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Abstract.  13 

1. Much is known about the brief adult phase of fireflies. However, fireflies spend a relatively 14 

long developmental period under the soil surface. Climatic and soil conditions may directly 15 

affect the eggs, larvae and pupae and indirectly affect them through predators, competitors and 16 

prey items. Climatic conditions during the early life stages of this iconic species are therefore 17 

relevant to their hypothesized decline within the context of global warming. 18 

2. We extracted data on the abundance of fireflies from the publicly available citizen data set 19 

across North America over a period of nine years. We document the effects of weather in the 24 20 

months prior to the observations of firefly abundance based on 6761 observations.  21 

3. Climatic conditions during both the larval and adult phases have a non-linear effect on adult 22 

firefly abundance. Maximum winter and spring temperatures and mean precipitation in the 20-23 

month period prior to the observations had the greatest impact on the abundance of firefly adults. 24 

Low maximum soil moisture during the 5-19 months preceding the observations affected the 25 

adult abundance negatively, and high maximum soil moisture positively. 26 

4. After correcting the firefly abundance for these weather effects, we estimate that the 27 

abundance of fireflies increased over the time period of this study. 28 

5. Our study suggests that early life climatic conditions have a small but significant impact on 29 

adult firefly abundance with a total R2 of 0.017.  30 

 31 

Key words. Beetles, citizen science, climate change, Coleoptera, Lampyridae, life history, 32 

lightning bugs. 33 

Running title: Firefly abundance and weather  34 
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Introduction 35 

Fireflies (Coleoptera, Lampyridae) are among the most charismatic insect species. They are 36 

the focus of ecotourism around the world (Jusoh & Hashim, 2012; Foo & Dawood, 2016), 37 

education programs (Kaufman et al., 1996) and citizen science projects. Anecdotally, we hear 38 

about the decline in firefly abundance, as elders tell grandchildren tales of their youth (Lewis, 39 

2016). Environmental threats include pesticide use, light pollution, commercial harvest, and 40 

habitat loss (Lewis, 2016; Faust, 2017).  41 

The importance of weather on adult behavior has been well documented, allowing the 42 

prediction of emergence and peak display by individual species in a particular locality (Faust & 43 

Weston, 2009; Faust, 2017). Characteristics such as flash pattern (i.e. Moiseff & Copeland, 44 

2010; Ohba, 2004) and bioluminescence (i.e. White et al., 1971; Martin et al., 2017) are the 45 

subject of numerous investigations. Less studied is the impact of weather on a large spatial scale 46 

during the period when much of the development occurs out-of-sight, in the soil or under bark 47 

and logs (Faust, 2017). We took the opportunity provided by the citizen science program, 48 

“Firefly Watch” (Museum of Science, Boston), to examine data collected over a large part of the 49 

United States. 50 

Fireflies spend a relatively long developmental period under the soil surface. Climatic and soil 51 

conditions may directly affect the eggs, larvae and pupae and indirectly affect them through 52 

predators, competitors and prey items. The larval phase of fireflies is an “eating-machine” with 53 

transitions through one instar to the next requiring a steady food supply. Prey species during the 54 

larval phase include snails, slugs, earthworms and con-specifics (Lewis, 2016). The transition 55 

from egg to adult may be completed in one or two, and rarely more, years, and probably depends 56 

on latitude, elevation, climate and local weather conditions (Lewis, 2016; Faust, 2017). Prey 57 
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availability is also most likely dependent on these factors as well as the densities of predators and 58 

competitors. There is evidence that some larvae within a single population may postpone 59 

pupation for an additional season (Faust, 2017). In this way they emerge as adults with greater 60 

reproductive potential (Faust, 2017). 61 

All this suggests that changes in the environmental conditions during firefly development 62 

ultimately result in changes in abundance of adult fireflies. Here, we study the impact of weather 63 

during early life phases on adult firefly abundance. We examine the effect of weather variables 64 

beginning 24 months before the abundance observations. Our hypothesis is that variation in 65 

weather changed the abundance of fireflies through changes in the conditions of larval 66 

development. Since many insect groups have long larvae phases, our study could be regarded as 67 

an example for studying the impact of weather on adult abundance in many other insect groups. 68 

Temperature and precipitation are obvious weather variables to consider. However, climate 69 

encompasses more than just average temperature and precipitation. Changes in precipitation may 70 

not result in an overall increase or decrease in the amount of precipitation, but rather a change in 71 

the patterns of rain events and dry periods (Fay et al., 2008; Intergovernmental Panel on Climate 72 

Change, 2014). For that reason, we include a variable for soil moisture in our analyses (the 73 

Palmer Drought Severity Index, PDSI, see Methods for further explanation; Van de Pol et al., 74 

2016).  75 

We conducted a pilot study with a subset of the Boston Museum of Science (MOS) database. 76 

From this we concluded that climatic conditions in the previous years (the period of larval 77 

development) could affect adult firefly abundance. We expected firefly abundance to increase 78 

after high temperatures but also expected abundance to be highest with an optimal amount of 79 
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precipitation and soil moisture. Finally, we investigated whether firefly abundance decreased 80 

over the 9-year study period and whether this could be attributed to the observed climate effects. 81 

 82 

Methods 83 

Study system 84 

We used the publicly available data set gathered by the MOS (accessed 14 February 2017).  85 

This data set includes citizens observations of firefly abundance from 40 US states over a period 86 

of nine years (2008-2016) and is currently archived with Mass Audubon 87 

(https://www.massaudubon.org). We selected only the information needed for our study, i.e., the 88 

maximum observed abundance per year, which is the first date the maximum number of fireflies 89 

were seen, latitude, longitude, and state. When enrolling in the Firefly Watch program, citizen 90 

scientists were asked to make observations once a week at a non-specified time of the day.  91 

Number of observations are measured as a range and placed in categories. No distinctions 92 

between firefly species are made. The abundance of fireflies is recorded in the data set as the 93 

number of spatially distinct flashes in a 10 second period in categories: 0 (none seen); 0+ (none 94 

seen during the 10 second period but some before or after; 1; 2-5; 6-20; and >20 (more than 20). 95 

We were interested in peak numbers only and eliminated the first two categories from our 96 

analysis. Our measure of abundance had therefore a 4-level scale (1: 1; 2: 2-5; 3: 6-20; and 4: 97 

>20) and will be called Bin hereafter. 98 

 99 

Climate variables 100 

We selected monthly weather data for all locations within the USA that had multiple yearly 101 

firefly observations over the period 2008-2016. The mean temperature, mean precipitation and 102 

https://www.massaudubon.org/
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Palmer Drought Severity Index (PDSI) were obtained from the National Oceanic and 103 

Atmospheric Administration through the Midwestern Regional Climate Center 104 

(https://mrcc.illinois.edu/CLIMATE, accessed February 2017). For soil moisture we selected the 105 

Palmer Drought Severity Index (PDSI). PDSI is based on water supply, water demand and other 106 

factors such as evapotranspiration and recharge rates (Dai, 2004). It is a standardized index that 107 

spans -10 (dry) to +10 (wet) and able to capture the basic effect of temperature and precipitation 108 

on drought through potential evapotranspiration (Dai, 2011).  109 

 110 

Statistical analysis 111 

We performed statistical analysis using R software 3.4.4 (R Core Team, 2017). We used the 112 

package climwin 1.2.0 (van de Pol et al. 2016; Bailey & van de Pol, 2016) to analyze the effects 113 

of weather (temperature, precipitation and soil moisture) in the months before firefly observation 114 

on firefly abundance. Climwin uses a sliding window to systematically evaluate all possible 115 

climate windows and subsequently uses Akaike’s information theoretic criterion corrected for 116 

small sample size (AICc) to compare their relative importance. 117 

To implement climwin, we created two data files; firefly observations (n=6761) which 118 

included the variables location identification number, state, date, year, month and Bin; and 119 

monthly weather observations (n=4620) which included the state, mid-point date of each month, 120 

year, month, mean temperature (C°), mean precipitation (cm) and soil moisture. The time periods 121 

we considered were 24 months prior to the firefly observation, with firefly observations in any 122 

given month linked to the weather conditions during all possible windows in the 24 previous 123 

months (see Supplemental Information). Firefly abundance at a given location were linked to the 124 

weather data of the USA state in which the sampling site was located. We followed the 125 

https://mrcc.illinois.edu/CLIMATE
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systematic stepwise approach as proposed by Van der Pol et al. (2016) for selecting the best 126 

fitting climate window for each weather variable. We first set a baseline model without climate 127 

variables as our null model. For our baseline we applied a linear mixed effects model (function 128 

lmer() from the package lme4, Bates et al., 2017) with the dependent variable ‘Bin’ which we 129 

considered to be a proxy for peak abundance. As random effect variables we included year and 130 

location in order to correct for dependency among observations due to the same year and 131 

location. Because we expected that the effect of weather on firefly abundance could be 132 

dependent on latitude and longitude, e.g., in southern regions high temperature could negative, 133 

while in northern regions it could be positive, we included the interaction between latitude and 134 

longitude with weather in our baseline models. So our baseline model for selecting the first 135 

window was lmer(Bin~climate*(Lat+Long)+(1|Year)+(1|Location), REML=False).  136 

We then selected the statistical measures of maximum, minimum and mean per time window 137 

for each of our climate variables. From previous research (unpublished data) we believed that the 138 

relationship of firefly abundance to climate variables may be non-linear and decided to test linear 139 

and quadratic response curves. This resulted in six combinations that were to be tested for each 140 

of our climate variables to find the best fitting climate window. To avoid a type I error of 141 

identifying a false climate window due to multiple testing of many possible windows (van de Pol 142 

et al. 2016), we compared the results of the best fitting window with that of the window from a 143 

randomized data set (data with no relationship between climate and firefly abundance). We then 144 

calculated the P-value based on 10 or 100 repeats (see Supplemental Information).  145 

We used the “nsj” function of the R package r2glmm (Jaeger, 2017) to partition the variance 146 

of the final model in semi-partial R2 to give a measure of the relative importance of the windows 147 

for purposes of discussion. 148 
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 149 

Results 150 

Study system 151 

Extracted firefly observations were located in 35 states with a heavier concentration of 152 

observations in the northeast United States (Fig. 1a). Most observations were done around June, 153 

28th (Fig. 1b, median Julian day: 178, mean Julian day: 181.7). Firefly abundance has 154 

significantly increased over the years of this study (Fig 1c; LRT: Chi Sq=13.532, df=1, p< 155 

0.001). 156 

 157 

Climate variables 158 

To test whether the yearly increase of firefly abundance observed in the raw data was due to 159 

the effect of weather changes on larval development, we constructed the best fitting model for 160 

predicting firefly abundance based on weather in the 24 months period before the firefly 161 

abundance observations. For that we used 4620 observations of 3 weather variables. Correlations 162 

between monthly averages of the weather variables were generally weak and were as follows: 163 

precipitation and temperature = 0.31; precipitation and soil moisture = 0.32; and temperature and 164 

soil moisture = -0.17. Temperature (F1, 4618 = 0.098, p = 0.754, precipitation (F1,4618 = 0.210, p= 165 

0.885), and soil moisture (F1, 4618 = 1.454, p = 0.228) showed no trend over the 11 years of 166 

weather data included in our study.  167 

 168 

Statistical analysis 169 

For each of our weather variables, the best fitting window within the 24 months period before the 170 

firefly abundance observations was stepwise selected (complete information on the stepwise 171 
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selection is in the Supplementary Information). The first best fitting window turned out to be that 172 

of temperature. Then the stepwise approach was repeated to check which climate window should 173 

be added to our baseline model next. That turned out to be that of precipitation. The last window 174 

to be added was the best fitting window for soil moisture (Table 1). The best temperature 175 

window was between 6 and 2 months, while that of precipitation was between 20 and 0 months 176 

and that of soil moisture between 19 and 5 months before adult observation (Fig. 2). In all three 177 

weather variables, a quadratic model fit the best, that of the maximum temperature, mean 178 

precipitation and maximum soil moisture (Fig. 3). We use loess lines to show how the models 179 

behave in relation to the climate variables. To summarize, climatic conditions during both the 180 

larval and adult phases have a non-linear affect adult firefly abundance. Maximum winter and 181 

spring temperatures and mean precipitation in the 20-month period prior to the observations had 182 

the greatest impact on the abundance of firefly adults. Low maximum soil moisture during the 5-183 

19 months preceding the observations affected the adult abundance negatively, and high 184 

maximum soil moisture positively. 185 

The best fitting model of the weather variables had a R2 of 0.201 (Table 2). The summed R2 186 

of the fixed effect variables was 0.017, showing that most of the explained variance was actually 187 

explained by the random effect variables year and location. The weather variables, including 188 

their interactions with latitude and longitude, had a small, though significant effect on firefly 189 

abundance. 190 

Adding year as a fixed effect variable to the best fitting weather model increased the R2 to 191 

0.221 (Table 3), a significant improvement of the model (LRT: Chi Sq=13.473, df=1, p< 0.001). 192 

The effect of the weather variables, including their interactions with latitude and longitude, on 193 

firefly abundance did not change because of the inclusion of year (Table 3). The summed R2 of 194 



10 
 

the fixed effect variables increased to 0.026, an increase of 0.009 which is exactly the partial R2 195 

of year. The abundance of the fireflies predicted by the best fitting model are increasing over the 196 

years in the same rate as they are in the null model (slope of regression line in both Fig. 1c and 197 

Fig. 4: 0.0732). 198 

Summary of weather impacts on firefly abundance: 199 

• Weather variables have an impact on firefly abundance during early development more 200 

than 12 months before the observations. 201 

• High maximum temperatures winter and spring months immediately before the 202 

observation result in lower firefly abundance. 203 

• Precipitation has an optimal amount through several instars, over or under which has a 204 

significant negative impact on firefly abundance. 205 

• Low and high maximum PDSI scores result in lower firefly abundance. 206 

  207 

Discussion 208 

It is important to put the impacts of weather data in a biological perspective. First of all, it 209 

should be recognized that the effect of pre-eclosure weather on the abundance of the adult 210 

fireflies is small in terms of the amount of variance in the observations that is explained by the 211 

weather variables (1.7% for all three weather variables together). Therefore, our model explains 212 

only a small part of the variation in abundance of adult fireflies. Flashing activity may be 213 

affected by many other factors, e.g. the time of day the observation was made. Variance in data 214 

from public science can be expected to be huge, but the large amount of data enabled us to show 215 

that the effect of weather is real, though small.  216 
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Temperature has the greatest impact during the window 6-2 months before the adult 217 

observations; precipitation 20-0 months; and soil moisture 19-5 months prior to the observations. 218 

The impact of temperature as measured in degree days has been thoroughly documented for most 219 

firefly species found in north America (Faust & Weston, 2009; Faust, 2016). This method begins 220 

temperature measurement most commonly on March 1st. This is accurate for predicting when 221 

adult fireflies will emerge and achieve peak abundance, but does not predict what the abundance 222 

will be. Our study shows a longer period of impact by temperatures in the months prior to the 223 

observation. Precipitation and soil moisture have an impact throughout much of the larval phase 224 

as the beetles pass through several instars. Surprisingly, our results also indicate increasing 225 

firefly abundance, unrelated to weather, in the nine years of our study. The use of non-linear 226 

categorical data (‘Bin’) creates the impression of small differences in abundance when in fact the 227 

differences were sometimes quite large.  228 

Our study suggests that using climate variables 24 months before the adult observation will 229 

add critical information in species specific studies and studies that are undertaken in a more local 230 

geographical area. Not all of the 125 firefly species found in North America are well-studied. 231 

And our study did not differentiate between species. The pattern of our data indicates that there 232 

is a two-year development cycle for most of the observed species and locations (Fig. 2). While 233 

our data showed statistically different weather over the years of our study, there were no evident 234 

trends. Shifts in temperature and precipitation on a global level have been well documented 235 

(Boggs, 2016).  236 

A novel finding of our study, is the increase in firefly abundance over the period of our study. 237 

We have noted three areas that may be related to this finding. The first is related to the weather 238 

variables. Each of these three parameters, i.e. temperature, precipitation and soil moisture, did 239 
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not significantly change over our study period. It should be noted however, that over much of the 240 

study area, 2012 was considered a “drought year”, with higher than normal temperatures and 241 

lower than normal precipitation (Cook et al., 2014). That being said, climate is warming and 242 

larval development might speed up resulting in higher larval survival and higher abundance of 243 

adults. Firefly larvae, like other soft bodied soil inhabitants, are dependent on soil moisture with 244 

eggs laid in an area with sufficient moisture over the coming weeks to prevent desiccation. 245 

(Curry, 2004). Weather variables may also increase food availability. As “eating-machines” 246 

firefly larvae are dependent on prey species such as snails (Sasakawa, 2016), slugs (Kaufman, 247 

1965), and earthworms (Seric & Symondson, 2016) for nourishment.  248 

Our results do not necessarily conflict with other studies documenting a decline in insect 249 

abundance (Vogel, 2017), if we can assume that the changes in the firefly abundance are lagging 250 

behind an earlier, long-term change of climate. In view of the complex food web of which the 251 

fireflies are part, and the physiological changes the species might need to establish, such a time 252 

lag is not unlikely. 253 

An alternative explanation, at least for the increase of fireflies over the years, may relate to 254 

shifts in the micro-environment. We noted that firefly development is often associated with trees. 255 

The 12 genera described in Faust (2017) are all found in close proximity to trees and several 256 

species use trees for much of their reproduction. Forests provide greater microhabitat stability 257 

than other habitat types. We speculate that trees keep the micro-environmental traits, such as soil 258 

moisture and temperature (Pastor & Post, 1986), more stable for the larval phase of development. 259 

Examination of pre-settlement North American forest cover suggests fireflies may have utilized 260 

the forested area for the early phase of the life-cycle and more open areas for adults for breeding 261 

display (Fig. 5a & b). A recent increase in forested areas in the United States, provided by 262 
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conservation programs and field abandonment, may therefore, provide additional habitat for 263 

fireflies (Brown et al., 1999; Drummond & Loveland, 2010). 264 

A third explanation involves the nature of citizen science. Fireflies are so charismatic, that 265 

people may have gone to where they could see fireflies rather than where fireflies once were seen 266 

and that this effect has increased over the years. 267 

While the abundance of fireflies appears to have increased, we note firefly abundance is 268 

dependent on weather several seasons prior to the observation of adult mating behavior.  Further 269 

increase of temperature or drought conditions may push some species of fireflies past the 270 

“tipping point” of survivability (Van Nes et al., 2016).  271 

Ecological studies are delving into more complex areas with reported coefficients of 272 

determination (R 2) becoming smaller (Low-Décarie et al., 2014).  We seek to develop a deeper 273 

understanding of the unseen larval life stage and point future research beyond the “low hanging 274 

fruit”.  275 
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 367 

Figure legends: 368 

Fig. 1. Firefly observations in the USA. a: distribution of the firefly observations in the publicly 369 

available data set gathered by the Museum of Science in Boston; b: distribution of the firefly 370 

observations over day numbers; c: change of adjusted firefly abundance over the years. Purple 371 

line: linear regression line; red line: loess line, red broken lines: one-sided standard deviation of 372 

the loess line. Boxplots along axes: 50% of the observations lie within the boxes; whiskers show 373 

1.5 times box range; open dots are outliers. 374 

 375 
Fig. 2. Three climate windows of best fitting model. Yellow: temperature; blue: precipitation; 376 

green: soil moisture. Windows are illustrated in months before the observation. Gray shading 377 

indicates life stage of the firefly: Dark: egg; lighter: larva; middle: diapause; lightest; pupa/adult. 378 

 379 
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Fig. 3. Relationship between firefly abundance and weather variables in the best fitting weather 380 

model. a: temperature, b: precipitation, c: soil moisture. Solid lines: loess lines; broken 381 

lines: one-sided standard deviation of the loess line. Boxplots along axes: 50% of the 382 

observations lie within the boxes; whiskers show 1.5 times box range; open dots are outliers. 383 

 384 

Fig. 4. Change in adjusted abundance of fireflies predicted by the best fitting weather model 385 

between 2008 and 2016. Purple line: linear regression line; red line: loess line, red broken lines: 386 

one-sided standard deviation of the loess line. Boxplots along axes: 50% of the observations lie 387 

within the boxes; whiskers show 1.5 times box range; open dots are outliers. 388 

 389 

Fig. 5. Present, 2011 (a) and past, 1620 (b) coverage of forest in the USA 390 

 391 

Table legends: 392 

Table 1. Three best climate windows, one for each climate variable. Model support for the best 393 

time window (ΔAICc) compared to a baseline model using different aggregate statistics and 394 

response curves (see Supplementary Information). 395 

 396 

Table 2. Final complete model. MaxTE₆₋₂: maximum temperature of window 1, being the 6th to 397 

the 2nd month before observation; MeanPR₂₀₋₀: mean precipitation of window 2, being the 20th 398 

to 0th month before observation; MaxPD₁₉₋₅: maximum soil moisture of window 3, being the 399 

19th to 5th month before observation.  400 

 401 
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Table 3. Final complete model plus Year. MaxTE₆₋₂: maximum temperature of window 1, being 402 

the 6th to the 2nd month before observation; MeanPR₂₀₋₀: mean precipitation of window 2, being 403 

the 20th to 0th month before observation; MaxPD₁₉₋₅: maximum soil moisture of window 3, 404 

being the 19th to 5th month before observation.  405 

 406 

Fig. S1. Diagnostics of best model for the first climate window. a: heat plot of the maximum 407 

temperature in a quadratic function; b: weight plot of the maximum temperature in a quadratic 408 

function; c: scatter plot of the quadratic model predictions against the maximum temperature of 409 

the window between month 6 and 2 before the firefly observations; d: the comparison of 10 410 

random null models (right hand) and the best model for the first climate window (broken vertical 411 

line). 412 

 413 

Fig. S2. Diagnostics of best model for the second climate window. a: heat plot of the mean 414 

precipitation in a quadratic function; b: weight plot of the mean precipitation in a quadratic 415 

function; c: scatter plot of the quadratic model predictions against the mean precipitation of the 416 

window between month 20 and 0 before the firefly observations; d: the comparison of 10 random 417 

null models (right hand) and the best model for the first climate window (broken vertical line). 418 

 419 

Fig. S3. Diagnostics of best model for the third climate window. a: heat plot of the maximum 420 

soil moisture in a quadratic function; b: weight plot of the maximum soil moisture in a quadratic 421 

function; c: scatter plot of the quadratic model predictions against the maximum soil moisture of 422 

the window between month 19 and 5 before the firefly observations; d: the comparison of 100 423 
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random null models (right hand) and the best model for the first climate window (broken vertical 424 

line). 425 

 426 
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[Fig. 1c] 
 
Fig. 1. Firefly observations in the USA. a: distribution of the firefly observations in the 
publicly available data set gathered by the Museum of Science in Boston; b: distribution of 
the firefly observations over day numbers; c: change of adjusted firefly abundance over the 
years. Purple line: linear regression line; red line: loess line, red broken lines: one-sided 
standard deviation of the loess line. Boxplots along axes: 50% of the observations lie within 
the boxes; whiskers show 1.5 times box range; open dots are outliers. 
 
  



 
Fig. 2. Three climate windows of best fitting model. Yellow: temperature; blue: precipitation; 
green: soil moisture. Windows are illustrated in months before the observation. Gray shading 
indicates life stage of the firefly: Dark: egg; lighter: larva; middle: diapause; lightest; 
pupa/adult. 
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[Fig 3c] 
 
Fig. 3. Relationship between firefly abundance and weather variables in the best fitting 
weather model. a: temperature, b: precipitation, c: soil moisture. Solid lines: loess lines; 
broken lines: one-sided standard deviation of the loess line. Boxplots along axes: 50% of the 
observations lie within the boxes; whiskers show 1.5 times box range; open dots are outliers. 
  



 
 

Fig. 4. Change in adjusted abundance of fireflies predicted by the best fitting weather model 
between 2008 and 2016. Purple line: linear regression line; red line: loess line, red broken 
lines: one-sided standard deviation of the loess line. Boxplots along axes: 50% of the 
observations lie within the boxes; whiskers show 1.5 times box range; open dots are outliers. 
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Fig. 5. Present, 2011 (a) and past, 1620 (b) coverage of forest in the USA 

 



 
Table 1. Three best climate windows, one for each climate variable. Model support for the 
best time window (ΔAICc) compared to a baseline model using different aggregate statistics 
and response curves (see Supplementary Information). 
 
Climate Statistic Function ΔAICc Window Open Window Close 
Temperature maximum quadratic -971.34 6 2 
Precipitation mean quadratic -135.71 20 0 
Soil moisture maximum quadratic -47.92 19 5 

 
 
 
  



 
Table 2. Final complete model. MaxTE ₆₋ ₂ : maximum tempera     being the 
6th to the 2nd month before observation; MeanPR ₂₀₋ ₀ : mean prec     
being the 20th to 0th month before observation; MaxPD ₁₉₋ ₅ : maximum    
window 3, being the 19th to 5th month before observation.  
 
 Estimate Std. Error t value Sum R2 Explanation of sum R2 
(Intercept) 4.4140 3.9200 1.126 0.2010 Complete model 
MaxTE ₆₋ ₂ 0.0855 0.1847 0.463 0.0002 Window 1 (Max temperature) 
(MaxTE ₆₋ ₂ )² -0.0049 0.0055 -0.893    
MeanPR ₂₀₋ ₀ -1.3550 0.8444 -1.604 0.0009 Window 2 (Mean precipitation) 
(MeanPR ₂₀₋ ₀ 0.0903 0.0516 1.750    
MaxPD ₁₉₋ ₅ 0.5407 0.2258 2.394 0.0009 Window 3 (Max soil moisture) 
(MaxPD ₁₉₋ ₅ ) 0.0195 0.0390 0.501    
Lat -0.0911 0.0622 -1.465 0.0003 Latitude 
Long 0.0041 0.0311 0.133 0.0000 longitude 
MaxTE ₆₋ ₂ :Lat 0.0081 0.0030 2.670 0.0047 Interaction Window 1 - Latitude 
MaxTE ₆₋ ₂ :L 0.0028 0.0012 2.400 0.0036 Interaction Window 1 - Longitude 
(MaxTE ₆₋ ₂ )² -0.0004 0.0001 -4.931    
(MaxTE ₆₋ ₂ -0.0002 0.0000 -4.314    
MeanPR ₂₀₋ 0.0358 0.0145 2.473 0.0023 Interaction Window 2 - Latitude 
MeanPR ₂₀ -0.0054 0.0066 -0.818 0.0001 Interaction Window 2 - Longitude 
(MeanPR ₂₀ -0.0026 0.0009 -2.924    
(MeanPR ₂ 0.0002 0.0004 0.552    
MaxPD ₁₉₋ ₅ -0.0136 0.0032 -4.176 0.0032 Interaction Window 3 - Latitude 
MaxPD ₁₉₋ 0.0015 0.0017 0.838 0.0005 Interaction Window 3 - Longitude 
(MaxPD ₁₉₋ 0.0011 0.0006 1.895    
(MaxPD ₁ 0.0005 0.0003 1.632    
    0.0167 Fixed effect variables 

  



Table 3. Final complete model plus Year. MaxTE₆₋₂: maximum temperature of window 1, 
being the 6th to the 2nd month before observation; MeanPR₂₀₋₀: mean precipitation of window 
2, being the 20th to 0th month before observation; MaxPD₁₉₋₅: maximum soil moisture of 
window 3, being the 19th to 5th month before observation.  
 
 Estimate Std. Error t value Sum R2 Explanation of sum R2 
(Intercept) -75.7800 15.6900 -4.831 0.2207 Complete model 
Year 0.0401 0.0076 5.305 0.0087 Year 
MaxTE₆₋₂ 0.0904 0.1846 0.490 0.0002 Window 1 (Max temperature) 
(MaxTE₆₋₂)² -0.0053 0.0055 -0.955    
MeanPR₂₀₋₀ -1.4320 0.8425 -1.700 0.0010 Window 2 (Mean precipitation) 
(MeanPR₂₀₋₀)² 0.0940 0.0515 1.826    
MaxPD₁₉₋₅ 0.5304 0.2229 2.379 0.0009 Window 3 (Max soil moisture) 
(MaxPD₁₉₋₅)² 0.0167 0.0388 0.431    
Lat -0.0954 0.0621 -1.537 0.0004 Latitude 
Long 0.0063 0.0310 0.204 0.0000 longitude 
MaxTE₆₋₂:Lat 0.0083 0.0030 2.721 0.0048 Interaction Window 1 - Latitude 
MaxTE₆₋₂:Long 0.0030 0.0012 2.522 0.0039 Interaction Window 1 - Longitude 
(MaxTE₆₋₂)²:Lat -0.0004 0.0001 -4.939    
(MaxTE₆₋₂)²:Long -0.0002 0.0000 -4.446    
MeanPR₂₀₋₀:Lat 0.0359 0.0144 2.487 0.0022 Interaction Window 2 - Latitude 
MeanPR₂₀₋₀:Long -0.0061 0.0066 -0.924 0.0002 Interaction Window 2 - Longitude 
(MeanPR₂₀₋₀)²:Lat -0.0025 0.0009 -2.919    
(MeanPR₂₀₋₀)²:Long 0.0002 0.0004 0.652    
MaxPD₁₉₋₅:Lat -0.0135 0.0032 -4.189 0.0033 Interaction Window 3 - Latitude 
MaxPD₁₉₋₅:Long 0.0014 0.0017 0.824 0.0005 Interaction Window 3 - Longitude 
(MaxPD₁₉₋₅)²:Lat 0.0011 0.0006 2.037    
(MaxPD₁₉₋₅)²:Long 0.0005 0.0003 1.651    
    0.0260 Fixed effect variables 

 
 



Supplementary Information 
 
Table S1a: Selection of the best model for the first climate window. Window Open gives the 
month before observation where the window starts and Window Close where the window 
ends. The Delta AICc of all possible combinations of Window Open and Window Close for a 
given combination of Climate, Statistic and Function have been calculated (see Figure S1a), 
but the one with the lowest Delta AICc, i.e., the one that differs mostly from the null model, is 
selected and given in this table. The bold model has the lowest Delta AICc of all 
combinations of Climate, Statistic and Function and is therefore regarded as the best first 
climate window. 
 
Climate Statistic Function Delta AICc Window Open Window Close 
Temperature mean linear -613.08 6 2 
Precipitation mean linear -133.48 10 6 
Soil moisture mean linear -211.06 6 0 
Temperature max linear -670.65 22 17 
Precipitation max linear -120.78 7 6 
Soil moisture max linear -264.9 5 1 
Temperature min linear -675.6 17 10 
Precipitation min linear -116.38 0 0 
Soil moisture min linear -215.03 6 5 
Temperature mean quadratic -937.46 4 2 
Precipitation mean quadratic -187.53 17 17 
Soil moisture mean quadratic -311.82 1 1 
Temperature max quadratic -971.34 6 2 
Precipitation max quadratic -187.53 17 17 
Soil moisture max quadratic -329.45 5 1 
Temperature min quadratic -921.83 2 2 
Precipitation min quadratic -187.53 17 17 
Soil moisture min quadratic -311.82 1 1 

 
 
Table S1b: Model weights of the six best windows for quadratic maximum temperature as 
first window. 
 
 Window 1  
Delta AICc   Open Close    Model Weight 
-971.3393 6 2 0.9919 
-961.7269 5 2 0.0081 
-942.4245 4 2 0.0000 
-931.7863 3 2 0.0000 
-921.8252 2 2 0.0000 
-915.7598 7 2 0.0000 

   



 

 

  
 
Figure S1: Diagnostics of best model for the first climate window. a: heat plot of the 
maximum temperature in a quadratic function; b: weight plot of the maximum temperature in 
a quadratic function; c: scatter plot of the quadratic model predictions against the maximum 
temperature of the window between month 6 and 2 before the firefly observations; d: the 
comparison of 10 random null models (right hand) and the best model for the first climate 
window (broken vertical line). 
 
  



Table S2a: Selection of the best model for the second climate window. For more explanation 
see Table S1a. The bold model has the lowest Delta AICc and is therefore regarded as the 
best. 
 
Climate Statistic Function Delta AICc Window Open Window Close 
Precipitation mean linear -132.41 20 0 
Soil moisture mean linear -60.57 22 0 
Precipitation max linear -92.36 8 2 
Soil moisture max linear -80.23 7 1 
Precipitation min linear -79.93 20 17 
Soil moisture min linear -97.69 21 0 
Precipitation mean quadratic -135.71 20 0 
Soil moisture mean quadratic -78.77 1 1 
Precipitation max quadratic -129.19 6 2 
Soil moisture max quadratic -82.23 7 1 
Precipitation min quadratic -107.47 18 0 
Soil moisture min quadratic -97.29 21 0 

 
Table S2b: Model weights of the six best windows for quadratic mean precipitation as second 
window. 
 
 Window 2  
Delta AICc   Open Close    Model Weight 
-135.7115 20 0 0.7477 
-130.8895 20 1 0.0671 
-130.1198 22 0 0.0457 
-128.4038 19 0 0.0194 
-128.3964 9 0 0.0193 
-128.3355 21 0 0.0187 

   



 

 

  
 
Figure S2: Diagnostics of best model for the second climate window. a: heat plot of the mean 
precipitation in a quadratic function; b: weight plot of the mean precipitation in a quadratic 
function; c: scatter plot of the quadratic model predictions against the mean precipitation of 
the window between month 20 and 0 before the firefly observations; d: the comparison of 10 
random null models (right hand) and the best model for the first climate window (broken 
vertical line). 
 
  



Table S3a: Selection of the best model for the third climate window. For more explanation see 
Table S1a. The bold model has the lowest Delta AICc and is therefore regarded as the best. 
 
Climate Statistic Function Delta AICc Window Open Window Close 
Soil moisture mean linear -27.82 10 0 
Soil moisture max linear -46.36 7 1 
Soil moisture min linear -31.43 21 0 
Soil moisture mean quadratic -29.73 1 1 
Soil moisture max quadratic -47.92 19 5 
Soil moisture min quadratic -34.14 3 0 

 
Table S3b: Model weights of the six best windows for quadratic maximum soil moisture as 
third window. 
 
 Window 3  
Delta AICc   Open Close    Model Weight 
-47.92352 19 5 0.4064 
-46.89012 7 1 0.2424 
-46.52598 18 5 0.2021 
-43.98576 6 1 0.0567 
-41.70100 7 2 0.0181 
-40.84250 9 1 0.0118 

  



 

 

  
 
Figure S3: Diagnostics of best model for the third climate window. a: heat plot of the 
maximum soil moisture in a quadratic function; b: weight plot of the maximum soil moisture 
in a quadratic function; c: scatter plot of the quadratic model predictions against the maximum 
soil moisture of the window between month 19 and 5 before the firefly observations; d: the 
comparison of 100 random null models (right hand) and the best model for the first climate 
window (broken vertical line). 
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