-t-copula which are usually
chosen in practice. An example specification using Gamma-distributed factors is provided.

1. Introduction

While the arrival of a certain number of defaults over a given time period is to be expected
during the normal course of business, major risks arise when either the number of defaults
exceeds expectations or – even if the total number of defaults remains largely unaffected – when
the timing of the defaults is such that several defaults occur closely after each other. In order
to manage this risk a number of new financial instruments have been introduced (basket credit
derivatives and collateralised debt obligations) which are explicitly designed to trade and manage
the risks of default dependencies.
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In this paper we present a model to price and hedge these new instruments. Based upon the
copula-approach the model allows a specification of the joint dynamics of credit spreads and
default intensities, including a specification of the infection dynamics which cause credit spreads
to widen at defaults of other obligors. Because of a high degree of analytical tractability, joint
default and survival probabilities and also sensitivities can be given in closed-form which facili-
tates the development of hedging strategies based upon the model. The model is based upon a
generalisation of the class of Archimedean copula functions which gives rise to much more real-
istic dynamics of the model variables than the Gaussian copula or the Student-t-copula which
are usually chosen in practice.

Default correlation and (more generally) default dependency are a topic of high interest in the
banking and investment community. This interest is further increased by other developments:
First, the upcoming Basel II capital accord allows internally developed credit risk models to be
used for regulatory capital allocation purposes. But also internally, the paradigm of the handling
of credit risk in modern banking has changed significantly. While only a few years ago the only
possibility to manage the credit risk of a large bank was by managing the origination process (i.e.
the acception/rejection of new business), now credit risks can be managed directly by the use of
credit derivatives and securitisation with loans and bonds as collateral assets: collateralised loan
obligations (CLOs) collateralised bond obligations (CBOs) or more generally, collateralised debt
obligations (CDOs). In short, credit risk management has evolved from a passive measurement
and monitoring function into the active management of the credit risk exposure of a bank which
uses the new possibilities to buy and sell exposures in order to optimize the risk-return profile of
the credit book. Given the advantages of active credit portfolio management it is not surprising
that the market for the instruments which make credit risks tradeable, the market for credit
derivatives, is in full stride and still growing strongly. According to the latest survey by Risk
magazine (Patel (2003)), the volume of the credit derivatives market has doubled again in 2002
reaching an outstanding notional of more than 2.3 trillion USD in February 2003.

The development towards active trading of credit risks has several consequences: With growing
liquidity of single-name credit default swaps (CDS), a reliable marking-to-market of individual
credit risks becomes possible. This means, that the market risk of a credit portfolio is now
measurable, and should therefore be managed – it cannot be ignored any more. Insofar as
credit spreads and CDS-spreads contain the market’s opinion on the default risk of the obligor
in question, they provide a new objective, market-based early-warning instrument for changes
in the default risk of the obligors. In particular, it should be possible to calibrate the credit risk
model to the prices of these instruments without much effort.
Secondly, a credit risk model that is to be used for trading must be much more accurate than
a model that is just used to assess the overall risk of a portfolio or an institution: Prices must
be found for both the bid and the offer side of the market, and these prices cannot be set too
conservatively, or there will be no trading. On the other hand, prices that are too aggressive or
any systematic deficiencies will be mercilessly picked off by the rest of the market.
Finally, to allow dynamic hedging and risk management, a quantitative model must be able to
reflect not only the default risk, but also the market’s price dynamics accurately. If – as is
practice nowadays – single-name CDS are used for the hedging of portfolio credit derivatives, we
need realistic price dynamics for these instruments and again require calibration, now to ensure
that the model prices are arbitrage-free with respect to these hedge instruments.
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Summing up, modern default risk models need not only to capture default dependency over a
fixed time-horizon in a realistic manner, but also to capture the dynamics both of the timing
of defaults as well as the dynamics of credit spreads and market prices (and thus actual and
perceived default risk). Unfortunately, many quantitative models for portfolio credit risk have
had difficulties to adapt to these new requirements. Standard models like Credit Metrics (Gupton
et al. (1997)) or Credit Risk+ (Credit Suisse First Boston (1997)) are essentially static models
which model only the default risk1 of a defaultable portfolio over a fixed time horizon. Because
of their fixed time-horizon these models are incapable of capturing the timing risk of defaults2,
and the lack of price dynamics makes them unsuitable for hedging purposes.

Li (1999) extended the Credit Metrics model to a Gauss copula model capturing the timing
risk of defaults. The key contribution in this model is to shift the focus from modelling the
dependency between default events up to a fixed time horizon (i.e. essentially discrete variables)
to the dependency between default times which are continuous random variables and which do
not depend on an arbitrarily chosen time-horizon. By keeping the dependency structure Gauss-
ian, the fixed time-horizon default distribution of the Credit Metrics model is preserved and the
copula-transform makes a calibration to a set of term structures of individual survival proba-
bilities straightforward. These advantages made the Gaussian copula model (and its extension
to a Student-t-copula model) one of standard models for the pricing of CDOs and basket credit
derivatives today.

Nevertheless, the implicit price dynamics in the Gauss copula model remained unspecified in Li
(1999), it was essentially a method to generate consistent default scenarios, but not scenarios
for the development of spread curves. This gap was filled in Schönbucher and Schubert (2001)
where the copula-approach was generalised to enable the use of general copula functions and
a consistent specification of the dynamics of the individual default intensities (and thus credit
spreads) was given. These dynamics involved default contagion in the sense that at default
events, the credit spreads of the non-defaulted obligors would jump upwards.

The model proposed in this paper is in the tradition of the copula-approach as described in
Schönbucher and Schubert (2001) but we propose not to use the Gaussian copula (as in Li
(1999)) but a generalisation of the class of Archimedean copulae. We argue that the current
standard choice in the industry, the Gaussian copula (and even more so the related Student-t-
copula), imply an unrealistic term structure of default dependencies. If for example we measure
the dependency between two defaults by the size of the default contagion that is active between
the obligors at any given time, we can analyse this local dependency measure as a function
of time. In the Gauss-copula model the dependency approaches infinity at t = 0 and decays
strongly as time increases. This means that the model becomes strongly date-dependent, while
usually there is no reason at all why t = 0 should be a date with special default dependency.
Furthermore, it would mean that the model will give significantly different prices for the same
credit derivative at different dates: Because of the concentration of dependency at t = 0, a
five-year (spanning years 1 to 5) First-to-Default swap (FtD) priced at t = 0 would be much
cheaper than a five-year FtD priced at t = 1 (now spanning years 2 to 6), even if the spreads of
the underlying credits had not changed at all.

1Credit Metrics does include a first attempt to capture market risk by modelling rating transitions.
2Timing risk is very important, for example it is an essential risk in all cash-flow based debt securitisations.
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It should be noted that this problem is not a weakness of the copula-approach in general, but only
a weakness of the particular choice of the Gaussian copula or the t-copula as copula of the default
times. These copulae simply do not seem to be a particularly well-suited model for dynamic
default dependencies. If a different copula is chosen, these problems can be avoided. The class
of copulae which we propose in this paper contains members which have a much more realistic
dependency structure of defaults over time. Furthermore, the Gaussian copula and the Student-
t-copula only exhibit a very limited degree of analytical tractability, while the copulae proposed
in this paper can be evaluated in closed-form. In a related paper (Schönbucher (2002)) one can
find closed-form loss distributions for a large homogeneous portfolio under Archimedean-copula
default dependency. These simple formulae can be useful to assess the particular parametric
specification of the dependency structures proposed in this paper.

Of course, the copula approach is not the only attempt to build a dynamic model of default
dependency which can be easily calibrated and easily used in practice. In single-name default
risk modelling, ease of calibration and a high degree of flexibility in a the specification of spread-
dynamics are the hallmarks of the intensity-based approach, therefore we concentrate on a (very
brief and incomplete) survey of extensions of this class of models.

The first, and most obvious way to introduce dependency between defaults in an intensity-based
model is to introduce correlation between the default intensities of the obligors. Yet, if this
done using only diffusion-based dynamics for the default intensities, the set of possible default
correlations is strongly restricted3. Empirically, default correlations have been rather small so
this may be a viable approach if default correlation is only to be captured broadly across the
whole economy (as argued by Yu (2002)), but in cases of highly-dependent obligors with low
individual default probabilities this approach may not be acceptable (e.g. to model default
dependency within an industry sector or a specific region).

There are essentially two ways out of the low-correlation problem: Joint jumps in the default
intensities, or joint defaults. The possibility of joint jumps in the default intensities allows a
higher degree of dependency, in principle perfect correlation can be reached by letting both
intensities jump to infinity at the same time. A good example of this approach are the affine
jump-diffusion processes introduced by Duffie et al. (2001). Nevertheless, analytical tractability
can be difficult in these models, in particular when it comes to calibration and to the analysis
of the distribution of joint defaults that is implied by the model. As shown by Schönbucher
and Schubert (2001), any copula-model can be written as an intensity-based model in which the
default intensities of the non-defaulted obligors have a joint jump at default events, so there is
no fundamental difference between copula-models and intensity-based models with a rich enough
dynamic specification.

Default-event triggers which cause joint defaults of several obligors at the same time were used
in Duffie (1998), Kijima (2000); Kijima and Muromachi (2000)): Again we do not have any
restriction on the default dependency any more but the problem of the concrete specification of

3A back-of-the-envelope calculation would proceed as follows: Choose two obligors A and B with perfectly

correlated default intensities λ(t) = λA(t) = λB(t). Call Λ(T ) :=
∫ T
0 λ(t)dt, and assume for simplicity that Λ(T )

is normally Φ(m, s2) distributed. Then the individual default probabilities are p = e−m+s2/2, and the default

correlation between A and B is ρ = p
1−p

(es2 − 1). This is essentially of the same order of magnitude as the

individual default probability p, unless the intensity volatility is extremely high.
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the intensities of the joint default events and their intensities is still largely unresolved: For a
small portfolio of just 10 obligors we already have 210 possible joint default events. As it is not
feasible to fully enumerate the joint default events, we essentially need another model in order
to specify the intensities of these joint default events. Another problem is that the dynamics
that are implied by this model are not quite realistic, either: Defaults do cluster, but they do
not occur at exactly the same time. Furthermore, after a joint default event the dynamics of
the non-defaulted obligors are unchanged, another feature which seems unrealistic. It should be
noted that this modelling approach can be cast into the copula-framework using the so-called
Marshall-Olkin copula.

An interesting modelling approach which yields rather realistic dynamics and default dependency
structures is default infection or default contagion. Davis and Lo (2000, 2001), Jarrow and Yu
(2001) and Giesecke and Weber (2002, 2003). The basic idea in these models is that the default
intensity of the non-defaulted obligors is caused to jump upwards if another, related obligor
defaults. This phenomenon is frequently observed in credit markets (see e.g. the emerging
markets crises in the late 1990s or the explosion of US corporate spreads after the Enron and
WorldCom defaults), yet if the jump at default is directly specified, the models become very hard
to calibrate because of the cyclical dependence of between default intensities and default arrivals
of all obligors: Essentially, every obligors default intensity depends on every other obligors’
survival and thus also on the other obligors’ default intensities, which in turn again depend
on the first obligor’s survival. Jarrow and Yu (2001) are therefore forced to model only one-
way dependency, and Davis and Lo (2000, 2001) choose an extremely simplifed model. As a
very similar type of default contagion arises endogenously in the copula-based models without
incurring the same calibration problems, it seems that a an easier way to reach these dynamics
is to use a copula model.

The rest of the paper is structured as follows:
In the next section we recapitulate the main results of Schönbucher and Schubert (2001) which
sets the general framework for the analysis of the dynamic default risk model. This is followed
by a section introducing the generalised Archimedean copula functions which we are going to
use to model the dependency between the default events. We give the joint distribution function
in closed-form and also provide an efficient algorithm to generate random vectors with this
distribution function. In the next section we analyse the conditional distribution of the factors
and the corresponding conditional copula, where the conditioning is done on default and survival
of any given set of obligors in the future. The conditional distributions are reached by a simple
change of measure from the original probability distribution and can be given in closed-form. In
particular it turns out that the conditional distributions of the factor variables are of the same
exponential family as the original factor variables. This distribution is central in deriving the
dynamics of the default intensities in this model. It also allows to price any contingent claim in
this framework. In the following section we characterise the dynamics of the default hazard rates
using the conditional distributions of the previous sections. It turns out that the conditional
jump sizes at defaults (the size of the contagion between two obligors) can be expressed as a
covariance of the corresponding factors. As we can give the conditional contagion-jumps of the
default intensities in closed-form, it may be desirable to fit a model to a given set of jump sizes.
This question is also addressed in this section. Usually, this calibration is possible, and we give a
possible choice of the factor loadings that will result in a given matrix of joint default influences.
While all results of the previous sections are valid for any specification of the factors driving
the default influences (as long as they are positive a.s. and their Laplace transform is easily
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available), we give a concrete implementation example in the final section of the paper. This
example is based upon Gamma-distributed driving factors which yield a generalisation of the
Clayton copula as dependency structure.

2. Model Setup

This section gives a short overview over the Schönbucher and Schubert (2001) copula modelling
framework. More details and proofs can be found in the original article.

2.1. Preliminaries. The model is set in a filtered probability space (Ω, (Ft)(t≥0), P ). All filtra-
tions in this paper are assumed to satisfy the usual conditions and are augmented, the probability
measure P need not necessarily be a martingale measure, but it is helpful to consider it as a
martingale measure. For a stochastic processes like λ(ω, t) we only write λ(t), suppressing the
dependence on ω, and we assume that all stochastic processes are continuous from the right with
left limits (càdlàg).

Vectors are written in boldface x = (x1, . . . , xI)T . Vectors of functions Fi : R→ R are written
as

(2.1) F (x) := (F1(x1), F2(x2) . . . , FI(xI)))T .

Standard arithmetical functions of vectors (except multiplication where we use matrix multiplica-
tion) and comparisons between vectors are meant by component, i.e. ln(u) = (ln(u1), . . . , ln(uI))T ,
and also u/v = (u1/v1, . . . , uI/vI)T . We use the following notation if we replace the i-th com-
ponent of x with y:

(2.2) (x−i, y) := (x1, . . . , xi−1, y, xi+1, . . . , xN )T .

1 is the vector (1, . . . , 1)T and 0 = (0, . . . , 0)T . Frequently, partial derivatives are written in
index notation, i.e. ∂

∂xi
C() = Cxi().

The connection between default intensities and credit spreads is by now well-understood, for
example in the fractional recovery /multiple default model the default intensity times the local
loss quota gives the short-term credit spread (see Duffie and Singleton (1997) or Schönbucher
(1998) for more details). In Schönbucher (1999) it is also shown that the CDS spread of an
obligor can be viewed as “expected loss in default times an average of default hazard rates” if
the recovery-of-par model is used. We therefore restrict ourselves to modelling default intensities
and leave the choice of the recovery model to the reader. All results for default intensities will
directly carry over to corresponding results on credit spreads.

2.2. Default Risk Modelling with Copula Functions. Copula-based default risk models
grew out of the need to extend univariate default-risk models for the individual obligors to a
multivariate framework which keeps all salient features of the individual default-risk models while
incorporating a realistic dependency structure between the defaults of the obligors. “Keeping
the salient features” means in this context that the model reduces to the original one-obligor
default risk model, if only that obligor’s default and survival behaviour is observed (and some
general background information).
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In order to make precise what is meant we need to define the information sets that would obtain
if only one obligor i ≤ I was observed. But first we define the background process:

Definition 1. The background process X(t) is a m-dimensional stochastic process. We denote
the filtration generated by X(t) with (Gt)t∈[0,T ], and G := σ(

⋃
t∈[0,T ]

Gt).

The background process is the process driving all non-default dynamics in the model, i.e. the
default intensity dynamics, default-free interest-rate dynamics and any other state variables that
may be relevant for pricing purposes.

Individual defaults in this model are triggered as follows:

Assumption 1 (Default Mechanism).
We consider joint defaults and survivals of a set of I individual obligors. We define:

(i) The default trigger variables Ui, i = 1, . . . , I are random variables taking values on the unit
interval [0, 1].

(ii) The pseudo default-intensity λi(t) is a nonnegative càdlàg stochastic process which is
adapted to the filtration (Gt)t∈[0,T ] of the background process.

(iii) The default countdown process γi(t) is defined as the solution to dγi(t) = −λi(t)γi(t−)dt
with γi(0) = 1. The solution is

(2.3) γi(t) := exp{−
∫ t

0

λi(u) du}.

We denote by τi the time of default of obligor i = 1, . . . , I, and denote the default and survival
indicator processes as Ni(t) := 1{τ≤t} and Ii(t) := 1{τi>t}.

The time of default is the first time, when the default countdown process γi(t) reaches the level
of the trigger variable Ui:

(2.4) τi := inf{t : γi(t) ≤ Ui}.

Note that the assumption of the existence of a default-intensity in equation (2.3) can be replaced
by specifying γi(t) as the survival probability function of obligor i, i.e. γi(t) := P [ τi > t ]. Thus,
the copula-approach can also be used for models with default times that do not have an intensity.

Definition 2 (Filtrations).
For all i ≤ I we define the following filtrations:

(i) Filtration (F i
t )t∈[0,T ] contains only information on default and survival of obligor i. Thus,

it is the augmented filtration that is generated by Ni(t).
(ii) In addition to this, filtration (Hi

t)t∈[0,T ] contains information about the background process
up to time t

Hi
t := σ

(F i
t ∪ Gt

)
.
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(iii) In addition to this, filtration (Ht)t∈[0,T ] contains information about the defaults of all oblig-
ors until t, (and still information about the background process until time t)

Ht = σ

(
I⋃

i=1

Hi
t

)
.

We can now make precise what was meant with “keeping the salient features” of an individual
default risk model: Conditional on (Hi

t)t∈[0,T ], the model is supposed to reduce to the original
one-dimensional default risk model for obligor i. This is achieved as follows:
Assumption 2.
For all i = 1, . . . , I, the default threshold Ui is uniformly distributed on [0, 1] under

(
P, Hi

0

)
, and

Ui is independent from G∞ under P .

Then, by proposition 3.4 of Schönbucher and Schubert (2001), we have the univariate survival
probabilities (given τi > t) as

(2.5) P ′i (t, T ) = EP

[
γi(T )
γi(t)

∣∣∣∣Hi
t

]
= EP

[
e−

∫ T
t

λi(s)ds
∣∣∣Hi

t

]
,

Equation (2.5) is exactly the expression that gives the survival probabilities in an intensity-based
default risk model with default intensity process λi(t). Not surprisingly, the default intensity of
obligor i under Hi

t is indeed 1{τi>t}λi(t) (Schönbucher and Schubert (2001), prop. 3.5).

Note that in assumption 2, only the marginal distribution of the trigger levels Ui was specified,
because only the distribution under Hi

t was given and Hi
t does not contain any information on the

other Uj , j 6= i. This leaves us enough freedom to specify a rich structure of dependency between
the defaults of the obligors using the joint distribution of the random variables U1, U2, . . . , UI :
Assumption 3.
Under (H0, P ) the I-dimensional vector U = (U1, . . . , UI)T is distributed according to the I-
dimensional copula

C(u).
U is independent from G∞. Furthermore, C is I times continuously differentiable.

A particular focus of this paper (and of Schönbucher and Schubert (2001)) are the dynamics
of the default and survival probabilities, and this involves in particular the distribution of the
default times τ conditional on the information that may be available at a later time t > 0.
Definition 3 (Conditioning Information).

(i) The conditioning information is summarized in a pair

(2.6) (u, d) = ((u1, . . . , uI)T , {d1, . . . , dD}),
of a vector u ∈ [0, 1]I of observed countdown levels and a set d ⊂ {1, . . . , I} of defaulted
obligors. The corresponding σ-algebra is

(2.7) σ


⋃

i 6∈d

{Ui < ui} ∪
⋃

j∈d

{Uj = uj}

 .
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(ii) We call the measure that reflects this new information P (u, d).
(iii) The distribution function of the U , conditioned on this information, is denoted with

C(u; u, d) = P [ U ≤ u | (u, d) ] .

We interpret the conditioning information as follows:

• Levels u.
In most cases, the levels ui can be identified with the current state of the countdowns at
the current time time t, i.e. ui = γi(t). Alternatively, one can also identify ui = γi(Ti)
with the levels of the countdowns at times Ti which may be different for each obligor.
This is useful for the determination of default and survival likelihoods conditional on
survival of individual obligors up to a later date. In the latter case one should bear in
mind that γi(Ti) will be stochastic if λi is stochastic. In any case, for defaulted obligors,
ui is the level of the countdown at the time of default, i.e. ui = γi(τi).

• Survival of the obligors.
All obligors i ≤ I have survived until just before ui, i.e.

Ui ≤ ui.

• Defaults of obligors {d1, . . . , dD}.
For all k = 1, . . . , D, obligor dk defaults at countdown level udk

:

Udk
= udk

.

Note that we assume that default takes place exactly at the trigger level udk
. This makes

sense, as udk
can be viewed as “the last time obligor dk was seen alife”. Relaxing this

assumption is trivial but would mess up the notation even more.
• All other obligors are still alive at t, i.e. for all i 6∈ {d1, . . . , dD}

Ui < ui.

The connection to the filtrations H and Hi is the following:

Ht ↔ σ ((u,d) ∪ Gt) , where for all i





ui = γi(t), if τi > t

ui = γi(τi), if τi ≤ t

i ∈ d if τi ≤ t.

(2.8)

Hi
t ↔ σ ((u,d) ∪ Gt) , with





uj = 1, for j 6= i

ui = γi(t), if τi > t

ui = γi(τi), if τi ≤ t

d = {i} if τi ≤ t,

d = ∅ if τi > t.

(2.9)

When we write expressions like “let (u,d) represent the information until t” we mean that (u, d)
are given as in equation (2.8). While this is the most common interpretation we give to (u, d),
we chose a different notation for u and γ(t) because u need not always have the interpretation of
the countdown levels at a given time t. Note that almost always (unless C was the independence
copula) C(u;u, d) will not have uniform marginal distributions, so it will not be a copula any
more.
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The joint survival probabilities at some future date t ≥ 0 are now given by the following lemma:

Lemma 4 (Conditional Distributions).
If C is sufficiently differentiable, the distribution of the U conditional on (u, d) is for all u ≤ u

C(u; u, d) =
∂D

∂xd1 ···∂xdD
C(u)

∂D

∂xd1 ···∂xdD
C(u)

.(2.10)

Let ui = γi(t) for all i 6∈ d and ui = γi(τi) for all i ∈ d. The joint distribution function of the
default times τ , conditional on (u, d), is given through the joint survival function F (t, T )

F (t, T ) =P [ τ ≥ T | (u,d) ] = EP [ C(γ(T ); u, d) | Gt ] .(2.11)

where Ti ≥ ti for i 6∈ d and Ti = 0 for i ∈ d.

The joint survival function F (t, T ) gives the probability of survival of all obligors until Ti, given
information Ht at time t. Essentially, the initial survival function is

(2.12) F (0, T ) = EP [ C(γ(T )) |H0 ] .

If no defaults happen until t, it is updated to

(2.13) F (t,T ) =
EP [ C(γ(T )) |Ht ]

C(γ(t))
,

and whenever a default happens (of obligor j, say), we must take a partial derivative of the
copula function with respect to the defaulted obligor, and fix the value of γj at γj(τj). These
operations reflect the updating of the survival function with respect to the information that keeps
arriving in form of defaults and survivals of the obligors.

By lemma 4 we can give a full term structure of survival probabilities at all times for every
obligor. In particular, we can also derive the default hazard rates and their respective dynamics.
The default hazard rates are defined as follows:

Definition 5 (Hazard Rates). For each obligor i ∈ I with τi > t we define

(i) the survival probability Pi(t, T ) = P [ τi > T |Ht ].
(ii) the default intensity hi(t) := − ∂

∂T Pi(t, t)
(iii) the default hazard rate

hi(t, T ) = −
∂

∂T Pi(t, T )
Pi(t, T )

(iv) the survival probability of i, given j 6= i defaults at t as P−j
i (t, T ) = E [ τi > T |Ht ∧ {τj = t} ].

(v) the default hazard rate of i, given j 6= i defaults at t

h−j
i (t, T ) = −

∂
∂T P−j

i (t, T )

P−j
i (t, T )

.

The dynamics of the default intensities are derived in proposition 4.7 of Schönbucher and Schubert
(2001), which is reproduced here, adapted to the conditioning information (u, d) (Schönbucher
and Schubert (2001) only give the dynamics before and up to the first default d = ∅.)
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Proposition 6.
Let (u,d) represent the information until time t. For each obligor i 6∈ d, the dynamics of the

default intensity hi are given by
dhi

hi
=

dλi

λi
− (hi∆

(u,d)
ii + λi)dt− dNi +

∑

j 6∈d,j 6=i

∆(u,d)
ij (dNj − hjdt),(2.14)

where the matrix of the mutual default influences is given by

∆(u,d)
ij :=

Cxixj (u; u, d)
Cxi

(u; u, d) Cxj
(u; u, d)

− 1.

The matrix ∆ contains all necessary information on the effects of a default of one obligor on the
default risk of the other obligors. It governs the dynamics of the hazard rates: At a default of j,
the hazard rate of obligor i jumps up to 1 + ∆ij times the pre-default hazard rate.

∆ depends almost exclusively on the specification of the copula function in this model (the
hazard rates only enter by influencing where the copula is evaluated). This opens a new way
of judging the appropriateness of a given copula specification: Does it imply realistic dynamics
for the default intensities? Simultaneously, we may even want to take the converse route: For a
given matrix ∆, what is the copula that recovers these mutual influences? In the following we
are going to provide answers to these questions for the class of generalised Archimedean copula
functions.

3. Generalised Archimedean Copulae

Essentially, there are two types of ingredients to the portfolio credit risk model for which we
need a more concrete specification:

• The individual (pseudo-)default intensities λi(t) and their dynamics, and
• the copula of the default thresholds.

In this section we propose to specify the default copula function using a generalisation of the
well-known Archimedean copula functions.
Definition 7 (Archimedean Copula Function).
An Archimedean Copula function C(u) is a copula which can be represented as

(3.1) C(u) = ϕ

(
I∑

i=1

ψ(ui)

)
, where ψ = ϕ[−1].

ϕ : R+
0 → [0, 1] is known as the generator function4 of the copula C(·).

Not every function ϕ() generates an Archimedean copula. In the following, we will require that
ϕ() is the Laplace transform of a positive random variable Y , i.e. there is a random variable

4A footnote for the Hellenically challenged: ψ is “psi”, ϕ is “phi”, and φ is also “phi”, just in a different
typeface.
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1. Name: Clayton Copula

ψ(t) = (t−θ − 1)

ϕ(s) = ψ[−1](s) = (1 + s)−1/θ

Parameter: θ ≥ 0, independence for θ = 0

Y -Distribution: Gamma (1/θ)

Density of Y : 1
Γ(1/θ)e

−yy(1−θ)/θ

2. Name: Gumbel Copula

ψ(t) = (− ln t)θ

ϕ(t) = ψ[−1](t) = e(−s1/θ)

Parameter: θ ≥ 1, independence for θ = 1

Y -Distribution: α-stable, α = 1/θ

Density of Y : (no closed-form is known)

3. Name: Frank Copula

ψ(t) = − ln e−θt−1
e−θ−1

ϕ(s) = ψ[−1](t) = − 1
θ ln[1− e−s(1− e−θ)]

Parameter: θ ∈ R\{0}
Y -Distribution: Logarithmic series on N+ with α = (1− e−θ)

Distribution of Y : P [ Y = k ] = −1
ln(1−α)

αk

k

Table 1. Some generators for Archimedean copulas, their inverses and their
Laplace transforms. Source: Marshall and Olkin (1988).

Y > 0 such that

(3.2) ϕ(s) = LY (s) = E
[

e−sY
]
.

In particular, ϕ is strictly monotonically decreasing and invertible. Table 3 gives a number of
possible specifications for the distribution of Y and the corresponding Laplace transforms.

Requiring a representation as a Laplace transform seems rather unrelated to definition 7 but
the following algorithm will show that this representation actually is at the core of a simulation
algorithm to generate random variates with joint distribution function 3.1.
Proposition 8 (Marshall and Olkin (1988)).
Follow the following algorithm:

1. Generate I independent random variates Xi, i = 1, . . . , I with uniform distribution on [0, 1].
2. Generate one random variate Y such that Y is independent of the Xi and such that it satisfies

3.2 (i.e. such that the Laplace transform of Y is ϕ(s)).



MODELLING DYNAMIC PORTFOLIO CREDIT RISK 13

3. Form

(3.3) Ui := ϕ

(
1
Y

(− ln Xi)
)

.

Then the joint distribution function of the Ui is the Archimedean copula with generator ψ(·) =
ϕ[−1](·), i.e.

(3.1) P [ U ≤ u ] = C(u) = ϕ

(
I∑

i=1

ψ(ui)

)
.

As we are going to generalize this algorithm, the proof is postponed to the proof of proposition
9.

Archimedean copula functions are the first step to break out of the straightjacket imposed by
the normal distribution and the Gaussian copula function. We already have made some progress
on the analytical front because the joint distribution function of the random vector U is given in
closed-form even for very high-dimensional problems, which is not the case for Gaussian copula
functions. Furthermore, algorithm 8 shows that the generation of random variates with a given
Archimedean copula function is rather easy and also not numerically more expensive than the
generation of a similar number of correlated normally distributed random variates.

The remaining disadvantage of the Archimedean copula functions is the fact that they impose too
much structure on the dependency. In particular, all random variates Ui are exchangeable, i.e.
the distribution of any permutation of the Ui is still the same as the original distribution because
we can interchange the order of summation of the ψ(Ui) in (3.1) as we like. For default risk
this means that we cannot (yet) have some groups (or pairs) of obligors with higher dependency,
and others with less dependency. This restriction is lifted in the following generalisation of
proposition 8.

Proposition 9 (Generalised Archimedean Copula Functions).
Let Y = (Y1, . . . , YN )T be a vector of positive random variables. Let ain be the components of a
(I ×N)-matrix A of factor weights. Define for all i ≤ I, n ≤ N and s ≥ 0

Ỹi :=
N∑

n=1

ainYn Ỹ = AY(3.4)

ϕ̃i(s) := LỸi
(s) = E

[
e−s

∑N
n=1 ainYn

]
, ψ̃i(t) := ϕ̃

[−1]
i (t)(3.5)

ϕ(s1, . . . , sN ) := E
[

e−
∑N

n=1 snYn

]
ϕ(s) := LY (s) = E

[
e−sT Y

]
.(3.6)

ϕn(s) := LYn(s) = E
[

e−sYn
]
.(3.7)

Follow the following algorithm:

1. Generate I random variates Xi, 1 ≤ i ≤ I i.i.d. uniform on [0, 1].
2. Generate Yn 1 ≤ n ≤ N as above.
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3. Define Ui as follows for 1 ≤ i ≤ I

Ui := ϕ̃i

(
1∑N

n=1 ainYn

· (− ln Xi)

)
= ϕ̃i

(
1
Ỹi

· (− ln Xi)
)

(3.8)

or simply

U = ϕ̃
(
− ln(X)/Ỹ

)
.(3.9)

Then the joint distribution function of the Ui is given by

C(u) := P [ Ui ≤ ui, ∀ i ≤ I ] = E

[
I∏

i=1

exp
{
−Ỹiψ̃i(ui)

} ]
(3.10)

= E

[
exp

{
−

I∑

i=1

N∑
n=1

ainψ̃i(ui)Yn

} ]
(3.11)

= ϕ

(
I∑

i=1

ai1ψ̃i(ui), . . . ,
I∑

i=1

aiN ψ̃i(ui)

)
(3.12)

or in vector notation

C(u) = E
[

e−Ỹ
T

ψ̃(u)
]

= E
[

e−Y T AT ψ̃(u)
]

= ϕ
(
AT ψ̃(u)

)
.(3.13)

Furthermore, the Ui are distributed on [0, 1]I and have uniform marginal distributions. Thus the
joint distribution function of the Ui is a copula function.

Note that if the factors Yn are independent, the multivariate Laplace transform ϕ(·) reduces to
a product of univariate Laplace transforms and we have

C(u) =
N∏

n=1

LYn

(
I∑

i=1

ainψ̃i(ui)

)
=

N∏
n=1

ϕn

(
I∑

i=1

ainψ̃i(ui)

)
.(3.14)

We give the proof here in the main text as it shows clearly why the algorithm works.

Proof. By construction, the event Ui ≤ ui is equivalent to

Xi ≤ exp{−Ỹiψ̃i(ui)}.
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Therefore

P [ Ui ≤ ui, ∀ i ≤ I ] = P
[

Xi ≤ exp{−Ỹiψ̃i(ui)}, ∀ i ≤ I
]

= E
[
P

[
Xi ≤ exp{−Ỹiψ̃i(ui)}, ∀ i ≤ I

∣∣∣ Ỹ1, . . . , ỸI

] ]

= E

[
exp{−

I∑

i=1

Ỹiψ̃i(ui)}
]

= E

[
exp{−

N∑
n=1

(
I∑

i=1

ainψ̃i(ui)

)
Yn}

]

= ϕ

(
I∑

i=1

ai1ψ̃i(ui), . . . ,
I∑

i=1

aiN ψ̃i(ui)

)

which proves the form of the distribution function (3.10), (3.11) and (3.12).

It remains to show that the distribution indeed has uniform marginals. For this we need for all
ui ∈ [0, 1] that ui = P [ Ui ≤ ui ]. Using the same iterated condititional expectations as above
wer reach

P [ Ui ≤ ui ] = E
[

exp{−Ỹiψ̃i(ui)}
]

= LỸi
(ψ̃i(ui)) = ui,

because (3.5), ψ̃i() was chosen in such a way that it is exactly the inverse function of the LT
of Ỹ . Thus the marginal distributions of the ui are uniform on [0, 1], and the joint distribution
function is indeed a copula. ¤

Although independence of the factor variables Yn will be the rule rather than the exception,
(3.12) holds also if the factors are not independent. We only use independence to simplify the
expressions in (3.14). The setup of proposition 9 reduces to the “classical” Archimedean copula
of proposition 8 if there is only one driving factor (N = 1), and all factor weights are equal.

Obviously, to be practically useful, the distribution of the Yn should be chosen such that the
Laplace transforms (3.5) and (3.6) can be easily evaluated and inverted. A particularly simple
case is reached if a set of independent factors from the same summation-stable family of distri-
butions is used (e.g. Gamma or positive α-stable). Stability ensures that the weighted sums Ỹ
of the factors Yn are still within the same class of distributions, and thus that the corresponding
Laplace transform is easy to calculate.

If the driving factors Yn are independent, they need not belong to the same family of distributions,
as long as their Laplace transforms are available and easily invertible. The Laplace transforms
of the weighted factor sums ϕ̃() is still easily calculated, because the LT of a sum of independent
random variables is the product of the individual LTs. We have in this case

ϕ̃i(s) = E
[

e−s
∑N

n=1 ainYn

]
=

N∏
n=1

E
[

e−sainYn
]

=
N∏

n=1

ϕn(ains).
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In general, an analytical inversion of ϕ̃i(s) will not be possible if the factors do not come from
the same family of distributions, and numerical inversions will be necessary to evaluate the dis-
tribution function (3.12). Because ϕ̃i(s) is a particularly well-behaved function5, this numerical
inversion is not an implementation obstacle, even if it has to be done I times for high dimensions
I.

Using factors with different distributions can be useful if one wants to use an Archimedean copula,
but would like to perform a specification test on the “right” Archimedean copula function. To
each Archimedean copula there is a corresponding factor distribution, so by incorporating one
factor of each possible distribution class we can build a model which nests these Archimedean
copulae. The “large” model can be estimated by maximum likelihood, and using standard tests
it can be determined which specification fits the data best.

3.1. The Density. For maximum likelihood estimation, the density of the distribution function
is necessary. To calculate the density, we need the partial derivatives of the Copula function.
The first derivative is:

∂C

∂uj
=

∂

∂uj
E

[
I∏

i=1

e−Ỹiψ̃i(ui)

]
= −ψ̃j

′(uj) ·E
[

Ỹj

I∏

i=1

e−Ỹiψ̃i(ui)

]
(3.15)

Second and higher cross-derivatives (never twice the same index) work exactly the same. Even-
tually, we reach the density of the copula as

c(u) =
∂

∂u1 · · · ∂uI
C(u) =




I∏

j=1

(−ψ̃j
′(uj))


 ·E

[
I∏

i=1

Ỹie
−Ỹiψ̃i(ui)

]
(3.16)

In the case of the Gaussian copula the density had a singularity at t = 0 (or equivalently u = 1)
which was the reason for the unrealistic jump sizes close to t = 0 and a front-loading of joint
defaults for this copula specification. By proposition ??, a sufficient condition for ∆(u,d)

ij < ∞ is
that c(u) is finite. Note that – even if not all moments of Yn may exist6 under P , all moments
of all Yn will exist under P (u, d) if u < 1, i.e. as soon as t > 0. Thus, if ψ̃i(ui) > 0 i.e. ui < 1
for all i ≤ I then the density exists and is finite.

The only possibly problematic points are therefore at t = 0 which corresponds to ui = 1 or at
t = ∞ which corresponds to ui = 0. (We ignore t = ∞ for now as it is clearly less relevant.) At
t = 0 the density is only finite if E

[ ∏I
i=1 Ỹi

]
< ∞ and if |ψ̃′i(1)| < ∞ for all i where ui = 1.

We will show in section 6 that for our example implementation these conditions are satisfied.

4. Conditional Probability Measures

We aimed to build a model which is capable of reproducing the dynamics of the default prob-
abilities and -intensities as time proceeds. As time proceeds, information about the state of
the economy is revealed through the occurrence and absence of defaults of the obligors in the

5It is one-dimensional, monotone, concave, and all derivatives are available in closed-form.
6The α-stable random variables in the Gumbel copula are one case where moments may not exist under P .
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portfolio. This information is reflected in an updated probability distribution on the times of
default as described in lemma 4.
Proposition 10 (Conditional Measures).
Let u ≤ u < 1, and ud = ud for all d ∈ d. We have

C(u; u, d) = EP (u,d)
[

e−Ỹ
T

[ψ̃(u)−ψ̃(u)]
]
,

where

dP (u, d)
dP

=
e−Ỹ

T
ψ̃(u)

∏
d∈d Ỹd

EP
[

e−Ỹ
T

ψ̃(u)
∏

d∈d Ỹd

](4.1)

and

dP (u,d ∪ {j})
dP (u, d)

=
Ỹj

EP (u,d)
[

Ỹj

](4.2)

for all j 6∈ d.

Proof. See appendix A. ¤

Given no defaults, the Radon-Nikodym density in proposition 10 is of the form of a negative
exponential e−ψ̃Y in the factor variables Y . Such families of transformations are called members
of the exponential family of the original distribution of Y .

Economically, the exponential transformation increases the probability mass for low values of
Y , while the probability mass for high values of Y is decreased. This is good news, because it
is the large values of the factor variables Y that represent high default risk. (Remember that
Xi ≤ e−ψ̃iỸi is necessary for i to survive.) This effect is larger, the larger the factor ψ̃, and this
factor in turn depends on the time spent in survival so far because it is ψ̃(u).

It is desirable to directly characterize the distribution of the factor variables Yn under the new,
updated probability measure. This is done in the following proposition. Note that (4.5) allows
the iterative construction of the conditional Laplace transforms under all measures P (u, d),
starting from d = ∅ (i.e. equation (4.4)) and iteratively adding defaulted obligors.
Proposition 11 (Conditional Factor Distribution).
Let u < 1 and d ⊂ {1, . . . , I}. We write ϕ(s; u, d) := EP (u,d)

[
e−sT Y

]
for the Laplace

transform of the factor variables Y under P (u,d), and ϕ(s; d) for ϕ(s;1,d). (Note that ψ̃i(1) =
0 for all i ∈ I.) Then:

(4.3) ϕ(s; u,d) =
ϕ(s + AT ψ̃(u); d)

ϕ(AT ψ̃(u); d)

If no defaults have occurred, i.e. d = ∅,

(4.4) ϕ(s; u, ∅) = EP (u,∅)
[

e−sT Y
]

=
ϕ(s + AT ψ̃(u))

ϕ(AT ψ̃(u))
.
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Given ϕ(s; u, d), the Laplace transform of Y after an additional default of obligor j /∈ d is

(4.5) ϕ(s;u, d ∪ {j}) =

∑N
n=1 ajn

∂
∂xn

ϕ(s;u, d)
∑N

n=1 ajn
∂

∂xn
ϕ(0; u, d)

=
aj∇ϕ(s; u, d)
aj∇ϕ(0; u, d)

,

where aj = (aj1, . . . , ajN ) denotes the j-th row vector of A.

The distribution function of U is

(4.6) C(u; u, d) = ϕ(AT (ψ̃(u)− ψ̃(u)); u, d) =
ϕ(AT ψ̃(u); d)
ϕ(AT ψ̃(u); d)

.

where ui ≤ ui for i 6∈ d, ui = ui otherwise.

The Laplace transform of Ỹi under P (u, d) is

(4.7) ϕ̃i(s; u, d) = EP (u,d)
[

e−sỸi

]
= ϕ(s ai; u, d).

Proof. Substitute the Radon-Nikodym density (4.1) to reduce all expressions to expectations
under P . The claims follow after elementary transformations. ¤

5. Dynamics of Hazard Rates

A particularly interesting question for the credit risk modelling application are the dynamics of
the default intensities and hazard rates as time proceeds and in particular as a default occurs.

Let us consider the following situation: The current time t > 0 is uniquely described by the
levels u = γ(t) < 1 of the countdowns, obligors d have already defaulted. Now obligor j 6∈ d
may default as well. We are interested in the influence this has on the survival probabilities
and default hazard rates of another obligor i 6= j. To simplify the notation, all calculations are
performed conditional on the realisations of the pseudo-hazard rates λ, or equivalent conditional
on G∞.

In general, without a default of j, the survival probability of i is

Pi(t, T ) = C((u−i, ui(T ));u, d) = EP (u,d)
[

e−Ỹi[ψ̃i(ui(T ))−ψ̃i(ui(t))]
]
.

where ui(T ) = γi(T ) is chosen such that the survival horizon T is reached. We call u =
(u−i, ui(T )). Then the default hazard rate hi(t, T ) is

hi(t, T ) =
∂ui(T )

∂T
ψ̃′i(ui)EP (u,d)


 Ỹi

e−Ỹi[ψ̃i(ui(T ))−ψ̃i(ui(t))]

EP (u,d)
[

e−Ỹi[ψ̃i(ui(T ))−ψ̃i(ui(t))]
]


(5.1)

=
∂ui(T )

∂T
ψ̃′i(ui)EP (u,d)

[
Ỹi

]
(5.2)
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With a default of j, the definitions are the same, but under the measure P (u, d′) = P ((u−i, ui), (d∪
{j})) that includes the default of j at uj . The Radon-Nikodym density of this measure was given
in proposition 10 from which follows that for any random variable X, we have

EP (u,d′) [ X ] =
EP (u,d)

[
XỸj

]

EP (u,d)
[

Ỹj

] .

This helps us to reach the hazard rate of obligor i, if in addition obligor j has defaulted at uj :

h−j
i (t, T ) = −∂ui(T )

∂T
ψ̃′i(ui)EP (u,d′)

[
Ỹi

]

= −∂ui(T )
∂T

ψ̃′i(ui)
EP (u,d)

[
ỸiỸj

]

EP (u,d)
[

Ỹj

] .

Now we can go and compare the hazard rates of default of i with and without a default of j.
The relative increase in the default hazard rate of i, given a default of j, is

∆(u,d)
ij =

h−j
i (t, T )
hi(t, T )

− 1 =
EP (u,d)

[
ỸiỸj

]

EP (u,d)
[

Ỹj

]
EP (u,d)

[
Ỹi

] − 1,(5.3)

where h−j
i (t, T ) denotes the default hazard rate of obligor i given that obligor j defaults at time

t. This can be interpreted as the the covariance of Ỹi and Ỹj given that i survives until T , where
Ỹi and Ỹj have been normalized to unit means.

The proportional jump does not directly depend on the level of the unconditional hazard rates
λ. The dependence is only indirect through the change of measure and the connection between
the time of maturity T and the threshold level ui.

The default influences can also be given in terms of the factor matrix A and the factors Y . Using

ỸiỸj = (AY Y T AT )ij

the relative jump size is

h−j
i (t, T )
hi(t, T )

− 1 =
(A

[
EP (u,d)

[
Y Y T

]
− EP (u,d) [ Y ] EP (u,d)

[
Y T

]]
AT )ij

(A EP (u,d) [ Y ] EP (u,d)
[

Y T
]
AT )ij

=
(A covP (u,d)(Y , Y )AT )ij

(A EP (u,d) [ Y ] EP (u,d)
[

Y T
]
AT )ij

Summing up the results of this section, we reach
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Proposition 12 (Default Influences).
The matrix ∆(u,d) of mutual default influences at time and state (u,d) is

∆(u,d)
ij =

EP (u,d)
[

ỸiỸj

]

EP (u,d)
[

Ỹj

]
EP (u,d)

[
Ỹi

] − 1

=
(A Σ(u,d)AT )ij

(A µ(u,d)µ(u,d)T AT )ij

where Σ(u,d) is the covariance matrix of the factor vector Y under P (u,d), and µ(u,d) the mean.
In terms of the Laplace transform of the factor variables the default influences are reached by
substituting

µ(u,d) = EP (u,d) [ Y ] = −∇ϕ(u; u, d)

Σ(u,d) = EP (u,d)
[

Y Y T
]
− (EP (u,d) [ Y ])2 = Hϕ(u;u,d)− µ(u,d)µ(u,d)T

where H is the Hessian matrix of the cross-derivatives, and ∇ is the gradient (here as a column
vector).

5.1. Calibration to Jump Sizes. In the previous subsection we were able to completely char-
acterize the joint relative jump sizes of the hazard rates for every pair (i, j) of obligors. As they
are intimately connected to credit spreads, hazard rates and their dynamics are quantities that
are relatively easy to observe, that have a direct P&L effect and for which the modeller will find
it easier to build an intuition than for abstract model parameters whose effects are very difficult
to estimate. Thus, a natural question is: How can we calibrate such a model?

I.e. for a given matrix of jump influences, can we find an underlying model (a specification of
Y and A) that reproduces these dynamics? If the matrix of jump influences can be written as
MMT with a nonnegative matrix M ≥ 0, the answer is yes.

Formally, the calibration problem can be stated as follows: For a given matrix M ≥ 0 with I
rows, find a matrix A, and factor variables Y , such that

(5.4) (MMT )ij =
(AΣAT )ij

((Aµ)(Aµ)T )ij
, for i 6= j, and A ≥ 0,

where Σ and µ are the covariance matrix and means of the factors. MMT represents the pre-
specified jump sizes in the hazard rates at defaults. We only need to require a fit for i 6= j
because we can only specify influences between distinct pairs of obligors. We require that A ≥ 0
because we want to keep Ỹ ≥ 0.

In general, there are many possible solutions for the problem (5.4), for example any positive
scaling of the rows of a solution A again yields a solution. Here we present just one possibility
to show the existence. It may be not parsimonious, but it is relatively simple:

Lemma 13 (Calibration of Jump Sizes).
A solution to the calibration problem (5.4) is:
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(i) Choose N := I + number of rows of M .
(ii) Let D be a I × I diagonal matrix with diagonal elements Dii = α − ∑N

n=1 Min, where
α = maxi≤I{

∑N
n=1 Min}.

(iii) Choose A as concatenation of M and D

(5.5) A = (M,D)

(iv) Choose Yn independent and identically distributed with means µ and variances σ2, such
that µ/σ = α.

The diagonal matrix was added to the factor matrix A in order to ensure that we have A1 = α1,
which will simplify the denominator in (5.4) to a simple scalar. After that was achieved, the
factors Yn could be chosen i.i.d., and only the ratio of mean over standard deviation was needed
in order to re-scale the solution to the right magnitude.

In special cases, the number of factors in the model can be reduced significantly, it is desirable
to have N ¿ I. For example if there exists a vector µ > 0 such that

Mµ = 1,

then µ can be used as mean vector for the factors Y , and A = M with σ = 1 would be a valid
model specification.

If M has NM columns, it can be written as concatenation of MN column vectors vn, i.e. M =
(v1, . . . , vNM ). Then

(5.6) MMT =
NM∑
n=1

vnvT
n .

Thus, every column vector v of M contributes vvT to the full joint influence matrix MMT . A
first consequence of this is that we can always write any symmetric nonnegative influence matrix
C as C = MMT by choosing a large number (I(I − 1)/2, to be precise) of column vectors vn,
where each vn contributes exactly one off-diagonal element to MMT : Simply choose vn to be
zero, except for a value of √cij at positions i and j. Then (vnvT

n )ij = cij , and (vnvT
n )i′j′ = 0 for

(i′, j′) 6= (i, j) and i 6= j. (Of course vn will also contribute to the diagonal of MMT , but we are
not interested in this.)

As second consequence, (5.6) suggests the following strategy to specify the influence matrix in a
practical application, by hierarchically building up the columns of M directly, following a similar
strategy as the industry group allocation in the CreditMetrics model. Here, every industry group
n will correspond to a column vector vn (and thus to a risk factor), and the i-th entry in this
vector gives the participation of obligor i in industry n. Adding another column vector v to M
increases the influence matrix by vvT . Because (vvT )ij 6= 0 only where vi and vj are nonzero,
one can start by adding the broad influences, e.g. v1 = c1 for an overall mutual influence, and
refine the matrix MMT by adding column vectors with more and more zeros.
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6. A Concrete Implementation: Generalized Clayton Copula

6.1. Model Setup. In this section we analyse a concrete specification of the generalised Archimedean
copula model, based upon the Clayton-copula, or (equivalently), factor variables that are Gamma
Γ(α, β) distributed.
Definition 14.
The random variable X ∈ R+ has a Gamma Γ(α, β) distribution with shape parameter α and
scale parameter β if one of the following equivalent conditions holds

(i) Its density function is for x > 0

(6.1) f(x) =
1

βαΓ(α)
xα−1e−x/β

(ii) Its Laplace Transform is

(6.2) LX(s) = E
[

e−sX
]

= (1 + βs)−α.

The following lemma recalls some useful facts about gamma-distributed random variables which
can be found in any good textbook on statistics or probability.
Lemma 15. Let X be Γ(α, β) distributed under the measure P .

• Mean and variance:
EP [ X ] = αβ, the variance is αβ2.

• Scaling:
cX is Γ(α, cβ)for c > 0.

• Adding:
If X1,2 are independent Γ(α1,2, β) RVs, then Y := X1 + X2 is Γ(α1 + α2, β) distributed.

• Exponential family:
If dP ′/dP = e−δX/EP

[
e−δX

]
, then X is Γ(α, (δ + 1/β)−1) - distributed under P ′.

• Product family:
If dP ′/dP = X/EP [ X ], then X is Γ(α + 1, β) - distributed under P ′.

• Higher moments:
EP

[
Xk

]
= βkα(α + 1) · · · (α + (k − 1))

We set up the model as follows:
Assumption 4.
The factor variables Yn, n ≤ N are independent and Yn is Γ(αn, βn)-distributed. Without loss
of generality7 we set βn = 1 for all n ≤ N .

Hence we have the following consequences: The Laplace transform of Y is

(6.3) ϕ(s) =
N∏

n=1

(1 + snβn)−αn =: ϕ(s; α,β).

7By the scaling property we can absorb βn in the factor matrix A.
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The partial derivatives are

(6.4)
∂

∂sn
ϕ(s) = −αnβn(1− βnsn)−1ϕ(s).

The Laplace transform of Ỹi is for i ≤ I

(6.5) ϕ̃i(s) = ϕ(sai) =
N∏

n=1

(1 + sainβn)−αn .

In general there is no closed-form solution for ψ̃i(t), but numerical inversion is highly efficient.

6.2. The Development of the Distribution of the Factor Variables. For the dynamics
of the model we first consider the case of no defaults until time t: Let (u,d = ∅) describe the
default information at time t. Then, using equation (4.1) and the lemma, the distribution of the
factor variables under P (u,∅) is

(6.6) Yn ∼ Γ(αn, βu
n ) under P (u,∅),

where

(6.7) βu
n =

(
1
βn

+ (AT ψ̃(u))n

)−1

=
(
1 + (AT ψ̃(u))n

)−1

.

Thus, as time proceeds, the βn parameters of the Gamma-distributions for the mixing variables
change: At t = 0 we have u = 1 and ψ̃(u) = 0, so initially we will have no change β1

n = βn. As t

increases, ψ̃(u) will increase, too, and so will AT ψ̃(u) because A ≥ 0. Thus, we expect βu
n top

decrease as time proceeds. In particular we do not leave the parametric family of the distribution
upon conditioning. The model is stable with respect to survival-events.

We next show that the change of the parameters is slow, we therefore have the desirable property
of time-stability of the model: By equation (3.13), the surival probability of all obligors until the
point in time given by countdown levels u is

p := C(u) =
N∏

n=1

ϕn((AT ψ̃(u))n).

As ϕn(s) ≤ 1 this implies

p ≤ ϕn((AT ψ̃(u))n) = (1 + (AT ψ̃(u))n)−αn

p1/αn ≤ (1 + (AT ψ̃(u))n)−1 = βu
n ≤ 1.

Thus, the parameter βu
n of the n-th factor decreases from 1 as time proceeds, but it decreases

by less than the decrease of the joint survival probability over the same horizon to the power of
1/αn. If the portfolio is not too large and the portfolio quality not too bad, the joint survival
probability remains quite positive.

The conditional mean of the factor variable Yn is αnβu
n . As time proceeds (without defaults),

βu
n will decrease, so the mean of Yn will also decrease and so will the variance of Yn. This is a

reflection of the interpretation of “no defaults” as “good news”: We update the default hazard
rates downwards.
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As an additional check of the regularity of the dynamics in this model setup, we check that the
density of the copula is finite even at t = 0 using the criteria developed in section 3.1. By the
inverse function theorem, the derivatives of ψ̃i are zero for all i at u = 1

|ψ̃′i(1)| = |1/ϕ̃′i(0)| = |(−ϕ̃i(0)
N∑

n=1

αnAin)−1| = (
N∑

n=1

αnAin)−1 < ∞.

Secondly, we need to show that E
[ ∏I

i=1 Ỹi

]
< ∞. This follows from the fact that

∏I
i=1 Ỹi is

a polynomial of finite order in the Yn and all moments of the Yn are finite. Thus the density of
the copula proposed here is finite and therefore the jump sizes ∆(u,d)

ij will always be finite.

6.3. The Default Hazard Rates as Time Proceeds. The updating upon defaults takes a
more complicated form if several defaults have already happened and if we are using a large
number of factors. But the parameters that we are really interested in are the default hazard
rates and their dynamics.

Closer inspection of equations (5.2) and (5.3) yields that the expressions that have to be evaluated
in order to be able to specify the joint dynamics of default hazard rates are always of the same
form: The default hazard rates are given by (5.2)

hi(t, T ) =
∂ui(T )

∂T
ψ̃′i(ui)EP (u,d)

[
Ỹi

]
(5.2)

and the only unknown parameter in the joint dynamics of the hazard rates is ∆(u,d)
ij given by

(5.3)

∆(u,d)
ij =

h−j
i (t, T )
hi(t, T )

− 1 =
EP (u,d)

[
ỸiỸj

]

EP (u,d)
[

Ỹj

]
EP (u,d)

[
Ỹi

] − 1,(5.3)

We always have to evaluate an expectation of a particular Ỹi, or an expectation of a product
ỸiỸj under the measure P (u,d. By equation (4.1) the density of P (u,d) with respect to P (u,∅) is

dP (u,d)

dP (u,∅) =
1

EP (u,∅)
[ ∏

d∈d Ỹd

]
∏

d∈d

Ỹd.

Using the relationship above we therefore propose to evaluate the following three sets of param-
eters which then allow the construction of the hazard rates and their dynamics:

c := EP (u,∅)
[ ∏

d∈d

Ỹd

]

cn := EP (u,∅)
[

Yn

∏

d∈d

Ỹd

]

cnn := EP (u,∅)
[

Y 2
n

∏

d∈d

Ỹd

]

The values of these expressions can be found by expanding the products in the expectation
operators. We know the parameters of the distribution of the factor variables Yn from the
results of the previous section, and lemma 15 gives the higher-order moments for the variables
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Yn. Expressions like EP (u,d)
[

Ỹi

]
or EP (u,d)

[
ỸiỸj

]
which determine the default hazard rates

in this setup, are then only linear combinations of these parameters, so that the model dynamics
are now fully specified.

For example, initially, i.e. while no defaults have occurred so far, i.e. d = ∅. In this case, the
parameters take the following values:

c = 1(6.8)

cn = EP (u,∅)
[ Yn ] = αnβu

n(6.9)

cnn = EP (u,∅) [
Y 2

n

]
= αn(1 + αn)(βu

n )2.(6.10)

Later on, when several defaults have already happened, the expressions become more involved.
The degree of complexity is governed by the number of defaults and the number of factors which
drive the model. The simplest case would be the one-factor case which reduces to the Clayton
copula function. Here, the number of evaluations would not grow with an increasing number of
defaults.

Fortunately, it is usually not necessary to evaluate these expressions at all times and for all
possible default scenarios. They are usually only needed to analyse the dynamics of the default
hazard rates at the current point in time in order to derive hedging strategies. Nevertheless, here
is a point where it would be desirable to find an efficient strategy to evaluate these expressions.

As an example let us calculate the jump sizes explicitly
(
EP (u,d)

[
Y Y T

]
− EP (u,d)

[ Y ] EP (u,d)
[

Y T
])

mn
=

{
0 if m 6= n
(cnn − c2

n)/c2 if m = n

After multiplication with matrix A we reach
(
A

[
EP (u,d)

[
Y Y T

]
− EP (u,d)

[ Y ] EP (u,d)
[

Y T
]]

AT
)

ij
=

1
c2

N∑
n=1

(cnn − c2
n)AinAjn

(
AEP (u,d)

[ Y ] EP (u,d)
[

Y T
]
AT

)
ij

=
1
c2

(
N∑

n=1

Aincn

)(
N∑

m=1

Ajmcm

)
.

yielding

(6.11) ∆(u,d)
ij =

∑N
n=1(cnn − c2

n)AinAjn(∑N
n=1 Aincn

)(∑N
m=1 Ajmcm

) .

According to equation (5.2) the default hazard rates themselves are given by

hi(t, T ) =
∂ui(T )

∂T
ψ̃′i(ui)

N∑
n=1

Ain
cn

c
.(6.12)

This completes the representation of the model dynamics using the “c”-parameters. The only
difficulty is now the efficient evaluation of (6.8) to (6.10). This may be a problem if the number
of defaults grows too large because then the products will involve too many summands. In
many typical applications of this model we do not expect difficulties, though. These applications
include the derivation of hedge strategies (which means the hedge ratios for the current state of
the world, later on we can re-calculate the hedge as time proceeds), the valuation and hedging
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of First-to-Default Swaps (obviously no more than one default is of interest here), the valuation
of option-like payoffs like options on FtD-swaps or options to enter CDO tranches, or active
risk-management: as long as the horizon is not too long, not too many defaults can occur.

Finally, we compare this model to the current market standard, the Gaussian (or Student-t)
copula model: The model parameters are much more stable over time than in the Gauss copula,
in particular we have avoided the front-loading of default dependency that is implicit in the
Gauss copula. Secondly, we have much more analytical tractability than in a Gaussian model
where a multivariate cumulative normal distribution function must be evaluated. The analytical
tractability allows us to explicitly specify the matrix of default contagion influences ∆ij and even
to calibrate the model to this matrix.

Appendix A. Proof of proposition 10

Proof. We prove by induction over D = |d|. Sufficient differentiability is given through the
assumption of u < 1.

D = 0:
Here d = ∅. Thus

C(u, u, ∅) = P [ U ≤ u |U ≤ u ] =
P [ U ≤ u ]
P [ U ≤ u ]

because {U ≤ u} ⊆ {U ≤ u}

=
C(u)
C(u)

=
EP

[
e−Ỹ

T
ψ̃(u)

]

EP
[

e−Ỹ
T

ψ̃(u)
] = EP


 e−Ỹ

T
(ψ̃(u)−ψ̃(u)) e−Ỹ

T
ψ̃(u)

EP
[

e−Ỹ
T

ψ̃(u)
]




= EP (u,∅)
[

e−Ỹ
T

[ψ̃(u)−ψ̃(u)]
]
.

D → D + 1:
We assume d is given with |d| = D, and j 6∈ d. Set d′ := d ∪ {j}. First note that

C(u; u, d ∪ {j}) =

∂
∂uj

∣∣∣
uj=uj

C(u;u,d)

∂
∂uj

C(u; u, d)

For the numerator we have (setting uj := uj)

∂

∂uj

∣∣∣∣
uj=uj

C(u; u, d) = −ψ̃′j(uj)EP (u,d)
[

Ỹje
−Ỹ

T
(ψ̃(u)−ψ̃(u))

]

while for the denominator we reach

∂

∂uj
C(u; u, d) = −ψ̃′j(uj)EP (u,d)

[
Ỹj

]
.
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Thus, we can define the measure P (u, d′) via

dP (u, d′)
dP (u, d)

=
Ỹj

EP (u,d)
[

Ỹj

] ,

and reach

C(u;u,d ∪ {j}) = EP (u,d′)
[

e−Ỹ
T

(ψ̃(u)−ψ̃(u))
]
.

It remains to show that dP (u, d′)/dP has the form claimed. This follows through

dP (u, d′)
dP

=
dP (u, d′)
dP (u, d)

dP (u, d)
dP

=
e−Ỹ

T
ψ̃(u)

∏
d∈d′ Ỹd

EP (u,d)
[

Ỹj

]
EP

[
e−Ỹ

T
ψ̃(u)

∏
d∈d Ỹd

]

=
e−Ỹ

T
ψ̃(u)

∏
d∈d′ Ỹd

EP

[
e−Ỹ T ψ̃(u)

∏
d∈d′ Ỹd

EP
[

e−Ỹ T ψ̃(u)
∏

d∈d Ỹd

]
]

EP
[

e−Ỹ
T

ψ̃(u)
∏

d∈d Ỹd

]

=
e−Ỹ

T
ψ̃(u)

∏
d∈d′ Ỹd

EP
[

e−Ỹ
T

ψ̃(u)
∏

d∈d′ Ỹd

] .
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