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The ‘hard’ Mott insulators realized in stoichiometric transi-
tion metal salts1 are regarded as one of the few entities that 
are relatively2 well understood in the arena of strongly cor-

related electron systems. The principles are given away by Hubbard-
type models: in a half-filled state with one electron per unit cell, 
any charge fluctuation gives rise to an excess local Coulomb energy 
‘U’ and when this becomes much larger than the bandwidth, quite 
literally a traffic jam of electrons is formed. When the spins form a 
conventional antiferromagnet, this state can be adiabatically contin-
ued to the weak interaction limit using (Hartree–Fock) mean-field 
theory. There, it turns into a ‘BCS-like’ commensurate spin density 
wave3. The language of quantum information reveals the key ele-
ment: Hartree–Fock rests on the assumption that the ground state 
is a ‘semi-classical’ short-ranged entangled product state4. At strong 
coupling, the quantized single-electron charges are just localized 
inside the unit cell. At weak coupling, one has to accommodate 
Fermi statistics, but it can be shown explicitly that even the Fermi 
gas is a product state in momentum space5. The perfectly nested 
density wave (weak coupling Mott insulator) then ‘inherits’ its lack 
of macroscopic entanglement from the underlying Fermi liquid.

However, matter may also be ‘substantially quantum’ in the sense 
of quantum information: the vacuum state may be an irreducible 
coherent superposition involving an extensive part of the exponen-
tially large many-body Hilbert space. Little is known with certainty 
given the quantum complexity: an analogue quantum computer is 
needed to address it with confidence. Indications are accumulating 
that the strange metals realized in the cuprate high Tc superconduc-
tors may be of this kind6. Upon lowering the temperature in the 
under-doped regime, this strange metal becomes unstable towards 
a myriad of ‘intertwined’ ordering phenomena that do depend 
critically on the ionic lattice potential7,8. It appears that the charac-
teristic ‘pseudogap’ scale is small as compared with the ultraviolet 
cutoff of the strange metal and is thereby reminiscent of the above-
mentioned weakly interacting commensurate spin density wave. 
Nevertheless, it has become increasingly clear that this pseudogap 
order does not seem explainable in terms of conventional mean-
field language7,9. Could it be that these ordering phenomena inherit 
the many-body entanglement of the strange metal? If so, do these 
submit to general emergence principles of a new kind that can be 
identified in experiment?

A new mathematical machinery has become available that can 
address this question to a degree. There is strong evidence that 
the holographic duality10 (or anti-de Sitter/conformal field theory 
(AdS/CFT) correspondence) discovered in string theory describes 
generic properties of certain classes of such densely entangled quan-
tum matter6. In particular, holographic strange metals are emergent 
quantum critical phases that behave in key regards suggestively sim-
ilar to the laboratory strange metals (local quantum criticality11,12, 
Planckian dissipation13,14). Here we will explore what holography 
has to say about the emergence of ‘entangled Mott insulators’.

The results reveal generalities that are intriguing and suggestive 
towards experiment. On the one hand, the holographic realization 
of the Mott insulator shows properties similar to the conventional 
variety. The optical conductivity has similar characteristics to the 
inter Hubbard band transitions found in hard Mott insulators 
(Fig. 1e)15,16 and an analogue of superexchange interaction17,18 can 
be identified (Fig. 1f). Upon doping, close analogies of the ‘spin 
stripes’19–23 are formed. However, this state also reveals unconven-
tional features reflecting its entangled nature. Reminiscent of the 
charge density wave (CDW) state in cuprates, the periodicity of the 
charge order that forms upon doping displays commensurate pla-
teaux, staying constant in a range of doping levels. Most intrigu-
ingly, holography insists that charge cannot be truly localized as 
in a conventional Mott insulator. Instead, a reconfigured quantum 
critical phase emerges at low energies. It is characterized by a d.c. 
resistivity that increases algebraically instead of exponentially for 
decreasing temperature, reminiscent of the puzzling slow rise of the 
resistivity in striped cuprates. The existence of this quantum critical, 
non-localizable, phase in the low-temperature underdoped region 
of the phase diagram is a crucial prediction of our study. As we 
discuss below, this phase presents a unique arena for experimental 
study of the quantum strongly entangled matter.

Let us now discuss how we arrive at these results. The necessary 
condition for conventional Mott insulators to form is that the unit 
cell contains an integer number of electrons. However, in strongly 
entangled states including the ones described by holography, the 
information regarding the graininess of the microscopic electron 
charge is generically washed out. There is, nonetheless, an alterna-
tive and truly general definition of a Mott insulator that circum-
vents the confines of microscopic product states: a Mott insulator 
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is an electron crystal that is commensurately pinned by a periodic 
background potential. A crystal formed in the Galilean continuum 
is a perfect metal since it can freely slide—its massless longitudinal 
phonon mediates the current that is protected by total momentum 
conservation. This sliding mode will acquire a pinning energy in a 
commensurate background lattice and this is the general meaning 
of a Mott gap. In what follows we will rely on this general definition 
of the Mott state.

This is not a practical way to construct a Mott insulator depart-
ing from the electron gas at metallic densities since it lacks a natu-
ral tendency to crystallize. Holographic strange metals, on the 
other hand, are known to have crystallization tendencies, where 
the most natural form24 intriguingly involves a most literal form 
of ‘intertwined’ order similar to that observed in underdoped cup
rates7,8,25–31. The AdS/CFT correspondence shows that the proper-
ties of quantum matter can be computed in terms of a holographic 
gravitational ‘dual’ in a space with one extra dimension6,10. Strange 
metallic states appear to be in one-to-one correspondence to 
charged black holes in this gravitational system. It was discovered 
that topological terms in the gravity theory (theta- and Chern–
Simons terms in even and odd dimensions) have the effect that the 
horizon of the black hole becomes unstable towards spatial mod-
ulations32,33 at the ‘expense’ that the charge modulation is ‘inter-
twined’34 with parity breaking and the emergence of spontaneous 
diamagnetic currents.

Here we study this holographic crystallization in the presence 
of an external periodic potential. This demands advanced numer-
ics to solve the gravitational problem; our ‘corrugated black holes’ 
are among the most involved solutions in stationary general rela-
tivity. To keep the computations manageable, we focus on simple 
harmonic background potentials and especially an unidirectional 
translational symmetry breaking. We consider here specifically 
the minimal version of such a gravitational theory33. The basis is 
Einstein–Maxwell theory in 3 +​ 1 dimensions with a negative cos-
mological constant, describing the simplest holographic strange 
metal in 2 +​ 1 dimensions. The crucial extra ingredient is the ϑ-term 
that couples the Maxwell field Aμ with field strength Fμν to a dynami-
cal pseudoscalar field ψ, such that the action becomes
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It is worth noting here that despite the fact that the ‘bare’ ϑ-term 
is parity and time-reversal odd, by coupling it to the dynamical 
pseudoscalar, we keep the P- and T-symmetry of the action intact. 
The qualitative features we reveal depend only mildly on the precise 
form of the functions τ(ψ), W(ψ) and ϑ(ψ) (see Methods). The solu-
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Fig. 1 | Formation of the holographic Mott insulator. a–d, Profiles of the spontaneous currents (arrows) and charge density (colour) in the ionic lattice 
without spontaneous order (unbroken phase) (a), the purely spontaneous intertwined CDW state (b), the commensurately locked Mott state (c) and 
the state with aligned currents (d). Due to intertwinement of order, this latter state has a different charge density from the Mott state. Note that the 
total current is zero in both staggered and aligned states. All solutions are at a fixed chemical potential with T =​ 0.01μ, lattice potential strength A =​ 2 and 
θ-coupling c1 =​ 17. e, Evolution of optical conductivity through the phase transition from the metallic state to the Mott state. A sharp Drude peak is seen 
in the metallic state that is pinned and broadened after the phase transition (A =​ 0.7, c1 =​ 17, Tc ≈​ 0.15μ). f, Energy scales and superexchange. The grand 
thermodynamic potential difference between the unbroken phase and the Mott state (blue line) and for the Mott state and the state with aligned currents 
(yellow line), as a function of the strength of the lattice potential. Clearly, the energy scale of the current ordering lacks behind the one of the charge 
ordering when the lattice becomes strong. Note that the grand canonical ensemble is required due to the charge difference between the two current 
configurations (T =​ 0.01μ, c1 =​ 17). g, Higher harmonics. The difference between the Fourier transform of the charge density �ρq of the aligned (d)  
and staggered (c) states. Both spectra are normalized with respect to the lattice periodic mode �ρ( )k

. The enhancement of the 2k mode is seen for the 
aligned state, showing that it has twice the number of CDWs per unit cell. The enhancement of the homogeneous component by ~10% in not shown.
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tion to the equations of motion will asymptote to AdS space, on the 
(conformal) boundary on which the dual theory lives. At finite den-
sity and temperature, a charged (Reissner–Nordström) black hole is 
present in the deep interior, which famously translates to a locally 
quantum critical strange metal6,12 (see Methods for the dictionary 
entries). As the temperature is lowered, the ϑ-term causes the spa-
tially modulated instability of the horizon that breaks translations 
spontaneously. Here we choose the simplest version, correspond-
ing to a unidirectional symmetry breaking in the ‘x’ direction (see 
refs 34,35 for a ‘full’ 2D crystallization). This is driven by the conden-
sation of the pseudoscalar ψ representing a spontaneous breaking 
of parity on the boundary. The structure of the ϑ-term means that 
this is accompanied by condensation of the Maxwell field strength 
that translates into the formation of spontaneous currents running 
in the y direction with a concomitant charge density wave (CDW). 
A reliable, consistent result is obtained only if one solves the full 
equations of motion in the gravitational theory, and this includes 
the change in geometry due to back-reaction. Given the inhomo-
geneous nature of the bulk space time, this involves a consider-
able numerical general relativity effort since the Einstein equations 
represent a system of nonlinear partial differential equations (see 
Methods). The result is represented in Fig. 1b.

One can also introduce a background periodic potential that 
breaks translational symmetry explicitly by representing the ion lat-
tice in terms of a spatially modulated chemical potential in the field 
theory36–42. It is straightforward to incorporate complicated forms 
of such ‘pseudo potentials’, but we will focus again on the simplest 
choice in the form of a unidirectional single harmonic potential 
with wavevector k and relative amplitude A: μ(x) =​ μ0(1 +​ A cos(kx)) 
(Fig. 1a). As we show below, even this simplified unidirectional 
model possesses the key features that we are after and which will 
remain in a more realistic two-dimensional set-up.

Combining these two allows us to study spontaneous holo-
graphic crystallization in the presence of a background lattice. The 
crystal tends to form with a preferred intrinsic wavelength p0 set 
by the ϑ-coupling and the scale of the mean charge density. In the 
presence of a periodic potential characterized by wavevector k, one 
anticipates the physics of incommensurate systems, which were 
studied thoroughly in classical matter43,44. As found in an earlier 
study45, when these periodicities are sufficiently close together, one 
expects a ‘commensurate lock-in’ effect to provide an additional sta-
bility to the state where the period of the spontaneous crystal equals 
that of the lattice. This lowest-order commensurate state is the holo-
graphic incarnation of the Mott insulator (Fig. 1c), according to the 
above-mentioned general definition.

It is instructive to consider the features of this state, starting from 
the optical conductivity. In the absence of the periodic potential, 
one finds a ‘diamagnetic’ delta function peak at zero frequency at 
all temperatures. The reason is that every finite density system is a 
perfect metal in the spatial continuum limit since total momentum 
is conserved. The formation of a crystal at Tc spontaneously breaks 
translational invariance, and a longitudinal phonon emerges—the 
sliding mode—which mediates a perfect current. When we now 
switch on an explicit commensurate background potential, this 
mode will acquire a mass since the crystal gets pinned and it can  
no longer freely slide. This reveals itself in the optical conductivity 
(Fig. 1e). As the crystal forms below Tc, the metallic Drude peak 
rapidly moves off to finite frequency corresponding to the pinning 
of the sliding mode. The mode itself broadens first due to increased 
translational symmetry breaking from the crystal. The resulting 
optical conductivity at T <​ Tc is similar to that of a hard Mott insula-
tor with a broadening due to Hubbard interband transitions.

From Fig. 1c, one infers that the background lattice enhances 
the spontaneous order. Visually, one notices that the currents are 
generically enhanced in the regions where the spontaneous CDW 
has a maximum and the current density is effectively localized in 
these regions. This charge localization together with the alternating 
pattern of these currents immediately calls to mind the hard antifer-
romagnetic Mott insulator with staggered spins.

This suggests that other current patterns also exist. Indeed, 
metastable solutions (local minima in the grand thermodynamic 
potential Ω) exist where the currents are aligned (Fig. 1d). In the 
presence of a large lattice potential, the energy difference between 
these two configurations is much smaller than the energy difference 
between the CDW ordered and the uncrystallized state (Fig. 1f). 
This implies that current–current dynamics is governed by a differ-
ent scale from charge dynamics. It is in analogy with the spin-charge 
separation in conventional Mott insulators, where below the Mott 
transition the spin order is governed by effective ‘super exchange’ 
interactions that are much smaller than the scale associated with 
the Mott insulator itself. Keeping this analogy in mind, one antici-
pates the effect the thermal fluctuations will have on the system. For 
strong lattice potentials, one first encounters the onset of the CDW 
order at the transition temperature. Only at lower temperature will 
the additional staggered current symmetry breaking occur, since 
the latter will remain thermally disordered at temperatures larger 
than the current–current ‘exchange’ parameter. A full thermody-
namic treatment of the holographic model will exhibit this physics.

A highlight of holography is that the extra dimension of the 
gravitational theory can be interpreted as the ‘scaling direction’ of 
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Fig. 2 | Holographic renormalization group pattern. a–c, The profiles of the electric field strength ∂​zAt (see equation (9) in the Methods) in the 
gravitational theory encoding the renormalization group flow from the ultraviolet (UV, bottom) to the infrared (IR, top) of the pure lattice that is sourced 
in the ultraviolet and decreases to irrelevancy in the infrared (a), the spontaneous CDW that emerges in the infrared, but does not have sources in the 
ultraviolet (b) and the lock-in that forms the Mott state (c). The CDW locks to the lattice at intermediate scales and introduces the relevant explicit 
translation symmetry breaking in the infrared, giving rise to the insulating state. The values shown in coulour are independently scaled to unit interval 
revealing the field strength pattern in each case. 
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the renormalization group of the dual field theory with the ultra-
violet fixed point located on the boundary of AdS. This yields a 
vivid renormalization group view of the way that the holographic 
Mott insulator is formed and reveals deep analogies with the con-
ventional variety. The pure holographic ionic lattice potential is 
always irrelevant in the infrared40. This is illustrated in Fig. 2a: 
the electric field sourced by the external potential falls off moving 
from the boundary to the deep interior. Therefore, the correspond-
ing state is a metal, similarly to the conventional Mott insulator, 
which would be metallic if one would consider only the effects 
of lattice potential on the non-interacting electrons. However, the 
spontaneous crystal displays precisely the opposite flow: it is rel-
evant in the infrared without having any sources in the ultraviolet 
(Fig. 2b). Without the explicit lattice though, it has a sliding mode 
and zero resistance. One can now read off the commensurate pin-
ning mechanism from the ‘scaling diagram’ (Fig. 2c): this pinning 
occurs at intermediate energy scales. One sees that ‘halfway’ the 
radial direction the (decreasing) field profile sourced by external 
potential starts to overlap with the (increasing) field strength of 
the spontaneous crystal. This overlap locks the infrared-relevant 
translation symmetry breaking by the crystal to the explicit ultra-
violet lattice rendering the whole system insulating. In a similar 
fashion, the conventional Mott insulator forms when the other-
wise metallic half-filled state gets insulating due to the effect of 
the interactions.

The important question with reference to the cuprates is: what 
happens when these holographic Mott insulators are doped? Above, 
we tuned the wavevectors of the explicit lattice and spontaneous 
crystal to be the same. Altering the charge density ρ by adding more 
charge, the crystal will tend to form at a different intrinsic wavevec-
tor p0 ~ ρ but the external lattice potential may force it to acquire 
some other wavevector p, commensurate with the lattice momentum 
k. Mismatch between p and p0 will, however, cost potential energy 
due to the elastic response of the crystal, so the resulting value of p is 
determined dynamically by these two competing mechanisms. This 
is a motive familiar from the study of classical incommensurate sys-
tems44,46 and one anticipates that generically this will promote values 
of p

k
, which are the rationals of small coprime integers: these are the 

higher-order commensurate points. The states labelled by the dif-
ferent fractions p

k
 form a set of the local minima in the thermody-

namic potential Ω and the true ground state corresponds to the one 
with minimal Ω. We performed extensive numerical computations 
spanning a large parameter space to identify these saddle points.

The lowest-order commensurate state p/k =​ 1/1 is obviously the 
Mott insulator we just discussed in detail. In analogy with the con-
ventional picture of adding microscopic charges per unit cell, we 
prescribe the doping level as the excess charge per lattice period 
compared to the Mott insulating state. We normalize by assign-
ing doping level 100% to the p/k =​ 2/1 state, which has exactly one 
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additional period of spontaneous CDW per unit cell (see Methods). 
In practice, adding excess charge to the system is accomplished by 
adjusting the chemical potential, while keeping the lattice wavevector 
fixed. The result is summarized in Fig. 3a. The crucial feature is that, 
due to the lock-in, some commensurate points stay stable for a range 
of dopings, displaying a ‘Devil’s staircase’-like behaviour familiar from 
classical incommensurate systems. We shall return to this shortly.

Let us first discuss the structure of these higher-order commen-
surate states as formed at low temperatures in sufficiently strong 
background potentials. The periodicity mismatch (the deviation  
of p/k from 1/1) is concentrated in localized solitonic textures, see 
Fig. 4b—the discommensurations (see also Methods). This is not 
completely surprising since discommensurations are rather ubiqui-
tous when dealing with incommensurate systems. It is entertaining 
to observe how the discommensurations follow the renormaliza-
tion group in the extra dimension of the gravity system (Fig. 4a).  

The ultraviolet lattice almost everywhere locks in the infrared 
CDW, except at the discommensuration core where a curious dis-
location is formed in the electrical flux in the radial direction of the 
gravitational theory.

The noteworthy aspect is that there is additional structure: these 
discommensurations are, at the same time, domain walls in the stag-
gered current order (Fig. 4b). Considering the current order as being 
analogous to the antiferromagnetic spin systems found in the stan-
dard (doped) Mott insulators, these are just like the famous ‘stripes’ 
observed in the La2CuO4 (214) family of high-Tc superconductors20 
and in other doped Mott insulators21. In the cuprate stripes, the 
doped charge accumulates at the spin-pattern domain walls and 
the same is happening here (Fig. 4b). These stripes were actually 
discovered theoretically on the basis of Hartree–Fock calculations 
well before the experimental observation19. The mean-field stripes 
have a product state nature that is revealed by the rule that they 
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have a preferred density (typically, one hole per domain wall unit 
cell). This is crucially different here: the ‘holographic stripes’ have 
no preferred charge density. In Fig. 3b, we highlight that the higher-
order commensurate plateaux are in fact stable across a range of 
dopings. This has the implication that the charge density inside the 
‘stripes’ continuously varies over a considerable range (Fig. 3c). It 
is a natural outcome of the absence of localized quantized charge 
in this entangled matter. This observation is directly relevant to 
experiment, which has proved difficult to explain in terms of the 
conventional ‘product state’ CDW. In most cuprates, it appears that 
the periodicity of the charge order locks locally at 4 lattice constants 
in the large doping range7–9,47 (the exception is 214 stripes, which 
do show a sense of preferred charge density in a limited doping 
range). Our finding is similar to the result obtained recently in the 
context of numerical approaches to the doped Hubbard model22,23. 
This revealed that stripes are ubiquitous, with a similar surprise 
that these lack a preferred charge density. These heavy numeri-
cal methods wire in entanglement, the same generic motive that 
is hard-wired in holography. The locked-in periodicity of stripes 
can therefore be seen as another compelling indication that strong 
entanglement underlies cuprate strange metals.

Let us now turn to the real surprise revealed by holography: the 
transport in a holographic Mott insulator is not governed by an acti-
vation energy, but instead by an algebraic divergence of the resistiv-
ity at zero temperature. In Fig. 5, we show the results for a variety of 
cases including the 1/1 ‘Mott insulator’. In all cases at temperatures 
well below Tc the resistivity diverges algebraically, approximately as 
rd.c. ~ T−1.8. The value of the exponent is not universal, but instead 
model and state dependent. However, the algebraic fall-off is a 
generic feature.

This calls to mind a long-standing experimental puzzle that 
one finds in underdoped cuprates. There is a slow, ‘logarithmic’-
like, increase of the resistivity setting in at rather high tempera-
tures, seemingly related to the onset of spin-stripe charge order48,49. 
Conventional explanations such as Anderson localization fail to 
explain this behaviour. However, such a slow rise of the resistiv-
ity can be regarded as a universal feature of the holographic Mott 
state. This universality is hard-wired in the bulk gravity. When the 
holographic order sets in, the near-horizon black hole geometry 
that codes for the low-energy physics reconfigures, but does not 
disappear. This in turn invariably codes for states on the bound-
ary that behave like quantum critical phases with special scaling 
properties. Our holographic Mott state is a perfect theatre to study 
this phenomenon. The Drude-like contribution that is governed 
by momentum conservation is gapped out (see Fig. 1e) and the 
transport characterized by an ‘unparticle’ power law is left behind  
(Fig. 5a). Apparently, this corresponds with a strongly entangled 

form of matter, inherited from the strange metal, that is not localiz-
able50. It is worth stressing here that the unparticle nature of this 
state invalidates any kind of quasiparticles as mediators of transport. 
Therefore, the features of resistivity are in principle disconnected 
from the shape of dispersion relation of either fermionic or bosonic 
excitations in the system.

This begs the question of whether such matter is realized in the 
underdoped ‘striped’ cuprates, revealing itself by the scaling regime 
in the resistivity at low temperature? The emergence of such scaling 
from strongly entangled matter is well charted in holography51–54. It 
predicts that many physical properties should give in to algebraic 
scaling laws, with the exponents that are typically different from 
those of the high temperature strange metallic phase. This includes 
thermodynamics (specific heat), thermal transport and mag-
netotransport, but also optical conductivity at low frequency. We 
challenge the experimental community to revisit this regime with 
high precision measurements to find out whether the signatures of 
strongly entangled matter are realized in cuprates.

In summary, we have identified the holographic analogue of Mott 
insulators that has crucial phenomenological features in common 
with the conventional variety such as a Mott gap and the mecha-
nism of super exchange interactions. By construction, this analogue 
displays intertwinement of charge order with spontaneous currents 
and parity breaking. A novel aspect is commensurate lock-in and 
higher-order commensurate stability regions, when doped, which 
have striking similarities to the stripe phases found in cuprates. 
Our results suggest that these features as well as the just discussed 
algebraic resistivity at low temperature are representative of the new 
class of strongly correlated matter, characterized by strong entangle-
ment and lack of localization and charge quantization.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0217-6.
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Methods
The holographic set-up. We consider the model of ref. 33 that consists of 
3 +​ 1-dimensional Einstein–Maxwell theory coupled to a neutral pseudo scalar. 
Following refs 55,56, we write the action as

∫

∫

ψ τ ψ ψ

ψ

= − − ∂ − −

− ϑ ∧ +







S x g R F V

F F S

d 1
2

( ) ( )
4

( )

1
2

( )
(2)

ndy

4 2 2

b

where

∫ ψ= − − − +S x h Kd ( 4 ) (3)ndyb
3 2

Here F =​ dA is the field strength associated with the Maxwell field A, while h is the 
metric induced at the boundary with extrinsic curvature K. The boundary term (2) 
obtained in ref. 56 renormalizes the action57. Following refs 33,55,56,58, we choose the 
couplings as

ψ Λ ψ ψ

τ ψ
ψ

ψ ψ

≡ + = − ∕

=

ϑ =

V W

c

( ) 2 ( ) 6cosh( 3 ) ,

( ) 1
cosh( 3 )

,

( )
6 2

tanh( 3 )

(4)
1

This model is bottom-up, but similar couplings can be obtained in supergravity59. 
The cosmological constant is Λ =​ −​3 and the mass of the scalar is m2 =​ −​2. The 
equations of motion admit the translational invariant Reissner–Nordström charged 
black hole solution

̄μ
ψ

= − + + +

= −
=





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

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f z t z
f z

x y

A z t
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d d ,

(1 )d ,
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(5)

2
2

2
2

2 2

where

̄μ= − + + − ∕f z z z z(1 )(1 4) (6)2 2 3

with the boundary at z =​ 0 and the horizon at z =​ 1. The chemical potential in the 
dual theory is given by the constant ̄μ . The Hawking temperature reads

̄ ̄μ= −
π

T 12
16

(7)
2

We are interested in stationary configurations of the form

= − + + + + +



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2 2

= +A A t A yd d (9)t y

All unknowns are functions of z and the boundary coordinate x. We search for 
black holes with uniform temperature, which means that in the near horizon 
all functions must be regular except f(z). Then, the equations of motion require 
Qtt(1, x) =​ Qzz(1, x), which implies that the surface gravity is constant and given 
by equation (7) (see, for example, ref. 38). Given that the dual field theory lives in 
flat space, we require the metric to be asymptotically AdS as z →​ 0. The AdS/CFT 
dictionary60–62 relates the boundary asymptotics of the fields in equation (2) to the 
sources and one-point functions of the energy-momentum tensor, electromagnetic 
currents and parity-odd order parameter in the dual 2 +​ 1-dimensional theory. In 
particular, from the ultraviolet expansions

= + + +Q z Q x z Q x O z1 ( ) ( ) ( ) (10)tt tt tt
2 (2) 3 (3) 4

μ ρ= − +A x z x O z( ) ( ) ( ) (11)t
2

= +A zJ x O z( ) ( ) (12)y y
2

ψ ψ= +z x O z( ) ( ) (13)2 (2) 3

we obtain that the coefficients μ(x), ρ(x), Jy(x) and ψ(2)(x) determine the chemical 
potential, charge density, current density and pseudoscalar parity-breaking order 
parameter of the dual theory and the energy density is given by

̄μϵ = + −x Q x( ) 2
2

3 ( ) (14)tt

2
(3)

To break translations explicitly, we introduce a spatially modulated chemical 
potential36,39, fixing At(z =​ 0, x) =​ μ(x) with

̄μ μ= +x A k x( ) (1 cos( )) (15)0

Without loss of generality, we set ̄μ μ=0  (ref. 63). We express the dimensionful 
parameters of the model in units of ̄μ :

̄ ̄ ̄ ̄ ̄̄μ μ μ= = =T T k k p p, , (16)

When ψ =​ Qty =​ Ay =​ 0, all profiles acquire modulation along x solely due to the 
x-dependent boundary conditions, so these solutions represent states that break 
translations only explicitly—‘ionic lattices’39. For small ω, the optical conductivity 
can be approximated by a Drude peak with a finite d.c. value. These lattices are 
irrelevant in the infrared, in the sense that the near-horizon geometry approaches 
the translationally invariant charged black hole as the temperature goes to zero40. 
As a result of this, one can think of the lattice as an ultraviolet-based structure  
(see Fig. 2).

For translations to be broken only spontaneously, the boundary conditions 
need to be translational invariant in the ultraviolet, so we take A =​ 0 in equation 
(15), along with the vanishing of leading terms in Ay and ψ, as reflected by 
equations (10)–(13) (see also refs 55,56,58,63).

In the case of purely spontaneous symmetry breaking, all of the boundary 
sources can be made homogeneous: A =​ 0 in equation (15)55,56,58,63. However, the 
spatial modulation arises dynamically as an infrared effect, due to near-horizon 
instabilities induced by the ϑ-term in equation (2). The effect localizes near the 
horizon of the black hole as seen in Fig. 2. The resulting spontaneous structure 
is strongly dependent on ̄μ  ≠​ 0 and the value of the coupling c1 in equation (4): 
increasing c1 raises the critical temperature and makes the spontaneous crystal 
more stable, leading to more pronounced commensurate effects. For this reason, 
we choose c1 =​ 17, as opposed to refs 33,55,56,58.

The arising spontaneous structure is characterized by the oscillating values of 
Ay and ψ, which results in the observable staggered currents Jy(x). At the nonlinear 
level, At also becomes modulated with twice the momentum of Ay or ψ due to the 
quadratic interaction in the ϑ-term (equation (1)) (see Supplementary Fig. 3b). The 
modulation of At corresponds to the formation of a CDW on the boundary, which 
we write as

̄ρ ρ δρ≈ + p xcos( ) (17)DWC 0

We use the momentum of this CDW p  as the defining momentum to describe the 
spontaneous structure; that is, the staggered currents have momentum p /2. This 
notation differs from previous studies33,45,55,56,58. To compare the results, we note 
phere =​ 2pthere.

It is instructive to first consider spontaneous symmetry perturbatively by 
taking ψ, Ay and Qty to be linearly small in a Fourier basis of momentum p and 
zero frequency. Linear instabilities exist for T <​ Tc and arrange themselves in 
a bell-shaped curve in the (T, p) plane33, as in the five-dimensional case64 (see 
Supplementary Fig. 1a). The critical temperature in purely spontaneous case 
of Reissner-Nordström background corresponds to the maximum of the bell 

= .T 0 147N
c
R , attained at a critical momentum = .p 1 33N

c
R . Inside the bell curve, 

one can construct nonlinear solutions for a range of values of p. However, the ones 
that minimize the (spatially averaged) thermodynamic potential play a special role 
since they dominate the thermodynamic ensemble. These preferred solutions for 
all T form a line p0(T) inside the bell curve, which in general deviates from p N

c
R .

We can study the interplay of the explicit and spontaneous symmetry-breaking 
phenomena in two ways: we can start with an ionic lattice and observe how the 
instabilities towards the formation of spontaneous structures develop, or begin 
with a configuration that breaks translations of the Reissner–Nordström solution 
spontaneously and introduce a modulated source as in equation (15). Following 
the former procedure, we examine the unstable modes of the pure ionic lattice 
solution. The study of these modes was undertaken in an earlier study45, which 
revealed an interesting lock-in pattern of the spontaneous to the explicit structure. 
We reproduced the calculations of ref. 45 for the parameters that will be used in 
our nonlinear study: A =​ 0.7 and c1 =​ 17 (see Supplementary Fig. 1b,c). We observe 
the lock-in of the spontaneous structure indicated by the plateaux at pc/k =​ 1 and 
pc/k =​ 2. Importantly, the higher-order commensurate fractions (that is, pc/k =​ 3/2) 
cannot be observed in the perturbative approach. When the spontaneous structure 
is infinitesimal, the total solution including the perturbative modes is forced by 
the lattice to be periodic with momentum k. Hence, near critical temperature 
all possible commensurate fractions of pc/k are integers. This changes when one 
considers finite amplitude of the spontaneous structure; the result is Fig. 3a.

Full back-reacted solutions. We construct the fully back-reacted solutions  
by observing how a given purely spontaneous structure arising from the  
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Reissner–Nordström background gets modified as we introduce an ionic lattice 
potential by increasing the amplitude from A =​ 0.

We wish to study the thermodynamic stability of these configurations, by 
minimizing the spatially averaged thermodynamic potential

̄Ω μ ρ= ϵ − −x x T s x x x( ) ( ) ( ) ( ) ( ) (18)

where ϵ is the energy density, T  is the temperature, s is the entropy density, μ is the 
x-dependent chemical potential and ρ is the charge density.

There is a technical difficulty, which arises while addressing the nonlinear 
solutions. This involves two unrelated length scales: the wavelength of the 
spontaneous structure λp =​ 2π​/p and the wavelength of the background lattice 
λk =​ 2π​/k. To set up the numerical PDE solver, one has to specify only one scale, 
corresponding to the size of the computational domain with periodic boundary 
conditions. Therefore, in practice we can access only the values λp that are rational 
multiples of λk:

Nλ λ= ∈
N
N

N N, , (19)p
k

p
k k p

In this case, one can choose the computation domain of size Nkλk equal to the 
integer number of lattice periods, which would simultaneously accommodate 
Np periods of CDW. This situation is analogous to the ‘magnetic unit cell’ 
phenomenon, which arises when one considers a crystal in an external magnetic 
field. The unit cell must simultaneously accommodate the integer number of 
crystal plaquettes and magnetic fluxes, and can become substantially large65. We 
see here that the accessible range of spontaneous structure wavevectors k is now 
discrete and its density is limited by the maximal size of the computational domain, 
which we can handle in our numerics. In what follows, we will use computational 
domains including up to Nk =​ 20 periods of the lattice or up to Np =​ 20 periods of 
the spontaneous CDW (note, once again, that this corresponds to 10 periods in 
the spontaneous currents), which allows us to achieve reasonable resolution of the 
corresponding thermodynamic potentials (see Supplementary Fig. 2).

In practice, to construct the solution with Np CDW periods on top of the Nk 
lattice cells with period λk and amplitude A, we first find the spontaneous stripe 
solution with specific period λp from equation (19) on top of the translationally 
symmetric background. Then we concatenate Np copies of these stripes fitting 
them in the enlarged calculation domain. At this point, we turn on Nk periods 
of the background lattice by slowly changing the boundary condition for the 
chemical potential, eventually achieving the desired value of A in equation (15). 
This adiabatic process preserves the initial number of CDW periods that we check 
numerically at every stage by counting the number of zeros of the oscillating Ay 
field at the horizon (see Supplementary Fig. 3c,d).

We explore the phase diagram at a given temperature by first choosing the 
period and the amplitude of the explicit ionic lattice. Then we construct a set of 
nonlinear solutions, corresponding to the spontaneous structures with different 
wavevectors p on top of this lattice. We calculate the thermodynamic potential (18) 
for these solutions and find the thermodynamically preferred one. The sample of 
the Ω(k) curves is shown in Supplementary Fig. 2.

A good check of our calculation is that, at A =​ 0 our solutions follow the curve, 
which one would obtain in the study of the spontaneous striped solutions on the 
homogeneous Reissner–Nordström background55,56,58. We have checked that for 
c1 =​ 9.9 our results coincide with Fig. 2 in ref. 55. Even though we have access only to 
the discrete set of values, they lie on smooth curves that have well-defined minima. 
One interesting feature of these curves is that they end abruptly for Np/Nk <​ 1. This 
can be understood via a simple energy argument. In the present case where p0 >​ k, 
the solutions with Np/Nk >​ 1 are stabilized by the competition between the lattice 
commensuration and the elasticity of the spontaneous structure. In the case of 
Np/Nk <​ 1, both of these effects tend to destroy the state; therefore, it is dynamically 
unstable and we do not obtain the corresponding solutions as local minima of the 
free energy (see ref. 66 for more details).

One can see that as the amplitude rises, the minimum smoothly shifts 
from the incommensurate to commensurate point. Thus, by increasing the 
amplitude, we observe the smooth, at least second-order phase transition. The 
different commensurate points, which are thermodynamically stable at different 
temperatures and charge densities, are shown in Fig. 3a.

Commensurate state. Let us first focus on two integer-value commensurate 
states: the leading 1/1 Mott insulator and the higher 2/1 commensurate state. 
The features of the 1/1 state (Supplementary Fig. 3a) are mostly similar to 
those of the pure spontaneous crystal with an important difference: now the 
periodicity of the overall structure is anchored by the ionic lattice wavelength 
λk. The staggered currents are seen, but they are now enhanced near the 
maxima of ρ(x) and suppressed at the minima. This leads to the effective 
localization of the currents. On the other hand, the spontaneous structure 
brings an excess of total charge density as compared to the pure lattice (shaded 
region in Supplementary Fig. 3a, colour in Fig. 1a–d). This allows us to define 
a ‘unit of CDW charge’, qCDW (equation (20)) as the integrated excess charge 
density in the unit cell

∫ ρ ρ≡
π

−
π∕

q k x x
2

( ( ) ( )) (20)DW

k

ott atticeC
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M l

An important feature is that in holography qCDW assumes a continuous range 
of values depending on the external conditions, while in the hard Mott insulator it 
would be quantized in units of the electron charge.

Now we address the higher commensurate state 2/1 (see Supplementary  
Fig. 3b). Note that the localized peaks of the Jy current are all aligned. The reason 
is that the 2/1 commensurate state has twice the number of CDW periods as 
compared to the 1/1 state (see the near-horizon profile in Supplementary  
Fig. 3c,d). Every odd positive current peak is thus enhanced by the charge density, 
but the negative currents are dispersed and do not show well-defined peaks. 
Nonetheless, the total current remains zero. Supplementary Fig. 8b shows that the 
total charge density of this ‘aligned’ state is larger than that of the staggered one. 
This is due to the fact that it possess twice the number of spontaneous CDWs per 
unit cell, each bringing contributions of order qCDW to the total charge density. 
This feature allows us to denote this state as 100% doped and define the doping 
rate as in the main text.

Incommensurate state. As we mentioned earlier, the numerical computation in 
the incommensurate state is technically more involved, as the numbers of periods 
in equation (19) become large. The isolated discommensuration is found as a 
solution that is closest to the commensurate =
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k
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we will choose Nk =​ Np −​ 1 and maximal Np reachable by our numerics Np ≤​ 20. The 
incommensurate solution with 20 CDWs per 19 lattice periods would have exactly 
one excess CDW period per 19 unit cells as compared to the commensurate state. 
Inspecting this solution (Fig. 4), we see that the solution profile coincides with the 
commensurate state almost everywhere except from the finite size region in the 
core, where this excess of one period of CDW is accounted for. We can also study 
the thermodynamic potential and charge density of this solution as compared 
to the pure commensurate state (Supplementary Fig. 4), which shows that this 
incommensurate solution can be seen as a commensurate state with one localized 
soliton on top of it. This soliton is a direct analogue of discommensuration studied 
in the context of CDWs in previous studies43,67.

As is apparent in Supplementary Fig. 4, a single discommensuration possesses 
a finite net charge

∫λ
ρ ρ= −

λ
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which is manifestly positive, is of order qCDW (equation (20)) and has a direct 
analogue in the hard Mott insulator model. Indeed, the discommensurations  
in the conventional Mott state are associated with one extra or missing electron  
in the unit cell. In this case, the charge of the discommensuration would be exactly 1.  
The holographic model, in contrast, allows for continuous variations in qdisc.  
(see Fig. 3c).

One can see that further deviation from the commensurate point 1/1, according 
to equation (21), is achieved by raising the density of discommensurations. At 
higher commensurate points they can form a super lattice with a period of several 
ionic lattice constants a (Fig. 4c). For instance, the discommensuration lattice with 
3a period corresponds to the commensurate fraction p/k =​ Np/Nk =​ 4/3, which 
is stable at low temperature in a window of doping levels as shown on the phase 
diagram Fig. 3a.

Optical conductivity. To further investigate the properties of the above-described 
solutions, we extract their electric conductivity as a function of frequency, σ(ω), 
along the x direction, following ref. 41. The optical conductivity in inhomogeneous 
set-ups has also been studied in, for example, refs 38–40.

Extracting σ(ω) is an involved numerical problem, which requires one to 
first construct a given background to sufficient accuracy and then solve the 
perturbation equations on top of this solution. We found that our usage of the 
standard MachinePrecision computations of Wolfram Mathematica68 limits 
the reliability of our a.c. conductivity results to the region in the vicinity of the 
critical temperature. For the results within this region, we successfully perform a 
set of numerical consistency checks, which includes vanishing of the constrains 
and gauge fixing conditions. We have also checked that our results satisfy the sum 
rule on the integrated spectral weight: limω→0S(ω) →​ 0, where

∫ω μ σ ω ω∕ ≡ ℜ ′ − ′
ω μ∕

S( ) ( [ ( )] 1)d (23)
0
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If one is interested only in the d.c. conductivity, σd.c. =​ σ(ω =​ 0), it is possible to 
largely simplify the calculation since we can obtain a formula for this observable 
solely in terms of the horizon data40,69–72. The relevant formula for our system 
was obtained in ref. 72, which we have rederived in full agreement. Moreover, 
for all of the cases we have studied, the limit ω →​ 0+ of σ(ω) agrees with the 
computation of σd.c. in terms of the horizon data, which serves as another test of 
our numerics.

Numerical techniques and precision control. In the present study, we rely heavily 
on numerical analysis of nonlinear solutions. Moreover, to study the phase diagram 
and cover the parameter space, we have to obtain several thousand solutions, some 
of them requiring large calculation grids in the spatial direction. This situation 
places strict requirements on the numerical techniques that we use, the precision 
and the accuracy of the results.

We have chosen a single-patch pseudospectral scheme in the holographic 
direction and used Wolfram Mathematica68 to implement the numerical 
algorithm. The main limitation we encounter is the necessity to work with 
MachinePrecision numbers in the compiled function, which eventually limits 
the precision of our results. Element-wise operations can be efficiently compiled with 
Compile, which brings up a spectacular acceleration. We use precompiled linear 
algebra solvers and sparse matrices, which delivers a decent speed of calculations.

It should be noted that direct inversion (Newton–Raphson method) for the 
case of pseudospectral discretization is extremely demanding for large grids, so we 
used a relaxation scheme instead. We employ the differential operator evaluated in 
the low-order finite-difference derivative scheme as a preconditioner. The result is 
a nonlinear Richardson relaxation with Orszag preconditioning (see section 15.14 
and equation (15.115) in ref. 73). Our calculation scheme takes about half an hour to 
obtain the precise solution on our largest grid of size ~ 330x ×​ 80z (pseudospectral) 
using a single core of a laptop CPU (Intel Core i7-5600U at 2.60 GHz) and about 
3 Gb of RAM.

As one can see from our results, the difference between the free energies of 
the solution with spontaneous structure and the one without is a few per cent of 
the free energies themselves. This means that to reliably study this difference, we 
need to evaluate the free energies with an accuracy of at least 10−4. We observe 
that for a single-patch Chebyshev grid the maximum Ny resolution is limited by 
the rounding errors at Ny =​ 80. The accuracy of the thermodynamical potential for 
a grid of this size is about 10−7. We used this value as a numerical error estimate 
throughout the present study and it has proved to be sufficient to obtain our main 
results. One should keep in mind that in the numerical procedure we solve the 
modified DeTurck equations. Thus, it must be checked that the Einstein equations 
are satisfied, which we do by two independent measures: the maximal value of the 
trace of the Einstein equations and the maximum value of the norm of a DeTurck 
vector. For temperatures T >​ 0.01, these values are both of order 10−7, which is 
quite satisfactory40.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon reasonable 
request.
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